xref: /dragonfly/contrib/gdb-7/gdb/i386-nat.c (revision 10cbe914)
1 /* Native-dependent code for the i386.
2 
3    Copyright (C) 2001, 2004, 2005, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "i386-nat.h"
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "command.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "gdb_assert.h"
28 
29 /* Support for hardware watchpoints and breakpoints using the i386
30    debug registers.
31 
32    This provides several functions for inserting and removing
33    hardware-assisted breakpoints and watchpoints, testing if one or
34    more of the watchpoints triggered and at what address, checking
35    whether a given region can be watched, etc.
36 
37    The functions below implement debug registers sharing by reference
38    counts, and allow to watch regions up to 16 bytes long.  */
39 
40 struct i386_dr_low_type i386_dr_low;
41 
42 
43 /* Support for 8-byte wide hw watchpoints.  */
44 #define TARGET_HAS_DR_LEN_8 (i386_dr_low.debug_register_length == 8)
45 
46 /* Debug registers' indices.  */
47 #define DR_NADDR	4	/* The number of debug address registers.  */
48 #define DR_STATUS	6	/* Index of debug status register (DR6).  */
49 #define DR_CONTROL	7	/* Index of debug control register (DR7). */
50 
51 /* DR7 Debug Control register fields.  */
52 
53 /* How many bits to skip in DR7 to get to R/W and LEN fields.  */
54 #define DR_CONTROL_SHIFT	16
55 /* How many bits in DR7 per R/W and LEN field for each watchpoint.  */
56 #define DR_CONTROL_SIZE		4
57 
58 /* Watchpoint/breakpoint read/write fields in DR7.  */
59 #define DR_RW_EXECUTE	(0x0)	/* Break on instruction execution.  */
60 #define DR_RW_WRITE	(0x1)	/* Break on data writes.  */
61 #define DR_RW_READ	(0x3)	/* Break on data reads or writes.  */
62 
63 /* This is here for completeness.  No platform supports this
64    functionality yet (as of March 2001).  Note that the DE flag in the
65    CR4 register needs to be set to support this.  */
66 #ifndef DR_RW_IORW
67 #define DR_RW_IORW	(0x2)	/* Break on I/O reads or writes.  */
68 #endif
69 
70 /* Watchpoint/breakpoint length fields in DR7.  The 2-bit left shift
71    is so we could OR this with the read/write field defined above.  */
72 #define DR_LEN_1	(0x0 << 2) /* 1-byte region watch or breakpoint.  */
73 #define DR_LEN_2	(0x1 << 2) /* 2-byte region watch.  */
74 #define DR_LEN_4	(0x3 << 2) /* 4-byte region watch.  */
75 #define DR_LEN_8	(0x2 << 2) /* 8-byte region watch (AMD64).  */
76 
77 /* Local and Global Enable flags in DR7.
78 
79    When the Local Enable flag is set, the breakpoint/watchpoint is
80    enabled only for the current task; the processor automatically
81    clears this flag on every task switch.  When the Global Enable flag
82    is set, the breakpoint/watchpoint is enabled for all tasks; the
83    processor never clears this flag.
84 
85    Currently, all watchpoint are locally enabled.  If you need to
86    enable them globally, read the comment which pertains to this in
87    i386_insert_aligned_watchpoint below.  */
88 #define DR_LOCAL_ENABLE_SHIFT	0 /* Extra shift to the local enable bit.  */
89 #define DR_GLOBAL_ENABLE_SHIFT	1 /* Extra shift to the global enable bit.  */
90 #define DR_ENABLE_SIZE		2 /* Two enable bits per debug register.  */
91 
92 /* Local and global exact breakpoint enable flags (a.k.a. slowdown
93    flags).  These are only required on i386, to allow detection of the
94    exact instruction which caused a watchpoint to break; i486 and
95    later processors do that automatically.  We set these flags for
96    backwards compatibility.  */
97 #define DR_LOCAL_SLOWDOWN	(0x100)
98 #define DR_GLOBAL_SLOWDOWN     	(0x200)
99 
100 /* Fields reserved by Intel.  This includes the GD (General Detect
101    Enable) flag, which causes a debug exception to be generated when a
102    MOV instruction accesses one of the debug registers.
103 
104    FIXME: My Intel manual says we should use 0xF800, not 0xFC00.  */
105 #define DR_CONTROL_RESERVED	(0xFC00)
106 
107 /* Auxiliary helper macros.  */
108 
109 /* A value that masks all fields in DR7 that are reserved by Intel.  */
110 #define I386_DR_CONTROL_MASK	(~DR_CONTROL_RESERVED)
111 
112 /* The I'th debug register is vacant if its Local and Global Enable
113    bits are reset in the Debug Control register.  */
114 #define I386_DR_VACANT(i) \
115   ((dr_control_mirror & (3 << (DR_ENABLE_SIZE * (i)))) == 0)
116 
117 /* Locally enable the break/watchpoint in the I'th debug register.  */
118 #define I386_DR_LOCAL_ENABLE(i) \
119   dr_control_mirror |= (1 << (DR_LOCAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i)))
120 
121 /* Globally enable the break/watchpoint in the I'th debug register.  */
122 #define I386_DR_GLOBAL_ENABLE(i) \
123   dr_control_mirror |= (1 << (DR_GLOBAL_ENABLE_SHIFT + DR_ENABLE_SIZE * (i)))
124 
125 /* Disable the break/watchpoint in the I'th debug register.  */
126 #define I386_DR_DISABLE(i) \
127   dr_control_mirror &= ~(3 << (DR_ENABLE_SIZE * (i)))
128 
129 /* Set in DR7 the RW and LEN fields for the I'th debug register.  */
130 #define I386_DR_SET_RW_LEN(i,rwlen) \
131   do { \
132     dr_control_mirror &= ~(0x0f << (DR_CONTROL_SHIFT+DR_CONTROL_SIZE*(i)));   \
133     dr_control_mirror |= ((rwlen) << (DR_CONTROL_SHIFT+DR_CONTROL_SIZE*(i))); \
134   } while (0)
135 
136 /* Get from DR7 the RW and LEN fields for the I'th debug register.  */
137 #define I386_DR_GET_RW_LEN(i) \
138   ((dr_control_mirror >> (DR_CONTROL_SHIFT + DR_CONTROL_SIZE * (i))) & 0x0f)
139 
140 /* Did the watchpoint whose address is in the I'th register break?  */
141 #define I386_DR_WATCH_HIT(i)	(dr_status_mirror & (1 << (i)))
142 
143 /* A macro to loop over all debug registers.  */
144 #define ALL_DEBUG_REGISTERS(i)	for (i = 0; i < DR_NADDR; i++)
145 
146 /* Mirror the inferior's DRi registers.  We keep the status and
147    control registers separated because they don't hold addresses.  */
148 static CORE_ADDR dr_mirror[DR_NADDR];
149 static unsigned long dr_status_mirror, dr_control_mirror;
150 
151 /* Reference counts for each debug register.  */
152 static int dr_ref_count[DR_NADDR];
153 
154 /* Whether or not to print the mirrored debug registers.  */
155 static int maint_show_dr;
156 
157 /* Types of operations supported by i386_handle_nonaligned_watchpoint.  */
158 typedef enum { WP_INSERT, WP_REMOVE, WP_COUNT } i386_wp_op_t;
159 
160 /* Internal functions.  */
161 
162 /* Return the value of a 4-bit field for DR7 suitable for watching a
163    region of LEN bytes for accesses of type TYPE.  LEN is assumed to
164    have the value of 1, 2, or 4.  */
165 static unsigned i386_length_and_rw_bits (int len, enum target_hw_bp_type type);
166 
167 /* Insert a watchpoint at address ADDR, which is assumed to be aligned
168    according to the length of the region to watch.  LEN_RW_BITS is the
169    value of the bit-field from DR7 which describes the length and
170    access type of the region to be watched by this watchpoint.  Return
171    0 on success, -1 on failure.  */
172 static int i386_insert_aligned_watchpoint (CORE_ADDR addr,
173 					   unsigned len_rw_bits);
174 
175 /* Remove a watchpoint at address ADDR, which is assumed to be aligned
176    according to the length of the region to watch.  LEN_RW_BITS is the
177    value of the bits from DR7 which describes the length and access
178    type of the region watched by this watchpoint.  Return 0 on
179    success, -1 on failure.  */
180 static int i386_remove_aligned_watchpoint (CORE_ADDR addr,
181 					   unsigned len_rw_bits);
182 
183 /* Insert or remove a (possibly non-aligned) watchpoint, or count the
184    number of debug registers required to watch a region at address
185    ADDR whose length is LEN for accesses of type TYPE.  Return 0 on
186    successful insertion or removal, a positive number when queried
187    about the number of registers, or -1 on failure.  If WHAT is not a
188    valid value, bombs through internal_error.  */
189 static int i386_handle_nonaligned_watchpoint (i386_wp_op_t what,
190 					      CORE_ADDR addr, int len,
191 					      enum target_hw_bp_type type);
192 
193 /* Implementation.  */
194 
195 /* Clear the reference counts and forget everything we knew about the
196    debug registers.  */
197 
198 void
199 i386_cleanup_dregs (void)
200 {
201   int i;
202 
203   ALL_DEBUG_REGISTERS(i)
204     {
205       dr_mirror[i] = 0;
206       dr_ref_count[i] = 0;
207     }
208   dr_control_mirror = 0;
209   dr_status_mirror  = 0;
210 }
211 
212 /* Print the values of the mirrored debug registers.  This is called
213    when maint_show_dr is non-zero.  To set that up, type "maint
214    show-debug-regs" at GDB's prompt.  */
215 
216 static void
217 i386_show_dr (const char *func, CORE_ADDR addr,
218 	      int len, enum target_hw_bp_type type)
219 {
220   int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
221   int i;
222 
223   puts_unfiltered (func);
224   if (addr || len)
225     printf_unfiltered (" (addr=%lx, len=%d, type=%s)",
226 		       /* This code is for ia32, so casting CORE_ADDR
227 			  to unsigned long should be okay.  */
228 		       (unsigned long)addr, len,
229 		       type == hw_write ? "data-write"
230 		       : (type == hw_read ? "data-read"
231 			  : (type == hw_access ? "data-read/write"
232 			     : (type == hw_execute ? "instruction-execute"
233 				/* FIXME: if/when I/O read/write
234 				   watchpoints are supported, add them
235 				   here.  */
236 				: "??unknown??"))));
237   puts_unfiltered (":\n");
238   printf_unfiltered ("\tCONTROL (DR7): %s          STATUS (DR6): %s\n",
239 		     phex (dr_control_mirror, 8), phex (dr_status_mirror, 8));
240   ALL_DEBUG_REGISTERS(i)
241     {
242       printf_unfiltered ("\
243 \tDR%d: addr=0x%s, ref.count=%d  DR%d: addr=0x%s, ref.count=%d\n",
244 		 i, phex (dr_mirror[i], addr_size), dr_ref_count[i],
245 		 i+1, phex (dr_mirror[i+1], addr_size), dr_ref_count[i+1]);
246       i++;
247     }
248 }
249 
250 /* Return the value of a 4-bit field for DR7 suitable for watching a
251    region of LEN bytes for accesses of type TYPE.  LEN is assumed to
252    have the value of 1, 2, or 4.  */
253 
254 static unsigned
255 i386_length_and_rw_bits (int len, enum target_hw_bp_type type)
256 {
257   unsigned rw;
258 
259   switch (type)
260     {
261       case hw_execute:
262 	rw = DR_RW_EXECUTE;
263 	break;
264       case hw_write:
265 	rw = DR_RW_WRITE;
266 	break;
267       case hw_read:
268 	/* The i386 doesn't support data-read watchpoints.  */
269       case hw_access:
270 	rw = DR_RW_READ;
271 	break;
272 #if 0
273 	/* Not yet supported.  */
274       case hw_io_access:
275 	rw = DR_RW_IORW;
276 	break;
277 #endif
278       default:
279 	internal_error (__FILE__, __LINE__, _("\
280 Invalid hardware breakpoint type %d in i386_length_and_rw_bits.\n"),
281 			(int) type);
282     }
283 
284   switch (len)
285     {
286       case 1:
287 	return (DR_LEN_1 | rw);
288       case 2:
289 	return (DR_LEN_2 | rw);
290       case 4:
291 	return (DR_LEN_4 | rw);
292       case 8:
293         if (TARGET_HAS_DR_LEN_8)
294  	  return (DR_LEN_8 | rw);
295       default:
296 	internal_error (__FILE__, __LINE__, _("\
297 Invalid hardware breakpoint length %d in i386_length_and_rw_bits.\n"), len);
298     }
299 }
300 
301 /* Insert a watchpoint at address ADDR, which is assumed to be aligned
302    according to the length of the region to watch.  LEN_RW_BITS is the
303    value of the bits from DR7 which describes the length and access
304    type of the region to be watched by this watchpoint.  Return 0 on
305    success, -1 on failure.  */
306 
307 static int
308 i386_insert_aligned_watchpoint (CORE_ADDR addr, unsigned len_rw_bits)
309 {
310   int i;
311 
312   if (!i386_dr_low.set_addr || !i386_dr_low.set_control)
313     return -1;
314 
315   /* First, look for an occupied debug register with the same address
316      and the same RW and LEN definitions.  If we find one, we can
317      reuse it for this watchpoint as well (and save a register).  */
318   ALL_DEBUG_REGISTERS(i)
319     {
320       if (!I386_DR_VACANT (i)
321 	  && dr_mirror[i] == addr
322 	  && I386_DR_GET_RW_LEN (i) == len_rw_bits)
323 	{
324 	  dr_ref_count[i]++;
325 	  return 0;
326 	}
327     }
328 
329   /* Next, look for a vacant debug register.  */
330   ALL_DEBUG_REGISTERS(i)
331     {
332       if (I386_DR_VACANT (i))
333 	break;
334     }
335 
336   /* No more debug registers!  */
337   if (i >= DR_NADDR)
338     return -1;
339 
340   /* Now set up the register I to watch our region.  */
341 
342   /* Record the info in our local mirrored array.  */
343   dr_mirror[i] = addr;
344   dr_ref_count[i] = 1;
345   I386_DR_SET_RW_LEN (i, len_rw_bits);
346   /* Note: we only enable the watchpoint locally, i.e. in the current
347      task.  Currently, no i386 target allows or supports global
348      watchpoints; however, if any target would want that in the
349      future, GDB should probably provide a command to control whether
350      to enable watchpoints globally or locally, and the code below
351      should use global or local enable and slow-down flags as
352      appropriate.  */
353   I386_DR_LOCAL_ENABLE (i);
354   dr_control_mirror |= DR_LOCAL_SLOWDOWN;
355   dr_control_mirror &= I386_DR_CONTROL_MASK;
356 
357   /* Finally, actually pass the info to the inferior.  */
358   i386_dr_low.set_addr (i, addr);
359   i386_dr_low.set_control (dr_control_mirror);
360 
361   return 0;
362 }
363 
364 /* Remove a watchpoint at address ADDR, which is assumed to be aligned
365    according to the length of the region to watch.  LEN_RW_BITS is the
366    value of the bits from DR7 which describes the length and access
367    type of the region watched by this watchpoint.  Return 0 on
368    success, -1 on failure.  */
369 
370 static int
371 i386_remove_aligned_watchpoint (CORE_ADDR addr, unsigned len_rw_bits)
372 {
373   int i, retval = -1;
374 
375   ALL_DEBUG_REGISTERS(i)
376     {
377       if (!I386_DR_VACANT (i)
378 	  && dr_mirror[i] == addr
379 	  && I386_DR_GET_RW_LEN (i) == len_rw_bits)
380 	{
381 	  if (--dr_ref_count[i] == 0) /* no longer in use? */
382 	    {
383 	      /* Reset our mirror.  */
384 	      dr_mirror[i] = 0;
385 	      I386_DR_DISABLE (i);
386 	      /* Reset it in the inferior.  */
387 	      i386_dr_low.set_control (dr_control_mirror);
388 	      if (i386_dr_low.reset_addr)
389 		i386_dr_low.reset_addr (i);
390 	    }
391 	  retval = 0;
392 	}
393     }
394 
395   return retval;
396 }
397 
398 /* Insert or remove a (possibly non-aligned) watchpoint, or count the
399    number of debug registers required to watch a region at address
400    ADDR whose length is LEN for accesses of type TYPE.  Return 0 on
401    successful insertion or removal, a positive number when queried
402    about the number of registers, or -1 on failure.  If WHAT is not a
403    valid value, bombs through internal_error.  */
404 
405 static int
406 i386_handle_nonaligned_watchpoint (i386_wp_op_t what, CORE_ADDR addr, int len,
407 				   enum target_hw_bp_type type)
408 {
409   int retval = 0, status = 0;
410   int max_wp_len = TARGET_HAS_DR_LEN_8 ? 8 : 4;
411 
412   static int size_try_array[8][8] =
413   {
414     {1, 1, 1, 1, 1, 1, 1, 1},	/* Trying size one.  */
415     {2, 1, 2, 1, 2, 1, 2, 1},	/* Trying size two.  */
416     {2, 1, 2, 1, 2, 1, 2, 1},	/* Trying size three.  */
417     {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size four.  */
418     {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size five.  */
419     {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size six.  */
420     {4, 1, 2, 1, 4, 1, 2, 1},	/* Trying size seven.  */
421     {8, 1, 2, 1, 4, 1, 2, 1},	/* Trying size eight.  */
422   };
423 
424   while (len > 0)
425     {
426       int align = addr % max_wp_len;
427       /* Four (eight on AMD64) is the maximum length a debug register
428 	 can watch.  */
429       int try = (len > max_wp_len ? (max_wp_len - 1) : len - 1);
430       int size = size_try_array[try][align];
431 
432       if (what == WP_COUNT)
433 	{
434 	  /* size_try_array[] is defined such that each iteration
435 	     through the loop is guaranteed to produce an address and a
436 	     size that can be watched with a single debug register.
437 	     Thus, for counting the registers required to watch a
438 	     region, we simply need to increment the count on each
439 	     iteration.  */
440 	  retval++;
441 	}
442       else
443 	{
444 	  unsigned len_rw = i386_length_and_rw_bits (size, type);
445 
446 	  if (what == WP_INSERT)
447 	    status = i386_insert_aligned_watchpoint (addr, len_rw);
448 	  else if (what == WP_REMOVE)
449 	    status = i386_remove_aligned_watchpoint (addr, len_rw);
450 	  else
451 	    internal_error (__FILE__, __LINE__, _("\
452 Invalid value %d of operation in i386_handle_nonaligned_watchpoint.\n"),
453 			    (int)what);
454 	  /* We keep the loop going even after a failure, because some
455 	     of the other aligned watchpoints might still succeed
456 	     (e.g. if they watch addresses that are already watched,
457 	     in which case we just increment the reference counts of
458 	     occupied debug registers).  If we break out of the loop
459 	     too early, we could cause those addresses watched by
460 	     other watchpoints to be disabled when breakpoint.c reacts
461 	     to our failure to insert this watchpoint and tries to
462 	     remove it.  */
463 	  if (status)
464 	    retval = status;
465 	}
466 
467       addr += size;
468       len -= size;
469     }
470 
471   return retval;
472 }
473 
474 /* Insert a watchpoint to watch a memory region which starts at
475    address ADDR and whose length is LEN bytes.  Watch memory accesses
476    of the type TYPE.  Return 0 on success, -1 on failure.  */
477 
478 static int
479 i386_insert_watchpoint (CORE_ADDR addr, int len, int type)
480 {
481   int retval;
482 
483   if (((len != 1 && len !=2 && len !=4) && !(TARGET_HAS_DR_LEN_8 && len == 8))
484       || addr % len != 0)
485     retval = i386_handle_nonaligned_watchpoint (WP_INSERT, addr, len, type);
486   else
487     {
488       unsigned len_rw = i386_length_and_rw_bits (len, type);
489 
490       retval = i386_insert_aligned_watchpoint (addr, len_rw);
491     }
492 
493   if (maint_show_dr)
494     i386_show_dr ("insert_watchpoint", addr, len, type);
495 
496   return retval;
497 }
498 
499 /* Remove a watchpoint that watched the memory region which starts at
500    address ADDR, whose length is LEN bytes, and for accesses of the
501    type TYPE.  Return 0 on success, -1 on failure.  */
502 static int
503 i386_remove_watchpoint (CORE_ADDR addr, int len, int type)
504 {
505   int retval;
506 
507   if (((len != 1 && len !=2 && len !=4) && !(TARGET_HAS_DR_LEN_8 && len == 8))
508       || addr % len != 0)
509     retval = i386_handle_nonaligned_watchpoint (WP_REMOVE, addr, len, type);
510   else
511     {
512       unsigned len_rw = i386_length_and_rw_bits (len, type);
513 
514       retval = i386_remove_aligned_watchpoint (addr, len_rw);
515     }
516 
517   if (maint_show_dr)
518     i386_show_dr ("remove_watchpoint", addr, len, type);
519 
520   return retval;
521 }
522 
523 /* Return non-zero if we can watch a memory region that starts at
524    address ADDR and whose length is LEN bytes.  */
525 
526 static int
527 i386_region_ok_for_watchpoint (CORE_ADDR addr, int len)
528 {
529   int nregs;
530 
531   /* Compute how many aligned watchpoints we would need to cover this
532      region.  */
533   nregs = i386_handle_nonaligned_watchpoint (WP_COUNT, addr, len, hw_write);
534   return nregs <= DR_NADDR ? 1 : 0;
535 }
536 
537 /* If the inferior has some watchpoint that triggered, set the
538    address associated with that watchpoint and return non-zero.
539    Otherwise, return zero.  */
540 
541 static int
542 i386_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
543 {
544   CORE_ADDR addr = 0;
545   int i;
546   int rc = 0;
547 
548   dr_status_mirror = i386_dr_low.get_status ();
549 
550   ALL_DEBUG_REGISTERS(i)
551     {
552       if (I386_DR_WATCH_HIT (i)
553 	  /* This second condition makes sure DRi is set up for a data
554 	     watchpoint, not a hardware breakpoint.  The reason is
555 	     that GDB doesn't call the target_stopped_data_address
556 	     method except for data watchpoints.  In other words, I'm
557 	     being paranoiac.  */
558 	  && I386_DR_GET_RW_LEN (i) != 0
559 	  /* This third condition makes sure DRi is not vacant, this
560 	     avoids false positives in windows-nat.c.  */
561 	  && !I386_DR_VACANT (i))
562 	{
563 	  addr = dr_mirror[i];
564 	  rc = 1;
565 	  if (maint_show_dr)
566 	    i386_show_dr ("watchpoint_hit", addr, -1, hw_write);
567 	}
568     }
569   if (maint_show_dr && addr == 0)
570     i386_show_dr ("stopped_data_addr", 0, 0, hw_write);
571 
572   if (rc)
573     *addr_p = addr;
574   return rc;
575 }
576 
577 static int
578 i386_stopped_by_watchpoint (void)
579 {
580   CORE_ADDR addr = 0;
581   return i386_stopped_data_address (&current_target, &addr);
582 }
583 
584 /* Return non-zero if the inferior has some break/watchpoint that
585    triggered.  */
586 
587 static int
588 i386_stopped_by_hwbp (void)
589 {
590   int i;
591 
592   dr_status_mirror = i386_dr_low.get_status ();
593   if (maint_show_dr)
594     i386_show_dr ("stopped_by_hwbp", 0, 0, hw_execute);
595 
596   ALL_DEBUG_REGISTERS(i)
597     {
598       if (I386_DR_WATCH_HIT (i))
599 	return 1;
600     }
601 
602   return 0;
603 }
604 
605 /* Insert a hardware-assisted breakpoint at BP_TGT->placed_address.
606    Return 0 on success, EBUSY on failure.  */
607 static int
608 i386_insert_hw_breakpoint (struct gdbarch *gdbarch,
609 			   struct bp_target_info *bp_tgt)
610 {
611   unsigned len_rw = i386_length_and_rw_bits (1, hw_execute);
612   CORE_ADDR addr = bp_tgt->placed_address;
613   int retval = i386_insert_aligned_watchpoint (addr, len_rw) ? EBUSY : 0;
614 
615   if (maint_show_dr)
616     i386_show_dr ("insert_hwbp", addr, 1, hw_execute);
617 
618   return retval;
619 }
620 
621 /* Remove a hardware-assisted breakpoint at BP_TGT->placed_address.
622    Return 0 on success, -1 on failure.  */
623 
624 static int
625 i386_remove_hw_breakpoint (struct gdbarch *gdbarch,
626 			   struct bp_target_info *bp_tgt)
627 {
628   unsigned len_rw = i386_length_and_rw_bits (1, hw_execute);
629   CORE_ADDR addr = bp_tgt->placed_address;
630   int retval = i386_remove_aligned_watchpoint (addr, len_rw);
631 
632   if (maint_show_dr)
633     i386_show_dr ("remove_hwbp", addr, 1, hw_execute);
634 
635   return retval;
636 }
637 
638 /* Returns the number of hardware watchpoints of type TYPE that we can
639    set.  Value is positive if we can set CNT watchpoints, zero if
640    setting watchpoints of type TYPE is not supported, and negative if
641    CNT is more than the maximum number of watchpoints of type TYPE
642    that we can support.  TYPE is one of bp_hardware_watchpoint,
643    bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
644    CNT is the number of such watchpoints used so far (including this
645    one).  OTHERTYPE is non-zero if other types of watchpoints are
646    currently enabled.
647 
648    We always return 1 here because we don't have enough information
649    about possible overlap of addresses that they want to watch.  As an
650    extreme example, consider the case where all the watchpoints watch
651    the same address and the same region length: then we can handle a
652    virtually unlimited number of watchpoints, due to debug register
653    sharing implemented via reference counts in i386-nat.c.  */
654 
655 static int
656 i386_can_use_hw_breakpoint (int type, int cnt, int othertype)
657 {
658   return 1;
659 }
660 
661 static void
662 add_show_debug_regs_command (void)
663 {
664   /* A maintenance command to enable printing the internal DRi mirror
665      variables.  */
666   add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
667 			   &maint_show_dr, _("\
668 Set whether to show variables that mirror the x86 debug registers."), _("\
669 Show whether to show variables that mirror the x86 debug registers."), _("\
670 Use \"on\" to enable, \"off\" to disable.\n\
671 If enabled, the debug registers values are shown when GDB inserts\n\
672 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
673 triggers a breakpoint or watchpoint."),
674 			   NULL,
675 			   NULL,
676 			   &maintenance_set_cmdlist,
677 			   &maintenance_show_cmdlist);
678 }
679 
680 /* There are only two global functions left.  */
681 
682 void
683 i386_use_watchpoints (struct target_ops *t)
684 {
685   /* After a watchpoint trap, the PC points to the instruction after the
686      one that caused the trap.  Therefore we don't need to step over it.
687      But we do need to reset the status register to avoid another trap.  */
688   t->to_have_continuable_watchpoint = 1;
689 
690   t->to_can_use_hw_breakpoint = i386_can_use_hw_breakpoint;
691   t->to_region_ok_for_hw_watchpoint = i386_region_ok_for_watchpoint;
692   t->to_stopped_by_watchpoint = i386_stopped_by_watchpoint;
693   t->to_stopped_data_address = i386_stopped_data_address;
694   t->to_insert_watchpoint = i386_insert_watchpoint;
695   t->to_remove_watchpoint = i386_remove_watchpoint;
696   t->to_insert_hw_breakpoint = i386_insert_hw_breakpoint;
697   t->to_remove_hw_breakpoint = i386_remove_hw_breakpoint;
698 }
699 
700 void
701 i386_set_debug_register_length (int len)
702 {
703   /* This function should be called only once for each native target.  */
704   gdb_assert (i386_dr_low.debug_register_length == 0);
705   gdb_assert (len == 4 || len == 8);
706   i386_dr_low.debug_register_length = len;
707   add_show_debug_regs_command ();
708 }
709