xref: /dragonfly/contrib/gdb-7/gdb/gnu-v3-abi.c (revision 8af44722)
1 /* Abstraction of GNU v3 abi.
2    Contributed by Jim Blandy <jimb@redhat.com>
3 
4    Copyright (C) 2001-2013 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "exceptions.h"
30 #include "typeprint.h"
31 
32 #include "gdb_assert.h"
33 #include "gdb_string.h"
34 
35 static struct cp_abi_ops gnu_v3_abi_ops;
36 
37 static int
38 gnuv3_is_vtable_name (const char *name)
39 {
40   return strncmp (name, "_ZTV", 4) == 0;
41 }
42 
43 static int
44 gnuv3_is_operator_name (const char *name)
45 {
46   return strncmp (name, "operator", 8) == 0;
47 }
48 
49 
50 /* To help us find the components of a vtable, we build ourselves a
51    GDB type object representing the vtable structure.  Following the
52    V3 ABI, it goes something like this:
53 
54    struct gdb_gnu_v3_abi_vtable {
55 
56      / * An array of virtual call and virtual base offsets.  The real
57          length of this array depends on the class hierarchy; we use
58          negative subscripts to access the elements.  Yucky, but
59          better than the alternatives.  * /
60      ptrdiff_t vcall_and_vbase_offsets[0];
61 
62      / * The offset from a virtual pointer referring to this table
63          to the top of the complete object.  * /
64      ptrdiff_t offset_to_top;
65 
66      / * The type_info pointer for this class.  This is really a
67          std::type_info *, but GDB doesn't really look at the
68          type_info object itself, so we don't bother to get the type
69          exactly right.  * /
70      void *type_info;
71 
72      / * Virtual table pointers in objects point here.  * /
73 
74      / * Virtual function pointers.  Like the vcall/vbase array, the
75          real length of this table depends on the class hierarchy.  * /
76      void (*virtual_functions[0]) ();
77 
78    };
79 
80    The catch, of course, is that the exact layout of this table
81    depends on the ABI --- word size, endianness, alignment, etc.  So
82    the GDB type object is actually a per-architecture kind of thing.
83 
84    vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
85    which refers to the struct type * for this structure, laid out
86    appropriately for the architecture.  */
87 static struct gdbarch_data *vtable_type_gdbarch_data;
88 
89 
90 /* Human-readable names for the numbers of the fields above.  */
91 enum {
92   vtable_field_vcall_and_vbase_offsets,
93   vtable_field_offset_to_top,
94   vtable_field_type_info,
95   vtable_field_virtual_functions
96 };
97 
98 
99 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
100    described above, laid out appropriately for ARCH.
101 
102    We use this function as the gdbarch per-architecture data
103    initialization function.  */
104 static void *
105 build_gdb_vtable_type (struct gdbarch *arch)
106 {
107   struct type *t;
108   struct field *field_list, *field;
109   int offset;
110 
111   struct type *void_ptr_type
112     = builtin_type (arch)->builtin_data_ptr;
113   struct type *ptr_to_void_fn_type
114     = builtin_type (arch)->builtin_func_ptr;
115 
116   /* ARCH can't give us the true ptrdiff_t type, so we guess.  */
117   struct type *ptrdiff_type
118     = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
119 
120   /* We assume no padding is necessary, since GDB doesn't know
121      anything about alignment at the moment.  If this assumption bites
122      us, we should add a gdbarch method which, given a type, returns
123      the alignment that type requires, and then use that here.  */
124 
125   /* Build the field list.  */
126   field_list = xmalloc (sizeof (struct field [4]));
127   memset (field_list, 0, sizeof (struct field [4]));
128   field = &field_list[0];
129   offset = 0;
130 
131   /* ptrdiff_t vcall_and_vbase_offsets[0]; */
132   FIELD_NAME (*field) = "vcall_and_vbase_offsets";
133   FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
134   SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
135   offset += TYPE_LENGTH (FIELD_TYPE (*field));
136   field++;
137 
138   /* ptrdiff_t offset_to_top; */
139   FIELD_NAME (*field) = "offset_to_top";
140   FIELD_TYPE (*field) = ptrdiff_type;
141   SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
142   offset += TYPE_LENGTH (FIELD_TYPE (*field));
143   field++;
144 
145   /* void *type_info; */
146   FIELD_NAME (*field) = "type_info";
147   FIELD_TYPE (*field) = void_ptr_type;
148   SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
149   offset += TYPE_LENGTH (FIELD_TYPE (*field));
150   field++;
151 
152   /* void (*virtual_functions[0]) (); */
153   FIELD_NAME (*field) = "virtual_functions";
154   FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
155   SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
156   offset += TYPE_LENGTH (FIELD_TYPE (*field));
157   field++;
158 
159   /* We assumed in the allocation above that there were four fields.  */
160   gdb_assert (field == (field_list + 4));
161 
162   t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
163   TYPE_NFIELDS (t) = field - field_list;
164   TYPE_FIELDS (t) = field_list;
165   TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
166   INIT_CPLUS_SPECIFIC (t);
167 
168   return t;
169 }
170 
171 
172 /* Return the ptrdiff_t type used in the vtable type.  */
173 static struct type *
174 vtable_ptrdiff_type (struct gdbarch *gdbarch)
175 {
176   struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
177 
178   /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */
179   return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
180 }
181 
182 /* Return the offset from the start of the imaginary `struct
183    gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
184    (i.e., where objects' virtual table pointers point).  */
185 static int
186 vtable_address_point_offset (struct gdbarch *gdbarch)
187 {
188   struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
189 
190   return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
191           / TARGET_CHAR_BIT);
192 }
193 
194 
195 /* Determine whether structure TYPE is a dynamic class.  Cache the
196    result.  */
197 
198 static int
199 gnuv3_dynamic_class (struct type *type)
200 {
201   int fieldnum, fieldelem;
202 
203   if (TYPE_CPLUS_DYNAMIC (type))
204     return TYPE_CPLUS_DYNAMIC (type) == 1;
205 
206   ALLOCATE_CPLUS_STRUCT_TYPE (type);
207 
208   for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
209     if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
210 	|| gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
211       {
212 	TYPE_CPLUS_DYNAMIC (type) = 1;
213 	return 1;
214       }
215 
216   for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
217     for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
218 	 fieldelem++)
219       {
220 	struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
221 
222 	if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
223 	  {
224 	    TYPE_CPLUS_DYNAMIC (type) = 1;
225 	    return 1;
226 	  }
227       }
228 
229   TYPE_CPLUS_DYNAMIC (type) = -1;
230   return 0;
231 }
232 
233 /* Find the vtable for a value of CONTAINER_TYPE located at
234    CONTAINER_ADDR.  Return a value of the correct vtable type for this
235    architecture, or NULL if CONTAINER does not have a vtable.  */
236 
237 static struct value *
238 gnuv3_get_vtable (struct gdbarch *gdbarch,
239 		  struct type *container_type, CORE_ADDR container_addr)
240 {
241   struct type *vtable_type = gdbarch_data (gdbarch,
242 					   vtable_type_gdbarch_data);
243   struct type *vtable_pointer_type;
244   struct value *vtable_pointer;
245   CORE_ADDR vtable_address;
246 
247   /* If this type does not have a virtual table, don't read the first
248      field.  */
249   if (!gnuv3_dynamic_class (check_typedef (container_type)))
250     return NULL;
251 
252   /* We do not consult the debug information to find the virtual table.
253      The ABI specifies that it is always at offset zero in any class,
254      and debug information may not represent it.
255 
256      We avoid using value_contents on principle, because the object might
257      be large.  */
258 
259   /* Find the type "pointer to virtual table".  */
260   vtable_pointer_type = lookup_pointer_type (vtable_type);
261 
262   /* Load it from the start of the class.  */
263   vtable_pointer = value_at (vtable_pointer_type, container_addr);
264   vtable_address = value_as_address (vtable_pointer);
265 
266   /* Correct it to point at the start of the virtual table, rather
267      than the address point.  */
268   return value_at_lazy (vtable_type,
269 			vtable_address
270 			- vtable_address_point_offset (gdbarch));
271 }
272 
273 
274 static struct type *
275 gnuv3_rtti_type (struct value *value,
276                  int *full_p, int *top_p, int *using_enc_p)
277 {
278   struct gdbarch *gdbarch;
279   struct type *values_type = check_typedef (value_type (value));
280   struct value *vtable;
281   struct minimal_symbol *vtable_symbol;
282   const char *vtable_symbol_name;
283   const char *class_name;
284   struct type *run_time_type;
285   LONGEST offset_to_top;
286 
287   /* We only have RTTI for class objects.  */
288   if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
289     return NULL;
290 
291   /* Java doesn't have RTTI following the C++ ABI.  */
292   if (TYPE_CPLUS_REALLY_JAVA (values_type))
293     return NULL;
294 
295   /* Determine architecture.  */
296   gdbarch = get_type_arch (values_type);
297 
298   if (using_enc_p)
299     *using_enc_p = 0;
300 
301   vtable = gnuv3_get_vtable (gdbarch, value_type (value),
302 			     value_as_address (value_addr (value)));
303   if (vtable == NULL)
304     return NULL;
305 
306   /* Find the linker symbol for this vtable.  */
307   vtable_symbol
308     = lookup_minimal_symbol_by_pc (value_address (vtable)
309                                    + value_embedded_offset (vtable));
310   if (! vtable_symbol)
311     return NULL;
312 
313   /* The symbol's demangled name should be something like "vtable for
314      CLASS", where CLASS is the name of the run-time type of VALUE.
315      If we didn't like this approach, we could instead look in the
316      type_info object itself to get the class name.  But this way
317      should work just as well, and doesn't read target memory.  */
318   vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
319   if (vtable_symbol_name == NULL
320       || strncmp (vtable_symbol_name, "vtable for ", 11))
321     {
322       warning (_("can't find linker symbol for virtual table for `%s' value"),
323 	       TYPE_SAFE_NAME (values_type));
324       if (vtable_symbol_name)
325 	warning (_("  found `%s' instead"), vtable_symbol_name);
326       return NULL;
327     }
328   class_name = vtable_symbol_name + 11;
329 
330   /* Try to look up the class name as a type name.  */
331   /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465.  */
332   run_time_type = cp_lookup_rtti_type (class_name, NULL);
333   if (run_time_type == NULL)
334     return NULL;
335 
336   /* Get the offset from VALUE to the top of the complete object.
337      NOTE: this is the reverse of the meaning of *TOP_P.  */
338   offset_to_top
339     = value_as_long (value_field (vtable, vtable_field_offset_to_top));
340 
341   if (full_p)
342     *full_p = (- offset_to_top == value_embedded_offset (value)
343                && (TYPE_LENGTH (value_enclosing_type (value))
344                    >= TYPE_LENGTH (run_time_type)));
345   if (top_p)
346     *top_p = - offset_to_top;
347   return run_time_type;
348 }
349 
350 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
351    function, of type FNTYPE.  */
352 
353 static struct value *
354 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
355 		      struct type *fntype, int vtable_index)
356 {
357   struct value *vtable, *vfn;
358 
359   /* Every class with virtual functions must have a vtable.  */
360   vtable = gnuv3_get_vtable (gdbarch, value_type (container),
361 			     value_as_address (value_addr (container)));
362   gdb_assert (vtable != NULL);
363 
364   /* Fetch the appropriate function pointer from the vtable.  */
365   vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
366                          vtable_index);
367 
368   /* If this architecture uses function descriptors directly in the vtable,
369      then the address of the vtable entry is actually a "function pointer"
370      (i.e. points to the descriptor).  We don't need to scale the index
371      by the size of a function descriptor; GCC does that before outputing
372      debug information.  */
373   if (gdbarch_vtable_function_descriptors (gdbarch))
374     vfn = value_addr (vfn);
375 
376   /* Cast the function pointer to the appropriate type.  */
377   vfn = value_cast (lookup_pointer_type (fntype), vfn);
378 
379   return vfn;
380 }
381 
382 /* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h
383    for a description of the arguments.  */
384 
385 static struct value *
386 gnuv3_virtual_fn_field (struct value **value_p,
387                         struct fn_field *f, int j,
388 			struct type *vfn_base, int offset)
389 {
390   struct type *values_type = check_typedef (value_type (*value_p));
391   struct gdbarch *gdbarch;
392 
393   /* Some simple sanity checks.  */
394   if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
395     error (_("Only classes can have virtual functions."));
396 
397   /* Determine architecture.  */
398   gdbarch = get_type_arch (values_type);
399 
400   /* Cast our value to the base class which defines this virtual
401      function.  This takes care of any necessary `this'
402      adjustments.  */
403   if (vfn_base != values_type)
404     *value_p = value_cast (vfn_base, *value_p);
405 
406   return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
407 			       TYPE_FN_FIELD_VOFFSET (f, j));
408 }
409 
410 /* Compute the offset of the baseclass which is
411    the INDEXth baseclass of class TYPE,
412    for value at VALADDR (in host) at ADDRESS (in target).
413    The result is the offset of the baseclass value relative
414    to (the address of)(ARG) + OFFSET.
415 
416    -1 is returned on error.  */
417 
418 static int
419 gnuv3_baseclass_offset (struct type *type, int index,
420 			const bfd_byte *valaddr, int embedded_offset,
421 			CORE_ADDR address, const struct value *val)
422 {
423   struct gdbarch *gdbarch;
424   struct type *ptr_type;
425   struct value *vtable;
426   struct value *vbase_array;
427   long int cur_base_offset, base_offset;
428 
429   /* Determine architecture.  */
430   gdbarch = get_type_arch (type);
431   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
432 
433   /* If it isn't a virtual base, this is easy.  The offset is in the
434      type definition.  Likewise for Java, which doesn't really have
435      virtual inheritance in the C++ sense.  */
436   if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
437     return TYPE_BASECLASS_BITPOS (type, index) / 8;
438 
439   /* To access a virtual base, we need to use the vbase offset stored in
440      our vtable.  Recent GCC versions provide this information.  If it isn't
441      available, we could get what we needed from RTTI, or from drawing the
442      complete inheritance graph based on the debug info.  Neither is
443      worthwhile.  */
444   cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
445   if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
446     error (_("Expected a negative vbase offset (old compiler?)"));
447 
448   cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
449   if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
450     error (_("Misaligned vbase offset."));
451   cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
452 
453   vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
454   gdb_assert (vtable != NULL);
455   vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
456   base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
457   return base_offset;
458 }
459 
460 /* Locate a virtual method in DOMAIN or its non-virtual base classes
461    which has virtual table index VOFFSET.  The method has an associated
462    "this" adjustment of ADJUSTMENT bytes.  */
463 
464 static const char *
465 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
466 		      LONGEST adjustment)
467 {
468   int i;
469 
470   /* Search this class first.  */
471   if (adjustment == 0)
472     {
473       int len;
474 
475       len = TYPE_NFN_FIELDS (domain);
476       for (i = 0; i < len; i++)
477 	{
478 	  int len2, j;
479 	  struct fn_field *f;
480 
481 	  f = TYPE_FN_FIELDLIST1 (domain, i);
482 	  len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
483 
484 	  check_stub_method_group (domain, i);
485 	  for (j = 0; j < len2; j++)
486 	    if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
487 	      return TYPE_FN_FIELD_PHYSNAME (f, j);
488 	}
489     }
490 
491   /* Next search non-virtual bases.  If it's in a virtual base,
492      we're out of luck.  */
493   for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
494     {
495       int pos;
496       struct type *basetype;
497 
498       if (BASETYPE_VIA_VIRTUAL (domain, i))
499 	continue;
500 
501       pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
502       basetype = TYPE_FIELD_TYPE (domain, i);
503       /* Recurse with a modified adjustment.  We don't need to adjust
504 	 voffset.  */
505       if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
506 	return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
507     }
508 
509   return NULL;
510 }
511 
512 /* Decode GNU v3 method pointer.  */
513 
514 static int
515 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
516 			 const gdb_byte *contents,
517 			 CORE_ADDR *value_p,
518 			 LONGEST *adjustment_p)
519 {
520   struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
521   struct type *offset_type = vtable_ptrdiff_type (gdbarch);
522   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523   CORE_ADDR ptr_value;
524   LONGEST voffset, adjustment;
525   int vbit;
526 
527   /* Extract the pointer to member.  The first element is either a pointer
528      or a vtable offset.  For pointers, we need to use extract_typed_address
529      to allow the back-end to convert the pointer to a GDB address -- but
530      vtable offsets we must handle as integers.  At this point, we do not
531      yet know which case we have, so we extract the value under both
532      interpretations and choose the right one later on.  */
533   ptr_value = extract_typed_address (contents, funcptr_type);
534   voffset = extract_signed_integer (contents,
535 				    TYPE_LENGTH (funcptr_type), byte_order);
536   contents += TYPE_LENGTH (funcptr_type);
537   adjustment = extract_signed_integer (contents,
538 				       TYPE_LENGTH (offset_type), byte_order);
539 
540   if (!gdbarch_vbit_in_delta (gdbarch))
541     {
542       vbit = voffset & 1;
543       voffset = voffset ^ vbit;
544     }
545   else
546     {
547       vbit = adjustment & 1;
548       adjustment = adjustment >> 1;
549     }
550 
551   *value_p = vbit? voffset : ptr_value;
552   *adjustment_p = adjustment;
553   return vbit;
554 }
555 
556 /* GNU v3 implementation of cplus_print_method_ptr.  */
557 
558 static void
559 gnuv3_print_method_ptr (const gdb_byte *contents,
560 			struct type *type,
561 			struct ui_file *stream)
562 {
563   struct type *domain = TYPE_DOMAIN_TYPE (type);
564   struct gdbarch *gdbarch = get_type_arch (domain);
565   CORE_ADDR ptr_value;
566   LONGEST adjustment;
567   int vbit;
568 
569   /* Extract the pointer to member.  */
570   vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
571 
572   /* Check for NULL.  */
573   if (ptr_value == 0 && vbit == 0)
574     {
575       fprintf_filtered (stream, "NULL");
576       return;
577     }
578 
579   /* Search for a virtual method.  */
580   if (vbit)
581     {
582       CORE_ADDR voffset;
583       const char *physname;
584 
585       /* It's a virtual table offset, maybe in this class.  Search
586 	 for a field with the correct vtable offset.  First convert it
587 	 to an index, as used in TYPE_FN_FIELD_VOFFSET.  */
588       voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
589 
590       physname = gnuv3_find_method_in (domain, voffset, adjustment);
591 
592       /* If we found a method, print that.  We don't bother to disambiguate
593 	 possible paths to the method based on the adjustment.  */
594       if (physname)
595 	{
596 	  char *demangled_name = cplus_demangle (physname,
597 						 DMGL_ANSI | DMGL_PARAMS);
598 
599 	  fprintf_filtered (stream, "&virtual ");
600 	  if (demangled_name == NULL)
601 	    fputs_filtered (physname, stream);
602 	  else
603 	    {
604 	      fputs_filtered (demangled_name, stream);
605 	      xfree (demangled_name);
606 	    }
607 	  return;
608 	}
609     }
610   else if (ptr_value != 0)
611     {
612       /* Found a non-virtual function: print out the type.  */
613       fputs_filtered ("(", stream);
614       c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
615       fputs_filtered (") ", stream);
616     }
617 
618   /* We didn't find it; print the raw data.  */
619   if (vbit)
620     {
621       fprintf_filtered (stream, "&virtual table offset ");
622       print_longest (stream, 'd', 1, ptr_value);
623     }
624   else
625     {
626       struct value_print_options opts;
627 
628       get_user_print_options (&opts);
629       print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
630     }
631 
632   if (adjustment)
633     {
634       fprintf_filtered (stream, ", this adjustment ");
635       print_longest (stream, 'd', 1, adjustment);
636     }
637 }
638 
639 /* GNU v3 implementation of cplus_method_ptr_size.  */
640 
641 static int
642 gnuv3_method_ptr_size (struct type *type)
643 {
644   struct gdbarch *gdbarch = get_type_arch (type);
645 
646   return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
647 }
648 
649 /* GNU v3 implementation of cplus_make_method_ptr.  */
650 
651 static void
652 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
653 		       CORE_ADDR value, int is_virtual)
654 {
655   struct gdbarch *gdbarch = get_type_arch (type);
656   int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
657   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
658 
659   /* FIXME drow/2006-12-24: The adjustment of "this" is currently
660      always zero, since the method pointer is of the correct type.
661      But if the method pointer came from a base class, this is
662      incorrect - it should be the offset to the base.  The best
663      fix might be to create the pointer to member pointing at the
664      base class and cast it to the derived class, but that requires
665      support for adjusting pointers to members when casting them -
666      not currently supported by GDB.  */
667 
668   if (!gdbarch_vbit_in_delta (gdbarch))
669     {
670       store_unsigned_integer (contents, size, byte_order, value | is_virtual);
671       store_unsigned_integer (contents + size, size, byte_order, 0);
672     }
673   else
674     {
675       store_unsigned_integer (contents, size, byte_order, value);
676       store_unsigned_integer (contents + size, size, byte_order, is_virtual);
677     }
678 }
679 
680 /* GNU v3 implementation of cplus_method_ptr_to_value.  */
681 
682 static struct value *
683 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
684 {
685   struct gdbarch *gdbarch;
686   const gdb_byte *contents = value_contents (method_ptr);
687   CORE_ADDR ptr_value;
688   struct type *domain_type, *final_type, *method_type;
689   LONGEST adjustment;
690   int vbit;
691 
692   domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
693   final_type = lookup_pointer_type (domain_type);
694 
695   method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
696 
697   /* Extract the pointer to member.  */
698   gdbarch = get_type_arch (domain_type);
699   vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
700 
701   /* First convert THIS to match the containing type of the pointer to
702      member.  This cast may adjust the value of THIS.  */
703   *this_p = value_cast (final_type, *this_p);
704 
705   /* Then apply whatever adjustment is necessary.  This creates a somewhat
706      strange pointer: it claims to have type FINAL_TYPE, but in fact it
707      might not be a valid FINAL_TYPE.  For instance, it might be a
708      base class of FINAL_TYPE.  And if it's not the primary base class,
709      then printing it out as a FINAL_TYPE object would produce some pretty
710      garbage.
711 
712      But we don't really know the type of the first argument in
713      METHOD_TYPE either, which is why this happens.  We can't
714      dereference this later as a FINAL_TYPE, but once we arrive in the
715      called method we'll have debugging information for the type of
716      "this" - and that'll match the value we produce here.
717 
718      You can provoke this case by casting a Base::* to a Derived::*, for
719      instance.  */
720   *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
721   *this_p = value_ptradd (*this_p, adjustment);
722   *this_p = value_cast (final_type, *this_p);
723 
724   if (vbit)
725     {
726       LONGEST voffset;
727 
728       voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
729       return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
730 				   method_type, voffset);
731     }
732   else
733     return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
734 }
735 
736 /* Objects of this type are stored in a hash table and a vector when
737    printing the vtables for a class.  */
738 
739 struct value_and_voffset
740 {
741   /* The value representing the object.  */
742   struct value *value;
743 
744   /* The maximum vtable offset we've found for any object at this
745      offset in the outermost object.  */
746   int max_voffset;
747 };
748 
749 typedef struct value_and_voffset *value_and_voffset_p;
750 DEF_VEC_P (value_and_voffset_p);
751 
752 /* Hash function for value_and_voffset.  */
753 
754 static hashval_t
755 hash_value_and_voffset (const void *p)
756 {
757   const struct value_and_voffset *o = p;
758 
759   return value_address (o->value) + value_embedded_offset (o->value);
760 }
761 
762 /* Equality function for value_and_voffset.  */
763 
764 static int
765 eq_value_and_voffset (const void *a, const void *b)
766 {
767   const struct value_and_voffset *ova = a;
768   const struct value_and_voffset *ovb = b;
769 
770   return (value_address (ova->value) + value_embedded_offset (ova->value)
771 	  == value_address (ovb->value) + value_embedded_offset (ovb->value));
772 }
773 
774 /* qsort comparison function for value_and_voffset.  */
775 
776 static int
777 compare_value_and_voffset (const void *a, const void *b)
778 {
779   const struct value_and_voffset * const *ova = a;
780   CORE_ADDR addra = (value_address ((*ova)->value)
781 		     + value_embedded_offset ((*ova)->value));
782   const struct value_and_voffset * const *ovb = b;
783   CORE_ADDR addrb = (value_address ((*ovb)->value)
784 		     + value_embedded_offset ((*ovb)->value));
785 
786   if (addra < addrb)
787     return -1;
788   if (addra > addrb)
789     return 1;
790   return 0;
791 }
792 
793 /* A helper function used when printing vtables.  This determines the
794    key (most derived) sub-object at each address and also computes the
795    maximum vtable offset seen for the corresponding vtable.  Updates
796    OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
797    needed.  VALUE is the object to examine.  */
798 
799 static void
800 compute_vtable_size (htab_t offset_hash,
801 		     VEC (value_and_voffset_p) **offset_vec,
802 		     struct value *value)
803 {
804   int i;
805   struct type *type = check_typedef (value_type (value));
806   void **slot;
807   struct value_and_voffset search_vo, *current_vo;
808 
809   /* If the object is not dynamic, then we are done; as it cannot have
810      dynamic base types either.  */
811   if (!gnuv3_dynamic_class (type))
812     return;
813 
814   /* Update the hash and the vec, if needed.  */
815   search_vo.value = value;
816   slot = htab_find_slot (offset_hash, &search_vo, INSERT);
817   if (*slot)
818     current_vo = *slot;
819   else
820     {
821       current_vo = XNEW (struct value_and_voffset);
822       current_vo->value = value;
823       current_vo->max_voffset = -1;
824       *slot = current_vo;
825       VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
826     }
827 
828   /* Update the value_and_voffset object with the highest vtable
829      offset from this class.  */
830   for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
831     {
832       int j;
833       struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
834 
835       for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
836 	{
837 	  if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
838 	    {
839 	      int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
840 
841 	      if (voffset > current_vo->max_voffset)
842 		current_vo->max_voffset = voffset;
843 	    }
844 	}
845     }
846 
847   /* Recurse into base classes.  */
848   for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
849     compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
850 }
851 
852 /* Helper for gnuv3_print_vtable that prints a single vtable.  */
853 
854 static void
855 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
856 		  int max_voffset,
857 		  struct value_print_options *opts)
858 {
859   int i;
860   struct type *type = check_typedef (value_type (value));
861   struct value *vtable;
862   CORE_ADDR vt_addr;
863 
864   vtable = gnuv3_get_vtable (gdbarch, type,
865 			     value_address (value)
866 			     + value_embedded_offset (value));
867   vt_addr = value_address (value_field (vtable,
868 					vtable_field_virtual_functions));
869 
870   printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
871 		   TYPE_SAFE_NAME (type),
872 		   paddress (gdbarch, vt_addr),
873 		   paddress (gdbarch, (value_address (value)
874 				       + value_embedded_offset (value))));
875 
876   for (i = 0; i <= max_voffset; ++i)
877     {
878       /* Initialize it just to avoid a GCC false warning.  */
879       CORE_ADDR addr = 0;
880       struct value *vfn;
881       volatile struct gdb_exception ex;
882 
883       printf_filtered ("[%d]: ", i);
884 
885       vfn = value_subscript (value_field (vtable,
886 					  vtable_field_virtual_functions),
887 			     i);
888 
889       if (gdbarch_vtable_function_descriptors (gdbarch))
890 	vfn = value_addr (vfn);
891 
892       TRY_CATCH (ex, RETURN_MASK_ERROR)
893 	{
894 	  addr = value_as_address (vfn);
895 	}
896       if (ex.reason < 0)
897 	printf_filtered (_("<error: %s>"), ex.message);
898       else
899 	print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
900       printf_filtered ("\n");
901     }
902 }
903 
904 /* Implementation of the print_vtable method.  */
905 
906 static void
907 gnuv3_print_vtable (struct value *value)
908 {
909   struct gdbarch *gdbarch;
910   struct type *type;
911   struct value *vtable;
912   struct value_print_options opts;
913   htab_t offset_hash;
914   struct cleanup *cleanup;
915   VEC (value_and_voffset_p) *result_vec = NULL;
916   struct value_and_voffset *iter;
917   int i, count;
918 
919   value = coerce_ref (value);
920   type = check_typedef (value_type (value));
921   if (TYPE_CODE (type) == TYPE_CODE_PTR)
922     {
923       value = value_ind (value);
924       type = check_typedef (value_type (value));
925     }
926 
927   get_user_print_options (&opts);
928 
929   /* Respect 'set print object'.  */
930   if (opts.objectprint)
931     {
932       value = value_full_object (value, NULL, 0, 0, 0);
933       type = check_typedef (value_type (value));
934     }
935 
936   gdbarch = get_type_arch (type);
937   vtable = gnuv3_get_vtable (gdbarch, type,
938 			     value_as_address (value_addr (value)));
939 
940   if (!vtable)
941     {
942       printf_filtered (_("This object does not have a virtual function table\n"));
943       return;
944     }
945 
946   offset_hash = htab_create_alloc (1, hash_value_and_voffset,
947 				   eq_value_and_voffset,
948 				   xfree, xcalloc, xfree);
949   cleanup = make_cleanup_htab_delete (offset_hash);
950   make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
951 
952   compute_vtable_size (offset_hash, &result_vec, value);
953 
954   qsort (VEC_address (value_and_voffset_p, result_vec),
955 	 VEC_length (value_and_voffset_p, result_vec),
956 	 sizeof (value_and_voffset_p),
957 	 compare_value_and_voffset);
958 
959   count = 0;
960   for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
961     {
962       if (iter->max_voffset >= 0)
963 	{
964 	  if (count > 0)
965 	    printf_filtered ("\n");
966 	  print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
967 	  ++count;
968 	}
969     }
970 
971   do_cleanups (cleanup);
972 }
973 
974 /* Determine if we are currently in a C++ thunk.  If so, get the address
975    of the routine we are thunking to and continue to there instead.  */
976 
977 static CORE_ADDR
978 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
979 {
980   CORE_ADDR real_stop_pc, method_stop_pc;
981   struct gdbarch *gdbarch = get_frame_arch (frame);
982   struct minimal_symbol *thunk_sym, *fn_sym;
983   struct obj_section *section;
984   const char *thunk_name, *fn_name;
985 
986   real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
987   if (real_stop_pc == 0)
988     real_stop_pc = stop_pc;
989 
990   /* Find the linker symbol for this potential thunk.  */
991   thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
992   section = find_pc_section (real_stop_pc);
993   if (thunk_sym == NULL || section == NULL)
994     return 0;
995 
996   /* The symbol's demangled name should be something like "virtual
997      thunk to FUNCTION", where FUNCTION is the name of the function
998      being thunked to.  */
999   thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
1000   if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1001     return 0;
1002 
1003   fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1004   fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1005   if (fn_sym == NULL)
1006     return 0;
1007 
1008   method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
1009   real_stop_pc = gdbarch_skip_trampoline_code
1010 		   (gdbarch, frame, method_stop_pc);
1011   if (real_stop_pc == 0)
1012     real_stop_pc = method_stop_pc;
1013 
1014   return real_stop_pc;
1015 }
1016 
1017 /* Return nonzero if a type should be passed by reference.
1018 
1019    The rule in the v3 ABI document comes from section 3.1.1.  If the
1020    type has a non-trivial copy constructor or destructor, then the
1021    caller must make a copy (by calling the copy constructor if there
1022    is one or perform the copy itself otherwise), pass the address of
1023    the copy, and then destroy the temporary (if necessary).
1024 
1025    For return values with non-trivial copy constructors or
1026    destructors, space will be allocated in the caller, and a pointer
1027    will be passed as the first argument (preceding "this").
1028 
1029    We don't have a bulletproof mechanism for determining whether a
1030    constructor or destructor is trivial.  For GCC and DWARF2 debug
1031    information, we can check the artificial flag.
1032 
1033    We don't do anything with the constructors or destructors,
1034    but we have to get the argument passing right anyway.  */
1035 static int
1036 gnuv3_pass_by_reference (struct type *type)
1037 {
1038   int fieldnum, fieldelem;
1039 
1040   CHECK_TYPEDEF (type);
1041 
1042   /* We're only interested in things that can have methods.  */
1043   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1044       && TYPE_CODE (type) != TYPE_CODE_CLASS
1045       && TYPE_CODE (type) != TYPE_CODE_UNION)
1046     return 0;
1047 
1048   for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1049     for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1050 	 fieldelem++)
1051       {
1052 	struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1053 	const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1054 	struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1055 
1056 	/* If this function is marked as artificial, it is compiler-generated,
1057 	   and we assume it is trivial.  */
1058 	if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1059 	  continue;
1060 
1061 	/* If we've found a destructor, we must pass this by reference.  */
1062 	if (name[0] == '~')
1063 	  return 1;
1064 
1065 	/* If the mangled name of this method doesn't indicate that it
1066 	   is a constructor, we're not interested.
1067 
1068 	   FIXME drow/2007-09-23: We could do this using the name of
1069 	   the method and the name of the class instead of dealing
1070 	   with the mangled name.  We don't have a convenient function
1071 	   to strip off both leading scope qualifiers and trailing
1072 	   template arguments yet.  */
1073 	if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1074 	    && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1075 	  continue;
1076 
1077 	/* If this method takes two arguments, and the second argument is
1078 	   a reference to this class, then it is a copy constructor.  */
1079 	if (TYPE_NFIELDS (fieldtype) == 2
1080 	    && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
1081 	    && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
1082 								 1))) == type)
1083 	  return 1;
1084       }
1085 
1086   /* Even if all the constructors and destructors were artificial, one
1087      of them may have invoked a non-artificial constructor or
1088      destructor in a base class.  If any base class needs to be passed
1089      by reference, so does this class.  Similarly for members, which
1090      are constructed whenever this class is.  We do not need to worry
1091      about recursive loops here, since we are only looking at members
1092      of complete class type.  Also ignore any static members.  */
1093   for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1094     if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1095         && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1096       return 1;
1097 
1098   return 0;
1099 }
1100 
1101 static void
1102 init_gnuv3_ops (void)
1103 {
1104   vtable_type_gdbarch_data
1105     = gdbarch_data_register_post_init (build_gdb_vtable_type);
1106 
1107   gnu_v3_abi_ops.shortname = "gnu-v3";
1108   gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1109   gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1110   gnu_v3_abi_ops.is_destructor_name =
1111     (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1112   gnu_v3_abi_ops.is_constructor_name =
1113     (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1114   gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1115   gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1116   gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1117   gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1118   gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1119   gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1120   gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1121   gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1122   gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1123   gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1124   gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1125   gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1126 }
1127 
1128 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1129 
1130 void
1131 _initialize_gnu_v3_abi (void)
1132 {
1133   init_gnuv3_ops ();
1134 
1135   register_cp_abi (&gnu_v3_abi_ops);
1136   set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1137 }
1138