xref: /dragonfly/contrib/gdb-7/gdb/i386-tdep.c (revision 279dd846)
1 /* Intel 386 target-dependent stuff.
2 
3    Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49 
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53 
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57 
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mmx.c"
61 
62 #include "ax.h"
63 #include "ax-gdb.h"
64 
65 #include "stap-probe.h"
66 #include "user-regs.h"
67 #include "cli/cli-utils.h"
68 #include "expression.h"
69 #include "parser-defs.h"
70 #include <ctype.h>
71 
72 /* Register names.  */
73 
74 static const char *i386_register_names[] =
75 {
76   "eax",   "ecx",    "edx",   "ebx",
77   "esp",   "ebp",    "esi",   "edi",
78   "eip",   "eflags", "cs",    "ss",
79   "ds",    "es",     "fs",    "gs",
80   "st0",   "st1",    "st2",   "st3",
81   "st4",   "st5",    "st6",   "st7",
82   "fctrl", "fstat",  "ftag",  "fiseg",
83   "fioff", "foseg",  "fooff", "fop",
84   "xmm0",  "xmm1",   "xmm2",  "xmm3",
85   "xmm4",  "xmm5",   "xmm6",  "xmm7",
86   "mxcsr"
87 };
88 
89 static const char *i386_ymm_names[] =
90 {
91   "ymm0",  "ymm1",   "ymm2",  "ymm3",
92   "ymm4",  "ymm5",   "ymm6",  "ymm7",
93 };
94 
95 static const char *i386_ymmh_names[] =
96 {
97   "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
98   "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
99 };
100 
101 /* Register names for MMX pseudo-registers.  */
102 
103 static const char *i386_mmx_names[] =
104 {
105   "mm0", "mm1", "mm2", "mm3",
106   "mm4", "mm5", "mm6", "mm7"
107 };
108 
109 /* Register names for byte pseudo-registers.  */
110 
111 static const char *i386_byte_names[] =
112 {
113   "al", "cl", "dl", "bl",
114   "ah", "ch", "dh", "bh"
115 };
116 
117 /* Register names for word pseudo-registers.  */
118 
119 static const char *i386_word_names[] =
120 {
121   "ax", "cx", "dx", "bx",
122   "", "bp", "si", "di"
123 };
124 
125 /* MMX register?  */
126 
127 static int
128 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
129 {
130   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
131   int mm0_regnum = tdep->mm0_regnum;
132 
133   if (mm0_regnum < 0)
134     return 0;
135 
136   regnum -= mm0_regnum;
137   return regnum >= 0 && regnum < tdep->num_mmx_regs;
138 }
139 
140 /* Byte register?  */
141 
142 int
143 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
144 {
145   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146 
147   regnum -= tdep->al_regnum;
148   return regnum >= 0 && regnum < tdep->num_byte_regs;
149 }
150 
151 /* Word register?  */
152 
153 int
154 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
155 {
156   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 
158   regnum -= tdep->ax_regnum;
159   return regnum >= 0 && regnum < tdep->num_word_regs;
160 }
161 
162 /* Dword register?  */
163 
164 int
165 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
166 {
167   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
168   int eax_regnum = tdep->eax_regnum;
169 
170   if (eax_regnum < 0)
171     return 0;
172 
173   regnum -= eax_regnum;
174   return regnum >= 0 && regnum < tdep->num_dword_regs;
175 }
176 
177 static int
178 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181   int ymm0h_regnum = tdep->ymm0h_regnum;
182 
183   if (ymm0h_regnum < 0)
184     return 0;
185 
186   regnum -= ymm0h_regnum;
187   return regnum >= 0 && regnum < tdep->num_ymm_regs;
188 }
189 
190 /* AVX register?  */
191 
192 int
193 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196   int ymm0_regnum = tdep->ymm0_regnum;
197 
198   if (ymm0_regnum < 0)
199     return 0;
200 
201   regnum -= ymm0_regnum;
202   return regnum >= 0 && regnum < tdep->num_ymm_regs;
203 }
204 
205 /* SSE register?  */
206 
207 int
208 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
209 {
210   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
211   int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
212 
213   if (num_xmm_regs == 0)
214     return 0;
215 
216   regnum -= I387_XMM0_REGNUM (tdep);
217   return regnum >= 0 && regnum < num_xmm_regs;
218 }
219 
220 static int
221 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 
225   if (I387_NUM_XMM_REGS (tdep) == 0)
226     return 0;
227 
228   return (regnum == I387_MXCSR_REGNUM (tdep));
229 }
230 
231 /* FP register?  */
232 
233 int
234 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
235 {
236   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 
238   if (I387_ST0_REGNUM (tdep) < 0)
239     return 0;
240 
241   return (I387_ST0_REGNUM (tdep) <= regnum
242 	  && regnum < I387_FCTRL_REGNUM (tdep));
243 }
244 
245 int
246 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 
250   if (I387_ST0_REGNUM (tdep) < 0)
251     return 0;
252 
253   return (I387_FCTRL_REGNUM (tdep) <= regnum
254 	  && regnum < I387_XMM0_REGNUM (tdep));
255 }
256 
257 /* Return the name of register REGNUM, or the empty string if it is
258    an anonymous register.  */
259 
260 static const char *
261 i386_register_name (struct gdbarch *gdbarch, int regnum)
262 {
263   /* Hide the upper YMM registers.  */
264   if (i386_ymmh_regnum_p (gdbarch, regnum))
265     return "";
266 
267   return tdesc_register_name (gdbarch, regnum);
268 }
269 
270 /* Return the name of register REGNUM.  */
271 
272 const char *
273 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
274 {
275   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276   if (i386_mmx_regnum_p (gdbarch, regnum))
277     return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
278   else if (i386_ymm_regnum_p (gdbarch, regnum))
279     return i386_ymm_names[regnum - tdep->ymm0_regnum];
280   else if (i386_byte_regnum_p (gdbarch, regnum))
281     return i386_byte_names[regnum - tdep->al_regnum];
282   else if (i386_word_regnum_p (gdbarch, regnum))
283     return i386_word_names[regnum - tdep->ax_regnum];
284 
285   internal_error (__FILE__, __LINE__, _("invalid regnum"));
286 }
287 
288 /* Convert a dbx register number REG to the appropriate register
289    number used by GDB.  */
290 
291 static int
292 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
293 {
294   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
295 
296   /* This implements what GCC calls the "default" register map
297      (dbx_register_map[]).  */
298 
299   if (reg >= 0 && reg <= 7)
300     {
301       /* General-purpose registers.  The debug info calls %ebp
302          register 4, and %esp register 5.  */
303       if (reg == 4)
304         return 5;
305       else if (reg == 5)
306         return 4;
307       else return reg;
308     }
309   else if (reg >= 12 && reg <= 19)
310     {
311       /* Floating-point registers.  */
312       return reg - 12 + I387_ST0_REGNUM (tdep);
313     }
314   else if (reg >= 21 && reg <= 28)
315     {
316       /* SSE registers.  */
317       int ymm0_regnum = tdep->ymm0_regnum;
318 
319       if (ymm0_regnum >= 0
320 	  && i386_xmm_regnum_p (gdbarch, reg))
321 	return reg - 21 + ymm0_regnum;
322       else
323 	return reg - 21 + I387_XMM0_REGNUM (tdep);
324     }
325   else if (reg >= 29 && reg <= 36)
326     {
327       /* MMX registers.  */
328       return reg - 29 + I387_MM0_REGNUM (tdep);
329     }
330 
331   /* This will hopefully provoke a warning.  */
332   return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
333 }
334 
335 /* Convert SVR4 register number REG to the appropriate register number
336    used by GDB.  */
337 
338 static int
339 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
340 {
341   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342 
343   /* This implements the GCC register map that tries to be compatible
344      with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
345 
346   /* The SVR4 register numbering includes %eip and %eflags, and
347      numbers the floating point registers differently.  */
348   if (reg >= 0 && reg <= 9)
349     {
350       /* General-purpose registers.  */
351       return reg;
352     }
353   else if (reg >= 11 && reg <= 18)
354     {
355       /* Floating-point registers.  */
356       return reg - 11 + I387_ST0_REGNUM (tdep);
357     }
358   else if (reg >= 21 && reg <= 36)
359     {
360       /* The SSE and MMX registers have the same numbers as with dbx.  */
361       return i386_dbx_reg_to_regnum (gdbarch, reg);
362     }
363 
364   switch (reg)
365     {
366     case 37: return I387_FCTRL_REGNUM (tdep);
367     case 38: return I387_FSTAT_REGNUM (tdep);
368     case 39: return I387_MXCSR_REGNUM (tdep);
369     case 40: return I386_ES_REGNUM;
370     case 41: return I386_CS_REGNUM;
371     case 42: return I386_SS_REGNUM;
372     case 43: return I386_DS_REGNUM;
373     case 44: return I386_FS_REGNUM;
374     case 45: return I386_GS_REGNUM;
375     }
376 
377   /* This will hopefully provoke a warning.  */
378   return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
379 }
380 
381 
382 
383 /* This is the variable that is set with "set disassembly-flavor", and
384    its legitimate values.  */
385 static const char att_flavor[] = "att";
386 static const char intel_flavor[] = "intel";
387 static const char *const valid_flavors[] =
388 {
389   att_flavor,
390   intel_flavor,
391   NULL
392 };
393 static const char *disassembly_flavor = att_flavor;
394 
395 
396 /* Use the program counter to determine the contents and size of a
397    breakpoint instruction.  Return a pointer to a string of bytes that
398    encode a breakpoint instruction, store the length of the string in
399    *LEN and optionally adjust *PC to point to the correct memory
400    location for inserting the breakpoint.
401 
402    On the i386 we have a single breakpoint that fits in a single byte
403    and can be inserted anywhere.
404 
405    This function is 64-bit safe.  */
406 
407 static const gdb_byte *
408 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
409 {
410   static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
411 
412   *len = sizeof (break_insn);
413   return break_insn;
414 }
415 
416 /* Displaced instruction handling.  */
417 
418 /* Skip the legacy instruction prefixes in INSN.
419    Not all prefixes are valid for any particular insn
420    but we needn't care, the insn will fault if it's invalid.
421    The result is a pointer to the first opcode byte,
422    or NULL if we run off the end of the buffer.  */
423 
424 static gdb_byte *
425 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
426 {
427   gdb_byte *end = insn + max_len;
428 
429   while (insn < end)
430     {
431       switch (*insn)
432 	{
433 	case DATA_PREFIX_OPCODE:
434 	case ADDR_PREFIX_OPCODE:
435 	case CS_PREFIX_OPCODE:
436 	case DS_PREFIX_OPCODE:
437 	case ES_PREFIX_OPCODE:
438 	case FS_PREFIX_OPCODE:
439 	case GS_PREFIX_OPCODE:
440 	case SS_PREFIX_OPCODE:
441 	case LOCK_PREFIX_OPCODE:
442 	case REPE_PREFIX_OPCODE:
443 	case REPNE_PREFIX_OPCODE:
444 	  ++insn;
445 	  continue;
446 	default:
447 	  return insn;
448 	}
449     }
450 
451   return NULL;
452 }
453 
454 static int
455 i386_absolute_jmp_p (const gdb_byte *insn)
456 {
457   /* jmp far (absolute address in operand).  */
458   if (insn[0] == 0xea)
459     return 1;
460 
461   if (insn[0] == 0xff)
462     {
463       /* jump near, absolute indirect (/4).  */
464       if ((insn[1] & 0x38) == 0x20)
465         return 1;
466 
467       /* jump far, absolute indirect (/5).  */
468       if ((insn[1] & 0x38) == 0x28)
469         return 1;
470     }
471 
472   return 0;
473 }
474 
475 static int
476 i386_absolute_call_p (const gdb_byte *insn)
477 {
478   /* call far, absolute.  */
479   if (insn[0] == 0x9a)
480     return 1;
481 
482   if (insn[0] == 0xff)
483     {
484       /* Call near, absolute indirect (/2).  */
485       if ((insn[1] & 0x38) == 0x10)
486         return 1;
487 
488       /* Call far, absolute indirect (/3).  */
489       if ((insn[1] & 0x38) == 0x18)
490         return 1;
491     }
492 
493   return 0;
494 }
495 
496 static int
497 i386_ret_p (const gdb_byte *insn)
498 {
499   switch (insn[0])
500     {
501     case 0xc2: /* ret near, pop N bytes.  */
502     case 0xc3: /* ret near */
503     case 0xca: /* ret far, pop N bytes.  */
504     case 0xcb: /* ret far */
505     case 0xcf: /* iret */
506       return 1;
507 
508     default:
509       return 0;
510     }
511 }
512 
513 static int
514 i386_call_p (const gdb_byte *insn)
515 {
516   if (i386_absolute_call_p (insn))
517     return 1;
518 
519   /* call near, relative.  */
520   if (insn[0] == 0xe8)
521     return 1;
522 
523   return 0;
524 }
525 
526 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
527    length in bytes.  Otherwise, return zero.  */
528 
529 static int
530 i386_syscall_p (const gdb_byte *insn, int *lengthp)
531 {
532   /* Is it 'int $0x80'?  */
533   if ((insn[0] == 0xcd && insn[1] == 0x80)
534       /* Or is it 'sysenter'?  */
535       || (insn[0] == 0x0f && insn[1] == 0x34)
536       /* Or is it 'syscall'?  */
537       || (insn[0] == 0x0f && insn[1] == 0x05))
538     {
539       *lengthp = 2;
540       return 1;
541     }
542 
543   return 0;
544 }
545 
546 /* Some kernels may run one past a syscall insn, so we have to cope.
547    Otherwise this is just simple_displaced_step_copy_insn.  */
548 
549 struct displaced_step_closure *
550 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
551 			       CORE_ADDR from, CORE_ADDR to,
552 			       struct regcache *regs)
553 {
554   size_t len = gdbarch_max_insn_length (gdbarch);
555   gdb_byte *buf = xmalloc (len);
556 
557   read_memory (from, buf, len);
558 
559   /* GDB may get control back after the insn after the syscall.
560      Presumably this is a kernel bug.
561      If this is a syscall, make sure there's a nop afterwards.  */
562   {
563     int syscall_length;
564     gdb_byte *insn;
565 
566     insn = i386_skip_prefixes (buf, len);
567     if (insn != NULL && i386_syscall_p (insn, &syscall_length))
568       insn[syscall_length] = NOP_OPCODE;
569   }
570 
571   write_memory (to, buf, len);
572 
573   if (debug_displaced)
574     {
575       fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
576                           paddress (gdbarch, from), paddress (gdbarch, to));
577       displaced_step_dump_bytes (gdb_stdlog, buf, len);
578     }
579 
580   return (struct displaced_step_closure *) buf;
581 }
582 
583 /* Fix up the state of registers and memory after having single-stepped
584    a displaced instruction.  */
585 
586 void
587 i386_displaced_step_fixup (struct gdbarch *gdbarch,
588                            struct displaced_step_closure *closure,
589                            CORE_ADDR from, CORE_ADDR to,
590                            struct regcache *regs)
591 {
592   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593 
594   /* The offset we applied to the instruction's address.
595      This could well be negative (when viewed as a signed 32-bit
596      value), but ULONGEST won't reflect that, so take care when
597      applying it.  */
598   ULONGEST insn_offset = to - from;
599 
600   /* Since we use simple_displaced_step_copy_insn, our closure is a
601      copy of the instruction.  */
602   gdb_byte *insn = (gdb_byte *) closure;
603   /* The start of the insn, needed in case we see some prefixes.  */
604   gdb_byte *insn_start = insn;
605 
606   if (debug_displaced)
607     fprintf_unfiltered (gdb_stdlog,
608                         "displaced: fixup (%s, %s), "
609                         "insn = 0x%02x 0x%02x ...\n",
610                         paddress (gdbarch, from), paddress (gdbarch, to),
611 			insn[0], insn[1]);
612 
613   /* The list of issues to contend with here is taken from
614      resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
615      Yay for Free Software!  */
616 
617   /* Relocate the %eip, if necessary.  */
618 
619   /* The instruction recognizers we use assume any leading prefixes
620      have been skipped.  */
621   {
622     /* This is the size of the buffer in closure.  */
623     size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
624     gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
625     /* If there are too many prefixes, just ignore the insn.
626        It will fault when run.  */
627     if (opcode != NULL)
628       insn = opcode;
629   }
630 
631   /* Except in the case of absolute or indirect jump or call
632      instructions, or a return instruction, the new eip is relative to
633      the displaced instruction; make it relative.  Well, signal
634      handler returns don't need relocation either, but we use the
635      value of %eip to recognize those; see below.  */
636   if (! i386_absolute_jmp_p (insn)
637       && ! i386_absolute_call_p (insn)
638       && ! i386_ret_p (insn))
639     {
640       ULONGEST orig_eip;
641       int insn_len;
642 
643       regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
644 
645       /* A signal trampoline system call changes the %eip, resuming
646          execution of the main program after the signal handler has
647          returned.  That makes them like 'return' instructions; we
648          shouldn't relocate %eip.
649 
650          But most system calls don't, and we do need to relocate %eip.
651 
652          Our heuristic for distinguishing these cases: if stepping
653          over the system call instruction left control directly after
654          the instruction, the we relocate --- control almost certainly
655          doesn't belong in the displaced copy.  Otherwise, we assume
656          the instruction has put control where it belongs, and leave
657          it unrelocated.  Goodness help us if there are PC-relative
658          system calls.  */
659       if (i386_syscall_p (insn, &insn_len)
660           && orig_eip != to + (insn - insn_start) + insn_len
661 	  /* GDB can get control back after the insn after the syscall.
662 	     Presumably this is a kernel bug.
663 	     i386_displaced_step_copy_insn ensures its a nop,
664 	     we add one to the length for it.  */
665           && orig_eip != to + (insn - insn_start) + insn_len + 1)
666         {
667           if (debug_displaced)
668             fprintf_unfiltered (gdb_stdlog,
669                                 "displaced: syscall changed %%eip; "
670                                 "not relocating\n");
671         }
672       else
673         {
674           ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
675 
676 	  /* If we just stepped over a breakpoint insn, we don't backup
677 	     the pc on purpose; this is to match behaviour without
678 	     stepping.  */
679 
680           regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
681 
682           if (debug_displaced)
683             fprintf_unfiltered (gdb_stdlog,
684                                 "displaced: "
685                                 "relocated %%eip from %s to %s\n",
686                                 paddress (gdbarch, orig_eip),
687 				paddress (gdbarch, eip));
688         }
689     }
690 
691   /* If the instruction was PUSHFL, then the TF bit will be set in the
692      pushed value, and should be cleared.  We'll leave this for later,
693      since GDB already messes up the TF flag when stepping over a
694      pushfl.  */
695 
696   /* If the instruction was a call, the return address now atop the
697      stack is the address following the copied instruction.  We need
698      to make it the address following the original instruction.  */
699   if (i386_call_p (insn))
700     {
701       ULONGEST esp;
702       ULONGEST retaddr;
703       const ULONGEST retaddr_len = 4;
704 
705       regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
706       retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
707       retaddr = (retaddr - insn_offset) & 0xffffffffUL;
708       write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
709 
710       if (debug_displaced)
711         fprintf_unfiltered (gdb_stdlog,
712                             "displaced: relocated return addr at %s to %s\n",
713                             paddress (gdbarch, esp),
714                             paddress (gdbarch, retaddr));
715     }
716 }
717 
718 static void
719 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
720 {
721   target_write_memory (*to, buf, len);
722   *to += len;
723 }
724 
725 static void
726 i386_relocate_instruction (struct gdbarch *gdbarch,
727 			   CORE_ADDR *to, CORE_ADDR oldloc)
728 {
729   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
730   gdb_byte buf[I386_MAX_INSN_LEN];
731   int offset = 0, rel32, newrel;
732   int insn_length;
733   gdb_byte *insn = buf;
734 
735   read_memory (oldloc, buf, I386_MAX_INSN_LEN);
736 
737   insn_length = gdb_buffered_insn_length (gdbarch, insn,
738 					  I386_MAX_INSN_LEN, oldloc);
739 
740   /* Get past the prefixes.  */
741   insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
742 
743   /* Adjust calls with 32-bit relative addresses as push/jump, with
744      the address pushed being the location where the original call in
745      the user program would return to.  */
746   if (insn[0] == 0xe8)
747     {
748       gdb_byte push_buf[16];
749       unsigned int ret_addr;
750 
751       /* Where "ret" in the original code will return to.  */
752       ret_addr = oldloc + insn_length;
753       push_buf[0] = 0x68; /* pushq $...  */
754       store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
755       /* Push the push.  */
756       append_insns (to, 5, push_buf);
757 
758       /* Convert the relative call to a relative jump.  */
759       insn[0] = 0xe9;
760 
761       /* Adjust the destination offset.  */
762       rel32 = extract_signed_integer (insn + 1, 4, byte_order);
763       newrel = (oldloc - *to) + rel32;
764       store_signed_integer (insn + 1, 4, byte_order, newrel);
765 
766       if (debug_displaced)
767 	fprintf_unfiltered (gdb_stdlog,
768 			    "Adjusted insn rel32=%s at %s to"
769 			    " rel32=%s at %s\n",
770 			    hex_string (rel32), paddress (gdbarch, oldloc),
771 			    hex_string (newrel), paddress (gdbarch, *to));
772 
773       /* Write the adjusted jump into its displaced location.  */
774       append_insns (to, 5, insn);
775       return;
776     }
777 
778   /* Adjust jumps with 32-bit relative addresses.  Calls are already
779      handled above.  */
780   if (insn[0] == 0xe9)
781     offset = 1;
782   /* Adjust conditional jumps.  */
783   else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
784     offset = 2;
785 
786   if (offset)
787     {
788       rel32 = extract_signed_integer (insn + offset, 4, byte_order);
789       newrel = (oldloc - *to) + rel32;
790       store_signed_integer (insn + offset, 4, byte_order, newrel);
791       if (debug_displaced)
792 	fprintf_unfiltered (gdb_stdlog,
793 			    "Adjusted insn rel32=%s at %s to"
794 			    " rel32=%s at %s\n",
795 			    hex_string (rel32), paddress (gdbarch, oldloc),
796 			    hex_string (newrel), paddress (gdbarch, *to));
797     }
798 
799   /* Write the adjusted instructions into their displaced
800      location.  */
801   append_insns (to, insn_length, buf);
802 }
803 
804 
805 #ifdef I386_REGNO_TO_SYMMETRY
806 #error "The Sequent Symmetry is no longer supported."
807 #endif
808 
809 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
810    and %esp "belong" to the calling function.  Therefore these
811    registers should be saved if they're going to be modified.  */
812 
813 /* The maximum number of saved registers.  This should include all
814    registers mentioned above, and %eip.  */
815 #define I386_NUM_SAVED_REGS	I386_NUM_GREGS
816 
817 struct i386_frame_cache
818 {
819   /* Base address.  */
820   CORE_ADDR base;
821   int base_p;
822   LONGEST sp_offset;
823   CORE_ADDR pc;
824 
825   /* Saved registers.  */
826   CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
827   CORE_ADDR saved_sp;
828   int saved_sp_reg;
829   int pc_in_eax;
830 
831   /* Stack space reserved for local variables.  */
832   long locals;
833 };
834 
835 /* Allocate and initialize a frame cache.  */
836 
837 static struct i386_frame_cache *
838 i386_alloc_frame_cache (void)
839 {
840   struct i386_frame_cache *cache;
841   int i;
842 
843   cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
844 
845   /* Base address.  */
846   cache->base_p = 0;
847   cache->base = 0;
848   cache->sp_offset = -4;
849   cache->pc = 0;
850 
851   /* Saved registers.  We initialize these to -1 since zero is a valid
852      offset (that's where %ebp is supposed to be stored).  */
853   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
854     cache->saved_regs[i] = -1;
855   cache->saved_sp = 0;
856   cache->saved_sp_reg = -1;
857   cache->pc_in_eax = 0;
858 
859   /* Frameless until proven otherwise.  */
860   cache->locals = -1;
861 
862   return cache;
863 }
864 
865 /* If the instruction at PC is a jump, return the address of its
866    target.  Otherwise, return PC.  */
867 
868 static CORE_ADDR
869 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
870 {
871   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872   gdb_byte op;
873   long delta = 0;
874   int data16 = 0;
875 
876   if (target_read_memory (pc, &op, 1))
877     return pc;
878 
879   if (op == 0x66)
880     {
881       data16 = 1;
882       op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
883     }
884 
885   switch (op)
886     {
887     case 0xe9:
888       /* Relative jump: if data16 == 0, disp32, else disp16.  */
889       if (data16)
890 	{
891 	  delta = read_memory_integer (pc + 2, 2, byte_order);
892 
893 	  /* Include the size of the jmp instruction (including the
894              0x66 prefix).  */
895 	  delta += 4;
896 	}
897       else
898 	{
899 	  delta = read_memory_integer (pc + 1, 4, byte_order);
900 
901 	  /* Include the size of the jmp instruction.  */
902 	  delta += 5;
903 	}
904       break;
905     case 0xeb:
906       /* Relative jump, disp8 (ignore data16).  */
907       delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
908 
909       delta += data16 + 2;
910       break;
911     }
912 
913   return pc + delta;
914 }
915 
916 /* Check whether PC points at a prologue for a function returning a
917    structure or union.  If so, it updates CACHE and returns the
918    address of the first instruction after the code sequence that
919    removes the "hidden" argument from the stack or CURRENT_PC,
920    whichever is smaller.  Otherwise, return PC.  */
921 
922 static CORE_ADDR
923 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
924 			    struct i386_frame_cache *cache)
925 {
926   /* Functions that return a structure or union start with:
927 
928         popl %eax             0x58
929         xchgl %eax, (%esp)    0x87 0x04 0x24
930      or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
931 
932      (the System V compiler puts out the second `xchg' instruction,
933      and the assembler doesn't try to optimize it, so the 'sib' form
934      gets generated).  This sequence is used to get the address of the
935      return buffer for a function that returns a structure.  */
936   static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
937   static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
938   gdb_byte buf[4];
939   gdb_byte op;
940 
941   if (current_pc <= pc)
942     return pc;
943 
944   if (target_read_memory (pc, &op, 1))
945     return pc;
946 
947   if (op != 0x58)		/* popl %eax */
948     return pc;
949 
950   if (target_read_memory (pc + 1, buf, 4))
951     return pc;
952 
953   if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
954     return pc;
955 
956   if (current_pc == pc)
957     {
958       cache->sp_offset += 4;
959       return current_pc;
960     }
961 
962   if (current_pc == pc + 1)
963     {
964       cache->pc_in_eax = 1;
965       return current_pc;
966     }
967 
968   if (buf[1] == proto1[1])
969     return pc + 4;
970   else
971     return pc + 5;
972 }
973 
974 static CORE_ADDR
975 i386_skip_probe (CORE_ADDR pc)
976 {
977   /* A function may start with
978 
979         pushl constant
980         call _probe
981 	addl $4, %esp
982 
983      followed by
984 
985         pushl %ebp
986 
987      etc.  */
988   gdb_byte buf[8];
989   gdb_byte op;
990 
991   if (target_read_memory (pc, &op, 1))
992     return pc;
993 
994   if (op == 0x68 || op == 0x6a)
995     {
996       int delta;
997 
998       /* Skip past the `pushl' instruction; it has either a one-byte or a
999 	 four-byte operand, depending on the opcode.  */
1000       if (op == 0x68)
1001 	delta = 5;
1002       else
1003 	delta = 2;
1004 
1005       /* Read the following 8 bytes, which should be `call _probe' (6
1006 	 bytes) followed by `addl $4,%esp' (2 bytes).  */
1007       read_memory (pc + delta, buf, sizeof (buf));
1008       if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1009 	pc += delta + sizeof (buf);
1010     }
1011 
1012   return pc;
1013 }
1014 
1015 /* GCC 4.1 and later, can put code in the prologue to realign the
1016    stack pointer.  Check whether PC points to such code, and update
1017    CACHE accordingly.  Return the first instruction after the code
1018    sequence or CURRENT_PC, whichever is smaller.  If we don't
1019    recognize the code, return PC.  */
1020 
1021 static CORE_ADDR
1022 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1023 			  struct i386_frame_cache *cache)
1024 {
1025   /* There are 2 code sequences to re-align stack before the frame
1026      gets set up:
1027 
1028 	1. Use a caller-saved saved register:
1029 
1030 		leal  4(%esp), %reg
1031 		andl  $-XXX, %esp
1032 		pushl -4(%reg)
1033 
1034 	2. Use a callee-saved saved register:
1035 
1036 		pushl %reg
1037 		leal  8(%esp), %reg
1038 		andl  $-XXX, %esp
1039 		pushl -4(%reg)
1040 
1041      "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1042 
1043      	0x83 0xe4 0xf0			andl $-16, %esp
1044      	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
1045    */
1046 
1047   gdb_byte buf[14];
1048   int reg;
1049   int offset, offset_and;
1050   static int regnums[8] = {
1051     I386_EAX_REGNUM,		/* %eax */
1052     I386_ECX_REGNUM,		/* %ecx */
1053     I386_EDX_REGNUM,		/* %edx */
1054     I386_EBX_REGNUM,		/* %ebx */
1055     I386_ESP_REGNUM,		/* %esp */
1056     I386_EBP_REGNUM,		/* %ebp */
1057     I386_ESI_REGNUM,		/* %esi */
1058     I386_EDI_REGNUM		/* %edi */
1059   };
1060 
1061   if (target_read_memory (pc, buf, sizeof buf))
1062     return pc;
1063 
1064   /* Check caller-saved saved register.  The first instruction has
1065      to be "leal 4(%esp), %reg".  */
1066   if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1067     {
1068       /* MOD must be binary 10 and R/M must be binary 100.  */
1069       if ((buf[1] & 0xc7) != 0x44)
1070 	return pc;
1071 
1072       /* REG has register number.  */
1073       reg = (buf[1] >> 3) & 7;
1074       offset = 4;
1075     }
1076   else
1077     {
1078       /* Check callee-saved saved register.  The first instruction
1079 	 has to be "pushl %reg".  */
1080       if ((buf[0] & 0xf8) != 0x50)
1081 	return pc;
1082 
1083       /* Get register.  */
1084       reg = buf[0] & 0x7;
1085 
1086       /* The next instruction has to be "leal 8(%esp), %reg".  */
1087       if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1088 	return pc;
1089 
1090       /* MOD must be binary 10 and R/M must be binary 100.  */
1091       if ((buf[2] & 0xc7) != 0x44)
1092 	return pc;
1093 
1094       /* REG has register number.  Registers in pushl and leal have to
1095 	 be the same.  */
1096       if (reg != ((buf[2] >> 3) & 7))
1097 	return pc;
1098 
1099       offset = 5;
1100     }
1101 
1102   /* Rigister can't be %esp nor %ebp.  */
1103   if (reg == 4 || reg == 5)
1104     return pc;
1105 
1106   /* The next instruction has to be "andl $-XXX, %esp".  */
1107   if (buf[offset + 1] != 0xe4
1108       || (buf[offset] != 0x81 && buf[offset] != 0x83))
1109     return pc;
1110 
1111   offset_and = offset;
1112   offset += buf[offset] == 0x81 ? 6 : 3;
1113 
1114   /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
1115      0xfc.  REG must be binary 110 and MOD must be binary 01.  */
1116   if (buf[offset] != 0xff
1117       || buf[offset + 2] != 0xfc
1118       || (buf[offset + 1] & 0xf8) != 0x70)
1119     return pc;
1120 
1121   /* R/M has register.  Registers in leal and pushl have to be the
1122      same.  */
1123   if (reg != (buf[offset + 1] & 7))
1124     return pc;
1125 
1126   if (current_pc > pc + offset_and)
1127     cache->saved_sp_reg = regnums[reg];
1128 
1129   return min (pc + offset + 3, current_pc);
1130 }
1131 
1132 /* Maximum instruction length we need to handle.  */
1133 #define I386_MAX_MATCHED_INSN_LEN	6
1134 
1135 /* Instruction description.  */
1136 struct i386_insn
1137 {
1138   size_t len;
1139   gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1140   gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1141 };
1142 
1143 /* Return whether instruction at PC matches PATTERN.  */
1144 
1145 static int
1146 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1147 {
1148   gdb_byte op;
1149 
1150   if (target_read_memory (pc, &op, 1))
1151     return 0;
1152 
1153   if ((op & pattern.mask[0]) == pattern.insn[0])
1154     {
1155       gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1156       int insn_matched = 1;
1157       size_t i;
1158 
1159       gdb_assert (pattern.len > 1);
1160       gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1161 
1162       if (target_read_memory (pc + 1, buf, pattern.len - 1))
1163 	return 0;
1164 
1165       for (i = 1; i < pattern.len; i++)
1166 	{
1167 	  if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1168 	    insn_matched = 0;
1169 	}
1170       return insn_matched;
1171     }
1172   return 0;
1173 }
1174 
1175 /* Search for the instruction at PC in the list INSN_PATTERNS.  Return
1176    the first instruction description that matches.  Otherwise, return
1177    NULL.  */
1178 
1179 static struct i386_insn *
1180 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1181 {
1182   struct i386_insn *pattern;
1183 
1184   for (pattern = insn_patterns; pattern->len > 0; pattern++)
1185     {
1186       if (i386_match_pattern (pc, *pattern))
1187 	return pattern;
1188     }
1189 
1190   return NULL;
1191 }
1192 
1193 /* Return whether PC points inside a sequence of instructions that
1194    matches INSN_PATTERNS.  */
1195 
1196 static int
1197 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1198 {
1199   CORE_ADDR current_pc;
1200   int ix, i;
1201   struct i386_insn *insn;
1202 
1203   insn = i386_match_insn (pc, insn_patterns);
1204   if (insn == NULL)
1205     return 0;
1206 
1207   current_pc = pc;
1208   ix = insn - insn_patterns;
1209   for (i = ix - 1; i >= 0; i--)
1210     {
1211       current_pc -= insn_patterns[i].len;
1212 
1213       if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 	return 0;
1215     }
1216 
1217   current_pc = pc + insn->len;
1218   for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219     {
1220       if (!i386_match_pattern (current_pc, *insn))
1221 	return 0;
1222 
1223       current_pc += insn->len;
1224     }
1225 
1226   return 1;
1227 }
1228 
1229 /* Some special instructions that might be migrated by GCC into the
1230    part of the prologue that sets up the new stack frame.  Because the
1231    stack frame hasn't been setup yet, no registers have been saved
1232    yet, and only the scratch registers %eax, %ecx and %edx can be
1233    touched.  */
1234 
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237   /* Check for `movb imm8, r' and `movl imm32, r'.
1238 
1239      ??? Should we handle 16-bit operand-sizes here?  */
1240 
1241   /* `movb imm8, %al' and `movb imm8, %ah' */
1242   /* `movb imm8, %cl' and `movb imm8, %ch' */
1243   { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244   /* `movb imm8, %dl' and `movb imm8, %dh' */
1245   { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246   /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247   { 5, { 0xb8 }, { 0xfe } },
1248   /* `movl imm32, %edx' */
1249   { 5, { 0xba }, { 0xff } },
1250 
1251   /* Check for `mov imm32, r32'.  Note that there is an alternative
1252      encoding for `mov m32, %eax'.
1253 
1254      ??? Should we handle SIB adressing here?
1255      ??? Should we handle 16-bit operand-sizes here?  */
1256 
1257   /* `movl m32, %eax' */
1258   { 5, { 0xa1 }, { 0xff } },
1259   /* `movl m32, %eax' and `mov; m32, %ecx' */
1260   { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261   /* `movl m32, %edx' */
1262   { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263 
1264   /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265      Because of the symmetry, there are actually two ways to encode
1266      these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267      opcode bytes 0x31 and 0x33 for `xorl'.  */
1268 
1269   /* `subl %eax, %eax' */
1270   { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271   /* `subl %ecx, %ecx' */
1272   { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273   /* `subl %edx, %edx' */
1274   { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275   /* `xorl %eax, %eax' */
1276   { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277   /* `xorl %ecx, %ecx' */
1278   { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279   /* `xorl %edx, %edx' */
1280   { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281   { 0 }
1282 };
1283 
1284 
1285 /* Check whether PC points to a no-op instruction.  */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289   gdb_byte op;
1290   int check = 1;
1291 
1292   if (target_read_memory (pc, &op, 1))
1293     return pc;
1294 
1295   while (check)
1296     {
1297       check = 0;
1298       /* Ignore `nop' instruction.  */
1299       if (op == 0x90)
1300 	{
1301 	  pc += 1;
1302 	  if (target_read_memory (pc, &op, 1))
1303 	    return pc;
1304 	  check = 1;
1305 	}
1306       /* Ignore no-op instruction `mov %edi, %edi'.
1307 	 Microsoft system dlls often start with
1308 	 a `mov %edi,%edi' instruction.
1309 	 The 5 bytes before the function start are
1310 	 filled with `nop' instructions.
1311 	 This pattern can be used for hot-patching:
1312 	 The `mov %edi, %edi' instruction can be replaced by a
1313 	 near jump to the location of the 5 `nop' instructions
1314 	 which can be replaced by a 32-bit jump to anywhere
1315 	 in the 32-bit address space.  */
1316 
1317       else if (op == 0x8b)
1318 	{
1319 	  if (target_read_memory (pc + 1, &op, 1))
1320 	    return pc;
1321 
1322 	  if (op == 0xff)
1323 	    {
1324 	      pc += 2;
1325 	      if (target_read_memory (pc, &op, 1))
1326 		return pc;
1327 
1328 	      check = 1;
1329 	    }
1330 	}
1331     }
1332   return pc;
1333 }
1334 
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336    If so, it updates CACHE and returns the address of the first
1337    instruction after the sequence that sets up the frame or LIMIT,
1338    whichever is smaller.  If we don't recognize the code, return PC.  */
1339 
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 			  CORE_ADDR pc, CORE_ADDR limit,
1343 			  struct i386_frame_cache *cache)
1344 {
1345   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346   struct i386_insn *insn;
1347   gdb_byte op;
1348   int skip = 0;
1349 
1350   if (limit <= pc)
1351     return limit;
1352 
1353   if (target_read_memory (pc, &op, 1))
1354     return pc;
1355 
1356   if (op == 0x55)		/* pushl %ebp */
1357     {
1358       /* Take into account that we've executed the `pushl %ebp' that
1359 	 starts this instruction sequence.  */
1360       cache->saved_regs[I386_EBP_REGNUM] = 0;
1361       cache->sp_offset += 4;
1362       pc++;
1363 
1364       /* If that's all, return now.  */
1365       if (limit <= pc)
1366 	return limit;
1367 
1368       /* Check for some special instructions that might be migrated by
1369 	 GCC into the prologue and skip them.  At this point in the
1370 	 prologue, code should only touch the scratch registers %eax,
1371 	 %ecx and %edx, so while the number of posibilities is sheer,
1372 	 it is limited.
1373 
1374 	 Make sure we only skip these instructions if we later see the
1375 	 `movl %esp, %ebp' that actually sets up the frame.  */
1376       while (pc + skip < limit)
1377 	{
1378 	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 	  if (insn == NULL)
1380 	    break;
1381 
1382 	  skip += insn->len;
1383 	}
1384 
1385       /* If that's all, return now.  */
1386       if (limit <= pc + skip)
1387 	return limit;
1388 
1389       if (target_read_memory (pc + skip, &op, 1))
1390 	return pc + skip;
1391 
1392       /* The i386 prologue looks like
1393 
1394 	 push   %ebp
1395 	 mov    %esp,%ebp
1396 	 sub    $0x10,%esp
1397 
1398 	 and a different prologue can be generated for atom.
1399 
1400 	 push   %ebp
1401 	 lea    (%esp),%ebp
1402 	 lea    -0x10(%esp),%esp
1403 
1404 	 We handle both of them here.  */
1405 
1406       switch (op)
1407 	{
1408 	  /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
1409 	case 0x8b:
1410 	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1411 	      != 0xec)
1412 	    return pc;
1413 	  pc += (skip + 2);
1414 	  break;
1415 	case 0x89:
1416 	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1417 	      != 0xe5)
1418 	    return pc;
1419 	  pc += (skip + 2);
1420 	  break;
1421 	case 0x8d: /* Check for 'lea (%ebp), %ebp'.  */
1422 	  if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1423 	      != 0x242c)
1424 	    return pc;
1425 	  pc += (skip + 3);
1426 	  break;
1427 	default:
1428 	  return pc;
1429 	}
1430 
1431       /* OK, we actually have a frame.  We just don't know how large
1432 	 it is yet.  Set its size to zero.  We'll adjust it if
1433 	 necessary.  We also now commit to skipping the special
1434 	 instructions mentioned before.  */
1435       cache->locals = 0;
1436 
1437       /* If that's all, return now.  */
1438       if (limit <= pc)
1439 	return limit;
1440 
1441       /* Check for stack adjustment
1442 
1443 	    subl $XXX, %esp
1444 	 or
1445 	    lea -XXX(%esp),%esp
1446 
1447 	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1448 	 reg, so we don't have to worry about a data16 prefix.  */
1449       if (target_read_memory (pc, &op, 1))
1450 	return pc;
1451       if (op == 0x83)
1452 	{
1453 	  /* `subl' with 8-bit immediate.  */
1454 	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1455 	    /* Some instruction starting with 0x83 other than `subl'.  */
1456 	    return pc;
1457 
1458 	  /* `subl' with signed 8-bit immediate (though it wouldn't
1459 	     make sense to be negative).  */
1460 	  cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1461 	  return pc + 3;
1462 	}
1463       else if (op == 0x81)
1464 	{
1465 	  /* Maybe it is `subl' with a 32-bit immediate.  */
1466 	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1467 	    /* Some instruction starting with 0x81 other than `subl'.  */
1468 	    return pc;
1469 
1470 	  /* It is `subl' with a 32-bit immediate.  */
1471 	  cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1472 	  return pc + 6;
1473 	}
1474       else if (op == 0x8d)
1475 	{
1476 	  /* The ModR/M byte is 0x64.  */
1477 	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1478 	    return pc;
1479 	  /* 'lea' with 8-bit displacement.  */
1480 	  cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1481 	  return pc + 4;
1482 	}
1483       else
1484 	{
1485 	  /* Some instruction other than `subl' nor 'lea'.  */
1486 	  return pc;
1487 	}
1488     }
1489   else if (op == 0xc8)		/* enter */
1490     {
1491       cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1492       return pc + 4;
1493     }
1494 
1495   return pc;
1496 }
1497 
1498 /* Check whether PC points at code that saves registers on the stack.
1499    If so, it updates CACHE and returns the address of the first
1500    instruction after the register saves or CURRENT_PC, whichever is
1501    smaller.  Otherwise, return PC.  */
1502 
1503 static CORE_ADDR
1504 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1505 			     struct i386_frame_cache *cache)
1506 {
1507   CORE_ADDR offset = 0;
1508   gdb_byte op;
1509   int i;
1510 
1511   if (cache->locals > 0)
1512     offset -= cache->locals;
1513   for (i = 0; i < 8 && pc < current_pc; i++)
1514     {
1515       if (target_read_memory (pc, &op, 1))
1516 	return pc;
1517       if (op < 0x50 || op > 0x57)
1518 	break;
1519 
1520       offset -= 4;
1521       cache->saved_regs[op - 0x50] = offset;
1522       cache->sp_offset += 4;
1523       pc++;
1524     }
1525 
1526   return pc;
1527 }
1528 
1529 /* Do a full analysis of the prologue at PC and update CACHE
1530    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
1531    address where the analysis stopped.
1532 
1533    We handle these cases:
1534 
1535    The startup sequence can be at the start of the function, or the
1536    function can start with a branch to startup code at the end.
1537 
1538    %ebp can be set up with either the 'enter' instruction, or "pushl
1539    %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1540    once used in the System V compiler).
1541 
1542    Local space is allocated just below the saved %ebp by either the
1543    'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
1544    16-bit unsigned argument for space to allocate, and the 'addl'
1545    instruction could have either a signed byte, or 32-bit immediate.
1546 
1547    Next, the registers used by this function are pushed.  With the
1548    System V compiler they will always be in the order: %edi, %esi,
1549    %ebx (and sometimes a harmless bug causes it to also save but not
1550    restore %eax); however, the code below is willing to see the pushes
1551    in any order, and will handle up to 8 of them.
1552 
1553    If the setup sequence is at the end of the function, then the next
1554    instruction will be a branch back to the start.  */
1555 
1556 static CORE_ADDR
1557 i386_analyze_prologue (struct gdbarch *gdbarch,
1558 		       CORE_ADDR pc, CORE_ADDR current_pc,
1559 		       struct i386_frame_cache *cache)
1560 {
1561   pc = i386_skip_noop (pc);
1562   pc = i386_follow_jump (gdbarch, pc);
1563   pc = i386_analyze_struct_return (pc, current_pc, cache);
1564   pc = i386_skip_probe (pc);
1565   pc = i386_analyze_stack_align (pc, current_pc, cache);
1566   pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1567   return i386_analyze_register_saves (pc, current_pc, cache);
1568 }
1569 
1570 /* Return PC of first real instruction.  */
1571 
1572 static CORE_ADDR
1573 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1574 {
1575   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1576 
1577   static gdb_byte pic_pat[6] =
1578   {
1579     0xe8, 0, 0, 0, 0,		/* call 0x0 */
1580     0x5b,			/* popl %ebx */
1581   };
1582   struct i386_frame_cache cache;
1583   CORE_ADDR pc;
1584   gdb_byte op;
1585   int i;
1586   CORE_ADDR func_addr;
1587 
1588   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1589     {
1590       CORE_ADDR post_prologue_pc
1591 	= skip_prologue_using_sal (gdbarch, func_addr);
1592       struct symtab *s = find_pc_symtab (func_addr);
1593 
1594       /* Clang always emits a line note before the prologue and another
1595 	 one after.  We trust clang to emit usable line notes.  */
1596       if (post_prologue_pc
1597 	  && (s != NULL
1598 	      && s->producer != NULL
1599 	      && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1600         return max (start_pc, post_prologue_pc);
1601     }
1602 
1603   cache.locals = -1;
1604   pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1605   if (cache.locals < 0)
1606     return start_pc;
1607 
1608   /* Found valid frame setup.  */
1609 
1610   /* The native cc on SVR4 in -K PIC mode inserts the following code
1611      to get the address of the global offset table (GOT) into register
1612      %ebx:
1613 
1614         call	0x0
1615 	popl    %ebx
1616         movl    %ebx,x(%ebp)    (optional)
1617         addl    y,%ebx
1618 
1619      This code is with the rest of the prologue (at the end of the
1620      function), so we have to skip it to get to the first real
1621      instruction at the start of the function.  */
1622 
1623   for (i = 0; i < 6; i++)
1624     {
1625       if (target_read_memory (pc + i, &op, 1))
1626 	return pc;
1627 
1628       if (pic_pat[i] != op)
1629 	break;
1630     }
1631   if (i == 6)
1632     {
1633       int delta = 6;
1634 
1635       if (target_read_memory (pc + delta, &op, 1))
1636 	return pc;
1637 
1638       if (op == 0x89)		/* movl %ebx, x(%ebp) */
1639 	{
1640 	  op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1641 
1642 	  if (op == 0x5d)	/* One byte offset from %ebp.  */
1643 	    delta += 3;
1644 	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
1645 	    delta += 6;
1646 	  else			/* Unexpected instruction.  */
1647 	    delta = 0;
1648 
1649           if (target_read_memory (pc + delta, &op, 1))
1650 	    return pc;
1651 	}
1652 
1653       /* addl y,%ebx */
1654       if (delta > 0 && op == 0x81
1655 	  && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1656 	     == 0xc3)
1657 	{
1658 	  pc += delta + 6;
1659 	}
1660     }
1661 
1662   /* If the function starts with a branch (to startup code at the end)
1663      the last instruction should bring us back to the first
1664      instruction of the real code.  */
1665   if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1666     pc = i386_follow_jump (gdbarch, pc);
1667 
1668   return pc;
1669 }
1670 
1671 /* Check that the code pointed to by PC corresponds to a call to
1672    __main, skip it if so.  Return PC otherwise.  */
1673 
1674 CORE_ADDR
1675 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1676 {
1677   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678   gdb_byte op;
1679 
1680   if (target_read_memory (pc, &op, 1))
1681     return pc;
1682   if (op == 0xe8)
1683     {
1684       gdb_byte buf[4];
1685 
1686       if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1687  	{
1688 	  /* Make sure address is computed correctly as a 32bit
1689 	     integer even if CORE_ADDR is 64 bit wide.  */
1690  	  struct minimal_symbol *s;
1691  	  CORE_ADDR call_dest;
1692 
1693 	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1694 	  call_dest = call_dest & 0xffffffffU;
1695  	  s = lookup_minimal_symbol_by_pc (call_dest);
1696  	  if (s != NULL
1697  	      && SYMBOL_LINKAGE_NAME (s) != NULL
1698  	      && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1699  	    pc += 5;
1700  	}
1701     }
1702 
1703   return pc;
1704 }
1705 
1706 /* This function is 64-bit safe.  */
1707 
1708 static CORE_ADDR
1709 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1710 {
1711   gdb_byte buf[8];
1712 
1713   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1714   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1715 }
1716 
1717 
1718 /* Normal frames.  */
1719 
1720 static void
1721 i386_frame_cache_1 (struct frame_info *this_frame,
1722 		    struct i386_frame_cache *cache)
1723 {
1724   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1725   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1726   gdb_byte buf[4];
1727   int i;
1728 
1729   cache->pc = get_frame_func (this_frame);
1730 
1731   /* In principle, for normal frames, %ebp holds the frame pointer,
1732      which holds the base address for the current stack frame.
1733      However, for functions that don't need it, the frame pointer is
1734      optional.  For these "frameless" functions the frame pointer is
1735      actually the frame pointer of the calling frame.  Signal
1736      trampolines are just a special case of a "frameless" function.
1737      They (usually) share their frame pointer with the frame that was
1738      in progress when the signal occurred.  */
1739 
1740   get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1741   cache->base = extract_unsigned_integer (buf, 4, byte_order);
1742   if (cache->base == 0)
1743     {
1744       cache->base_p = 1;
1745       return;
1746     }
1747 
1748   /* For normal frames, %eip is stored at 4(%ebp).  */
1749   cache->saved_regs[I386_EIP_REGNUM] = 4;
1750 
1751   if (cache->pc != 0)
1752     i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1753 			   cache);
1754 
1755   if (cache->locals < 0)
1756     {
1757       /* We didn't find a valid frame, which means that CACHE->base
1758 	 currently holds the frame pointer for our calling frame.  If
1759 	 we're at the start of a function, or somewhere half-way its
1760 	 prologue, the function's frame probably hasn't been fully
1761 	 setup yet.  Try to reconstruct the base address for the stack
1762 	 frame by looking at the stack pointer.  For truly "frameless"
1763 	 functions this might work too.  */
1764 
1765       if (cache->saved_sp_reg != -1)
1766 	{
1767 	  /* Saved stack pointer has been saved.  */
1768 	  get_frame_register (this_frame, cache->saved_sp_reg, buf);
1769 	  cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1770 
1771 	  /* We're halfway aligning the stack.  */
1772 	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1773 	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1774 
1775 	  /* This will be added back below.  */
1776 	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1777 	}
1778       else if (cache->pc != 0
1779 	       || target_read_memory (get_frame_pc (this_frame), buf, 1))
1780 	{
1781 	  /* We're in a known function, but did not find a frame
1782 	     setup.  Assume that the function does not use %ebp.
1783 	     Alternatively, we may have jumped to an invalid
1784 	     address; in that case there is definitely no new
1785 	     frame in %ebp.  */
1786 	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1787 	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
1788 			+ cache->sp_offset;
1789 	}
1790       else
1791 	/* We're in an unknown function.  We could not find the start
1792 	   of the function to analyze the prologue; our best option is
1793 	   to assume a typical frame layout with the caller's %ebp
1794 	   saved.  */
1795 	cache->saved_regs[I386_EBP_REGNUM] = 0;
1796     }
1797 
1798   if (cache->saved_sp_reg != -1)
1799     {
1800       /* Saved stack pointer has been saved (but the SAVED_SP_REG
1801 	 register may be unavailable).  */
1802       if (cache->saved_sp == 0
1803 	  && deprecated_frame_register_read (this_frame,
1804 					     cache->saved_sp_reg, buf))
1805 	cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1806     }
1807   /* Now that we have the base address for the stack frame we can
1808      calculate the value of %esp in the calling frame.  */
1809   else if (cache->saved_sp == 0)
1810     cache->saved_sp = cache->base + 8;
1811 
1812   /* Adjust all the saved registers such that they contain addresses
1813      instead of offsets.  */
1814   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1815     if (cache->saved_regs[i] != -1)
1816       cache->saved_regs[i] += cache->base;
1817 
1818   cache->base_p = 1;
1819 }
1820 
1821 static struct i386_frame_cache *
1822 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1823 {
1824   volatile struct gdb_exception ex;
1825   struct i386_frame_cache *cache;
1826 
1827   if (*this_cache)
1828     return *this_cache;
1829 
1830   cache = i386_alloc_frame_cache ();
1831   *this_cache = cache;
1832 
1833   TRY_CATCH (ex, RETURN_MASK_ERROR)
1834     {
1835       i386_frame_cache_1 (this_frame, cache);
1836     }
1837   if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1838     throw_exception (ex);
1839 
1840   return cache;
1841 }
1842 
1843 static void
1844 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1845 		    struct frame_id *this_id)
1846 {
1847   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1848 
1849   /* This marks the outermost frame.  */
1850   if (cache->base == 0)
1851     return;
1852 
1853   /* See the end of i386_push_dummy_call.  */
1854   (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1855 }
1856 
1857 static enum unwind_stop_reason
1858 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1859 			       void **this_cache)
1860 {
1861   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1862 
1863   if (!cache->base_p)
1864     return UNWIND_UNAVAILABLE;
1865 
1866   /* This marks the outermost frame.  */
1867   if (cache->base == 0)
1868     return UNWIND_OUTERMOST;
1869 
1870   return UNWIND_NO_REASON;
1871 }
1872 
1873 static struct value *
1874 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1875 			  int regnum)
1876 {
1877   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1878 
1879   gdb_assert (regnum >= 0);
1880 
1881   /* The System V ABI says that:
1882 
1883      "The flags register contains the system flags, such as the
1884      direction flag and the carry flag.  The direction flag must be
1885      set to the forward (that is, zero) direction before entry and
1886      upon exit from a function.  Other user flags have no specified
1887      role in the standard calling sequence and are not preserved."
1888 
1889      To guarantee the "upon exit" part of that statement we fake a
1890      saved flags register that has its direction flag cleared.
1891 
1892      Note that GCC doesn't seem to rely on the fact that the direction
1893      flag is cleared after a function return; it always explicitly
1894      clears the flag before operations where it matters.
1895 
1896      FIXME: kettenis/20030316: I'm not quite sure whether this is the
1897      right thing to do.  The way we fake the flags register here makes
1898      it impossible to change it.  */
1899 
1900   if (regnum == I386_EFLAGS_REGNUM)
1901     {
1902       ULONGEST val;
1903 
1904       val = get_frame_register_unsigned (this_frame, regnum);
1905       val &= ~(1 << 10);
1906       return frame_unwind_got_constant (this_frame, regnum, val);
1907     }
1908 
1909   if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1910     return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1911 
1912   if (regnum == I386_ESP_REGNUM
1913       && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1914     {
1915       /* If the SP has been saved, but we don't know where, then this
1916 	 means that SAVED_SP_REG register was found unavailable back
1917 	 when we built the cache.  */
1918       if (cache->saved_sp == 0)
1919 	return frame_unwind_got_register (this_frame, regnum,
1920 					  cache->saved_sp_reg);
1921       else
1922 	return frame_unwind_got_constant (this_frame, regnum,
1923 					  cache->saved_sp);
1924     }
1925 
1926   if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1927     return frame_unwind_got_memory (this_frame, regnum,
1928 				    cache->saved_regs[regnum]);
1929 
1930   return frame_unwind_got_register (this_frame, regnum, regnum);
1931 }
1932 
1933 static const struct frame_unwind i386_frame_unwind =
1934 {
1935   NORMAL_FRAME,
1936   i386_frame_unwind_stop_reason,
1937   i386_frame_this_id,
1938   i386_frame_prev_register,
1939   NULL,
1940   default_frame_sniffer
1941 };
1942 
1943 /* Normal frames, but in a function epilogue.  */
1944 
1945 /* The epilogue is defined here as the 'ret' instruction, which will
1946    follow any instruction such as 'leave' or 'pop %ebp' that destroys
1947    the function's stack frame.  */
1948 
1949 static int
1950 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1951 {
1952   gdb_byte insn;
1953   struct symtab *symtab;
1954 
1955   symtab = find_pc_symtab (pc);
1956   if (symtab && symtab->epilogue_unwind_valid)
1957     return 0;
1958 
1959   if (target_read_memory (pc, &insn, 1))
1960     return 0;	/* Can't read memory at pc.  */
1961 
1962   if (insn != 0xc3)	/* 'ret' instruction.  */
1963     return 0;
1964 
1965   return 1;
1966 }
1967 
1968 static int
1969 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1970 			     struct frame_info *this_frame,
1971 			     void **this_prologue_cache)
1972 {
1973   if (frame_relative_level (this_frame) == 0)
1974     return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1975 					get_frame_pc (this_frame));
1976   else
1977     return 0;
1978 }
1979 
1980 static struct i386_frame_cache *
1981 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1982 {
1983   volatile struct gdb_exception ex;
1984   struct i386_frame_cache *cache;
1985   CORE_ADDR sp;
1986 
1987   if (*this_cache)
1988     return *this_cache;
1989 
1990   cache = i386_alloc_frame_cache ();
1991   *this_cache = cache;
1992 
1993   TRY_CATCH (ex, RETURN_MASK_ERROR)
1994     {
1995       cache->pc = get_frame_func (this_frame);
1996 
1997       /* At this point the stack looks as if we just entered the
1998 	 function, with the return address at the top of the
1999 	 stack.  */
2000       sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2001       cache->base = sp + cache->sp_offset;
2002       cache->saved_sp = cache->base + 8;
2003       cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2004 
2005       cache->base_p = 1;
2006     }
2007   if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2008     throw_exception (ex);
2009 
2010   return cache;
2011 }
2012 
2013 static enum unwind_stop_reason
2014 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2015 					void **this_cache)
2016 {
2017   struct i386_frame_cache *cache =
2018     i386_epilogue_frame_cache (this_frame, this_cache);
2019 
2020   if (!cache->base_p)
2021     return UNWIND_UNAVAILABLE;
2022 
2023   return UNWIND_NO_REASON;
2024 }
2025 
2026 static void
2027 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2028 			     void **this_cache,
2029 			     struct frame_id *this_id)
2030 {
2031   struct i386_frame_cache *cache =
2032     i386_epilogue_frame_cache (this_frame, this_cache);
2033 
2034   if (!cache->base_p)
2035     return;
2036 
2037   (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2038 }
2039 
2040 static struct value *
2041 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2042 				   void **this_cache, int regnum)
2043 {
2044   /* Make sure we've initialized the cache.  */
2045   i386_epilogue_frame_cache (this_frame, this_cache);
2046 
2047   return i386_frame_prev_register (this_frame, this_cache, regnum);
2048 }
2049 
2050 static const struct frame_unwind i386_epilogue_frame_unwind =
2051 {
2052   NORMAL_FRAME,
2053   i386_epilogue_frame_unwind_stop_reason,
2054   i386_epilogue_frame_this_id,
2055   i386_epilogue_frame_prev_register,
2056   NULL,
2057   i386_epilogue_frame_sniffer
2058 };
2059 
2060 
2061 /* Stack-based trampolines.  */
2062 
2063 /* These trampolines are used on cross x86 targets, when taking the
2064    address of a nested function.  When executing these trampolines,
2065    no stack frame is set up, so we are in a similar situation as in
2066    epilogues and i386_epilogue_frame_this_id can be re-used.  */
2067 
2068 /* Static chain passed in register.  */
2069 
2070 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2071 {
2072   /* `movl imm32, %eax' and `movl imm32, %ecx' */
2073   { 5, { 0xb8 }, { 0xfe } },
2074 
2075   /* `jmp imm32' */
2076   { 5, { 0xe9 }, { 0xff } },
2077 
2078   {0}
2079 };
2080 
2081 /* Static chain passed on stack (when regparm=3).  */
2082 
2083 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2084 {
2085   /* `push imm32' */
2086   { 5, { 0x68 }, { 0xff } },
2087 
2088   /* `jmp imm32' */
2089   { 5, { 0xe9 }, { 0xff } },
2090 
2091   {0}
2092 };
2093 
2094 /* Return whether PC points inside a stack trampoline.   */
2095 
2096 static int
2097 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2098 {
2099   gdb_byte insn;
2100   const char *name;
2101 
2102   /* A stack trampoline is detected if no name is associated
2103     to the current pc and if it points inside a trampoline
2104     sequence.  */
2105 
2106   find_pc_partial_function (pc, &name, NULL, NULL);
2107   if (name)
2108     return 0;
2109 
2110   if (target_read_memory (pc, &insn, 1))
2111     return 0;
2112 
2113   if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2114       && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2115     return 0;
2116 
2117   return 1;
2118 }
2119 
2120 static int
2121 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2122 				struct frame_info *this_frame,
2123 				void **this_cache)
2124 {
2125   if (frame_relative_level (this_frame) == 0)
2126     return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2127 				  get_frame_pc (this_frame));
2128   else
2129     return 0;
2130 }
2131 
2132 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2133 {
2134   NORMAL_FRAME,
2135   i386_epilogue_frame_unwind_stop_reason,
2136   i386_epilogue_frame_this_id,
2137   i386_epilogue_frame_prev_register,
2138   NULL,
2139   i386_stack_tramp_frame_sniffer
2140 };
2141 
2142 /* Generate a bytecode expression to get the value of the saved PC.  */
2143 
2144 static void
2145 i386_gen_return_address (struct gdbarch *gdbarch,
2146 			 struct agent_expr *ax, struct axs_value *value,
2147 			 CORE_ADDR scope)
2148 {
2149   /* The following sequence assumes the traditional use of the base
2150      register.  */
2151   ax_reg (ax, I386_EBP_REGNUM);
2152   ax_const_l (ax, 4);
2153   ax_simple (ax, aop_add);
2154   value->type = register_type (gdbarch, I386_EIP_REGNUM);
2155   value->kind = axs_lvalue_memory;
2156 }
2157 
2158 
2159 /* Signal trampolines.  */
2160 
2161 static struct i386_frame_cache *
2162 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2163 {
2164   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2165   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2167   volatile struct gdb_exception ex;
2168   struct i386_frame_cache *cache;
2169   CORE_ADDR addr;
2170   gdb_byte buf[4];
2171 
2172   if (*this_cache)
2173     return *this_cache;
2174 
2175   cache = i386_alloc_frame_cache ();
2176 
2177   TRY_CATCH (ex, RETURN_MASK_ERROR)
2178     {
2179       get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2180       cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2181 
2182       addr = tdep->sigcontext_addr (this_frame);
2183       if (tdep->sc_reg_offset)
2184 	{
2185 	  int i;
2186 
2187 	  gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2188 
2189 	  for (i = 0; i < tdep->sc_num_regs; i++)
2190 	    if (tdep->sc_reg_offset[i] != -1)
2191 	      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2192 	}
2193       else
2194 	{
2195 	  cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2196 	  cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2197 	}
2198 
2199       cache->base_p = 1;
2200     }
2201   if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2202     throw_exception (ex);
2203 
2204   *this_cache = cache;
2205   return cache;
2206 }
2207 
2208 static enum unwind_stop_reason
2209 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2210 					void **this_cache)
2211 {
2212   struct i386_frame_cache *cache =
2213     i386_sigtramp_frame_cache (this_frame, this_cache);
2214 
2215   if (!cache->base_p)
2216     return UNWIND_UNAVAILABLE;
2217 
2218   return UNWIND_NO_REASON;
2219 }
2220 
2221 static void
2222 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2223 			     struct frame_id *this_id)
2224 {
2225   struct i386_frame_cache *cache =
2226     i386_sigtramp_frame_cache (this_frame, this_cache);
2227 
2228   if (!cache->base_p)
2229     return;
2230 
2231   /* See the end of i386_push_dummy_call.  */
2232   (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2233 }
2234 
2235 static struct value *
2236 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2237 				   void **this_cache, int regnum)
2238 {
2239   /* Make sure we've initialized the cache.  */
2240   i386_sigtramp_frame_cache (this_frame, this_cache);
2241 
2242   return i386_frame_prev_register (this_frame, this_cache, regnum);
2243 }
2244 
2245 static int
2246 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2247 			     struct frame_info *this_frame,
2248 			     void **this_prologue_cache)
2249 {
2250   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2251 
2252   /* We shouldn't even bother if we don't have a sigcontext_addr
2253      handler.  */
2254   if (tdep->sigcontext_addr == NULL)
2255     return 0;
2256 
2257   if (tdep->sigtramp_p != NULL)
2258     {
2259       if (tdep->sigtramp_p (this_frame))
2260 	return 1;
2261     }
2262 
2263   if (tdep->sigtramp_start != 0)
2264     {
2265       CORE_ADDR pc = get_frame_pc (this_frame);
2266 
2267       gdb_assert (tdep->sigtramp_end != 0);
2268       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2269 	return 1;
2270     }
2271 
2272   return 0;
2273 }
2274 
2275 static const struct frame_unwind i386_sigtramp_frame_unwind =
2276 {
2277   SIGTRAMP_FRAME,
2278   i386_sigtramp_frame_unwind_stop_reason,
2279   i386_sigtramp_frame_this_id,
2280   i386_sigtramp_frame_prev_register,
2281   NULL,
2282   i386_sigtramp_frame_sniffer
2283 };
2284 
2285 
2286 static CORE_ADDR
2287 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2288 {
2289   struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2290 
2291   return cache->base;
2292 }
2293 
2294 static const struct frame_base i386_frame_base =
2295 {
2296   &i386_frame_unwind,
2297   i386_frame_base_address,
2298   i386_frame_base_address,
2299   i386_frame_base_address
2300 };
2301 
2302 static struct frame_id
2303 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2304 {
2305   CORE_ADDR fp;
2306 
2307   fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2308 
2309   /* See the end of i386_push_dummy_call.  */
2310   return frame_id_build (fp + 8, get_frame_pc (this_frame));
2311 }
2312 
2313 /* _Decimal128 function return values need 16-byte alignment on the
2314    stack.  */
2315 
2316 static CORE_ADDR
2317 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2318 {
2319   return sp & -(CORE_ADDR)16;
2320 }
2321 
2322 
2323 /* Figure out where the longjmp will land.  Slurp the args out of the
2324    stack.  We expect the first arg to be a pointer to the jmp_buf
2325    structure from which we extract the address that we will land at.
2326    This address is copied into PC.  This routine returns non-zero on
2327    success.  */
2328 
2329 static int
2330 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2331 {
2332   gdb_byte buf[4];
2333   CORE_ADDR sp, jb_addr;
2334   struct gdbarch *gdbarch = get_frame_arch (frame);
2335   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2336   int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2337 
2338   /* If JB_PC_OFFSET is -1, we have no way to find out where the
2339      longjmp will land.  */
2340   if (jb_pc_offset == -1)
2341     return 0;
2342 
2343   get_frame_register (frame, I386_ESP_REGNUM, buf);
2344   sp = extract_unsigned_integer (buf, 4, byte_order);
2345   if (target_read_memory (sp + 4, buf, 4))
2346     return 0;
2347 
2348   jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2349   if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2350     return 0;
2351 
2352   *pc = extract_unsigned_integer (buf, 4, byte_order);
2353   return 1;
2354 }
2355 
2356 
2357 /* Check whether TYPE must be 16-byte-aligned when passed as a
2358    function argument.  16-byte vectors, _Decimal128 and structures or
2359    unions containing such types must be 16-byte-aligned; other
2360    arguments are 4-byte-aligned.  */
2361 
2362 static int
2363 i386_16_byte_align_p (struct type *type)
2364 {
2365   type = check_typedef (type);
2366   if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2367        || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2368       && TYPE_LENGTH (type) == 16)
2369     return 1;
2370   if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2371     return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2372   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2373       || TYPE_CODE (type) == TYPE_CODE_UNION)
2374     {
2375       int i;
2376       for (i = 0; i < TYPE_NFIELDS (type); i++)
2377 	{
2378 	  if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2379 	    return 1;
2380 	}
2381     }
2382   return 0;
2383 }
2384 
2385 /* Implementation for set_gdbarch_push_dummy_code.  */
2386 
2387 static CORE_ADDR
2388 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2389 		      struct value **args, int nargs, struct type *value_type,
2390 		      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2391 		      struct regcache *regcache)
2392 {
2393   /* Use 0xcc breakpoint - 1 byte.  */
2394   *bp_addr = sp - 1;
2395   *real_pc = funaddr;
2396 
2397   /* Keep the stack aligned.  */
2398   return sp - 16;
2399 }
2400 
2401 static CORE_ADDR
2402 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2403 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2404 		      struct value **args, CORE_ADDR sp, int struct_return,
2405 		      CORE_ADDR struct_addr)
2406 {
2407   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2408   gdb_byte buf[4];
2409   int i;
2410   int write_pass;
2411   int args_space = 0;
2412 
2413   /* Determine the total space required for arguments and struct
2414      return address in a first pass (allowing for 16-byte-aligned
2415      arguments), then push arguments in a second pass.  */
2416 
2417   for (write_pass = 0; write_pass < 2; write_pass++)
2418     {
2419       int args_space_used = 0;
2420 
2421       if (struct_return)
2422 	{
2423 	  if (write_pass)
2424 	    {
2425 	      /* Push value address.  */
2426 	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
2427 	      write_memory (sp, buf, 4);
2428 	      args_space_used += 4;
2429 	    }
2430 	  else
2431 	    args_space += 4;
2432 	}
2433 
2434       for (i = 0; i < nargs; i++)
2435 	{
2436 	  int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2437 
2438 	  if (write_pass)
2439 	    {
2440 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2441 		args_space_used = align_up (args_space_used, 16);
2442 
2443 	      write_memory (sp + args_space_used,
2444 			    value_contents_all (args[i]), len);
2445 	      /* The System V ABI says that:
2446 
2447 	      "An argument's size is increased, if necessary, to make it a
2448 	      multiple of [32-bit] words.  This may require tail padding,
2449 	      depending on the size of the argument."
2450 
2451 	      This makes sure the stack stays word-aligned.  */
2452 	      args_space_used += align_up (len, 4);
2453 	    }
2454 	  else
2455 	    {
2456 	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2457 		args_space = align_up (args_space, 16);
2458 	      args_space += align_up (len, 4);
2459 	    }
2460 	}
2461 
2462       if (!write_pass)
2463 	{
2464 	  sp -= args_space;
2465 
2466 	  /* The original System V ABI only requires word alignment,
2467 	     but modern incarnations need 16-byte alignment in order
2468 	     to support SSE.  Since wasting a few bytes here isn't
2469 	     harmful we unconditionally enforce 16-byte alignment.  */
2470 	  sp &= ~0xf;
2471 	}
2472     }
2473 
2474   /* Store return address.  */
2475   sp -= 4;
2476   store_unsigned_integer (buf, 4, byte_order, bp_addr);
2477   write_memory (sp, buf, 4);
2478 
2479   /* Finally, update the stack pointer...  */
2480   store_unsigned_integer (buf, 4, byte_order, sp);
2481   regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2482 
2483   /* ...and fake a frame pointer.  */
2484   regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2485 
2486   /* MarkK wrote: This "+ 8" is all over the place:
2487      (i386_frame_this_id, i386_sigtramp_frame_this_id,
2488      i386_dummy_id).  It's there, since all frame unwinders for
2489      a given target have to agree (within a certain margin) on the
2490      definition of the stack address of a frame.  Otherwise frame id
2491      comparison might not work correctly.  Since DWARF2/GCC uses the
2492      stack address *before* the function call as a frame's CFA.  On
2493      the i386, when %ebp is used as a frame pointer, the offset
2494      between the contents %ebp and the CFA as defined by GCC.  */
2495   return sp + 8;
2496 }
2497 
2498 /* These registers are used for returning integers (and on some
2499    targets also for returning `struct' and `union' values when their
2500    size and alignment match an integer type).  */
2501 #define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
2502 #define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */
2503 
2504 /* Read, for architecture GDBARCH, a function return value of TYPE
2505    from REGCACHE, and copy that into VALBUF.  */
2506 
2507 static void
2508 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2509 			   struct regcache *regcache, gdb_byte *valbuf)
2510 {
2511   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2512   int len = TYPE_LENGTH (type);
2513   gdb_byte buf[I386_MAX_REGISTER_SIZE];
2514 
2515   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2516     {
2517       if (tdep->st0_regnum < 0)
2518 	{
2519 	  warning (_("Cannot find floating-point return value."));
2520 	  memset (valbuf, 0, len);
2521 	  return;
2522 	}
2523 
2524       /* Floating-point return values can be found in %st(0).  Convert
2525 	 its contents to the desired type.  This is probably not
2526 	 exactly how it would happen on the target itself, but it is
2527 	 the best we can do.  */
2528       regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2529       convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2530     }
2531   else
2532     {
2533       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2534       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2535 
2536       if (len <= low_size)
2537 	{
2538 	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2539 	  memcpy (valbuf, buf, len);
2540 	}
2541       else if (len <= (low_size + high_size))
2542 	{
2543 	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2544 	  memcpy (valbuf, buf, low_size);
2545 	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2546 	  memcpy (valbuf + low_size, buf, len - low_size);
2547 	}
2548       else
2549 	internal_error (__FILE__, __LINE__,
2550 			_("Cannot extract return value of %d bytes long."),
2551 			len);
2552     }
2553 }
2554 
2555 /* Write, for architecture GDBARCH, a function return value of TYPE
2556    from VALBUF into REGCACHE.  */
2557 
2558 static void
2559 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2560 			 struct regcache *regcache, const gdb_byte *valbuf)
2561 {
2562   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2563   int len = TYPE_LENGTH (type);
2564 
2565   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2566     {
2567       ULONGEST fstat;
2568       gdb_byte buf[I386_MAX_REGISTER_SIZE];
2569 
2570       if (tdep->st0_regnum < 0)
2571 	{
2572 	  warning (_("Cannot set floating-point return value."));
2573 	  return;
2574 	}
2575 
2576       /* Returning floating-point values is a bit tricky.  Apart from
2577          storing the return value in %st(0), we have to simulate the
2578          state of the FPU at function return point.  */
2579 
2580       /* Convert the value found in VALBUF to the extended
2581 	 floating-point format used by the FPU.  This is probably
2582 	 not exactly how it would happen on the target itself, but
2583 	 it is the best we can do.  */
2584       convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2585       regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2586 
2587       /* Set the top of the floating-point register stack to 7.  The
2588          actual value doesn't really matter, but 7 is what a normal
2589          function return would end up with if the program started out
2590          with a freshly initialized FPU.  */
2591       regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2592       fstat |= (7 << 11);
2593       regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2594 
2595       /* Mark %st(1) through %st(7) as empty.  Since we set the top of
2596          the floating-point register stack to 7, the appropriate value
2597          for the tag word is 0x3fff.  */
2598       regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2599     }
2600   else
2601     {
2602       int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2603       int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2604 
2605       if (len <= low_size)
2606 	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2607       else if (len <= (low_size + high_size))
2608 	{
2609 	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2610 	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2611 				   len - low_size, valbuf + low_size);
2612 	}
2613       else
2614 	internal_error (__FILE__, __LINE__,
2615 			_("Cannot store return value of %d bytes long."), len);
2616     }
2617 }
2618 
2619 
2620 /* This is the variable that is set with "set struct-convention", and
2621    its legitimate values.  */
2622 static const char default_struct_convention[] = "default";
2623 static const char pcc_struct_convention[] = "pcc";
2624 static const char reg_struct_convention[] = "reg";
2625 static const char *const valid_conventions[] =
2626 {
2627   default_struct_convention,
2628   pcc_struct_convention,
2629   reg_struct_convention,
2630   NULL
2631 };
2632 static const char *struct_convention = default_struct_convention;
2633 
2634 /* Return non-zero if TYPE, which is assumed to be a structure,
2635    a union type, or an array type, should be returned in registers
2636    for architecture GDBARCH.  */
2637 
2638 static int
2639 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2640 {
2641   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2642   enum type_code code = TYPE_CODE (type);
2643   int len = TYPE_LENGTH (type);
2644 
2645   gdb_assert (code == TYPE_CODE_STRUCT
2646               || code == TYPE_CODE_UNION
2647               || code == TYPE_CODE_ARRAY);
2648 
2649   if (struct_convention == pcc_struct_convention
2650       || (struct_convention == default_struct_convention
2651 	  && tdep->struct_return == pcc_struct_return))
2652     return 0;
2653 
2654   /* Structures consisting of a single `float', `double' or 'long
2655      double' member are returned in %st(0).  */
2656   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657     {
2658       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2660 	return (len == 4 || len == 8 || len == 12);
2661     }
2662 
2663   return (len == 1 || len == 2 || len == 4 || len == 8);
2664 }
2665 
2666 /* Determine, for architecture GDBARCH, how a return value of TYPE
2667    should be returned.  If it is supposed to be returned in registers,
2668    and READBUF is non-zero, read the appropriate value from REGCACHE,
2669    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
2670    from WRITEBUF into REGCACHE.  */
2671 
2672 static enum return_value_convention
2673 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2674 		   struct type *type, struct regcache *regcache,
2675 		   gdb_byte *readbuf, const gdb_byte *writebuf)
2676 {
2677   enum type_code code = TYPE_CODE (type);
2678 
2679   if (((code == TYPE_CODE_STRUCT
2680 	|| code == TYPE_CODE_UNION
2681 	|| code == TYPE_CODE_ARRAY)
2682        && !i386_reg_struct_return_p (gdbarch, type))
2683       /* Complex double and long double uses the struct return covention.  */
2684       || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2685       || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2686       /* 128-bit decimal float uses the struct return convention.  */
2687       || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2688     {
2689       /* The System V ABI says that:
2690 
2691 	 "A function that returns a structure or union also sets %eax
2692 	 to the value of the original address of the caller's area
2693 	 before it returns.  Thus when the caller receives control
2694 	 again, the address of the returned object resides in register
2695 	 %eax and can be used to access the object."
2696 
2697 	 So the ABI guarantees that we can always find the return
2698 	 value just after the function has returned.  */
2699 
2700       /* Note that the ABI doesn't mention functions returning arrays,
2701          which is something possible in certain languages such as Ada.
2702          In this case, the value is returned as if it was wrapped in
2703          a record, so the convention applied to records also applies
2704          to arrays.  */
2705 
2706       if (readbuf)
2707 	{
2708 	  ULONGEST addr;
2709 
2710 	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2711 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
2712 	}
2713 
2714       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2715     }
2716 
2717   /* This special case is for structures consisting of a single
2718      `float', `double' or 'long double' member.  These structures are
2719      returned in %st(0).  For these structures, we call ourselves
2720      recursively, changing TYPE into the type of the first member of
2721      the structure.  Since that should work for all structures that
2722      have only one member, we don't bother to check the member's type
2723      here.  */
2724   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2725     {
2726       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2727       return i386_return_value (gdbarch, function, type, regcache,
2728 				readbuf, writebuf);
2729     }
2730 
2731   if (readbuf)
2732     i386_extract_return_value (gdbarch, type, regcache, readbuf);
2733   if (writebuf)
2734     i386_store_return_value (gdbarch, type, regcache, writebuf);
2735 
2736   return RETURN_VALUE_REGISTER_CONVENTION;
2737 }
2738 
2739 
2740 struct type *
2741 i387_ext_type (struct gdbarch *gdbarch)
2742 {
2743   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744 
2745   if (!tdep->i387_ext_type)
2746     {
2747       tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2748       gdb_assert (tdep->i387_ext_type != NULL);
2749     }
2750 
2751   return tdep->i387_ext_type;
2752 }
2753 
2754 /* Construct vector type for pseudo YMM registers.  We can't use
2755    tdesc_find_type since YMM isn't described in target description.  */
2756 
2757 static struct type *
2758 i386_ymm_type (struct gdbarch *gdbarch)
2759 {
2760   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2761 
2762   if (!tdep->i386_ymm_type)
2763     {
2764       const struct builtin_type *bt = builtin_type (gdbarch);
2765 
2766       /* The type we're building is this: */
2767 #if 0
2768       union __gdb_builtin_type_vec256i
2769       {
2770         int128_t uint128[2];
2771         int64_t v2_int64[4];
2772         int32_t v4_int32[8];
2773         int16_t v8_int16[16];
2774         int8_t v16_int8[32];
2775         double v2_double[4];
2776         float v4_float[8];
2777       };
2778 #endif
2779 
2780       struct type *t;
2781 
2782       t = arch_composite_type (gdbarch,
2783 			       "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2784       append_composite_type_field (t, "v8_float",
2785 				   init_vector_type (bt->builtin_float, 8));
2786       append_composite_type_field (t, "v4_double",
2787 				   init_vector_type (bt->builtin_double, 4));
2788       append_composite_type_field (t, "v32_int8",
2789 				   init_vector_type (bt->builtin_int8, 32));
2790       append_composite_type_field (t, "v16_int16",
2791 				   init_vector_type (bt->builtin_int16, 16));
2792       append_composite_type_field (t, "v8_int32",
2793 				   init_vector_type (bt->builtin_int32, 8));
2794       append_composite_type_field (t, "v4_int64",
2795 				   init_vector_type (bt->builtin_int64, 4));
2796       append_composite_type_field (t, "v2_int128",
2797 				   init_vector_type (bt->builtin_int128, 2));
2798 
2799       TYPE_VECTOR (t) = 1;
2800       TYPE_NAME (t) = "builtin_type_vec256i";
2801       tdep->i386_ymm_type = t;
2802     }
2803 
2804   return tdep->i386_ymm_type;
2805 }
2806 
2807 /* Construct vector type for MMX registers.  */
2808 static struct type *
2809 i386_mmx_type (struct gdbarch *gdbarch)
2810 {
2811   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 
2813   if (!tdep->i386_mmx_type)
2814     {
2815       const struct builtin_type *bt = builtin_type (gdbarch);
2816 
2817       /* The type we're building is this: */
2818 #if 0
2819       union __gdb_builtin_type_vec64i
2820       {
2821         int64_t uint64;
2822         int32_t v2_int32[2];
2823         int16_t v4_int16[4];
2824         int8_t v8_int8[8];
2825       };
2826 #endif
2827 
2828       struct type *t;
2829 
2830       t = arch_composite_type (gdbarch,
2831 			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2832 
2833       append_composite_type_field (t, "uint64", bt->builtin_int64);
2834       append_composite_type_field (t, "v2_int32",
2835 				   init_vector_type (bt->builtin_int32, 2));
2836       append_composite_type_field (t, "v4_int16",
2837 				   init_vector_type (bt->builtin_int16, 4));
2838       append_composite_type_field (t, "v8_int8",
2839 				   init_vector_type (bt->builtin_int8, 8));
2840 
2841       TYPE_VECTOR (t) = 1;
2842       TYPE_NAME (t) = "builtin_type_vec64i";
2843       tdep->i386_mmx_type = t;
2844     }
2845 
2846   return tdep->i386_mmx_type;
2847 }
2848 
2849 /* Return the GDB type object for the "standard" data type of data in
2850    register REGNUM.  */
2851 
2852 struct type *
2853 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2854 {
2855   if (i386_mmx_regnum_p (gdbarch, regnum))
2856     return i386_mmx_type (gdbarch);
2857   else if (i386_ymm_regnum_p (gdbarch, regnum))
2858     return i386_ymm_type (gdbarch);
2859   else
2860     {
2861       const struct builtin_type *bt = builtin_type (gdbarch);
2862       if (i386_byte_regnum_p (gdbarch, regnum))
2863 	return bt->builtin_int8;
2864       else if (i386_word_regnum_p (gdbarch, regnum))
2865 	return bt->builtin_int16;
2866       else if (i386_dword_regnum_p (gdbarch, regnum))
2867 	return bt->builtin_int32;
2868     }
2869 
2870   internal_error (__FILE__, __LINE__, _("invalid regnum"));
2871 }
2872 
2873 /* Map a cooked register onto a raw register or memory.  For the i386,
2874    the MMX registers need to be mapped onto floating point registers.  */
2875 
2876 static int
2877 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2878 {
2879   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2880   int mmxreg, fpreg;
2881   ULONGEST fstat;
2882   int tos;
2883 
2884   mmxreg = regnum - tdep->mm0_regnum;
2885   regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2886   tos = (fstat >> 11) & 0x7;
2887   fpreg = (mmxreg + tos) % 8;
2888 
2889   return (I387_ST0_REGNUM (tdep) + fpreg);
2890 }
2891 
2892 /* A helper function for us by i386_pseudo_register_read_value and
2893    amd64_pseudo_register_read_value.  It does all the work but reads
2894    the data into an already-allocated value.  */
2895 
2896 void
2897 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2898 				      struct regcache *regcache,
2899 				      int regnum,
2900 				      struct value *result_value)
2901 {
2902   gdb_byte raw_buf[MAX_REGISTER_SIZE];
2903   enum register_status status;
2904   gdb_byte *buf = value_contents_raw (result_value);
2905 
2906   if (i386_mmx_regnum_p (gdbarch, regnum))
2907     {
2908       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2909 
2910       /* Extract (always little endian).  */
2911       status = regcache_raw_read (regcache, fpnum, raw_buf);
2912       if (status != REG_VALID)
2913 	mark_value_bytes_unavailable (result_value, 0,
2914 				      TYPE_LENGTH (value_type (result_value)));
2915       else
2916 	memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2917     }
2918   else
2919     {
2920       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2921 
2922       if (i386_ymm_regnum_p (gdbarch, regnum))
2923 	{
2924 	  regnum -= tdep->ymm0_regnum;
2925 
2926 	  /* Extract (always little endian).  Read lower 128bits.  */
2927 	  status = regcache_raw_read (regcache,
2928 				      I387_XMM0_REGNUM (tdep) + regnum,
2929 				      raw_buf);
2930 	  if (status != REG_VALID)
2931 	    mark_value_bytes_unavailable (result_value, 0, 16);
2932 	  else
2933 	    memcpy (buf, raw_buf, 16);
2934 	  /* Read upper 128bits.  */
2935 	  status = regcache_raw_read (regcache,
2936 				      tdep->ymm0h_regnum + regnum,
2937 				      raw_buf);
2938 	  if (status != REG_VALID)
2939 	    mark_value_bytes_unavailable (result_value, 16, 32);
2940 	  else
2941 	    memcpy (buf + 16, raw_buf, 16);
2942 	}
2943       else if (i386_word_regnum_p (gdbarch, regnum))
2944 	{
2945 	  int gpnum = regnum - tdep->ax_regnum;
2946 
2947 	  /* Extract (always little endian).  */
2948 	  status = regcache_raw_read (regcache, gpnum, raw_buf);
2949 	  if (status != REG_VALID)
2950 	    mark_value_bytes_unavailable (result_value, 0,
2951 					  TYPE_LENGTH (value_type (result_value)));
2952 	  else
2953 	    memcpy (buf, raw_buf, 2);
2954 	}
2955       else if (i386_byte_regnum_p (gdbarch, regnum))
2956 	{
2957 	  /* Check byte pseudo registers last since this function will
2958 	     be called from amd64_pseudo_register_read, which handles
2959 	     byte pseudo registers differently.  */
2960 	  int gpnum = regnum - tdep->al_regnum;
2961 
2962 	  /* Extract (always little endian).  We read both lower and
2963 	     upper registers.  */
2964 	  status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2965 	  if (status != REG_VALID)
2966 	    mark_value_bytes_unavailable (result_value, 0,
2967 					  TYPE_LENGTH (value_type (result_value)));
2968 	  else if (gpnum >= 4)
2969 	    memcpy (buf, raw_buf + 1, 1);
2970 	  else
2971 	    memcpy (buf, raw_buf, 1);
2972 	}
2973       else
2974 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975     }
2976 }
2977 
2978 static struct value *
2979 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2980 				 struct regcache *regcache,
2981 				 int regnum)
2982 {
2983   struct value *result;
2984 
2985   result = allocate_value (register_type (gdbarch, regnum));
2986   VALUE_LVAL (result) = lval_register;
2987   VALUE_REGNUM (result) = regnum;
2988 
2989   i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2990 
2991   return result;
2992 }
2993 
2994 void
2995 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2996 			    int regnum, const gdb_byte *buf)
2997 {
2998   gdb_byte raw_buf[MAX_REGISTER_SIZE];
2999 
3000   if (i386_mmx_regnum_p (gdbarch, regnum))
3001     {
3002       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3003 
3004       /* Read ...  */
3005       regcache_raw_read (regcache, fpnum, raw_buf);
3006       /* ... Modify ... (always little endian).  */
3007       memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3008       /* ... Write.  */
3009       regcache_raw_write (regcache, fpnum, raw_buf);
3010     }
3011   else
3012     {
3013       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3014 
3015       if (i386_ymm_regnum_p (gdbarch, regnum))
3016 	{
3017 	  regnum -= tdep->ymm0_regnum;
3018 
3019 	  /* ... Write lower 128bits.  */
3020 	  regcache_raw_write (regcache,
3021 			     I387_XMM0_REGNUM (tdep) + regnum,
3022 			     buf);
3023 	  /* ... Write upper 128bits.  */
3024 	  regcache_raw_write (regcache,
3025 			     tdep->ymm0h_regnum + regnum,
3026 			     buf + 16);
3027 	}
3028       else if (i386_word_regnum_p (gdbarch, regnum))
3029 	{
3030 	  int gpnum = regnum - tdep->ax_regnum;
3031 
3032 	  /* Read ...  */
3033 	  regcache_raw_read (regcache, gpnum, raw_buf);
3034 	  /* ... Modify ... (always little endian).  */
3035 	  memcpy (raw_buf, buf, 2);
3036 	  /* ... Write.  */
3037 	  regcache_raw_write (regcache, gpnum, raw_buf);
3038 	}
3039       else if (i386_byte_regnum_p (gdbarch, regnum))
3040 	{
3041 	  /* Check byte pseudo registers last since this function will
3042 	     be called from amd64_pseudo_register_read, which handles
3043 	     byte pseudo registers differently.  */
3044 	  int gpnum = regnum - tdep->al_regnum;
3045 
3046 	  /* Read ...  We read both lower and upper registers.  */
3047 	  regcache_raw_read (regcache, gpnum % 4, raw_buf);
3048 	  /* ... Modify ... (always little endian).  */
3049 	  if (gpnum >= 4)
3050 	    memcpy (raw_buf + 1, buf, 1);
3051 	  else
3052 	    memcpy (raw_buf, buf, 1);
3053 	  /* ... Write.  */
3054 	  regcache_raw_write (regcache, gpnum % 4, raw_buf);
3055 	}
3056       else
3057 	internal_error (__FILE__, __LINE__, _("invalid regnum"));
3058     }
3059 }
3060 
3061 
3062 /* Return the register number of the register allocated by GCC after
3063    REGNUM, or -1 if there is no such register.  */
3064 
3065 static int
3066 i386_next_regnum (int regnum)
3067 {
3068   /* GCC allocates the registers in the order:
3069 
3070      %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3071 
3072      Since storing a variable in %esp doesn't make any sense we return
3073      -1 for %ebp and for %esp itself.  */
3074   static int next_regnum[] =
3075   {
3076     I386_EDX_REGNUM,		/* Slot for %eax.  */
3077     I386_EBX_REGNUM,		/* Slot for %ecx.  */
3078     I386_ECX_REGNUM,		/* Slot for %edx.  */
3079     I386_ESI_REGNUM,		/* Slot for %ebx.  */
3080     -1, -1,			/* Slots for %esp and %ebp.  */
3081     I386_EDI_REGNUM,		/* Slot for %esi.  */
3082     I386_EBP_REGNUM		/* Slot for %edi.  */
3083   };
3084 
3085   if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3086     return next_regnum[regnum];
3087 
3088   return -1;
3089 }
3090 
3091 /* Return nonzero if a value of type TYPE stored in register REGNUM
3092    needs any special handling.  */
3093 
3094 static int
3095 i386_convert_register_p (struct gdbarch *gdbarch,
3096 			 int regnum, struct type *type)
3097 {
3098   int len = TYPE_LENGTH (type);
3099 
3100   /* Values may be spread across multiple registers.  Most debugging
3101      formats aren't expressive enough to specify the locations, so
3102      some heuristics is involved.  Right now we only handle types that
3103      have a length that is a multiple of the word size, since GCC
3104      doesn't seem to put any other types into registers.  */
3105   if (len > 4 && len % 4 == 0)
3106     {
3107       int last_regnum = regnum;
3108 
3109       while (len > 4)
3110 	{
3111 	  last_regnum = i386_next_regnum (last_regnum);
3112 	  len -= 4;
3113 	}
3114 
3115       if (last_regnum != -1)
3116 	return 1;
3117     }
3118 
3119   return i387_convert_register_p (gdbarch, regnum, type);
3120 }
3121 
3122 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3123    return its contents in TO.  */
3124 
3125 static int
3126 i386_register_to_value (struct frame_info *frame, int regnum,
3127 			struct type *type, gdb_byte *to,
3128 			int *optimizedp, int *unavailablep)
3129 {
3130   struct gdbarch *gdbarch = get_frame_arch (frame);
3131   int len = TYPE_LENGTH (type);
3132 
3133   if (i386_fp_regnum_p (gdbarch, regnum))
3134     return i387_register_to_value (frame, regnum, type, to,
3135 				   optimizedp, unavailablep);
3136 
3137   /* Read a value spread across multiple registers.  */
3138 
3139   gdb_assert (len > 4 && len % 4 == 0);
3140 
3141   while (len > 0)
3142     {
3143       gdb_assert (regnum != -1);
3144       gdb_assert (register_size (gdbarch, regnum) == 4);
3145 
3146       if (!get_frame_register_bytes (frame, regnum, 0,
3147 				     register_size (gdbarch, regnum),
3148 				     to, optimizedp, unavailablep))
3149 	return 0;
3150 
3151       regnum = i386_next_regnum (regnum);
3152       len -= 4;
3153       to += 4;
3154     }
3155 
3156   *optimizedp = *unavailablep = 0;
3157   return 1;
3158 }
3159 
3160 /* Write the contents FROM of a value of type TYPE into register
3161    REGNUM in frame FRAME.  */
3162 
3163 static void
3164 i386_value_to_register (struct frame_info *frame, int regnum,
3165 			struct type *type, const gdb_byte *from)
3166 {
3167   int len = TYPE_LENGTH (type);
3168 
3169   if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3170     {
3171       i387_value_to_register (frame, regnum, type, from);
3172       return;
3173     }
3174 
3175   /* Write a value spread across multiple registers.  */
3176 
3177   gdb_assert (len > 4 && len % 4 == 0);
3178 
3179   while (len > 0)
3180     {
3181       gdb_assert (regnum != -1);
3182       gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3183 
3184       put_frame_register (frame, regnum, from);
3185       regnum = i386_next_regnum (regnum);
3186       len -= 4;
3187       from += 4;
3188     }
3189 }
3190 
3191 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3192    in the general-purpose register set REGSET to register cache
3193    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3194 
3195 void
3196 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3197 		     int regnum, const void *gregs, size_t len)
3198 {
3199   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200   const gdb_byte *regs = gregs;
3201   int i;
3202 
3203   gdb_assert (len == tdep->sizeof_gregset);
3204 
3205   for (i = 0; i < tdep->gregset_num_regs; i++)
3206     {
3207       if ((regnum == i || regnum == -1)
3208 	  && tdep->gregset_reg_offset[i] != -1)
3209 	regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3210     }
3211 }
3212 
3213 /* Collect register REGNUM from the register cache REGCACHE and store
3214    it in the buffer specified by GREGS and LEN as described by the
3215    general-purpose register set REGSET.  If REGNUM is -1, do this for
3216    all registers in REGSET.  */
3217 
3218 void
3219 i386_collect_gregset (const struct regset *regset,
3220 		      const struct regcache *regcache,
3221 		      int regnum, void *gregs, size_t len)
3222 {
3223   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3224   gdb_byte *regs = gregs;
3225   int i;
3226 
3227   gdb_assert (len == tdep->sizeof_gregset);
3228 
3229   for (i = 0; i < tdep->gregset_num_regs; i++)
3230     {
3231       if ((regnum == i || regnum == -1)
3232 	  && tdep->gregset_reg_offset[i] != -1)
3233 	regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3234     }
3235 }
3236 
3237 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3238    in the floating-point register set REGSET to register cache
3239    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
3240 
3241 static void
3242 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3243 		      int regnum, const void *fpregs, size_t len)
3244 {
3245   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3246 
3247   if (len == I387_SIZEOF_FXSAVE)
3248     {
3249       i387_supply_fxsave (regcache, regnum, fpregs);
3250       return;
3251     }
3252 
3253   gdb_assert (len == tdep->sizeof_fpregset);
3254   i387_supply_fsave (regcache, regnum, fpregs);
3255 }
3256 
3257 /* Collect register REGNUM from the register cache REGCACHE and store
3258    it in the buffer specified by FPREGS and LEN as described by the
3259    floating-point register set REGSET.  If REGNUM is -1, do this for
3260    all registers in REGSET.  */
3261 
3262 static void
3263 i386_collect_fpregset (const struct regset *regset,
3264 		       const struct regcache *regcache,
3265 		       int regnum, void *fpregs, size_t len)
3266 {
3267   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3268 
3269   if (len == I387_SIZEOF_FXSAVE)
3270     {
3271       i387_collect_fxsave (regcache, regnum, fpregs);
3272       return;
3273     }
3274 
3275   gdb_assert (len == tdep->sizeof_fpregset);
3276   i387_collect_fsave (regcache, regnum, fpregs);
3277 }
3278 
3279 /* Similar to i386_supply_fpregset, but use XSAVE extended state.  */
3280 
3281 static void
3282 i386_supply_xstateregset (const struct regset *regset,
3283 			  struct regcache *regcache, int regnum,
3284 			  const void *xstateregs, size_t len)
3285 {
3286   i387_supply_xsave (regcache, regnum, xstateregs);
3287 }
3288 
3289 /* Similar to i386_collect_fpregset , but use XSAVE extended state.  */
3290 
3291 static void
3292 i386_collect_xstateregset (const struct regset *regset,
3293 			   const struct regcache *regcache,
3294 			   int regnum, void *xstateregs, size_t len)
3295 {
3296   i387_collect_xsave (regcache, regnum, xstateregs, 1);
3297 }
3298 
3299 /* Return the appropriate register set for the core section identified
3300    by SECT_NAME and SECT_SIZE.  */
3301 
3302 const struct regset *
3303 i386_regset_from_core_section (struct gdbarch *gdbarch,
3304 			       const char *sect_name, size_t sect_size)
3305 {
3306   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3307 
3308   if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3309     {
3310       if (tdep->gregset == NULL)
3311 	tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3312 				      i386_collect_gregset);
3313       return tdep->gregset;
3314     }
3315 
3316   if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3317       || (strcmp (sect_name, ".reg-xfp") == 0
3318 	  && sect_size == I387_SIZEOF_FXSAVE))
3319     {
3320       if (tdep->fpregset == NULL)
3321 	tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3322 				       i386_collect_fpregset);
3323       return tdep->fpregset;
3324     }
3325 
3326   if (strcmp (sect_name, ".reg-xstate") == 0)
3327     {
3328       if (tdep->xstateregset == NULL)
3329 	tdep->xstateregset = regset_alloc (gdbarch,
3330 					   i386_supply_xstateregset,
3331 					   i386_collect_xstateregset);
3332 
3333       return tdep->xstateregset;
3334     }
3335 
3336   return NULL;
3337 }
3338 
3339 
3340 /* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
3341 
3342 CORE_ADDR
3343 i386_pe_skip_trampoline_code (struct frame_info *frame,
3344 			      CORE_ADDR pc, char *name)
3345 {
3346   struct gdbarch *gdbarch = get_frame_arch (frame);
3347   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3348 
3349   /* jmp *(dest) */
3350   if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3351     {
3352       unsigned long indirect =
3353 	read_memory_unsigned_integer (pc + 2, 4, byte_order);
3354       struct minimal_symbol *indsym =
3355 	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3356       const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3357 
3358       if (symname)
3359 	{
3360 	  if (strncmp (symname, "__imp_", 6) == 0
3361 	      || strncmp (symname, "_imp_", 5) == 0)
3362 	    return name ? 1 :
3363 		   read_memory_unsigned_integer (indirect, 4, byte_order);
3364 	}
3365     }
3366   return 0;			/* Not a trampoline.  */
3367 }
3368 
3369 
3370 /* Return whether the THIS_FRAME corresponds to a sigtramp
3371    routine.  */
3372 
3373 int
3374 i386_sigtramp_p (struct frame_info *this_frame)
3375 {
3376   CORE_ADDR pc = get_frame_pc (this_frame);
3377   const char *name;
3378 
3379   find_pc_partial_function (pc, &name, NULL, NULL);
3380   return (name && strcmp ("_sigtramp", name) == 0);
3381 }
3382 
3383 
3384 /* We have two flavours of disassembly.  The machinery on this page
3385    deals with switching between those.  */
3386 
3387 static int
3388 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3389 {
3390   gdb_assert (disassembly_flavor == att_flavor
3391 	      || disassembly_flavor == intel_flavor);
3392 
3393   /* FIXME: kettenis/20020915: Until disassembler_options is properly
3394      constified, cast to prevent a compiler warning.  */
3395   info->disassembler_options = (char *) disassembly_flavor;
3396 
3397   return print_insn_i386 (pc, info);
3398 }
3399 
3400 
3401 /* There are a few i386 architecture variants that differ only
3402    slightly from the generic i386 target.  For now, we don't give them
3403    their own source file, but include them here.  As a consequence,
3404    they'll always be included.  */
3405 
3406 /* System V Release 4 (SVR4).  */
3407 
3408 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3409    routine.  */
3410 
3411 static int
3412 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3413 {
3414   CORE_ADDR pc = get_frame_pc (this_frame);
3415   const char *name;
3416 
3417   /* The origin of these symbols is currently unknown.  */
3418   find_pc_partial_function (pc, &name, NULL, NULL);
3419   return (name && (strcmp ("_sigreturn", name) == 0
3420 		   || strcmp ("sigvechandler", name) == 0));
3421 }
3422 
3423 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3424    address of the associated sigcontext (ucontext) structure.  */
3425 
3426 static CORE_ADDR
3427 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3428 {
3429   struct gdbarch *gdbarch = get_frame_arch (this_frame);
3430   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3431   gdb_byte buf[4];
3432   CORE_ADDR sp;
3433 
3434   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3435   sp = extract_unsigned_integer (buf, 4, byte_order);
3436 
3437   return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3438 }
3439 
3440 
3441 
3442 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3443    gdbarch.h.  */
3444 
3445 int
3446 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3447 {
3448   return (*s == '$' /* Literal number.  */
3449 	  || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement.  */
3450 	  || (*s == '(' && s[1] == '%') /* Register indirection.  */
3451 	  || (*s == '%' && isalpha (s[1]))); /* Register access.  */
3452 }
3453 
3454 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3455    gdbarch.h.  */
3456 
3457 int
3458 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3459 			       struct stap_parse_info *p)
3460 {
3461   /* In order to parse special tokens, we use a state-machine that go
3462      through every known token and try to get a match.  */
3463   enum
3464     {
3465       TRIPLET,
3466       THREE_ARG_DISPLACEMENT,
3467       DONE
3468     } current_state;
3469 
3470   current_state = TRIPLET;
3471 
3472   /* The special tokens to be parsed here are:
3473 
3474      - `register base + (register index * size) + offset', as represented
3475      in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3476 
3477      - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3478      `*(-8 + 3 - 1 + (void *) $eax)'.  */
3479 
3480   while (current_state != DONE)
3481     {
3482       const char *s = p->arg;
3483 
3484       switch (current_state)
3485 	{
3486 	case TRIPLET:
3487 	    {
3488 	      if (isdigit (*s) || *s == '-' || *s == '+')
3489 		{
3490 		  int got_minus[3];
3491 		  int i;
3492 		  long displacements[3];
3493 		  const char *start;
3494 		  char *regname;
3495 		  int len;
3496 		  struct stoken str;
3497 
3498 		  got_minus[0] = 0;
3499 		  if (*s == '+')
3500 		    ++s;
3501 		  else if (*s == '-')
3502 		    {
3503 		      ++s;
3504 		      got_minus[0] = 1;
3505 		    }
3506 
3507 		  displacements[0] = strtol (s, (char **) &s, 10);
3508 
3509 		  if (*s != '+' && *s != '-')
3510 		    {
3511 		      /* We are not dealing with a triplet.  */
3512 		      break;
3513 		    }
3514 
3515 		  got_minus[1] = 0;
3516 		  if (*s == '+')
3517 		    ++s;
3518 		  else
3519 		    {
3520 		      ++s;
3521 		      got_minus[1] = 1;
3522 		    }
3523 
3524 		  displacements[1] = strtol (s, (char **) &s, 10);
3525 
3526 		  if (*s != '+' && *s != '-')
3527 		    {
3528 		      /* We are not dealing with a triplet.  */
3529 		      break;
3530 		    }
3531 
3532 		  got_minus[2] = 0;
3533 		  if (*s == '+')
3534 		    ++s;
3535 		  else
3536 		    {
3537 		      ++s;
3538 		      got_minus[2] = 1;
3539 		    }
3540 
3541 		  displacements[2] = strtol (s, (char **) &s, 10);
3542 
3543 		  if (*s != '(' || s[1] != '%')
3544 		    break;
3545 
3546 		  s += 2;
3547 		  start = s;
3548 
3549 		  while (isalnum (*s))
3550 		    ++s;
3551 
3552 		  if (*s++ != ')')
3553 		    break;
3554 
3555 		  len = s - start;
3556 		  regname = alloca (len + 1);
3557 
3558 		  strncpy (regname, start, len);
3559 		  regname[len] = '\0';
3560 
3561 		  if (user_reg_map_name_to_regnum (gdbarch,
3562 						   regname, len) == -1)
3563 		    error (_("Invalid register name `%s' "
3564 			     "on expression `%s'."),
3565 			   regname, p->saved_arg);
3566 
3567 		  for (i = 0; i < 3; i++)
3568 		    {
3569 		      write_exp_elt_opcode (OP_LONG);
3570 		      write_exp_elt_type
3571 			(builtin_type (gdbarch)->builtin_long);
3572 		      write_exp_elt_longcst (displacements[i]);
3573 		      write_exp_elt_opcode (OP_LONG);
3574 		      if (got_minus[i])
3575 			write_exp_elt_opcode (UNOP_NEG);
3576 		    }
3577 
3578 		  write_exp_elt_opcode (OP_REGISTER);
3579 		  str.ptr = regname;
3580 		  str.length = len;
3581 		  write_exp_string (str);
3582 		  write_exp_elt_opcode (OP_REGISTER);
3583 
3584 		  write_exp_elt_opcode (UNOP_CAST);
3585 		  write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3586 		  write_exp_elt_opcode (UNOP_CAST);
3587 
3588 		  write_exp_elt_opcode (BINOP_ADD);
3589 		  write_exp_elt_opcode (BINOP_ADD);
3590 		  write_exp_elt_opcode (BINOP_ADD);
3591 
3592 		  write_exp_elt_opcode (UNOP_CAST);
3593 		  write_exp_elt_type (lookup_pointer_type (p->arg_type));
3594 		  write_exp_elt_opcode (UNOP_CAST);
3595 
3596 		  write_exp_elt_opcode (UNOP_IND);
3597 
3598 		  p->arg = s;
3599 
3600 		  return 1;
3601 		}
3602 	      break;
3603 	    }
3604 	case THREE_ARG_DISPLACEMENT:
3605 	    {
3606 	      if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3607 		{
3608 		  int offset_minus = 0;
3609 		  long offset = 0;
3610 		  int size_minus = 0;
3611 		  long size = 0;
3612 		  const char *start;
3613 		  char *base;
3614 		  int len_base;
3615 		  char *index;
3616 		  int len_index;
3617 		  struct stoken base_token, index_token;
3618 
3619 		  if (*s == '+')
3620 		    ++s;
3621 		  else if (*s == '-')
3622 		    {
3623 		      ++s;
3624 		      offset_minus = 1;
3625 		    }
3626 
3627 		  if (offset_minus && !isdigit (*s))
3628 		    break;
3629 
3630 		  if (isdigit (*s))
3631 		    offset = strtol (s, (char **) &s, 10);
3632 
3633 		  if (*s != '(' || s[1] != '%')
3634 		    break;
3635 
3636 		  s += 2;
3637 		  start = s;
3638 
3639 		  while (isalnum (*s))
3640 		    ++s;
3641 
3642 		  if (*s != ',' || s[1] != '%')
3643 		    break;
3644 
3645 		  len_base = s - start;
3646 		  base = alloca (len_base + 1);
3647 		  strncpy (base, start, len_base);
3648 		  base[len_base] = '\0';
3649 
3650 		  if (user_reg_map_name_to_regnum (gdbarch,
3651 						   base, len_base) == -1)
3652 		    error (_("Invalid register name `%s' "
3653 			     "on expression `%s'."),
3654 			   base, p->saved_arg);
3655 
3656 		  s += 2;
3657 		  start = s;
3658 
3659 		  while (isalnum (*s))
3660 		    ++s;
3661 
3662 		  len_index = s - start;
3663 		  index = alloca (len_index + 1);
3664 		  strncpy (index, start, len_index);
3665 		  index[len_index] = '\0';
3666 
3667 		  if (user_reg_map_name_to_regnum (gdbarch,
3668 						   index, len_index) == -1)
3669 		    error (_("Invalid register name `%s' "
3670 			     "on expression `%s'."),
3671 			   index, p->saved_arg);
3672 
3673 		  if (*s != ',' && *s != ')')
3674 		    break;
3675 
3676 		  if (*s == ',')
3677 		    {
3678 		      ++s;
3679 		      if (*s == '+')
3680 			++s;
3681 		      else if (*s == '-')
3682 			{
3683 			  ++s;
3684 			  size_minus = 1;
3685 			}
3686 
3687 		      size = strtol (s, (char **) &s, 10);
3688 
3689 		      if (*s != ')')
3690 			break;
3691 		    }
3692 
3693 		  ++s;
3694 
3695 		  if (offset)
3696 		    {
3697 		      write_exp_elt_opcode (OP_LONG);
3698 		      write_exp_elt_type
3699 			(builtin_type (gdbarch)->builtin_long);
3700 		      write_exp_elt_longcst (offset);
3701 		      write_exp_elt_opcode (OP_LONG);
3702 		      if (offset_minus)
3703 			write_exp_elt_opcode (UNOP_NEG);
3704 		    }
3705 
3706 		  write_exp_elt_opcode (OP_REGISTER);
3707 		  base_token.ptr = base;
3708 		  base_token.length = len_base;
3709 		  write_exp_string (base_token);
3710 		  write_exp_elt_opcode (OP_REGISTER);
3711 
3712 		  if (offset)
3713 		    write_exp_elt_opcode (BINOP_ADD);
3714 
3715 		  write_exp_elt_opcode (OP_REGISTER);
3716 		  index_token.ptr = index;
3717 		  index_token.length = len_index;
3718 		  write_exp_string (index_token);
3719 		  write_exp_elt_opcode (OP_REGISTER);
3720 
3721 		  if (size)
3722 		    {
3723 		      write_exp_elt_opcode (OP_LONG);
3724 		      write_exp_elt_type
3725 			(builtin_type (gdbarch)->builtin_long);
3726 		      write_exp_elt_longcst (size);
3727 		      write_exp_elt_opcode (OP_LONG);
3728 		      if (size_minus)
3729 			write_exp_elt_opcode (UNOP_NEG);
3730 		      write_exp_elt_opcode (BINOP_MUL);
3731 		    }
3732 
3733 		  write_exp_elt_opcode (BINOP_ADD);
3734 
3735 		  write_exp_elt_opcode (UNOP_CAST);
3736 		  write_exp_elt_type (lookup_pointer_type (p->arg_type));
3737 		  write_exp_elt_opcode (UNOP_CAST);
3738 
3739 		  write_exp_elt_opcode (UNOP_IND);
3740 
3741 		  p->arg = s;
3742 
3743 		  return 1;
3744 		}
3745 	      break;
3746 	    }
3747 	}
3748 
3749       /* Advancing to the next state.  */
3750       ++current_state;
3751     }
3752 
3753   return 0;
3754 }
3755 
3756 
3757 
3758 /* Generic ELF.  */
3759 
3760 void
3761 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3762 {
3763   /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
3764   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3765 
3766   /* Registering SystemTap handlers.  */
3767   set_gdbarch_stap_integer_prefix (gdbarch, "$");
3768   set_gdbarch_stap_register_prefix (gdbarch, "%");
3769   set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3770   set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3771   set_gdbarch_stap_is_single_operand (gdbarch,
3772 				      i386_stap_is_single_operand);
3773   set_gdbarch_stap_parse_special_token (gdbarch,
3774 					i386_stap_parse_special_token);
3775 }
3776 
3777 /* System V Release 4 (SVR4).  */
3778 
3779 void
3780 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3781 {
3782   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3783 
3784   /* System V Release 4 uses ELF.  */
3785   i386_elf_init_abi (info, gdbarch);
3786 
3787   /* System V Release 4 has shared libraries.  */
3788   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3789 
3790   tdep->sigtramp_p = i386_svr4_sigtramp_p;
3791   tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3792   tdep->sc_pc_offset = 36 + 14 * 4;
3793   tdep->sc_sp_offset = 36 + 17 * 4;
3794 
3795   tdep->jb_pc_offset = 20;
3796 }
3797 
3798 /* DJGPP.  */
3799 
3800 static void
3801 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3802 {
3803   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3804 
3805   /* DJGPP doesn't have any special frames for signal handlers.  */
3806   tdep->sigtramp_p = NULL;
3807 
3808   tdep->jb_pc_offset = 36;
3809 
3810   /* DJGPP does not support the SSE registers.  */
3811   if (! tdesc_has_registers (info.target_desc))
3812     tdep->tdesc = tdesc_i386_mmx;
3813 
3814   /* Native compiler is GCC, which uses the SVR4 register numbering
3815      even in COFF and STABS.  See the comment in i386_gdbarch_init,
3816      before the calls to set_gdbarch_stab_reg_to_regnum and
3817      set_gdbarch_sdb_reg_to_regnum.  */
3818   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3819   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3820 
3821   set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3822 }
3823 
3824 
3825 /* i386 register groups.  In addition to the normal groups, add "mmx"
3826    and "sse".  */
3827 
3828 static struct reggroup *i386_sse_reggroup;
3829 static struct reggroup *i386_mmx_reggroup;
3830 
3831 static void
3832 i386_init_reggroups (void)
3833 {
3834   i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3835   i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3836 }
3837 
3838 static void
3839 i386_add_reggroups (struct gdbarch *gdbarch)
3840 {
3841   reggroup_add (gdbarch, i386_sse_reggroup);
3842   reggroup_add (gdbarch, i386_mmx_reggroup);
3843   reggroup_add (gdbarch, general_reggroup);
3844   reggroup_add (gdbarch, float_reggroup);
3845   reggroup_add (gdbarch, all_reggroup);
3846   reggroup_add (gdbarch, save_reggroup);
3847   reggroup_add (gdbarch, restore_reggroup);
3848   reggroup_add (gdbarch, vector_reggroup);
3849   reggroup_add (gdbarch, system_reggroup);
3850 }
3851 
3852 int
3853 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3854 			  struct reggroup *group)
3855 {
3856   const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857   int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3858       ymm_regnum_p, ymmh_regnum_p;
3859 
3860   /* Don't include pseudo registers, except for MMX, in any register
3861      groups.  */
3862   if (i386_byte_regnum_p (gdbarch, regnum))
3863     return 0;
3864 
3865   if (i386_word_regnum_p (gdbarch, regnum))
3866     return 0;
3867 
3868   if (i386_dword_regnum_p (gdbarch, regnum))
3869     return 0;
3870 
3871   mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3872   if (group == i386_mmx_reggroup)
3873     return mmx_regnum_p;
3874 
3875   xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3876   mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3877   if (group == i386_sse_reggroup)
3878     return xmm_regnum_p || mxcsr_regnum_p;
3879 
3880   ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3881   if (group == vector_reggroup)
3882     return (mmx_regnum_p
3883 	    || ymm_regnum_p
3884 	    || mxcsr_regnum_p
3885 	    || (xmm_regnum_p
3886 		&& ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3887 		    == I386_XSTATE_SSE_MASK)));
3888 
3889   fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3890 		 || i386_fpc_regnum_p (gdbarch, regnum));
3891   if (group == float_reggroup)
3892     return fp_regnum_p;
3893 
3894   /* For "info reg all", don't include upper YMM registers nor XMM
3895      registers when AVX is supported.  */
3896   ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3897   if (group == all_reggroup
3898       && ((xmm_regnum_p
3899 	   && (tdep->xcr0 & I386_XSTATE_AVX))
3900 	  || ymmh_regnum_p))
3901     return 0;
3902 
3903   if (group == general_reggroup)
3904     return (!fp_regnum_p
3905 	    && !mmx_regnum_p
3906 	    && !mxcsr_regnum_p
3907 	    && !xmm_regnum_p
3908 	    && !ymm_regnum_p
3909 	    && !ymmh_regnum_p);
3910 
3911   return default_register_reggroup_p (gdbarch, regnum, group);
3912 }
3913 
3914 
3915 /* Get the ARGIth function argument for the current function.  */
3916 
3917 static CORE_ADDR
3918 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3919 			     struct type *type)
3920 {
3921   struct gdbarch *gdbarch = get_frame_arch (frame);
3922   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3923   CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3924   return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3925 }
3926 
3927 static void
3928 i386_skip_permanent_breakpoint (struct regcache *regcache)
3929 {
3930   CORE_ADDR current_pc = regcache_read_pc (regcache);
3931 
3932  /* On i386, breakpoint is exactly 1 byte long, so we just
3933     adjust the PC in the regcache.  */
3934   current_pc += 1;
3935   regcache_write_pc (regcache, current_pc);
3936 }
3937 
3938 
3939 #define PREFIX_REPZ	0x01
3940 #define PREFIX_REPNZ	0x02
3941 #define PREFIX_LOCK	0x04
3942 #define PREFIX_DATA	0x08
3943 #define PREFIX_ADDR	0x10
3944 
3945 /* operand size */
3946 enum
3947 {
3948   OT_BYTE = 0,
3949   OT_WORD,
3950   OT_LONG,
3951   OT_QUAD,
3952   OT_DQUAD,
3953 };
3954 
3955 /* i386 arith/logic operations */
3956 enum
3957 {
3958   OP_ADDL,
3959   OP_ORL,
3960   OP_ADCL,
3961   OP_SBBL,
3962   OP_ANDL,
3963   OP_SUBL,
3964   OP_XORL,
3965   OP_CMPL,
3966 };
3967 
3968 struct i386_record_s
3969 {
3970   struct gdbarch *gdbarch;
3971   struct regcache *regcache;
3972   CORE_ADDR orig_addr;
3973   CORE_ADDR addr;
3974   int aflag;
3975   int dflag;
3976   int override;
3977   uint8_t modrm;
3978   uint8_t mod, reg, rm;
3979   int ot;
3980   uint8_t rex_x;
3981   uint8_t rex_b;
3982   int rip_offset;
3983   int popl_esp_hack;
3984   const int *regmap;
3985 };
3986 
3987 /* Parse the "modrm" part of the memory address irp->addr points at.
3988    Returns -1 if something goes wrong, 0 otherwise.  */
3989 
3990 static int
3991 i386_record_modrm (struct i386_record_s *irp)
3992 {
3993   struct gdbarch *gdbarch = irp->gdbarch;
3994 
3995   if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3996     return -1;
3997 
3998   irp->addr++;
3999   irp->mod = (irp->modrm >> 6) & 3;
4000   irp->reg = (irp->modrm >> 3) & 7;
4001   irp->rm = irp->modrm & 7;
4002 
4003   return 0;
4004 }
4005 
4006 /* Extract the memory address that the current instruction writes to,
4007    and return it in *ADDR.  Return -1 if something goes wrong.  */
4008 
4009 static int
4010 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4011 {
4012   struct gdbarch *gdbarch = irp->gdbarch;
4013   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4014   gdb_byte buf[4];
4015   ULONGEST offset64;
4016 
4017   *addr = 0;
4018   if (irp->aflag)
4019     {
4020       /* 32 bits */
4021       int havesib = 0;
4022       uint8_t scale = 0;
4023       uint8_t byte;
4024       uint8_t index = 0;
4025       uint8_t base = irp->rm;
4026 
4027       if (base == 4)
4028 	{
4029 	  havesib = 1;
4030 	  if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4031 	    return -1;
4032 	  irp->addr++;
4033 	  scale = (byte >> 6) & 3;
4034 	  index = ((byte >> 3) & 7) | irp->rex_x;
4035 	  base = (byte & 7);
4036 	}
4037       base |= irp->rex_b;
4038 
4039       switch (irp->mod)
4040 	{
4041 	case 0:
4042 	  if ((base & 7) == 5)
4043 	    {
4044 	      base = 0xff;
4045 	      if (record_read_memory (gdbarch, irp->addr, buf, 4))
4046 		return -1;
4047 	      irp->addr += 4;
4048 	      *addr = extract_signed_integer (buf, 4, byte_order);
4049 	      if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4050 		*addr += irp->addr + irp->rip_offset;
4051 	    }
4052 	  break;
4053 	case 1:
4054 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4055 	    return -1;
4056 	  irp->addr++;
4057 	  *addr = (int8_t) buf[0];
4058 	  break;
4059 	case 2:
4060 	  if (record_read_memory (gdbarch, irp->addr, buf, 4))
4061 	    return -1;
4062 	  *addr = extract_signed_integer (buf, 4, byte_order);
4063 	  irp->addr += 4;
4064 	  break;
4065 	}
4066 
4067       offset64 = 0;
4068       if (base != 0xff)
4069         {
4070 	  if (base == 4 && irp->popl_esp_hack)
4071 	    *addr += irp->popl_esp_hack;
4072 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4073                                       &offset64);
4074 	}
4075       if (irp->aflag == 2)
4076         {
4077 	  *addr += offset64;
4078         }
4079       else
4080         *addr = (uint32_t) (offset64 + *addr);
4081 
4082       if (havesib && (index != 4 || scale != 0))
4083 	{
4084 	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4085                                       &offset64);
4086 	  if (irp->aflag == 2)
4087 	    *addr += offset64 << scale;
4088 	  else
4089 	    *addr = (uint32_t) (*addr + (offset64 << scale));
4090 	}
4091     }
4092   else
4093     {
4094       /* 16 bits */
4095       switch (irp->mod)
4096 	{
4097 	case 0:
4098 	  if (irp->rm == 6)
4099 	    {
4100 	      if (record_read_memory (gdbarch, irp->addr, buf, 2))
4101 		return -1;
4102 	      irp->addr += 2;
4103 	      *addr = extract_signed_integer (buf, 2, byte_order);
4104 	      irp->rm = 0;
4105 	      goto no_rm;
4106 	    }
4107 	  break;
4108 	case 1:
4109 	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
4110 	    return -1;
4111 	  irp->addr++;
4112 	  *addr = (int8_t) buf[0];
4113 	  break;
4114 	case 2:
4115 	  if (record_read_memory (gdbarch, irp->addr, buf, 2))
4116 	    return -1;
4117 	  irp->addr += 2;
4118 	  *addr = extract_signed_integer (buf, 2, byte_order);
4119 	  break;
4120 	}
4121 
4122       switch (irp->rm)
4123 	{
4124 	case 0:
4125 	  regcache_raw_read_unsigned (irp->regcache,
4126 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4127                                       &offset64);
4128 	  *addr = (uint32_t) (*addr + offset64);
4129 	  regcache_raw_read_unsigned (irp->regcache,
4130 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4131                                       &offset64);
4132 	  *addr = (uint32_t) (*addr + offset64);
4133 	  break;
4134 	case 1:
4135 	  regcache_raw_read_unsigned (irp->regcache,
4136 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4137                                       &offset64);
4138 	  *addr = (uint32_t) (*addr + offset64);
4139 	  regcache_raw_read_unsigned (irp->regcache,
4140 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4141                                       &offset64);
4142 	  *addr = (uint32_t) (*addr + offset64);
4143 	  break;
4144 	case 2:
4145 	  regcache_raw_read_unsigned (irp->regcache,
4146 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4147                                       &offset64);
4148 	  *addr = (uint32_t) (*addr + offset64);
4149 	  regcache_raw_read_unsigned (irp->regcache,
4150 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4151                                       &offset64);
4152 	  *addr = (uint32_t) (*addr + offset64);
4153 	  break;
4154 	case 3:
4155 	  regcache_raw_read_unsigned (irp->regcache,
4156 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4157                                       &offset64);
4158 	  *addr = (uint32_t) (*addr + offset64);
4159 	  regcache_raw_read_unsigned (irp->regcache,
4160 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4161                                       &offset64);
4162 	  *addr = (uint32_t) (*addr + offset64);
4163 	  break;
4164 	case 4:
4165 	  regcache_raw_read_unsigned (irp->regcache,
4166 				      irp->regmap[X86_RECORD_RESI_REGNUM],
4167                                       &offset64);
4168 	  *addr = (uint32_t) (*addr + offset64);
4169 	  break;
4170 	case 5:
4171 	  regcache_raw_read_unsigned (irp->regcache,
4172 				      irp->regmap[X86_RECORD_REDI_REGNUM],
4173                                       &offset64);
4174 	  *addr = (uint32_t) (*addr + offset64);
4175 	  break;
4176 	case 6:
4177 	  regcache_raw_read_unsigned (irp->regcache,
4178 				      irp->regmap[X86_RECORD_REBP_REGNUM],
4179                                       &offset64);
4180 	  *addr = (uint32_t) (*addr + offset64);
4181 	  break;
4182 	case 7:
4183 	  regcache_raw_read_unsigned (irp->regcache,
4184 				      irp->regmap[X86_RECORD_REBX_REGNUM],
4185                                       &offset64);
4186 	  *addr = (uint32_t) (*addr + offset64);
4187 	  break;
4188 	}
4189       *addr &= 0xffff;
4190     }
4191 
4192  no_rm:
4193   return 0;
4194 }
4195 
4196 /* Record the address and contents of the memory that will be changed
4197    by the current instruction.  Return -1 if something goes wrong, 0
4198    otherwise.  */
4199 
4200 static int
4201 i386_record_lea_modrm (struct i386_record_s *irp)
4202 {
4203   struct gdbarch *gdbarch = irp->gdbarch;
4204   uint64_t addr;
4205 
4206   if (irp->override >= 0)
4207     {
4208       if (record_full_memory_query)
4209         {
4210 	  int q;
4211 
4212           target_terminal_ours ();
4213           q = yquery (_("\
4214 Process record ignores the memory change of instruction at address %s\n\
4215 because it can't get the value of the segment register.\n\
4216 Do you want to stop the program?"),
4217                       paddress (gdbarch, irp->orig_addr));
4218             target_terminal_inferior ();
4219             if (q)
4220               return -1;
4221         }
4222 
4223       return 0;
4224     }
4225 
4226   if (i386_record_lea_modrm_addr (irp, &addr))
4227     return -1;
4228 
4229   if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4230     return -1;
4231 
4232   return 0;
4233 }
4234 
4235 /* Record the effects of a push operation.  Return -1 if something
4236    goes wrong, 0 otherwise.  */
4237 
4238 static int
4239 i386_record_push (struct i386_record_s *irp, int size)
4240 {
4241   ULONGEST addr;
4242 
4243   if (record_full_arch_list_add_reg (irp->regcache,
4244 				     irp->regmap[X86_RECORD_RESP_REGNUM]))
4245     return -1;
4246   regcache_raw_read_unsigned (irp->regcache,
4247 			      irp->regmap[X86_RECORD_RESP_REGNUM],
4248 			      &addr);
4249   if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4250     return -1;
4251 
4252   return 0;
4253 }
4254 
4255 
4256 /* Defines contents to record.  */
4257 #define I386_SAVE_FPU_REGS              0xfffd
4258 #define I386_SAVE_FPU_ENV               0xfffe
4259 #define I386_SAVE_FPU_ENV_REG_STACK     0xffff
4260 
4261 /* Record the values of the floating point registers which will be
4262    changed by the current instruction.  Returns -1 if something is
4263    wrong, 0 otherwise.  */
4264 
4265 static int i386_record_floats (struct gdbarch *gdbarch,
4266                                struct i386_record_s *ir,
4267                                uint32_t iregnum)
4268 {
4269   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4270   int i;
4271 
4272   /* Oza: Because of floating point insn push/pop of fpu stack is going to
4273      happen.  Currently we store st0-st7 registers, but we need not store all
4274      registers all the time, in future we use ftag register and record only
4275      those who are not marked as an empty.  */
4276 
4277   if (I386_SAVE_FPU_REGS == iregnum)
4278     {
4279       for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4280         {
4281           if (record_full_arch_list_add_reg (ir->regcache, i))
4282             return -1;
4283         }
4284     }
4285   else if (I386_SAVE_FPU_ENV == iregnum)
4286     {
4287       for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4288 	      {
4289 	      if (record_full_arch_list_add_reg (ir->regcache, i))
4290 	        return -1;
4291 	      }
4292     }
4293   else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4294     {
4295       for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4296       {
4297         if (record_full_arch_list_add_reg (ir->regcache, i))
4298           return -1;
4299       }
4300     }
4301   else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4302            (iregnum <= I387_FOP_REGNUM (tdep)))
4303     {
4304       if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4305         return -1;
4306     }
4307   else
4308     {
4309       /* Parameter error.  */
4310       return -1;
4311     }
4312   if(I386_SAVE_FPU_ENV != iregnum)
4313     {
4314     for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4315       {
4316       if (record_full_arch_list_add_reg (ir->regcache, i))
4317         return -1;
4318       }
4319     }
4320   return 0;
4321 }
4322 
4323 /* Parse the current instruction, and record the values of the
4324    registers and memory that will be changed by the current
4325    instruction.  Returns -1 if something goes wrong, 0 otherwise.  */
4326 
4327 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4328     record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4329 
4330 int
4331 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4332 		     CORE_ADDR input_addr)
4333 {
4334   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4335   int prefixes = 0;
4336   int regnum = 0;
4337   uint32_t opcode;
4338   uint8_t opcode8;
4339   ULONGEST addr;
4340   gdb_byte buf[MAX_REGISTER_SIZE];
4341   struct i386_record_s ir;
4342   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4343   uint8_t rex_w = -1;
4344   uint8_t rex_r = 0;
4345 
4346   memset (&ir, 0, sizeof (struct i386_record_s));
4347   ir.regcache = regcache;
4348   ir.addr = input_addr;
4349   ir.orig_addr = input_addr;
4350   ir.aflag = 1;
4351   ir.dflag = 1;
4352   ir.override = -1;
4353   ir.popl_esp_hack = 0;
4354   ir.regmap = tdep->record_regmap;
4355   ir.gdbarch = gdbarch;
4356 
4357   if (record_debug > 1)
4358     fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4359 			            "addr = %s\n",
4360 			paddress (gdbarch, ir.addr));
4361 
4362   /* prefixes */
4363   while (1)
4364     {
4365       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4366 	return -1;
4367       ir.addr++;
4368       switch (opcode8)	/* Instruction prefixes */
4369 	{
4370 	case REPE_PREFIX_OPCODE:
4371 	  prefixes |= PREFIX_REPZ;
4372 	  break;
4373 	case REPNE_PREFIX_OPCODE:
4374 	  prefixes |= PREFIX_REPNZ;
4375 	  break;
4376 	case LOCK_PREFIX_OPCODE:
4377 	  prefixes |= PREFIX_LOCK;
4378 	  break;
4379 	case CS_PREFIX_OPCODE:
4380 	  ir.override = X86_RECORD_CS_REGNUM;
4381 	  break;
4382 	case SS_PREFIX_OPCODE:
4383 	  ir.override = X86_RECORD_SS_REGNUM;
4384 	  break;
4385 	case DS_PREFIX_OPCODE:
4386 	  ir.override = X86_RECORD_DS_REGNUM;
4387 	  break;
4388 	case ES_PREFIX_OPCODE:
4389 	  ir.override = X86_RECORD_ES_REGNUM;
4390 	  break;
4391 	case FS_PREFIX_OPCODE:
4392 	  ir.override = X86_RECORD_FS_REGNUM;
4393 	  break;
4394 	case GS_PREFIX_OPCODE:
4395 	  ir.override = X86_RECORD_GS_REGNUM;
4396 	  break;
4397 	case DATA_PREFIX_OPCODE:
4398 	  prefixes |= PREFIX_DATA;
4399 	  break;
4400 	case ADDR_PREFIX_OPCODE:
4401 	  prefixes |= PREFIX_ADDR;
4402 	  break;
4403         case 0x40:	/* i386 inc %eax */
4404         case 0x41:	/* i386 inc %ecx */
4405         case 0x42:	/* i386 inc %edx */
4406         case 0x43:	/* i386 inc %ebx */
4407         case 0x44:	/* i386 inc %esp */
4408         case 0x45:	/* i386 inc %ebp */
4409         case 0x46:	/* i386 inc %esi */
4410         case 0x47:	/* i386 inc %edi */
4411         case 0x48:	/* i386 dec %eax */
4412         case 0x49:	/* i386 dec %ecx */
4413         case 0x4a:	/* i386 dec %edx */
4414         case 0x4b:	/* i386 dec %ebx */
4415         case 0x4c:	/* i386 dec %esp */
4416         case 0x4d:	/* i386 dec %ebp */
4417         case 0x4e:	/* i386 dec %esi */
4418         case 0x4f:	/* i386 dec %edi */
4419           if (ir.regmap[X86_RECORD_R8_REGNUM])	/* 64 bit target */
4420             {
4421                /* REX */
4422                rex_w = (opcode8 >> 3) & 1;
4423                rex_r = (opcode8 & 0x4) << 1;
4424                ir.rex_x = (opcode8 & 0x2) << 2;
4425                ir.rex_b = (opcode8 & 0x1) << 3;
4426             }
4427 	  else					/* 32 bit target */
4428 	    goto out_prefixes;
4429           break;
4430 	default:
4431 	  goto out_prefixes;
4432 	  break;
4433 	}
4434     }
4435  out_prefixes:
4436   if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4437     {
4438       ir.dflag = 2;
4439     }
4440   else
4441     {
4442       if (prefixes & PREFIX_DATA)
4443         ir.dflag ^= 1;
4444     }
4445   if (prefixes & PREFIX_ADDR)
4446     ir.aflag ^= 1;
4447   else if (ir.regmap[X86_RECORD_R8_REGNUM])
4448     ir.aflag = 2;
4449 
4450   /* Now check op code.  */
4451   opcode = (uint32_t) opcode8;
4452  reswitch:
4453   switch (opcode)
4454     {
4455     case 0x0f:
4456       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4457 	return -1;
4458       ir.addr++;
4459       opcode = (uint32_t) opcode8 | 0x0f00;
4460       goto reswitch;
4461       break;
4462 
4463     case 0x00:    /* arith & logic */
4464     case 0x01:
4465     case 0x02:
4466     case 0x03:
4467     case 0x04:
4468     case 0x05:
4469     case 0x08:
4470     case 0x09:
4471     case 0x0a:
4472     case 0x0b:
4473     case 0x0c:
4474     case 0x0d:
4475     case 0x10:
4476     case 0x11:
4477     case 0x12:
4478     case 0x13:
4479     case 0x14:
4480     case 0x15:
4481     case 0x18:
4482     case 0x19:
4483     case 0x1a:
4484     case 0x1b:
4485     case 0x1c:
4486     case 0x1d:
4487     case 0x20:
4488     case 0x21:
4489     case 0x22:
4490     case 0x23:
4491     case 0x24:
4492     case 0x25:
4493     case 0x28:
4494     case 0x29:
4495     case 0x2a:
4496     case 0x2b:
4497     case 0x2c:
4498     case 0x2d:
4499     case 0x30:
4500     case 0x31:
4501     case 0x32:
4502     case 0x33:
4503     case 0x34:
4504     case 0x35:
4505     case 0x38:
4506     case 0x39:
4507     case 0x3a:
4508     case 0x3b:
4509     case 0x3c:
4510     case 0x3d:
4511       if (((opcode >> 3) & 7) != OP_CMPL)
4512 	{
4513 	  if ((opcode & 1) == 0)
4514 	    ir.ot = OT_BYTE;
4515 	  else
4516 	    ir.ot = ir.dflag + OT_WORD;
4517 
4518 	  switch ((opcode >> 1) & 3)
4519 	    {
4520 	    case 0:    /* OP Ev, Gv */
4521 	      if (i386_record_modrm (&ir))
4522 		return -1;
4523 	      if (ir.mod != 3)
4524 		{
4525 		  if (i386_record_lea_modrm (&ir))
4526 		    return -1;
4527 		}
4528 	      else
4529 		{
4530                   ir.rm |= ir.rex_b;
4531 		  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4532 		    ir.rm &= 0x3;
4533 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4534 		}
4535 	      break;
4536 	    case 1:    /* OP Gv, Ev */
4537 	      if (i386_record_modrm (&ir))
4538 		return -1;
4539               ir.reg |= rex_r;
4540 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4541 		ir.reg &= 0x3;
4542 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4543 	      break;
4544 	    case 2:    /* OP A, Iv */
4545 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4546 	      break;
4547 	    }
4548 	}
4549       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4550       break;
4551 
4552     case 0x80:    /* GRP1 */
4553     case 0x81:
4554     case 0x82:
4555     case 0x83:
4556       if (i386_record_modrm (&ir))
4557 	return -1;
4558 
4559       if (ir.reg != OP_CMPL)
4560 	{
4561 	  if ((opcode & 1) == 0)
4562 	    ir.ot = OT_BYTE;
4563 	  else
4564 	    ir.ot = ir.dflag + OT_WORD;
4565 
4566 	  if (ir.mod != 3)
4567 	    {
4568               if (opcode == 0x83)
4569                 ir.rip_offset = 1;
4570               else
4571                 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4572 	      if (i386_record_lea_modrm (&ir))
4573 		return -1;
4574 	    }
4575 	  else
4576 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4577 	}
4578       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4579       break;
4580 
4581     case 0x40:      /* inc */
4582     case 0x41:
4583     case 0x42:
4584     case 0x43:
4585     case 0x44:
4586     case 0x45:
4587     case 0x46:
4588     case 0x47:
4589 
4590     case 0x48:      /* dec */
4591     case 0x49:
4592     case 0x4a:
4593     case 0x4b:
4594     case 0x4c:
4595     case 0x4d:
4596     case 0x4e:
4597     case 0x4f:
4598 
4599       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4600       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4601       break;
4602 
4603     case 0xf6:    /* GRP3 */
4604     case 0xf7:
4605       if ((opcode & 1) == 0)
4606 	ir.ot = OT_BYTE;
4607       else
4608 	ir.ot = ir.dflag + OT_WORD;
4609       if (i386_record_modrm (&ir))
4610 	return -1;
4611 
4612       if (ir.mod != 3 && ir.reg == 0)
4613         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4614 
4615       switch (ir.reg)
4616 	{
4617 	case 0:    /* test */
4618 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4619 	  break;
4620 	case 2:    /* not */
4621 	case 3:    /* neg */
4622 	  if (ir.mod != 3)
4623 	    {
4624 	      if (i386_record_lea_modrm (&ir))
4625 		return -1;
4626 	    }
4627 	  else
4628 	    {
4629               ir.rm |= ir.rex_b;
4630 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4631 		ir.rm &= 0x3;
4632 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4633 	    }
4634 	  if (ir.reg == 3)  /* neg */
4635 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4636 	  break;
4637 	case 4:    /* mul  */
4638 	case 5:    /* imul */
4639 	case 6:    /* div  */
4640 	case 7:    /* idiv */
4641 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4642 	  if (ir.ot != OT_BYTE)
4643 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4644 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4645 	  break;
4646 	default:
4647 	  ir.addr -= 2;
4648 	  opcode = opcode << 8 | ir.modrm;
4649 	  goto no_support;
4650 	  break;
4651 	}
4652       break;
4653 
4654     case 0xfe:    /* GRP4 */
4655     case 0xff:    /* GRP5 */
4656       if (i386_record_modrm (&ir))
4657 	return -1;
4658       if (ir.reg >= 2 && opcode == 0xfe)
4659 	{
4660 	  ir.addr -= 2;
4661 	  opcode = opcode << 8 | ir.modrm;
4662 	  goto no_support;
4663 	}
4664       switch (ir.reg)
4665 	{
4666 	case 0:    /* inc */
4667 	case 1:    /* dec */
4668           if ((opcode & 1) == 0)
4669 	    ir.ot = OT_BYTE;
4670           else
4671 	    ir.ot = ir.dflag + OT_WORD;
4672 	  if (ir.mod != 3)
4673 	    {
4674 	      if (i386_record_lea_modrm (&ir))
4675 		return -1;
4676 	    }
4677 	  else
4678 	    {
4679 	      ir.rm |= ir.rex_b;
4680 	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4681 		ir.rm &= 0x3;
4682 	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4683 	    }
4684 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4685 	  break;
4686 	case 2:    /* call */
4687           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4688             ir.dflag = 2;
4689 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4690 	    return -1;
4691 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4692 	  break;
4693 	case 3:    /* lcall */
4694 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4695 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4696 	    return -1;
4697 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4698 	  break;
4699 	case 4:    /* jmp  */
4700 	case 5:    /* ljmp */
4701 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4702 	  break;
4703 	case 6:    /* push */
4704           if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4705             ir.dflag = 2;
4706 	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4707 	    return -1;
4708 	  break;
4709 	default:
4710 	  ir.addr -= 2;
4711 	  opcode = opcode << 8 | ir.modrm;
4712 	  goto no_support;
4713 	  break;
4714 	}
4715       break;
4716 
4717     case 0x84:    /* test */
4718     case 0x85:
4719     case 0xa8:
4720     case 0xa9:
4721       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4722       break;
4723 
4724     case 0x98:    /* CWDE/CBW */
4725       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4726       break;
4727 
4728     case 0x99:    /* CDQ/CWD */
4729       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4730       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4731       break;
4732 
4733     case 0x0faf:  /* imul */
4734     case 0x69:
4735     case 0x6b:
4736       ir.ot = ir.dflag + OT_WORD;
4737       if (i386_record_modrm (&ir))
4738 	return -1;
4739       if (opcode == 0x69)
4740         ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4741       else if (opcode == 0x6b)
4742         ir.rip_offset = 1;
4743       ir.reg |= rex_r;
4744       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4745 	ir.reg &= 0x3;
4746       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4747       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4748       break;
4749 
4750     case 0x0fc0:  /* xadd */
4751     case 0x0fc1:
4752       if ((opcode & 1) == 0)
4753 	ir.ot = OT_BYTE;
4754       else
4755 	ir.ot = ir.dflag + OT_WORD;
4756       if (i386_record_modrm (&ir))
4757 	return -1;
4758       ir.reg |= rex_r;
4759       if (ir.mod == 3)
4760 	{
4761 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4762 	    ir.reg &= 0x3;
4763 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4764 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4765 	    ir.rm &= 0x3;
4766 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4767 	}
4768       else
4769 	{
4770 	  if (i386_record_lea_modrm (&ir))
4771 	    return -1;
4772 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4773 	    ir.reg &= 0x3;
4774 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4775 	}
4776       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4777       break;
4778 
4779     case 0x0fb0:  /* cmpxchg */
4780     case 0x0fb1:
4781       if ((opcode & 1) == 0)
4782 	ir.ot = OT_BYTE;
4783       else
4784 	ir.ot = ir.dflag + OT_WORD;
4785       if (i386_record_modrm (&ir))
4786 	return -1;
4787       if (ir.mod == 3)
4788 	{
4789           ir.reg |= rex_r;
4790 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4791 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4792 	    ir.reg &= 0x3;
4793 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4794 	}
4795       else
4796 	{
4797 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4798 	  if (i386_record_lea_modrm (&ir))
4799 	    return -1;
4800 	}
4801       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4802       break;
4803 
4804     case 0x0fc7:    /* cmpxchg8b */
4805       if (i386_record_modrm (&ir))
4806 	return -1;
4807       if (ir.mod == 3)
4808 	{
4809 	  ir.addr -= 2;
4810 	  opcode = opcode << 8 | ir.modrm;
4811 	  goto no_support;
4812 	}
4813       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4814       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4815       if (i386_record_lea_modrm (&ir))
4816 	return -1;
4817       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4818       break;
4819 
4820     case 0x50:    /* push */
4821     case 0x51:
4822     case 0x52:
4823     case 0x53:
4824     case 0x54:
4825     case 0x55:
4826     case 0x56:
4827     case 0x57:
4828     case 0x68:
4829     case 0x6a:
4830       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4831         ir.dflag = 2;
4832       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4833 	return -1;
4834       break;
4835 
4836     case 0x06:    /* push es */
4837     case 0x0e:    /* push cs */
4838     case 0x16:    /* push ss */
4839     case 0x1e:    /* push ds */
4840       if (ir.regmap[X86_RECORD_R8_REGNUM])
4841         {
4842 	  ir.addr -= 1;
4843 	  goto no_support;
4844 	}
4845       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4846 	return -1;
4847       break;
4848 
4849     case 0x0fa0:    /* push fs */
4850     case 0x0fa8:    /* push gs */
4851       if (ir.regmap[X86_RECORD_R8_REGNUM])
4852         {
4853 	  ir.addr -= 2;
4854 	  goto no_support;
4855 	}
4856       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4857 	return -1;
4858       break;
4859 
4860     case 0x60:    /* pusha */
4861       if (ir.regmap[X86_RECORD_R8_REGNUM])
4862         {
4863 	  ir.addr -= 1;
4864 	  goto no_support;
4865 	}
4866       if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4867 	return -1;
4868       break;
4869 
4870     case 0x58:    /* pop */
4871     case 0x59:
4872     case 0x5a:
4873     case 0x5b:
4874     case 0x5c:
4875     case 0x5d:
4876     case 0x5e:
4877     case 0x5f:
4878       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4879       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4880       break;
4881 
4882     case 0x61:    /* popa */
4883       if (ir.regmap[X86_RECORD_R8_REGNUM])
4884         {
4885 	  ir.addr -= 1;
4886 	  goto no_support;
4887 	}
4888       for (regnum = X86_RECORD_REAX_REGNUM;
4889 	   regnum <= X86_RECORD_REDI_REGNUM;
4890 	   regnum++)
4891 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
4892       break;
4893 
4894     case 0x8f:    /* pop */
4895       if (ir.regmap[X86_RECORD_R8_REGNUM])
4896 	ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4897       else
4898         ir.ot = ir.dflag + OT_WORD;
4899       if (i386_record_modrm (&ir))
4900 	return -1;
4901       if (ir.mod == 3)
4902 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4903       else
4904 	{
4905           ir.popl_esp_hack = 1 << ir.ot;
4906 	  if (i386_record_lea_modrm (&ir))
4907 	    return -1;
4908 	}
4909       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4910       break;
4911 
4912     case 0xc8:    /* enter */
4913       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4914       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4915         ir.dflag = 2;
4916       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4917 	return -1;
4918       break;
4919 
4920     case 0xc9:    /* leave */
4921       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4922       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4923       break;
4924 
4925     case 0x07:    /* pop es */
4926       if (ir.regmap[X86_RECORD_R8_REGNUM])
4927         {
4928 	  ir.addr -= 1;
4929 	  goto no_support;
4930 	}
4931       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4932       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4933       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4934       break;
4935 
4936     case 0x17:    /* pop ss */
4937       if (ir.regmap[X86_RECORD_R8_REGNUM])
4938         {
4939 	  ir.addr -= 1;
4940 	  goto no_support;
4941 	}
4942       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4943       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4944       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4945       break;
4946 
4947     case 0x1f:    /* pop ds */
4948       if (ir.regmap[X86_RECORD_R8_REGNUM])
4949         {
4950 	  ir.addr -= 1;
4951 	  goto no_support;
4952 	}
4953       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4954       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4955       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4956       break;
4957 
4958     case 0x0fa1:    /* pop fs */
4959       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4960       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4961       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4962       break;
4963 
4964     case 0x0fa9:    /* pop gs */
4965       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4966       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4967       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4968       break;
4969 
4970     case 0x88:    /* mov */
4971     case 0x89:
4972     case 0xc6:
4973     case 0xc7:
4974       if ((opcode & 1) == 0)
4975 	ir.ot = OT_BYTE;
4976       else
4977 	ir.ot = ir.dflag + OT_WORD;
4978 
4979       if (i386_record_modrm (&ir))
4980 	return -1;
4981 
4982       if (ir.mod != 3)
4983 	{
4984           if (opcode == 0xc6 || opcode == 0xc7)
4985 	    ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4986 	  if (i386_record_lea_modrm (&ir))
4987 	    return -1;
4988 	}
4989       else
4990 	{
4991           if (opcode == 0xc6 || opcode == 0xc7)
4992 	    ir.rm |= ir.rex_b;
4993 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4994 	    ir.rm &= 0x3;
4995 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4996 	}
4997       break;
4998 
4999     case 0x8a:    /* mov */
5000     case 0x8b:
5001       if ((opcode & 1) == 0)
5002 	ir.ot = OT_BYTE;
5003       else
5004 	ir.ot = ir.dflag + OT_WORD;
5005       if (i386_record_modrm (&ir))
5006 	return -1;
5007       ir.reg |= rex_r;
5008       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5009 	ir.reg &= 0x3;
5010       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5011       break;
5012 
5013     case 0x8c:    /* mov seg */
5014       if (i386_record_modrm (&ir))
5015 	return -1;
5016       if (ir.reg > 5)
5017 	{
5018 	  ir.addr -= 2;
5019 	  opcode = opcode << 8 | ir.modrm;
5020 	  goto no_support;
5021 	}
5022 
5023       if (ir.mod == 3)
5024 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5025       else
5026 	{
5027 	  ir.ot = OT_WORD;
5028 	  if (i386_record_lea_modrm (&ir))
5029 	    return -1;
5030 	}
5031       break;
5032 
5033     case 0x8e:    /* mov seg */
5034       if (i386_record_modrm (&ir))
5035 	return -1;
5036       switch (ir.reg)
5037 	{
5038 	case 0:
5039 	  regnum = X86_RECORD_ES_REGNUM;
5040 	  break;
5041 	case 2:
5042 	  regnum = X86_RECORD_SS_REGNUM;
5043 	  break;
5044 	case 3:
5045 	  regnum = X86_RECORD_DS_REGNUM;
5046 	  break;
5047 	case 4:
5048 	  regnum = X86_RECORD_FS_REGNUM;
5049 	  break;
5050 	case 5:
5051 	  regnum = X86_RECORD_GS_REGNUM;
5052 	  break;
5053 	default:
5054 	  ir.addr -= 2;
5055 	  opcode = opcode << 8 | ir.modrm;
5056 	  goto no_support;
5057 	  break;
5058 	}
5059       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5060       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5061       break;
5062 
5063     case 0x0fb6:    /* movzbS */
5064     case 0x0fb7:    /* movzwS */
5065     case 0x0fbe:    /* movsbS */
5066     case 0x0fbf:    /* movswS */
5067       if (i386_record_modrm (&ir))
5068 	return -1;
5069       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5070       break;
5071 
5072     case 0x8d:      /* lea */
5073       if (i386_record_modrm (&ir))
5074 	return -1;
5075       if (ir.mod == 3)
5076 	{
5077 	  ir.addr -= 2;
5078 	  opcode = opcode << 8 | ir.modrm;
5079 	  goto no_support;
5080 	}
5081       ir.ot = ir.dflag;
5082       ir.reg |= rex_r;
5083       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5084 	ir.reg &= 0x3;
5085       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5086       break;
5087 
5088     case 0xa0:    /* mov EAX */
5089     case 0xa1:
5090 
5091     case 0xd7:    /* xlat */
5092       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5093       break;
5094 
5095     case 0xa2:    /* mov EAX */
5096     case 0xa3:
5097       if (ir.override >= 0)
5098         {
5099           if (record_full_memory_query)
5100             {
5101 	      int q;
5102 
5103               target_terminal_ours ();
5104               q = yquery (_("\
5105 Process record ignores the memory change of instruction at address %s\n\
5106 because it can't get the value of the segment register.\n\
5107 Do you want to stop the program?"),
5108                           paddress (gdbarch, ir.orig_addr));
5109               target_terminal_inferior ();
5110               if (q)
5111                 return -1;
5112             }
5113 	}
5114       else
5115 	{
5116           if ((opcode & 1) == 0)
5117 	    ir.ot = OT_BYTE;
5118 	  else
5119 	    ir.ot = ir.dflag + OT_WORD;
5120 	  if (ir.aflag == 2)
5121 	    {
5122               if (record_read_memory (gdbarch, ir.addr, buf, 8))
5123 		return -1;
5124 	      ir.addr += 8;
5125 	      addr = extract_unsigned_integer (buf, 8, byte_order);
5126 	    }
5127           else if (ir.aflag)
5128 	    {
5129               if (record_read_memory (gdbarch, ir.addr, buf, 4))
5130 		return -1;
5131 	      ir.addr += 4;
5132               addr = extract_unsigned_integer (buf, 4, byte_order);
5133 	    }
5134           else
5135 	    {
5136               if (record_read_memory (gdbarch, ir.addr, buf, 2))
5137 		return -1;
5138 	      ir.addr += 2;
5139               addr = extract_unsigned_integer (buf, 2, byte_order);
5140 	    }
5141 	  if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5142 	    return -1;
5143         }
5144       break;
5145 
5146     case 0xb0:    /* mov R, Ib */
5147     case 0xb1:
5148     case 0xb2:
5149     case 0xb3:
5150     case 0xb4:
5151     case 0xb5:
5152     case 0xb6:
5153     case 0xb7:
5154       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5155 					  ? ((opcode & 0x7) | ir.rex_b)
5156 					  : ((opcode & 0x7) & 0x3));
5157       break;
5158 
5159     case 0xb8:    /* mov R, Iv */
5160     case 0xb9:
5161     case 0xba:
5162     case 0xbb:
5163     case 0xbc:
5164     case 0xbd:
5165     case 0xbe:
5166     case 0xbf:
5167       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5168       break;
5169 
5170     case 0x91:    /* xchg R, EAX */
5171     case 0x92:
5172     case 0x93:
5173     case 0x94:
5174     case 0x95:
5175     case 0x96:
5176     case 0x97:
5177       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5178       I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5179       break;
5180 
5181     case 0x86:    /* xchg Ev, Gv */
5182     case 0x87:
5183       if ((opcode & 1) == 0)
5184 	ir.ot = OT_BYTE;
5185       else
5186 	ir.ot = ir.dflag + OT_WORD;
5187       if (i386_record_modrm (&ir))
5188 	return -1;
5189       if (ir.mod == 3)
5190 	{
5191 	  ir.rm |= ir.rex_b;
5192 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5193 	    ir.rm &= 0x3;
5194 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5195 	}
5196       else
5197 	{
5198 	  if (i386_record_lea_modrm (&ir))
5199 	    return -1;
5200 	}
5201       ir.reg |= rex_r;
5202       if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5203 	ir.reg &= 0x3;
5204       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5205       break;
5206 
5207     case 0xc4:    /* les Gv */
5208     case 0xc5:    /* lds Gv */
5209       if (ir.regmap[X86_RECORD_R8_REGNUM])
5210         {
5211 	  ir.addr -= 1;
5212 	  goto no_support;
5213 	}
5214       /* FALLTHROUGH */
5215     case 0x0fb2:    /* lss Gv */
5216     case 0x0fb4:    /* lfs Gv */
5217     case 0x0fb5:    /* lgs Gv */
5218       if (i386_record_modrm (&ir))
5219 	return -1;
5220       if (ir.mod == 3)
5221 	{
5222 	  if (opcode > 0xff)
5223 	    ir.addr -= 3;
5224 	  else
5225 	    ir.addr -= 2;
5226 	  opcode = opcode << 8 | ir.modrm;
5227 	  goto no_support;
5228 	}
5229       switch (opcode)
5230 	{
5231 	case 0xc4:    /* les Gv */
5232 	  regnum = X86_RECORD_ES_REGNUM;
5233 	  break;
5234 	case 0xc5:    /* lds Gv */
5235 	  regnum = X86_RECORD_DS_REGNUM;
5236 	  break;
5237 	case 0x0fb2:  /* lss Gv */
5238 	  regnum = X86_RECORD_SS_REGNUM;
5239 	  break;
5240 	case 0x0fb4:  /* lfs Gv */
5241 	  regnum = X86_RECORD_FS_REGNUM;
5242 	  break;
5243 	case 0x0fb5:  /* lgs Gv */
5244 	  regnum = X86_RECORD_GS_REGNUM;
5245 	  break;
5246 	}
5247       I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5248       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5249       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5250       break;
5251 
5252     case 0xc0:    /* shifts */
5253     case 0xc1:
5254     case 0xd0:
5255     case 0xd1:
5256     case 0xd2:
5257     case 0xd3:
5258       if ((opcode & 1) == 0)
5259 	ir.ot = OT_BYTE;
5260       else
5261 	ir.ot = ir.dflag + OT_WORD;
5262       if (i386_record_modrm (&ir))
5263 	return -1;
5264       if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5265 	{
5266 	  if (i386_record_lea_modrm (&ir))
5267 	    return -1;
5268 	}
5269       else
5270 	{
5271 	  ir.rm |= ir.rex_b;
5272 	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5273 	    ir.rm &= 0x3;
5274 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5275 	}
5276       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5277       break;
5278 
5279     case 0x0fa4:
5280     case 0x0fa5:
5281     case 0x0fac:
5282     case 0x0fad:
5283       if (i386_record_modrm (&ir))
5284 	return -1;
5285       if (ir.mod == 3)
5286 	{
5287 	  if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5288 	    return -1;
5289 	}
5290       else
5291 	{
5292 	  if (i386_record_lea_modrm (&ir))
5293 	    return -1;
5294 	}
5295       break;
5296 
5297     case 0xd8:    /* Floats.  */
5298     case 0xd9:
5299     case 0xda:
5300     case 0xdb:
5301     case 0xdc:
5302     case 0xdd:
5303     case 0xde:
5304     case 0xdf:
5305       if (i386_record_modrm (&ir))
5306 	return -1;
5307       ir.reg |= ((opcode & 7) << 3);
5308       if (ir.mod != 3)
5309 	{
5310 	  /* Memory.  */
5311 	  uint64_t addr64;
5312 
5313 	  if (i386_record_lea_modrm_addr (&ir, &addr64))
5314 	    return -1;
5315 	  switch (ir.reg)
5316 	    {
5317 	    case 0x02:
5318             case 0x12:
5319             case 0x22:
5320             case 0x32:
5321 	      /* For fcom, ficom nothing to do.  */
5322               break;
5323 	    case 0x03:
5324             case 0x13:
5325             case 0x23:
5326             case 0x33:
5327 	      /* For fcomp, ficomp pop FPU stack, store all.  */
5328               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5329                 return -1;
5330               break;
5331             case 0x00:
5332             case 0x01:
5333 	    case 0x04:
5334 	    case 0x05:
5335 	    case 0x06:
5336 	    case 0x07:
5337 	    case 0x10:
5338 	    case 0x11:
5339 	    case 0x14:
5340 	    case 0x15:
5341 	    case 0x16:
5342 	    case 0x17:
5343 	    case 0x20:
5344 	    case 0x21:
5345 	    case 0x24:
5346 	    case 0x25:
5347 	    case 0x26:
5348 	    case 0x27:
5349 	    case 0x30:
5350 	    case 0x31:
5351 	    case 0x34:
5352 	    case 0x35:
5353 	    case 0x36:
5354 	    case 0x37:
5355               /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5356                  fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5357                  of code,  always affects st(0) register.  */
5358               if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5359                 return -1;
5360 	      break;
5361 	    case 0x08:
5362 	    case 0x0a:
5363 	    case 0x0b:
5364 	    case 0x18:
5365 	    case 0x19:
5366 	    case 0x1a:
5367 	    case 0x1b:
5368             case 0x1d:
5369 	    case 0x28:
5370 	    case 0x29:
5371 	    case 0x2a:
5372 	    case 0x2b:
5373 	    case 0x38:
5374 	    case 0x39:
5375 	    case 0x3a:
5376 	    case 0x3b:
5377             case 0x3c:
5378             case 0x3d:
5379 	      switch (ir.reg & 7)
5380 		{
5381 		case 0:
5382 		  /* Handling fld, fild.  */
5383 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5384 		    return -1;
5385 		  break;
5386 		case 1:
5387 		  switch (ir.reg >> 4)
5388 		    {
5389 		    case 0:
5390 		      if (record_full_arch_list_add_mem (addr64, 4))
5391 			return -1;
5392 		      break;
5393 		    case 2:
5394 		      if (record_full_arch_list_add_mem (addr64, 8))
5395 			return -1;
5396 		      break;
5397 		    case 3:
5398 		      break;
5399 		    default:
5400 		      if (record_full_arch_list_add_mem (addr64, 2))
5401 			return -1;
5402 		      break;
5403 		    }
5404 		  break;
5405 		default:
5406 		  switch (ir.reg >> 4)
5407 		    {
5408 		    case 0:
5409 		      if (record_full_arch_list_add_mem (addr64, 4))
5410 			return -1;
5411 		      if (3 == (ir.reg & 7))
5412 			{
5413 			  /* For fstp m32fp.  */
5414 			  if (i386_record_floats (gdbarch, &ir,
5415 						  I386_SAVE_FPU_REGS))
5416 			    return -1;
5417 			}
5418 		      break;
5419 		    case 1:
5420 		      if (record_full_arch_list_add_mem (addr64, 4))
5421 			return -1;
5422 		      if ((3 == (ir.reg & 7))
5423 			  || (5 == (ir.reg & 7))
5424 			  || (7 == (ir.reg & 7)))
5425 			{
5426 			  /* For fstp insn.  */
5427 			  if (i386_record_floats (gdbarch, &ir,
5428 						  I386_SAVE_FPU_REGS))
5429 			    return -1;
5430 			}
5431 		      break;
5432 		    case 2:
5433 		      if (record_full_arch_list_add_mem (addr64, 8))
5434 			return -1;
5435 		      if (3 == (ir.reg & 7))
5436 			{
5437 			  /* For fstp m64fp.  */
5438 			  if (i386_record_floats (gdbarch, &ir,
5439 						  I386_SAVE_FPU_REGS))
5440 			    return -1;
5441 			}
5442 		      break;
5443 		    case 3:
5444 		      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5445 			{
5446 			  /* For fistp, fbld, fild, fbstp.  */
5447 			  if (i386_record_floats (gdbarch, &ir,
5448 						  I386_SAVE_FPU_REGS))
5449 			    return -1;
5450 			}
5451 		      /* Fall through */
5452 		    default:
5453 		      if (record_full_arch_list_add_mem (addr64, 2))
5454 			return -1;
5455 		      break;
5456 		    }
5457 		  break;
5458 		}
5459 	      break;
5460 	    case 0x0c:
5461               /* Insn fldenv.  */
5462               if (i386_record_floats (gdbarch, &ir,
5463                                       I386_SAVE_FPU_ENV_REG_STACK))
5464                 return -1;
5465               break;
5466 	    case 0x0d:
5467               /* Insn fldcw.  */
5468               if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5469                 return -1;
5470               break;
5471 	    case 0x2c:
5472               /* Insn frstor.  */
5473               if (i386_record_floats (gdbarch, &ir,
5474                                       I386_SAVE_FPU_ENV_REG_STACK))
5475                 return -1;
5476 	      break;
5477 	    case 0x0e:
5478 	      if (ir.dflag)
5479 		{
5480 		  if (record_full_arch_list_add_mem (addr64, 28))
5481 		    return -1;
5482 		}
5483 	      else
5484 		{
5485 		  if (record_full_arch_list_add_mem (addr64, 14))
5486 		    return -1;
5487 		}
5488 	      break;
5489 	    case 0x0f:
5490 	    case 0x2f:
5491 	      if (record_full_arch_list_add_mem (addr64, 2))
5492 		return -1;
5493               /* Insn fstp, fbstp.  */
5494               if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5495                 return -1;
5496 	      break;
5497 	    case 0x1f:
5498 	    case 0x3e:
5499 	      if (record_full_arch_list_add_mem (addr64, 10))
5500 		return -1;
5501 	      break;
5502 	    case 0x2e:
5503 	      if (ir.dflag)
5504 		{
5505 		  if (record_full_arch_list_add_mem (addr64, 28))
5506 		    return -1;
5507 		  addr64 += 28;
5508 		}
5509 	      else
5510 		{
5511 		  if (record_full_arch_list_add_mem (addr64, 14))
5512 		    return -1;
5513 		  addr64 += 14;
5514 		}
5515 	      if (record_full_arch_list_add_mem (addr64, 80))
5516 		return -1;
5517 	      /* Insn fsave.  */
5518 	      if (i386_record_floats (gdbarch, &ir,
5519 				      I386_SAVE_FPU_ENV_REG_STACK))
5520 		return -1;
5521 	      break;
5522 	    case 0x3f:
5523 	      if (record_full_arch_list_add_mem (addr64, 8))
5524 		return -1;
5525 	      /* Insn fistp.  */
5526 	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5527 		return -1;
5528 	      break;
5529 	    default:
5530 	      ir.addr -= 2;
5531 	      opcode = opcode << 8 | ir.modrm;
5532 	      goto no_support;
5533 	      break;
5534 	    }
5535 	}
5536       /* Opcode is an extension of modR/M byte.  */
5537       else
5538         {
5539 	  switch (opcode)
5540 	    {
5541 	    case 0xd8:
5542 	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5543 		return -1;
5544 	      break;
5545 	    case 0xd9:
5546 	      if (0x0c == (ir.modrm >> 4))
5547 		{
5548 		  if ((ir.modrm & 0x0f) <= 7)
5549 		    {
5550 		      if (i386_record_floats (gdbarch, &ir,
5551 					      I386_SAVE_FPU_REGS))
5552 			return -1;
5553 		    }
5554                   else
5555 		    {
5556 		      if (i386_record_floats (gdbarch, &ir,
5557 					      I387_ST0_REGNUM (tdep)))
5558 			return -1;
5559 		      /* If only st(0) is changing, then we have already
5560 			 recorded.  */
5561 		      if ((ir.modrm & 0x0f) - 0x08)
5562 			{
5563 			  if (i386_record_floats (gdbarch, &ir,
5564 						  I387_ST0_REGNUM (tdep) +
5565 						  ((ir.modrm & 0x0f) - 0x08)))
5566 			    return -1;
5567 			}
5568 		    }
5569 		}
5570               else
5571                 {
5572 		  switch (ir.modrm)
5573 		    {
5574 		    case 0xe0:
5575 		    case 0xe1:
5576 		    case 0xf0:
5577 		    case 0xf5:
5578 		    case 0xf8:
5579 		    case 0xfa:
5580 		    case 0xfc:
5581 		    case 0xfe:
5582 		    case 0xff:
5583 		      if (i386_record_floats (gdbarch, &ir,
5584 					      I387_ST0_REGNUM (tdep)))
5585 			return -1;
5586 		      break;
5587 		    case 0xf1:
5588 		    case 0xf2:
5589 		    case 0xf3:
5590 		    case 0xf4:
5591 		    case 0xf6:
5592 		    case 0xf7:
5593 		    case 0xe8:
5594 		    case 0xe9:
5595 		    case 0xea:
5596 		    case 0xeb:
5597 		    case 0xec:
5598 		    case 0xed:
5599 		    case 0xee:
5600 		    case 0xf9:
5601 		    case 0xfb:
5602 		      if (i386_record_floats (gdbarch, &ir,
5603 					      I386_SAVE_FPU_REGS))
5604 			return -1;
5605 		      break;
5606 		    case 0xfd:
5607 		      if (i386_record_floats (gdbarch, &ir,
5608 					      I387_ST0_REGNUM (tdep)))
5609 			return -1;
5610 		      if (i386_record_floats (gdbarch, &ir,
5611 					      I387_ST0_REGNUM (tdep) + 1))
5612 			return -1;
5613 		      break;
5614 		    }
5615 		}
5616               break;
5617             case 0xda:
5618               if (0xe9 == ir.modrm)
5619                 {
5620 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5621 		    return -1;
5622                 }
5623               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5624                 {
5625 		  if (i386_record_floats (gdbarch, &ir,
5626 					  I387_ST0_REGNUM (tdep)))
5627 		    return -1;
5628 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5629 		    {
5630 		      if (i386_record_floats (gdbarch, &ir,
5631 					      I387_ST0_REGNUM (tdep) +
5632 					      (ir.modrm & 0x0f)))
5633 			return -1;
5634 		    }
5635 		  else if ((ir.modrm & 0x0f) - 0x08)
5636 		    {
5637 		      if (i386_record_floats (gdbarch, &ir,
5638 					      I387_ST0_REGNUM (tdep) +
5639 					      ((ir.modrm & 0x0f) - 0x08)))
5640 			return -1;
5641 		    }
5642                 }
5643               break;
5644             case 0xdb:
5645               if (0xe3 == ir.modrm)
5646                 {
5647 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5648 		    return -1;
5649                 }
5650               else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5651                 {
5652 		  if (i386_record_floats (gdbarch, &ir,
5653 					  I387_ST0_REGNUM (tdep)))
5654 		    return -1;
5655 		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5656 		    {
5657 		      if (i386_record_floats (gdbarch, &ir,
5658 					      I387_ST0_REGNUM (tdep) +
5659 					      (ir.modrm & 0x0f)))
5660 			return -1;
5661 		    }
5662 		  else if ((ir.modrm & 0x0f) - 0x08)
5663 		    {
5664 		      if (i386_record_floats (gdbarch, &ir,
5665 					      I387_ST0_REGNUM (tdep) +
5666 					      ((ir.modrm & 0x0f) - 0x08)))
5667 			return -1;
5668 		    }
5669                 }
5670               break;
5671             case 0xdc:
5672               if ((0x0c == ir.modrm >> 4)
5673 		  || (0x0d == ir.modrm >> 4)
5674 		  || (0x0f == ir.modrm >> 4))
5675                 {
5676 		  if ((ir.modrm & 0x0f) <= 7)
5677 		    {
5678 		      if (i386_record_floats (gdbarch, &ir,
5679 					      I387_ST0_REGNUM (tdep) +
5680 					      (ir.modrm & 0x0f)))
5681 			return -1;
5682 		    }
5683 		  else
5684 		    {
5685 		      if (i386_record_floats (gdbarch, &ir,
5686 					      I387_ST0_REGNUM (tdep) +
5687 					      ((ir.modrm & 0x0f) - 0x08)))
5688 			return -1;
5689 		    }
5690                 }
5691 	      break;
5692             case 0xdd:
5693               if (0x0c == ir.modrm >> 4)
5694                 {
5695                   if (i386_record_floats (gdbarch, &ir,
5696                                           I387_FTAG_REGNUM (tdep)))
5697                     return -1;
5698                 }
5699               else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5700                 {
5701                   if ((ir.modrm & 0x0f) <= 7)
5702                     {
5703 		      if (i386_record_floats (gdbarch, &ir,
5704 					      I387_ST0_REGNUM (tdep) +
5705 					      (ir.modrm & 0x0f)))
5706 			return -1;
5707                     }
5708                   else
5709                     {
5710                       if (i386_record_floats (gdbarch, &ir,
5711 					      I386_SAVE_FPU_REGS))
5712                         return -1;
5713                     }
5714                 }
5715               break;
5716             case 0xde:
5717               if ((0x0c == ir.modrm >> 4)
5718 		  || (0x0e == ir.modrm >> 4)
5719 		  || (0x0f == ir.modrm >> 4)
5720 		  || (0xd9 == ir.modrm))
5721                 {
5722 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5723 		    return -1;
5724                 }
5725               break;
5726             case 0xdf:
5727               if (0xe0 == ir.modrm)
5728                 {
5729 		  if (record_full_arch_list_add_reg (ir.regcache,
5730 						     I386_EAX_REGNUM))
5731 		    return -1;
5732                 }
5733               else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5734                 {
5735 		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5736 		    return -1;
5737                 }
5738               break;
5739 	    }
5740 	}
5741       break;
5742       /* string ops */
5743     case 0xa4:    /* movsS */
5744     case 0xa5:
5745     case 0xaa:    /* stosS */
5746     case 0xab:
5747     case 0x6c:    /* insS */
5748     case 0x6d:
5749       regcache_raw_read_unsigned (ir.regcache,
5750                                   ir.regmap[X86_RECORD_RECX_REGNUM],
5751                                   &addr);
5752       if (addr)
5753         {
5754           ULONGEST es, ds;
5755 
5756           if ((opcode & 1) == 0)
5757 	    ir.ot = OT_BYTE;
5758           else
5759 	    ir.ot = ir.dflag + OT_WORD;
5760           regcache_raw_read_unsigned (ir.regcache,
5761                                       ir.regmap[X86_RECORD_REDI_REGNUM],
5762                                       &addr);
5763 
5764           regcache_raw_read_unsigned (ir.regcache,
5765                                       ir.regmap[X86_RECORD_ES_REGNUM],
5766                                       &es);
5767           regcache_raw_read_unsigned (ir.regcache,
5768                                       ir.regmap[X86_RECORD_DS_REGNUM],
5769                                       &ds);
5770           if (ir.aflag && (es != ds))
5771             {
5772               /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5773               if (record_full_memory_query)
5774                 {
5775 	          int q;
5776 
5777                   target_terminal_ours ();
5778                   q = yquery (_("\
5779 Process record ignores the memory change of instruction at address %s\n\
5780 because it can't get the value of the segment register.\n\
5781 Do you want to stop the program?"),
5782                               paddress (gdbarch, ir.orig_addr));
5783                   target_terminal_inferior ();
5784                   if (q)
5785                     return -1;
5786                 }
5787             }
5788           else
5789             {
5790               if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5791                 return -1;
5792             }
5793 
5794           if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5795             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5796           if (opcode == 0xa4 || opcode == 0xa5)
5797             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5798           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5799           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5800 	}
5801       break;
5802 
5803     case 0xa6:    /* cmpsS */
5804     case 0xa7:
5805       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5806       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5807       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5809       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5810       break;
5811 
5812     case 0xac:    /* lodsS */
5813     case 0xad:
5814       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5816       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5817         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5818       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5819       break;
5820 
5821     case 0xae:    /* scasS */
5822     case 0xaf:
5823       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5824       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5825         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5826       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827       break;
5828 
5829     case 0x6e:    /* outsS */
5830     case 0x6f:
5831       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5832       if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5833         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5834       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5835       break;
5836 
5837     case 0xe4:    /* port I/O */
5838     case 0xe5:
5839     case 0xec:
5840     case 0xed:
5841       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843       break;
5844 
5845     case 0xe6:
5846     case 0xe7:
5847     case 0xee:
5848     case 0xef:
5849       break;
5850 
5851       /* control */
5852     case 0xc2:    /* ret im */
5853     case 0xc3:    /* ret */
5854       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5855       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5856       break;
5857 
5858     case 0xca:    /* lret im */
5859     case 0xcb:    /* lret */
5860     case 0xcf:    /* iret */
5861       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5862       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5863       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5864       break;
5865 
5866     case 0xe8:    /* call im */
5867       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5868         ir.dflag = 2;
5869       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5870         return -1;
5871       break;
5872 
5873     case 0x9a:    /* lcall im */
5874       if (ir.regmap[X86_RECORD_R8_REGNUM])
5875         {
5876           ir.addr -= 1;
5877           goto no_support;
5878         }
5879       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5880       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5881         return -1;
5882       break;
5883 
5884     case 0xe9:    /* jmp im */
5885     case 0xea:    /* ljmp im */
5886     case 0xeb:    /* jmp Jb */
5887     case 0x70:    /* jcc Jb */
5888     case 0x71:
5889     case 0x72:
5890     case 0x73:
5891     case 0x74:
5892     case 0x75:
5893     case 0x76:
5894     case 0x77:
5895     case 0x78:
5896     case 0x79:
5897     case 0x7a:
5898     case 0x7b:
5899     case 0x7c:
5900     case 0x7d:
5901     case 0x7e:
5902     case 0x7f:
5903     case 0x0f80:  /* jcc Jv */
5904     case 0x0f81:
5905     case 0x0f82:
5906     case 0x0f83:
5907     case 0x0f84:
5908     case 0x0f85:
5909     case 0x0f86:
5910     case 0x0f87:
5911     case 0x0f88:
5912     case 0x0f89:
5913     case 0x0f8a:
5914     case 0x0f8b:
5915     case 0x0f8c:
5916     case 0x0f8d:
5917     case 0x0f8e:
5918     case 0x0f8f:
5919       break;
5920 
5921     case 0x0f90:  /* setcc Gv */
5922     case 0x0f91:
5923     case 0x0f92:
5924     case 0x0f93:
5925     case 0x0f94:
5926     case 0x0f95:
5927     case 0x0f96:
5928     case 0x0f97:
5929     case 0x0f98:
5930     case 0x0f99:
5931     case 0x0f9a:
5932     case 0x0f9b:
5933     case 0x0f9c:
5934     case 0x0f9d:
5935     case 0x0f9e:
5936     case 0x0f9f:
5937       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5938       ir.ot = OT_BYTE;
5939       if (i386_record_modrm (&ir))
5940 	return -1;
5941       if (ir.mod == 3)
5942         I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5943 					    : (ir.rm & 0x3));
5944       else
5945 	{
5946 	  if (i386_record_lea_modrm (&ir))
5947 	    return -1;
5948 	}
5949       break;
5950 
5951     case 0x0f40:    /* cmov Gv, Ev */
5952     case 0x0f41:
5953     case 0x0f42:
5954     case 0x0f43:
5955     case 0x0f44:
5956     case 0x0f45:
5957     case 0x0f46:
5958     case 0x0f47:
5959     case 0x0f48:
5960     case 0x0f49:
5961     case 0x0f4a:
5962     case 0x0f4b:
5963     case 0x0f4c:
5964     case 0x0f4d:
5965     case 0x0f4e:
5966     case 0x0f4f:
5967       if (i386_record_modrm (&ir))
5968 	return -1;
5969       ir.reg |= rex_r;
5970       if (ir.dflag == OT_BYTE)
5971 	ir.reg &= 0x3;
5972       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5973       break;
5974 
5975       /* flags */
5976     case 0x9c:    /* pushf */
5977       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5978       if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5979         ir.dflag = 2;
5980       if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5981         return -1;
5982       break;
5983 
5984     case 0x9d:    /* popf */
5985       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5986       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987       break;
5988 
5989     case 0x9e:    /* sahf */
5990       if (ir.regmap[X86_RECORD_R8_REGNUM])
5991         {
5992           ir.addr -= 1;
5993           goto no_support;
5994         }
5995       /* FALLTHROUGH */
5996     case 0xf5:    /* cmc */
5997     case 0xf8:    /* clc */
5998     case 0xf9:    /* stc */
5999     case 0xfc:    /* cld */
6000     case 0xfd:    /* std */
6001       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6002       break;
6003 
6004     case 0x9f:    /* lahf */
6005       if (ir.regmap[X86_RECORD_R8_REGNUM])
6006         {
6007           ir.addr -= 1;
6008           goto no_support;
6009         }
6010       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6012       break;
6013 
6014       /* bit operations */
6015     case 0x0fba:    /* bt/bts/btr/btc Gv, im */
6016       ir.ot = ir.dflag + OT_WORD;
6017       if (i386_record_modrm (&ir))
6018 	return -1;
6019       if (ir.reg < 4)
6020 	{
6021 	  ir.addr -= 2;
6022 	  opcode = opcode << 8 | ir.modrm;
6023 	  goto no_support;
6024 	}
6025       if (ir.reg != 4)
6026 	{
6027           if (ir.mod == 3)
6028             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6029 	  else
6030 	    {
6031 	      if (i386_record_lea_modrm (&ir))
6032 		return -1;
6033 	    }
6034 	}
6035       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6036       break;
6037 
6038     case 0x0fa3:    /* bt Gv, Ev */
6039       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040       break;
6041 
6042     case 0x0fab:    /* bts */
6043     case 0x0fb3:    /* btr */
6044     case 0x0fbb:    /* btc */
6045       ir.ot = ir.dflag + OT_WORD;
6046       if (i386_record_modrm (&ir))
6047         return -1;
6048       if (ir.mod == 3)
6049         I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6050       else
6051         {
6052           uint64_t addr64;
6053           if (i386_record_lea_modrm_addr (&ir, &addr64))
6054             return -1;
6055           regcache_raw_read_unsigned (ir.regcache,
6056                                       ir.regmap[ir.reg | rex_r],
6057                                       &addr);
6058           switch (ir.dflag)
6059             {
6060             case 0:
6061               addr64 += ((int16_t) addr >> 4) << 4;
6062               break;
6063             case 1:
6064               addr64 += ((int32_t) addr >> 5) << 5;
6065               break;
6066             case 2:
6067               addr64 += ((int64_t) addr >> 6) << 6;
6068               break;
6069             }
6070           if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6071             return -1;
6072           if (i386_record_lea_modrm (&ir))
6073             return -1;
6074         }
6075       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6076       break;
6077 
6078     case 0x0fbc:    /* bsf */
6079     case 0x0fbd:    /* bsr */
6080       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6081       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6082       break;
6083 
6084       /* bcd */
6085     case 0x27:    /* daa */
6086     case 0x2f:    /* das */
6087     case 0x37:    /* aaa */
6088     case 0x3f:    /* aas */
6089     case 0xd4:    /* aam */
6090     case 0xd5:    /* aad */
6091       if (ir.regmap[X86_RECORD_R8_REGNUM])
6092         {
6093           ir.addr -= 1;
6094           goto no_support;
6095         }
6096       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6097       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6098       break;
6099 
6100       /* misc */
6101     case 0x90:    /* nop */
6102       if (prefixes & PREFIX_LOCK)
6103 	{
6104 	  ir.addr -= 1;
6105 	  goto no_support;
6106 	}
6107       break;
6108 
6109     case 0x9b:    /* fwait */
6110       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6111 	return -1;
6112       opcode = (uint32_t) opcode8;
6113       ir.addr++;
6114       goto reswitch;
6115       break;
6116 
6117       /* XXX */
6118     case 0xcc:    /* int3 */
6119       printf_unfiltered (_("Process record does not support instruction "
6120 			   "int3.\n"));
6121       ir.addr -= 1;
6122       goto no_support;
6123       break;
6124 
6125       /* XXX */
6126     case 0xcd:    /* int */
6127       {
6128 	int ret;
6129 	uint8_t interrupt;
6130 	if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6131 	  return -1;
6132 	ir.addr++;
6133 	if (interrupt != 0x80
6134 	    || tdep->i386_intx80_record == NULL)
6135 	  {
6136 	    printf_unfiltered (_("Process record does not support "
6137 				 "instruction int 0x%02x.\n"),
6138 			       interrupt);
6139 	    ir.addr -= 2;
6140 	    goto no_support;
6141 	  }
6142 	ret = tdep->i386_intx80_record (ir.regcache);
6143 	if (ret)
6144 	  return ret;
6145       }
6146       break;
6147 
6148       /* XXX */
6149     case 0xce:    /* into */
6150       printf_unfiltered (_("Process record does not support "
6151 			   "instruction into.\n"));
6152       ir.addr -= 1;
6153       goto no_support;
6154       break;
6155 
6156     case 0xfa:    /* cli */
6157     case 0xfb:    /* sti */
6158       break;
6159 
6160     case 0x62:    /* bound */
6161       printf_unfiltered (_("Process record does not support "
6162 			   "instruction bound.\n"));
6163       ir.addr -= 1;
6164       goto no_support;
6165       break;
6166 
6167     case 0x0fc8:    /* bswap reg */
6168     case 0x0fc9:
6169     case 0x0fca:
6170     case 0x0fcb:
6171     case 0x0fcc:
6172     case 0x0fcd:
6173     case 0x0fce:
6174     case 0x0fcf:
6175       I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6176       break;
6177 
6178     case 0xd6:    /* salc */
6179       if (ir.regmap[X86_RECORD_R8_REGNUM])
6180         {
6181           ir.addr -= 1;
6182           goto no_support;
6183         }
6184       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6185       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6186       break;
6187 
6188     case 0xe0:    /* loopnz */
6189     case 0xe1:    /* loopz */
6190     case 0xe2:    /* loop */
6191     case 0xe3:    /* jecxz */
6192       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6193       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6194       break;
6195 
6196     case 0x0f30:    /* wrmsr */
6197       printf_unfiltered (_("Process record does not support "
6198 			   "instruction wrmsr.\n"));
6199       ir.addr -= 2;
6200       goto no_support;
6201       break;
6202 
6203     case 0x0f32:    /* rdmsr */
6204       printf_unfiltered (_("Process record does not support "
6205 			   "instruction rdmsr.\n"));
6206       ir.addr -= 2;
6207       goto no_support;
6208       break;
6209 
6210     case 0x0f31:    /* rdtsc */
6211       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6213       break;
6214 
6215     case 0x0f34:    /* sysenter */
6216       {
6217 	int ret;
6218         if (ir.regmap[X86_RECORD_R8_REGNUM])
6219           {
6220             ir.addr -= 2;
6221             goto no_support;
6222           }
6223 	if (tdep->i386_sysenter_record == NULL)
6224 	  {
6225 	    printf_unfiltered (_("Process record does not support "
6226 				 "instruction sysenter.\n"));
6227 	    ir.addr -= 2;
6228 	    goto no_support;
6229 	  }
6230 	ret = tdep->i386_sysenter_record (ir.regcache);
6231 	if (ret)
6232 	  return ret;
6233       }
6234       break;
6235 
6236     case 0x0f35:    /* sysexit */
6237       printf_unfiltered (_("Process record does not support "
6238 			   "instruction sysexit.\n"));
6239       ir.addr -= 2;
6240       goto no_support;
6241       break;
6242 
6243     case 0x0f05:    /* syscall */
6244       {
6245 	int ret;
6246 	if (tdep->i386_syscall_record == NULL)
6247 	  {
6248 	    printf_unfiltered (_("Process record does not support "
6249 				 "instruction syscall.\n"));
6250 	    ir.addr -= 2;
6251 	    goto no_support;
6252 	  }
6253 	ret = tdep->i386_syscall_record (ir.regcache);
6254 	if (ret)
6255 	  return ret;
6256       }
6257       break;
6258 
6259     case 0x0f07:    /* sysret */
6260       printf_unfiltered (_("Process record does not support "
6261                            "instruction sysret.\n"));
6262       ir.addr -= 2;
6263       goto no_support;
6264       break;
6265 
6266     case 0x0fa2:    /* cpuid */
6267       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6268       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6269       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6270       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6271       break;
6272 
6273     case 0xf4:    /* hlt */
6274       printf_unfiltered (_("Process record does not support "
6275 			   "instruction hlt.\n"));
6276       ir.addr -= 1;
6277       goto no_support;
6278       break;
6279 
6280     case 0x0f00:
6281       if (i386_record_modrm (&ir))
6282 	return -1;
6283       switch (ir.reg)
6284 	{
6285 	case 0:  /* sldt */
6286 	case 1:  /* str  */
6287 	  if (ir.mod == 3)
6288             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6289 	  else
6290 	    {
6291 	      ir.ot = OT_WORD;
6292 	      if (i386_record_lea_modrm (&ir))
6293 		return -1;
6294 	    }
6295 	  break;
6296 	case 2:  /* lldt */
6297 	case 3:  /* ltr */
6298 	  break;
6299 	case 4:  /* verr */
6300 	case 5:  /* verw */
6301           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6302 	  break;
6303 	default:
6304 	  ir.addr -= 3;
6305 	  opcode = opcode << 8 | ir.modrm;
6306 	  goto no_support;
6307 	  break;
6308 	}
6309       break;
6310 
6311     case 0x0f01:
6312       if (i386_record_modrm (&ir))
6313 	return -1;
6314       switch (ir.reg)
6315 	{
6316 	case 0:  /* sgdt */
6317 	  {
6318 	    uint64_t addr64;
6319 
6320 	    if (ir.mod == 3)
6321 	      {
6322 		ir.addr -= 3;
6323 		opcode = opcode << 8 | ir.modrm;
6324 		goto no_support;
6325 	      }
6326 	    if (ir.override >= 0)
6327 	      {
6328                 if (record_full_memory_query)
6329                   {
6330 	            int q;
6331 
6332                     target_terminal_ours ();
6333                     q = yquery (_("\
6334 Process record ignores the memory change of instruction at address %s\n\
6335 because it can't get the value of the segment register.\n\
6336 Do you want to stop the program?"),
6337                                 paddress (gdbarch, ir.orig_addr));
6338                     target_terminal_inferior ();
6339                     if (q)
6340                       return -1;
6341                   }
6342 	      }
6343 	    else
6344 	      {
6345 		if (i386_record_lea_modrm_addr (&ir, &addr64))
6346 		  return -1;
6347 		if (record_full_arch_list_add_mem (addr64, 2))
6348 		  return -1;
6349 		addr64 += 2;
6350                 if (ir.regmap[X86_RECORD_R8_REGNUM])
6351                   {
6352                     if (record_full_arch_list_add_mem (addr64, 8))
6353 		      return -1;
6354                   }
6355                 else
6356                   {
6357                     if (record_full_arch_list_add_mem (addr64, 4))
6358 		      return -1;
6359                   }
6360 	      }
6361 	  }
6362 	  break;
6363 	case 1:
6364 	  if (ir.mod == 3)
6365 	    {
6366 	      switch (ir.rm)
6367 		{
6368 		case 0:  /* monitor */
6369 		  break;
6370 		case 1:  /* mwait */
6371 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6372 		  break;
6373 		default:
6374 		  ir.addr -= 3;
6375 		  opcode = opcode << 8 | ir.modrm;
6376 		  goto no_support;
6377 		  break;
6378 		}
6379 	    }
6380 	  else
6381 	    {
6382 	      /* sidt */
6383 	      if (ir.override >= 0)
6384 		{
6385                   if (record_full_memory_query)
6386                     {
6387 	              int q;
6388 
6389                       target_terminal_ours ();
6390                       q = yquery (_("\
6391 Process record ignores the memory change of instruction at address %s\n\
6392 because it can't get the value of the segment register.\n\
6393 Do you want to stop the program?"),
6394                                   paddress (gdbarch, ir.orig_addr));
6395                       target_terminal_inferior ();
6396                       if (q)
6397                         return -1;
6398                     }
6399 		}
6400 	      else
6401 		{
6402 		  uint64_t addr64;
6403 
6404 		  if (i386_record_lea_modrm_addr (&ir, &addr64))
6405 		    return -1;
6406 		  if (record_full_arch_list_add_mem (addr64, 2))
6407 		    return -1;
6408 		  addr64 += 2;
6409                   if (ir.regmap[X86_RECORD_R8_REGNUM])
6410                     {
6411                       if (record_full_arch_list_add_mem (addr64, 8))
6412 		        return -1;
6413                     }
6414                   else
6415                     {
6416                       if (record_full_arch_list_add_mem (addr64, 4))
6417 		        return -1;
6418                     }
6419 		}
6420 	    }
6421 	  break;
6422 	case 2:  /* lgdt */
6423 	  if (ir.mod == 3)
6424 	    {
6425 	      /* xgetbv */
6426 	      if (ir.rm == 0)
6427 		{
6428 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6429 		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6430 		  break;
6431 		}
6432 	      /* xsetbv */
6433 	      else if (ir.rm == 1)
6434 		break;
6435 	    }
6436 	case 3:  /* lidt */
6437 	  if (ir.mod == 3)
6438 	    {
6439 	      ir.addr -= 3;
6440 	      opcode = opcode << 8 | ir.modrm;
6441 	      goto no_support;
6442 	    }
6443 	  break;
6444 	case 4:  /* smsw */
6445 	  if (ir.mod == 3)
6446 	    {
6447 	      if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6448 		return -1;
6449 	    }
6450 	  else
6451 	    {
6452 	      ir.ot = OT_WORD;
6453 	      if (i386_record_lea_modrm (&ir))
6454 		return -1;
6455 	    }
6456 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6457 	  break;
6458 	case 6:  /* lmsw */
6459 	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6460 	  break;
6461 	case 7:  /* invlpg */
6462 	  if (ir.mod == 3)
6463 	    {
6464 	      if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6465 	        I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6466 	      else
6467 	        {
6468 	          ir.addr -= 3;
6469 	          opcode = opcode << 8 | ir.modrm;
6470 	          goto no_support;
6471 	        }
6472 	    }
6473 	  else
6474 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 	  break;
6476 	default:
6477 	  ir.addr -= 3;
6478 	  opcode = opcode << 8 | ir.modrm;
6479 	  goto no_support;
6480 	  break;
6481 	}
6482       break;
6483 
6484     case 0x0f08:    /* invd */
6485     case 0x0f09:    /* wbinvd */
6486       break;
6487 
6488     case 0x63:    /* arpl */
6489       if (i386_record_modrm (&ir))
6490 	return -1;
6491       if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6492         {
6493           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6494 					      ? (ir.reg | rex_r) : ir.rm);
6495         }
6496       else
6497         {
6498           ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6499           if (i386_record_lea_modrm (&ir))
6500             return -1;
6501         }
6502       if (!ir.regmap[X86_RECORD_R8_REGNUM])
6503         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504       break;
6505 
6506     case 0x0f02:    /* lar */
6507     case 0x0f03:    /* lsl */
6508       if (i386_record_modrm (&ir))
6509 	return -1;
6510       I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6511       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512       break;
6513 
6514     case 0x0f18:
6515       if (i386_record_modrm (&ir))
6516 	return -1;
6517       if (ir.mod == 3 && ir.reg == 3)
6518         {
6519 	  ir.addr -= 3;
6520 	  opcode = opcode << 8 | ir.modrm;
6521 	  goto no_support;
6522 	}
6523       break;
6524 
6525     case 0x0f19:
6526     case 0x0f1a:
6527     case 0x0f1b:
6528     case 0x0f1c:
6529     case 0x0f1d:
6530     case 0x0f1e:
6531     case 0x0f1f:
6532       /* nop (multi byte) */
6533       break;
6534 
6535     case 0x0f20:    /* mov reg, crN */
6536     case 0x0f22:    /* mov crN, reg */
6537       if (i386_record_modrm (&ir))
6538 	return -1;
6539       if ((ir.modrm & 0xc0) != 0xc0)
6540 	{
6541 	  ir.addr -= 3;
6542 	  opcode = opcode << 8 | ir.modrm;
6543 	  goto no_support;
6544 	}
6545       switch (ir.reg)
6546 	{
6547 	case 0:
6548 	case 2:
6549 	case 3:
6550 	case 4:
6551 	case 8:
6552 	  if (opcode & 2)
6553 	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6554 	  else
6555             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6556 	  break;
6557 	default:
6558 	  ir.addr -= 3;
6559 	  opcode = opcode << 8 | ir.modrm;
6560 	  goto no_support;
6561 	  break;
6562 	}
6563       break;
6564 
6565     case 0x0f21:    /* mov reg, drN */
6566     case 0x0f23:    /* mov drN, reg */
6567       if (i386_record_modrm (&ir))
6568 	return -1;
6569       if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6570 	  || ir.reg == 5 || ir.reg >= 8)
6571 	{
6572 	  ir.addr -= 3;
6573 	  opcode = opcode << 8 | ir.modrm;
6574 	  goto no_support;
6575 	}
6576       if (opcode & 2)
6577         I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6578       else
6579 	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6580       break;
6581 
6582     case 0x0f06:    /* clts */
6583       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6584       break;
6585 
6586     /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6587 
6588     case 0x0f0d:    /* 3DNow! prefetch */
6589       break;
6590 
6591     case 0x0f0e:    /* 3DNow! femms */
6592     case 0x0f77:    /* emms */
6593       if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6594         goto no_support;
6595       record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6596       break;
6597 
6598     case 0x0f0f:    /* 3DNow! data */
6599       if (i386_record_modrm (&ir))
6600 	return -1;
6601       if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6602 	return -1;
6603       ir.addr++;
6604       switch (opcode8)
6605         {
6606         case 0x0c:    /* 3DNow! pi2fw */
6607         case 0x0d:    /* 3DNow! pi2fd */
6608         case 0x1c:    /* 3DNow! pf2iw */
6609         case 0x1d:    /* 3DNow! pf2id */
6610         case 0x8a:    /* 3DNow! pfnacc */
6611         case 0x8e:    /* 3DNow! pfpnacc */
6612         case 0x90:    /* 3DNow! pfcmpge */
6613         case 0x94:    /* 3DNow! pfmin */
6614         case 0x96:    /* 3DNow! pfrcp */
6615         case 0x97:    /* 3DNow! pfrsqrt */
6616         case 0x9a:    /* 3DNow! pfsub */
6617         case 0x9e:    /* 3DNow! pfadd */
6618         case 0xa0:    /* 3DNow! pfcmpgt */
6619         case 0xa4:    /* 3DNow! pfmax */
6620         case 0xa6:    /* 3DNow! pfrcpit1 */
6621         case 0xa7:    /* 3DNow! pfrsqit1 */
6622         case 0xaa:    /* 3DNow! pfsubr */
6623         case 0xae:    /* 3DNow! pfacc */
6624         case 0xb0:    /* 3DNow! pfcmpeq */
6625         case 0xb4:    /* 3DNow! pfmul */
6626         case 0xb6:    /* 3DNow! pfrcpit2 */
6627         case 0xb7:    /* 3DNow! pmulhrw */
6628         case 0xbb:    /* 3DNow! pswapd */
6629         case 0xbf:    /* 3DNow! pavgusb */
6630           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6631             goto no_support_3dnow_data;
6632           record_full_arch_list_add_reg (ir.regcache, ir.reg);
6633           break;
6634 
6635         default:
6636 no_support_3dnow_data:
6637           opcode = (opcode << 8) | opcode8;
6638           goto no_support;
6639           break;
6640         }
6641       break;
6642 
6643     case 0x0faa:    /* rsm */
6644       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6646       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6647       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6648       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6649       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6650       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6651       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6652       I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6653       break;
6654 
6655     case 0x0fae:
6656       if (i386_record_modrm (&ir))
6657 	return -1;
6658       switch(ir.reg)
6659         {
6660         case 0:    /* fxsave */
6661           {
6662             uint64_t tmpu64;
6663 
6664             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6665 	    if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6666 	      return -1;
6667             if (record_full_arch_list_add_mem (tmpu64, 512))
6668               return -1;
6669           }
6670           break;
6671 
6672         case 1:    /* fxrstor */
6673           {
6674             int i;
6675 
6676             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 
6678             for (i = I387_MM0_REGNUM (tdep);
6679                  i386_mmx_regnum_p (gdbarch, i); i++)
6680               record_full_arch_list_add_reg (ir.regcache, i);
6681 
6682             for (i = I387_XMM0_REGNUM (tdep);
6683                  i386_xmm_regnum_p (gdbarch, i); i++)
6684               record_full_arch_list_add_reg (ir.regcache, i);
6685 
6686             if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6687               record_full_arch_list_add_reg (ir.regcache,
6688 					     I387_MXCSR_REGNUM(tdep));
6689 
6690             for (i = I387_ST0_REGNUM (tdep);
6691                  i386_fp_regnum_p (gdbarch, i); i++)
6692               record_full_arch_list_add_reg (ir.regcache, i);
6693 
6694             for (i = I387_FCTRL_REGNUM (tdep);
6695                  i386_fpc_regnum_p (gdbarch, i); i++)
6696               record_full_arch_list_add_reg (ir.regcache, i);
6697           }
6698           break;
6699 
6700         case 2:    /* ldmxcsr */
6701           if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6702             goto no_support;
6703           record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6704           break;
6705 
6706         case 3:    /* stmxcsr */
6707           ir.ot = OT_LONG;
6708           if (i386_record_lea_modrm (&ir))
6709             return -1;
6710           break;
6711 
6712         case 5:    /* lfence */
6713         case 6:    /* mfence */
6714         case 7:    /* sfence clflush */
6715           break;
6716 
6717         default:
6718           opcode = (opcode << 8) | ir.modrm;
6719           goto no_support;
6720           break;
6721         }
6722       break;
6723 
6724     case 0x0fc3:    /* movnti */
6725       ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6726       if (i386_record_modrm (&ir))
6727 	return -1;
6728       if (ir.mod == 3)
6729         goto no_support;
6730       ir.reg |= rex_r;
6731       if (i386_record_lea_modrm (&ir))
6732         return -1;
6733       break;
6734 
6735     /* Add prefix to opcode.  */
6736     case 0x0f10:
6737     case 0x0f11:
6738     case 0x0f12:
6739     case 0x0f13:
6740     case 0x0f14:
6741     case 0x0f15:
6742     case 0x0f16:
6743     case 0x0f17:
6744     case 0x0f28:
6745     case 0x0f29:
6746     case 0x0f2a:
6747     case 0x0f2b:
6748     case 0x0f2c:
6749     case 0x0f2d:
6750     case 0x0f2e:
6751     case 0x0f2f:
6752     case 0x0f38:
6753     case 0x0f39:
6754     case 0x0f3a:
6755     case 0x0f50:
6756     case 0x0f51:
6757     case 0x0f52:
6758     case 0x0f53:
6759     case 0x0f54:
6760     case 0x0f55:
6761     case 0x0f56:
6762     case 0x0f57:
6763     case 0x0f58:
6764     case 0x0f59:
6765     case 0x0f5a:
6766     case 0x0f5b:
6767     case 0x0f5c:
6768     case 0x0f5d:
6769     case 0x0f5e:
6770     case 0x0f5f:
6771     case 0x0f60:
6772     case 0x0f61:
6773     case 0x0f62:
6774     case 0x0f63:
6775     case 0x0f64:
6776     case 0x0f65:
6777     case 0x0f66:
6778     case 0x0f67:
6779     case 0x0f68:
6780     case 0x0f69:
6781     case 0x0f6a:
6782     case 0x0f6b:
6783     case 0x0f6c:
6784     case 0x0f6d:
6785     case 0x0f6e:
6786     case 0x0f6f:
6787     case 0x0f70:
6788     case 0x0f71:
6789     case 0x0f72:
6790     case 0x0f73:
6791     case 0x0f74:
6792     case 0x0f75:
6793     case 0x0f76:
6794     case 0x0f7c:
6795     case 0x0f7d:
6796     case 0x0f7e:
6797     case 0x0f7f:
6798     case 0x0fb8:
6799     case 0x0fc2:
6800     case 0x0fc4:
6801     case 0x0fc5:
6802     case 0x0fc6:
6803     case 0x0fd0:
6804     case 0x0fd1:
6805     case 0x0fd2:
6806     case 0x0fd3:
6807     case 0x0fd4:
6808     case 0x0fd5:
6809     case 0x0fd6:
6810     case 0x0fd7:
6811     case 0x0fd8:
6812     case 0x0fd9:
6813     case 0x0fda:
6814     case 0x0fdb:
6815     case 0x0fdc:
6816     case 0x0fdd:
6817     case 0x0fde:
6818     case 0x0fdf:
6819     case 0x0fe0:
6820     case 0x0fe1:
6821     case 0x0fe2:
6822     case 0x0fe3:
6823     case 0x0fe4:
6824     case 0x0fe5:
6825     case 0x0fe6:
6826     case 0x0fe7:
6827     case 0x0fe8:
6828     case 0x0fe9:
6829     case 0x0fea:
6830     case 0x0feb:
6831     case 0x0fec:
6832     case 0x0fed:
6833     case 0x0fee:
6834     case 0x0fef:
6835     case 0x0ff0:
6836     case 0x0ff1:
6837     case 0x0ff2:
6838     case 0x0ff3:
6839     case 0x0ff4:
6840     case 0x0ff5:
6841     case 0x0ff6:
6842     case 0x0ff7:
6843     case 0x0ff8:
6844     case 0x0ff9:
6845     case 0x0ffa:
6846     case 0x0ffb:
6847     case 0x0ffc:
6848     case 0x0ffd:
6849     case 0x0ffe:
6850       switch (prefixes)
6851         {
6852         case PREFIX_REPNZ:
6853           opcode |= 0xf20000;
6854           break;
6855         case PREFIX_DATA:
6856           opcode |= 0x660000;
6857           break;
6858         case PREFIX_REPZ:
6859           opcode |= 0xf30000;
6860           break;
6861         }
6862 reswitch_prefix_add:
6863       switch (opcode)
6864         {
6865         case 0x0f38:
6866         case 0x660f38:
6867         case 0xf20f38:
6868         case 0x0f3a:
6869         case 0x660f3a:
6870           if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6871 	    return -1;
6872           ir.addr++;
6873           opcode = (uint32_t) opcode8 | opcode << 8;
6874           goto reswitch_prefix_add;
6875           break;
6876 
6877         case 0x0f10:        /* movups */
6878         case 0x660f10:      /* movupd */
6879         case 0xf30f10:      /* movss */
6880         case 0xf20f10:      /* movsd */
6881         case 0x0f12:        /* movlps */
6882         case 0x660f12:      /* movlpd */
6883         case 0xf30f12:      /* movsldup */
6884         case 0xf20f12:      /* movddup */
6885         case 0x0f14:        /* unpcklps */
6886         case 0x660f14:      /* unpcklpd */
6887         case 0x0f15:        /* unpckhps */
6888         case 0x660f15:      /* unpckhpd */
6889         case 0x0f16:        /* movhps */
6890         case 0x660f16:      /* movhpd */
6891         case 0xf30f16:      /* movshdup */
6892         case 0x0f28:        /* movaps */
6893         case 0x660f28:      /* movapd */
6894         case 0x0f2a:        /* cvtpi2ps */
6895         case 0x660f2a:      /* cvtpi2pd */
6896         case 0xf30f2a:      /* cvtsi2ss */
6897         case 0xf20f2a:      /* cvtsi2sd */
6898         case 0x0f2c:        /* cvttps2pi */
6899         case 0x660f2c:      /* cvttpd2pi */
6900         case 0x0f2d:        /* cvtps2pi */
6901         case 0x660f2d:      /* cvtpd2pi */
6902         case 0x660f3800:    /* pshufb */
6903         case 0x660f3801:    /* phaddw */
6904         case 0x660f3802:    /* phaddd */
6905         case 0x660f3803:    /* phaddsw */
6906         case 0x660f3804:    /* pmaddubsw */
6907         case 0x660f3805:    /* phsubw */
6908         case 0x660f3806:    /* phsubd */
6909         case 0x660f3807:    /* phsubsw */
6910         case 0x660f3808:    /* psignb */
6911         case 0x660f3809:    /* psignw */
6912         case 0x660f380a:    /* psignd */
6913         case 0x660f380b:    /* pmulhrsw */
6914         case 0x660f3810:    /* pblendvb */
6915         case 0x660f3814:    /* blendvps */
6916         case 0x660f3815:    /* blendvpd */
6917         case 0x660f381c:    /* pabsb */
6918         case 0x660f381d:    /* pabsw */
6919         case 0x660f381e:    /* pabsd */
6920         case 0x660f3820:    /* pmovsxbw */
6921         case 0x660f3821:    /* pmovsxbd */
6922         case 0x660f3822:    /* pmovsxbq */
6923         case 0x660f3823:    /* pmovsxwd */
6924         case 0x660f3824:    /* pmovsxwq */
6925         case 0x660f3825:    /* pmovsxdq */
6926         case 0x660f3828:    /* pmuldq */
6927         case 0x660f3829:    /* pcmpeqq */
6928         case 0x660f382a:    /* movntdqa */
6929         case 0x660f3a08:    /* roundps */
6930         case 0x660f3a09:    /* roundpd */
6931         case 0x660f3a0a:    /* roundss */
6932         case 0x660f3a0b:    /* roundsd */
6933         case 0x660f3a0c:    /* blendps */
6934         case 0x660f3a0d:    /* blendpd */
6935         case 0x660f3a0e:    /* pblendw */
6936         case 0x660f3a0f:    /* palignr */
6937         case 0x660f3a20:    /* pinsrb */
6938         case 0x660f3a21:    /* insertps */
6939         case 0x660f3a22:    /* pinsrd pinsrq */
6940         case 0x660f3a40:    /* dpps */
6941         case 0x660f3a41:    /* dppd */
6942         case 0x660f3a42:    /* mpsadbw */
6943         case 0x660f3a60:    /* pcmpestrm */
6944         case 0x660f3a61:    /* pcmpestri */
6945         case 0x660f3a62:    /* pcmpistrm */
6946         case 0x660f3a63:    /* pcmpistri */
6947         case 0x0f51:        /* sqrtps */
6948         case 0x660f51:      /* sqrtpd */
6949         case 0xf20f51:      /* sqrtsd */
6950         case 0xf30f51:      /* sqrtss */
6951         case 0x0f52:        /* rsqrtps */
6952         case 0xf30f52:      /* rsqrtss */
6953         case 0x0f53:        /* rcpps */
6954         case 0xf30f53:      /* rcpss */
6955         case 0x0f54:        /* andps */
6956         case 0x660f54:      /* andpd */
6957         case 0x0f55:        /* andnps */
6958         case 0x660f55:      /* andnpd */
6959         case 0x0f56:        /* orps */
6960         case 0x660f56:      /* orpd */
6961         case 0x0f57:        /* xorps */
6962         case 0x660f57:      /* xorpd */
6963         case 0x0f58:        /* addps */
6964         case 0x660f58:      /* addpd */
6965         case 0xf20f58:      /* addsd */
6966         case 0xf30f58:      /* addss */
6967         case 0x0f59:        /* mulps */
6968         case 0x660f59:      /* mulpd */
6969         case 0xf20f59:      /* mulsd */
6970         case 0xf30f59:      /* mulss */
6971         case 0x0f5a:        /* cvtps2pd */
6972         case 0x660f5a:      /* cvtpd2ps */
6973         case 0xf20f5a:      /* cvtsd2ss */
6974         case 0xf30f5a:      /* cvtss2sd */
6975         case 0x0f5b:        /* cvtdq2ps */
6976         case 0x660f5b:      /* cvtps2dq */
6977         case 0xf30f5b:      /* cvttps2dq */
6978         case 0x0f5c:        /* subps */
6979         case 0x660f5c:      /* subpd */
6980         case 0xf20f5c:      /* subsd */
6981         case 0xf30f5c:      /* subss */
6982         case 0x0f5d:        /* minps */
6983         case 0x660f5d:      /* minpd */
6984         case 0xf20f5d:      /* minsd */
6985         case 0xf30f5d:      /* minss */
6986         case 0x0f5e:        /* divps */
6987         case 0x660f5e:      /* divpd */
6988         case 0xf20f5e:      /* divsd */
6989         case 0xf30f5e:      /* divss */
6990         case 0x0f5f:        /* maxps */
6991         case 0x660f5f:      /* maxpd */
6992         case 0xf20f5f:      /* maxsd */
6993         case 0xf30f5f:      /* maxss */
6994         case 0x660f60:      /* punpcklbw */
6995         case 0x660f61:      /* punpcklwd */
6996         case 0x660f62:      /* punpckldq */
6997         case 0x660f63:      /* packsswb */
6998         case 0x660f64:      /* pcmpgtb */
6999         case 0x660f65:      /* pcmpgtw */
7000         case 0x660f66:      /* pcmpgtd */
7001         case 0x660f67:      /* packuswb */
7002         case 0x660f68:      /* punpckhbw */
7003         case 0x660f69:      /* punpckhwd */
7004         case 0x660f6a:      /* punpckhdq */
7005         case 0x660f6b:      /* packssdw */
7006         case 0x660f6c:      /* punpcklqdq */
7007         case 0x660f6d:      /* punpckhqdq */
7008         case 0x660f6e:      /* movd */
7009         case 0x660f6f:      /* movdqa */
7010         case 0xf30f6f:      /* movdqu */
7011         case 0x660f70:      /* pshufd */
7012         case 0xf20f70:      /* pshuflw */
7013         case 0xf30f70:      /* pshufhw */
7014         case 0x660f74:      /* pcmpeqb */
7015         case 0x660f75:      /* pcmpeqw */
7016         case 0x660f76:      /* pcmpeqd */
7017         case 0x660f7c:      /* haddpd */
7018         case 0xf20f7c:      /* haddps */
7019         case 0x660f7d:      /* hsubpd */
7020         case 0xf20f7d:      /* hsubps */
7021         case 0xf30f7e:      /* movq */
7022         case 0x0fc2:        /* cmpps */
7023         case 0x660fc2:      /* cmppd */
7024         case 0xf20fc2:      /* cmpsd */
7025         case 0xf30fc2:      /* cmpss */
7026         case 0x660fc4:      /* pinsrw */
7027         case 0x0fc6:        /* shufps */
7028         case 0x660fc6:      /* shufpd */
7029         case 0x660fd0:      /* addsubpd */
7030         case 0xf20fd0:      /* addsubps */
7031         case 0x660fd1:      /* psrlw */
7032         case 0x660fd2:      /* psrld */
7033         case 0x660fd3:      /* psrlq */
7034         case 0x660fd4:      /* paddq */
7035         case 0x660fd5:      /* pmullw */
7036         case 0xf30fd6:      /* movq2dq */
7037         case 0x660fd8:      /* psubusb */
7038         case 0x660fd9:      /* psubusw */
7039         case 0x660fda:      /* pminub */
7040         case 0x660fdb:      /* pand */
7041         case 0x660fdc:      /* paddusb */
7042         case 0x660fdd:      /* paddusw */
7043         case 0x660fde:      /* pmaxub */
7044         case 0x660fdf:      /* pandn */
7045         case 0x660fe0:      /* pavgb */
7046         case 0x660fe1:      /* psraw */
7047         case 0x660fe2:      /* psrad */
7048         case 0x660fe3:      /* pavgw */
7049         case 0x660fe4:      /* pmulhuw */
7050         case 0x660fe5:      /* pmulhw */
7051         case 0x660fe6:      /* cvttpd2dq */
7052         case 0xf20fe6:      /* cvtpd2dq */
7053         case 0xf30fe6:      /* cvtdq2pd */
7054         case 0x660fe8:      /* psubsb */
7055         case 0x660fe9:      /* psubsw */
7056         case 0x660fea:      /* pminsw */
7057         case 0x660feb:      /* por */
7058         case 0x660fec:      /* paddsb */
7059         case 0x660fed:      /* paddsw */
7060         case 0x660fee:      /* pmaxsw */
7061         case 0x660fef:      /* pxor */
7062         case 0xf20ff0:      /* lddqu */
7063         case 0x660ff1:      /* psllw */
7064         case 0x660ff2:      /* pslld */
7065         case 0x660ff3:      /* psllq */
7066         case 0x660ff4:      /* pmuludq */
7067         case 0x660ff5:      /* pmaddwd */
7068         case 0x660ff6:      /* psadbw */
7069         case 0x660ff8:      /* psubb */
7070         case 0x660ff9:      /* psubw */
7071         case 0x660ffa:      /* psubd */
7072         case 0x660ffb:      /* psubq */
7073         case 0x660ffc:      /* paddb */
7074         case 0x660ffd:      /* paddw */
7075         case 0x660ffe:      /* paddd */
7076           if (i386_record_modrm (&ir))
7077 	    return -1;
7078           ir.reg |= rex_r;
7079           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7080             goto no_support;
7081           record_full_arch_list_add_reg (ir.regcache,
7082 					 I387_XMM0_REGNUM (tdep) + ir.reg);
7083           if ((opcode & 0xfffffffc) == 0x660f3a60)
7084             I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7085           break;
7086 
7087         case 0x0f11:        /* movups */
7088         case 0x660f11:      /* movupd */
7089         case 0xf30f11:      /* movss */
7090         case 0xf20f11:      /* movsd */
7091         case 0x0f13:        /* movlps */
7092         case 0x660f13:      /* movlpd */
7093         case 0x0f17:        /* movhps */
7094         case 0x660f17:      /* movhpd */
7095         case 0x0f29:        /* movaps */
7096         case 0x660f29:      /* movapd */
7097         case 0x660f3a14:    /* pextrb */
7098         case 0x660f3a15:    /* pextrw */
7099         case 0x660f3a16:    /* pextrd pextrq */
7100         case 0x660f3a17:    /* extractps */
7101         case 0x660f7f:      /* movdqa */
7102         case 0xf30f7f:      /* movdqu */
7103           if (i386_record_modrm (&ir))
7104 	    return -1;
7105           if (ir.mod == 3)
7106             {
7107               if (opcode == 0x0f13 || opcode == 0x660f13
7108                   || opcode == 0x0f17 || opcode == 0x660f17)
7109                 goto no_support;
7110               ir.rm |= ir.rex_b;
7111               if (!i386_xmm_regnum_p (gdbarch,
7112 				      I387_XMM0_REGNUM (tdep) + ir.rm))
7113                 goto no_support;
7114               record_full_arch_list_add_reg (ir.regcache,
7115 					     I387_XMM0_REGNUM (tdep) + ir.rm);
7116             }
7117           else
7118             {
7119               switch (opcode)
7120                 {
7121                   case 0x660f3a14:
7122                     ir.ot = OT_BYTE;
7123                     break;
7124                   case 0x660f3a15:
7125                     ir.ot = OT_WORD;
7126                     break;
7127                   case 0x660f3a16:
7128                     ir.ot = OT_LONG;
7129                     break;
7130                   case 0x660f3a17:
7131                     ir.ot = OT_QUAD;
7132                     break;
7133                   default:
7134                     ir.ot = OT_DQUAD;
7135                     break;
7136                 }
7137               if (i386_record_lea_modrm (&ir))
7138                 return -1;
7139             }
7140           break;
7141 
7142         case 0x0f2b:      /* movntps */
7143         case 0x660f2b:    /* movntpd */
7144         case 0x0fe7:      /* movntq */
7145         case 0x660fe7:    /* movntdq */
7146           if (ir.mod == 3)
7147             goto no_support;
7148           if (opcode == 0x0fe7)
7149             ir.ot = OT_QUAD;
7150           else
7151             ir.ot = OT_DQUAD;
7152           if (i386_record_lea_modrm (&ir))
7153             return -1;
7154           break;
7155 
7156         case 0xf30f2c:      /* cvttss2si */
7157         case 0xf20f2c:      /* cvttsd2si */
7158         case 0xf30f2d:      /* cvtss2si */
7159         case 0xf20f2d:      /* cvtsd2si */
7160         case 0xf20f38f0:    /* crc32 */
7161         case 0xf20f38f1:    /* crc32 */
7162         case 0x0f50:        /* movmskps */
7163         case 0x660f50:      /* movmskpd */
7164         case 0x0fc5:        /* pextrw */
7165         case 0x660fc5:      /* pextrw */
7166         case 0x0fd7:        /* pmovmskb */
7167         case 0x660fd7:      /* pmovmskb */
7168           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7169           break;
7170 
7171         case 0x0f3800:    /* pshufb */
7172         case 0x0f3801:    /* phaddw */
7173         case 0x0f3802:    /* phaddd */
7174         case 0x0f3803:    /* phaddsw */
7175         case 0x0f3804:    /* pmaddubsw */
7176         case 0x0f3805:    /* phsubw */
7177         case 0x0f3806:    /* phsubd */
7178         case 0x0f3807:    /* phsubsw */
7179         case 0x0f3808:    /* psignb */
7180         case 0x0f3809:    /* psignw */
7181         case 0x0f380a:    /* psignd */
7182         case 0x0f380b:    /* pmulhrsw */
7183         case 0x0f381c:    /* pabsb */
7184         case 0x0f381d:    /* pabsw */
7185         case 0x0f381e:    /* pabsd */
7186         case 0x0f382b:    /* packusdw */
7187         case 0x0f3830:    /* pmovzxbw */
7188         case 0x0f3831:    /* pmovzxbd */
7189         case 0x0f3832:    /* pmovzxbq */
7190         case 0x0f3833:    /* pmovzxwd */
7191         case 0x0f3834:    /* pmovzxwq */
7192         case 0x0f3835:    /* pmovzxdq */
7193         case 0x0f3837:    /* pcmpgtq */
7194         case 0x0f3838:    /* pminsb */
7195         case 0x0f3839:    /* pminsd */
7196         case 0x0f383a:    /* pminuw */
7197         case 0x0f383b:    /* pminud */
7198         case 0x0f383c:    /* pmaxsb */
7199         case 0x0f383d:    /* pmaxsd */
7200         case 0x0f383e:    /* pmaxuw */
7201         case 0x0f383f:    /* pmaxud */
7202         case 0x0f3840:    /* pmulld */
7203         case 0x0f3841:    /* phminposuw */
7204         case 0x0f3a0f:    /* palignr */
7205         case 0x0f60:      /* punpcklbw */
7206         case 0x0f61:      /* punpcklwd */
7207         case 0x0f62:      /* punpckldq */
7208         case 0x0f63:      /* packsswb */
7209         case 0x0f64:      /* pcmpgtb */
7210         case 0x0f65:      /* pcmpgtw */
7211         case 0x0f66:      /* pcmpgtd */
7212         case 0x0f67:      /* packuswb */
7213         case 0x0f68:      /* punpckhbw */
7214         case 0x0f69:      /* punpckhwd */
7215         case 0x0f6a:      /* punpckhdq */
7216         case 0x0f6b:      /* packssdw */
7217         case 0x0f6e:      /* movd */
7218         case 0x0f6f:      /* movq */
7219         case 0x0f70:      /* pshufw */
7220         case 0x0f74:      /* pcmpeqb */
7221         case 0x0f75:      /* pcmpeqw */
7222         case 0x0f76:      /* pcmpeqd */
7223         case 0x0fc4:      /* pinsrw */
7224         case 0x0fd1:      /* psrlw */
7225         case 0x0fd2:      /* psrld */
7226         case 0x0fd3:      /* psrlq */
7227         case 0x0fd4:      /* paddq */
7228         case 0x0fd5:      /* pmullw */
7229         case 0xf20fd6:    /* movdq2q */
7230         case 0x0fd8:      /* psubusb */
7231         case 0x0fd9:      /* psubusw */
7232         case 0x0fda:      /* pminub */
7233         case 0x0fdb:      /* pand */
7234         case 0x0fdc:      /* paddusb */
7235         case 0x0fdd:      /* paddusw */
7236         case 0x0fde:      /* pmaxub */
7237         case 0x0fdf:      /* pandn */
7238         case 0x0fe0:      /* pavgb */
7239         case 0x0fe1:      /* psraw */
7240         case 0x0fe2:      /* psrad */
7241         case 0x0fe3:      /* pavgw */
7242         case 0x0fe4:      /* pmulhuw */
7243         case 0x0fe5:      /* pmulhw */
7244         case 0x0fe8:      /* psubsb */
7245         case 0x0fe9:      /* psubsw */
7246         case 0x0fea:      /* pminsw */
7247         case 0x0feb:      /* por */
7248         case 0x0fec:      /* paddsb */
7249         case 0x0fed:      /* paddsw */
7250         case 0x0fee:      /* pmaxsw */
7251         case 0x0fef:      /* pxor */
7252         case 0x0ff1:      /* psllw */
7253         case 0x0ff2:      /* pslld */
7254         case 0x0ff3:      /* psllq */
7255         case 0x0ff4:      /* pmuludq */
7256         case 0x0ff5:      /* pmaddwd */
7257         case 0x0ff6:      /* psadbw */
7258         case 0x0ff8:      /* psubb */
7259         case 0x0ff9:      /* psubw */
7260         case 0x0ffa:      /* psubd */
7261         case 0x0ffb:      /* psubq */
7262         case 0x0ffc:      /* paddb */
7263         case 0x0ffd:      /* paddw */
7264         case 0x0ffe:      /* paddd */
7265           if (i386_record_modrm (&ir))
7266 	    return -1;
7267           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7268             goto no_support;
7269           record_full_arch_list_add_reg (ir.regcache,
7270 					 I387_MM0_REGNUM (tdep) + ir.reg);
7271           break;
7272 
7273         case 0x0f71:    /* psllw */
7274         case 0x0f72:    /* pslld */
7275         case 0x0f73:    /* psllq */
7276           if (i386_record_modrm (&ir))
7277 	    return -1;
7278           if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7279             goto no_support;
7280           record_full_arch_list_add_reg (ir.regcache,
7281 					 I387_MM0_REGNUM (tdep) + ir.rm);
7282           break;
7283 
7284         case 0x660f71:    /* psllw */
7285         case 0x660f72:    /* pslld */
7286         case 0x660f73:    /* psllq */
7287           if (i386_record_modrm (&ir))
7288 	    return -1;
7289           ir.rm |= ir.rex_b;
7290           if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7291             goto no_support;
7292           record_full_arch_list_add_reg (ir.regcache,
7293 					 I387_XMM0_REGNUM (tdep) + ir.rm);
7294           break;
7295 
7296         case 0x0f7e:      /* movd */
7297         case 0x660f7e:    /* movd */
7298           if (i386_record_modrm (&ir))
7299 	    return -1;
7300           if (ir.mod == 3)
7301             I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7302           else
7303             {
7304               if (ir.dflag == 2)
7305                 ir.ot = OT_QUAD;
7306               else
7307                 ir.ot = OT_LONG;
7308               if (i386_record_lea_modrm (&ir))
7309                 return -1;
7310             }
7311           break;
7312 
7313         case 0x0f7f:    /* movq */
7314           if (i386_record_modrm (&ir))
7315 	    return -1;
7316           if (ir.mod == 3)
7317             {
7318               if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7319                 goto no_support;
7320               record_full_arch_list_add_reg (ir.regcache,
7321 					     I387_MM0_REGNUM (tdep) + ir.rm);
7322             }
7323           else
7324             {
7325               ir.ot = OT_QUAD;
7326               if (i386_record_lea_modrm (&ir))
7327                 return -1;
7328             }
7329           break;
7330 
7331         case 0xf30fb8:    /* popcnt */
7332           if (i386_record_modrm (&ir))
7333 	    return -1;
7334           I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7335           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7336           break;
7337 
7338         case 0x660fd6:    /* movq */
7339           if (i386_record_modrm (&ir))
7340 	    return -1;
7341           if (ir.mod == 3)
7342             {
7343               ir.rm |= ir.rex_b;
7344               if (!i386_xmm_regnum_p (gdbarch,
7345 				      I387_XMM0_REGNUM (tdep) + ir.rm))
7346                 goto no_support;
7347               record_full_arch_list_add_reg (ir.regcache,
7348 					     I387_XMM0_REGNUM (tdep) + ir.rm);
7349             }
7350           else
7351             {
7352               ir.ot = OT_QUAD;
7353               if (i386_record_lea_modrm (&ir))
7354                 return -1;
7355             }
7356           break;
7357 
7358         case 0x660f3817:    /* ptest */
7359         case 0x0f2e:        /* ucomiss */
7360         case 0x660f2e:      /* ucomisd */
7361         case 0x0f2f:        /* comiss */
7362         case 0x660f2f:      /* comisd */
7363           I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7364           break;
7365 
7366         case 0x0ff7:    /* maskmovq */
7367           regcache_raw_read_unsigned (ir.regcache,
7368                                       ir.regmap[X86_RECORD_REDI_REGNUM],
7369                                       &addr);
7370           if (record_full_arch_list_add_mem (addr, 64))
7371             return -1;
7372           break;
7373 
7374         case 0x660ff7:    /* maskmovdqu */
7375           regcache_raw_read_unsigned (ir.regcache,
7376                                       ir.regmap[X86_RECORD_REDI_REGNUM],
7377                                       &addr);
7378           if (record_full_arch_list_add_mem (addr, 128))
7379             return -1;
7380           break;
7381 
7382         default:
7383           goto no_support;
7384           break;
7385         }
7386       break;
7387 
7388     default:
7389       goto no_support;
7390       break;
7391     }
7392 
7393   /* In the future, maybe still need to deal with need_dasm.  */
7394   I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7395   if (record_full_arch_list_add_end ())
7396     return -1;
7397 
7398   return 0;
7399 
7400  no_support:
7401   printf_unfiltered (_("Process record does not support instruction 0x%02x "
7402                        "at address %s.\n"),
7403                      (unsigned int) (opcode),
7404                      paddress (gdbarch, ir.orig_addr));
7405   return -1;
7406 }
7407 
7408 static const int i386_record_regmap[] =
7409 {
7410   I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7411   I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7412   0, 0, 0, 0, 0, 0, 0, 0,
7413   I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7414   I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7415 };
7416 
7417 /* Check that the given address appears suitable for a fast
7418    tracepoint, which on x86-64 means that we need an instruction of at
7419    least 5 bytes, so that we can overwrite it with a 4-byte-offset
7420    jump and not have to worry about program jumps to an address in the
7421    middle of the tracepoint jump.  On x86, it may be possible to use
7422    4-byte jumps with a 2-byte offset to a trampoline located in the
7423    bottom 64 KiB of memory.  Returns 1 if OK, and writes a size
7424    of instruction to replace, and 0 if not, plus an explanatory
7425    string.  */
7426 
7427 static int
7428 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7429 			       CORE_ADDR addr, int *isize, char **msg)
7430 {
7431   int len, jumplen;
7432   static struct ui_file *gdb_null = NULL;
7433 
7434   /*  Ask the target for the minimum instruction length supported.  */
7435   jumplen = target_get_min_fast_tracepoint_insn_len ();
7436 
7437   if (jumplen < 0)
7438     {
7439       /* If the target does not support the get_min_fast_tracepoint_insn_len
7440 	 operation, assume that fast tracepoints will always be implemented
7441 	 using 4-byte relative jumps on both x86 and x86-64.  */
7442       jumplen = 5;
7443     }
7444   else if (jumplen == 0)
7445     {
7446       /* If the target does support get_min_fast_tracepoint_insn_len but
7447 	 returns zero, then the IPA has not loaded yet.  In this case,
7448 	 we optimistically assume that truncated 2-byte relative jumps
7449 	 will be available on x86, and compensate later if this assumption
7450 	 turns out to be incorrect.  On x86-64 architectures, 4-byte relative
7451 	 jumps will always be used.  */
7452       jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7453     }
7454 
7455   /* Dummy file descriptor for the disassembler.  */
7456   if (!gdb_null)
7457     gdb_null = ui_file_new ();
7458 
7459   /* Check for fit.  */
7460   len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7461   if (isize)
7462     *isize = len;
7463 
7464   if (len < jumplen)
7465     {
7466       /* Return a bit of target-specific detail to add to the caller's
7467 	 generic failure message.  */
7468       if (msg)
7469 	*msg = xstrprintf (_("; instruction is only %d bytes long, "
7470 			     "need at least %d bytes for the jump"),
7471 			   len, jumplen);
7472       return 0;
7473     }
7474   else
7475     {
7476       if (msg)
7477 	*msg = NULL;
7478       return 1;
7479     }
7480 }
7481 
7482 static int
7483 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7484 		       struct tdesc_arch_data *tdesc_data)
7485 {
7486   const struct target_desc *tdesc = tdep->tdesc;
7487   const struct tdesc_feature *feature_core;
7488   const struct tdesc_feature *feature_sse, *feature_avx;
7489   int i, num_regs, valid_p;
7490 
7491   if (! tdesc_has_registers (tdesc))
7492     return 0;
7493 
7494   /* Get core registers.  */
7495   feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7496   if (feature_core == NULL)
7497     return 0;
7498 
7499   /* Get SSE registers.  */
7500   feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7501 
7502   /* Try AVX registers.  */
7503   feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7504 
7505   valid_p = 1;
7506 
7507   /* The XCR0 bits.  */
7508   if (feature_avx)
7509     {
7510       /* AVX register description requires SSE register description.  */
7511       if (!feature_sse)
7512 	return 0;
7513 
7514       tdep->xcr0 = I386_XSTATE_AVX_MASK;
7515 
7516       /* It may have been set by OSABI initialization function.  */
7517       if (tdep->num_ymm_regs == 0)
7518 	{
7519 	  tdep->ymmh_register_names = i386_ymmh_names;
7520 	  tdep->num_ymm_regs = 8;
7521 	  tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7522 	}
7523 
7524       for (i = 0; i < tdep->num_ymm_regs; i++)
7525 	valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7526 					    tdep->ymm0h_regnum + i,
7527 					    tdep->ymmh_register_names[i]);
7528     }
7529   else if (feature_sse)
7530     tdep->xcr0 = I386_XSTATE_SSE_MASK;
7531   else
7532     {
7533       tdep->xcr0 = I386_XSTATE_X87_MASK;
7534       tdep->num_xmm_regs = 0;
7535     }
7536 
7537   num_regs = tdep->num_core_regs;
7538   for (i = 0; i < num_regs; i++)
7539     valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7540 					tdep->register_names[i]);
7541 
7542   if (feature_sse)
7543     {
7544       /* Need to include %mxcsr, so add one.  */
7545       num_regs += tdep->num_xmm_regs + 1;
7546       for (; i < num_regs; i++)
7547 	valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7548 					    tdep->register_names[i]);
7549     }
7550 
7551   return valid_p;
7552 }
7553 
7554 
7555 static struct gdbarch *
7556 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7557 {
7558   struct gdbarch_tdep *tdep;
7559   struct gdbarch *gdbarch;
7560   struct tdesc_arch_data *tdesc_data;
7561   const struct target_desc *tdesc;
7562   int mm0_regnum;
7563   int ymm0_regnum;
7564 
7565   /* If there is already a candidate, use it.  */
7566   arches = gdbarch_list_lookup_by_info (arches, &info);
7567   if (arches != NULL)
7568     return arches->gdbarch;
7569 
7570   /* Allocate space for the new architecture.  */
7571   tdep = XCALLOC (1, struct gdbarch_tdep);
7572   gdbarch = gdbarch_alloc (&info, tdep);
7573 
7574   /* General-purpose registers.  */
7575   tdep->gregset = NULL;
7576   tdep->gregset_reg_offset = NULL;
7577   tdep->gregset_num_regs = I386_NUM_GREGS;
7578   tdep->sizeof_gregset = 0;
7579 
7580   /* Floating-point registers.  */
7581   tdep->fpregset = NULL;
7582   tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7583 
7584   tdep->xstateregset = NULL;
7585 
7586   /* The default settings include the FPU registers, the MMX registers
7587      and the SSE registers.  This can be overridden for a specific ABI
7588      by adjusting the members `st0_regnum', `mm0_regnum' and
7589      `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7590      will show up in the output of "info all-registers".  */
7591 
7592   tdep->st0_regnum = I386_ST0_REGNUM;
7593 
7594   /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
7595   tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7596 
7597   tdep->jb_pc_offset = -1;
7598   tdep->struct_return = pcc_struct_return;
7599   tdep->sigtramp_start = 0;
7600   tdep->sigtramp_end = 0;
7601   tdep->sigtramp_p = i386_sigtramp_p;
7602   tdep->sigcontext_addr = NULL;
7603   tdep->sc_reg_offset = NULL;
7604   tdep->sc_pc_offset = -1;
7605   tdep->sc_sp_offset = -1;
7606 
7607   tdep->xsave_xcr0_offset = -1;
7608 
7609   tdep->record_regmap = i386_record_regmap;
7610 
7611   set_gdbarch_long_long_align_bit (gdbarch, 32);
7612 
7613   /* The format used for `long double' on almost all i386 targets is
7614      the i387 extended floating-point format.  In fact, of all targets
7615      in the GCC 2.95 tree, only OSF/1 does it different, and insists
7616      on having a `long double' that's not `long' at all.  */
7617   set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7618 
7619   /* Although the i387 extended floating-point has only 80 significant
7620      bits, a `long double' actually takes up 96, probably to enforce
7621      alignment.  */
7622   set_gdbarch_long_double_bit (gdbarch, 96);
7623 
7624   /* Register numbers of various important registers.  */
7625   set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7626   set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7627   set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7628   set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7629 
7630   /* NOTE: kettenis/20040418: GCC does have two possible register
7631      numbering schemes on the i386: dbx and SVR4.  These schemes
7632      differ in how they number %ebp, %esp, %eflags, and the
7633      floating-point registers, and are implemented by the arrays
7634      dbx_register_map[] and svr4_dbx_register_map in
7635      gcc/config/i386.c.  GCC also defines a third numbering scheme in
7636      gcc/config/i386.c, which it designates as the "default" register
7637      map used in 64bit mode.  This last register numbering scheme is
7638      implemented in dbx64_register_map, and is used for AMD64; see
7639      amd64-tdep.c.
7640 
7641      Currently, each GCC i386 target always uses the same register
7642      numbering scheme across all its supported debugging formats
7643      i.e. SDB (COFF), stabs and DWARF 2.  This is because
7644      gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7645      DBX_REGISTER_NUMBER macro which is defined by each target's
7646      respective config header in a manner independent of the requested
7647      output debugging format.
7648 
7649      This does not match the arrangement below, which presumes that
7650      the SDB and stabs numbering schemes differ from the DWARF and
7651      DWARF 2 ones.  The reason for this arrangement is that it is
7652      likely to get the numbering scheme for the target's
7653      default/native debug format right.  For targets where GCC is the
7654      native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7655      targets where the native toolchain uses a different numbering
7656      scheme for a particular debug format (stabs-in-ELF on Solaris)
7657      the defaults below will have to be overridden, like
7658      i386_elf_init_abi() does.  */
7659 
7660   /* Use the dbx register numbering scheme for stabs and COFF.  */
7661   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7662   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7663 
7664   /* Use the SVR4 register numbering scheme for DWARF 2.  */
7665   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7666 
7667   /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7668      be in use on any of the supported i386 targets.  */
7669 
7670   set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7671 
7672   set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7673 
7674   /* Call dummy code.  */
7675   set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7676   set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7677   set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7678   set_gdbarch_frame_align (gdbarch, i386_frame_align);
7679 
7680   set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7681   set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
7682   set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7683 
7684   set_gdbarch_return_value (gdbarch, i386_return_value);
7685 
7686   set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7687 
7688   /* Stack grows downward.  */
7689   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7690 
7691   set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7692   set_gdbarch_decr_pc_after_break (gdbarch, 1);
7693   set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7694 
7695   set_gdbarch_frame_args_skip (gdbarch, 8);
7696 
7697   set_gdbarch_print_insn (gdbarch, i386_print_insn);
7698 
7699   set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7700 
7701   set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7702 
7703   /* Add the i386 register groups.  */
7704   i386_add_reggroups (gdbarch);
7705   tdep->register_reggroup_p = i386_register_reggroup_p;
7706 
7707   /* Helper for function argument information.  */
7708   set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7709 
7710   /* Hook the function epilogue frame unwinder.  This unwinder is
7711      appended to the list first, so that it supercedes the DWARF
7712      unwinder in function epilogues (where the DWARF unwinder
7713      currently fails).  */
7714   frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7715 
7716   /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
7717      to the list before the prologue-based unwinders, so that DWARF
7718      CFI info will be used if it is available.  */
7719   dwarf2_append_unwinders (gdbarch);
7720 
7721   frame_base_set_default (gdbarch, &i386_frame_base);
7722 
7723   /* Pseudo registers may be changed by amd64_init_abi.  */
7724   set_gdbarch_pseudo_register_read_value (gdbarch,
7725 					  i386_pseudo_register_read_value);
7726   set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7727 
7728   set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7729   set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7730 
7731   /* Override the normal target description method to make the AVX
7732      upper halves anonymous.  */
7733   set_gdbarch_register_name (gdbarch, i386_register_name);
7734 
7735   /* Even though the default ABI only includes general-purpose registers,
7736      floating-point registers and the SSE registers, we have to leave a
7737      gap for the upper AVX registers.  */
7738   set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7739 
7740   /* Get the x86 target description from INFO.  */
7741   tdesc = info.target_desc;
7742   if (! tdesc_has_registers (tdesc))
7743     tdesc = tdesc_i386;
7744   tdep->tdesc = tdesc;
7745 
7746   tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7747   tdep->register_names = i386_register_names;
7748 
7749   /* No upper YMM registers.  */
7750   tdep->ymmh_register_names = NULL;
7751   tdep->ymm0h_regnum = -1;
7752 
7753   tdep->num_byte_regs = 8;
7754   tdep->num_word_regs = 8;
7755   tdep->num_dword_regs = 0;
7756   tdep->num_mmx_regs = 8;
7757   tdep->num_ymm_regs = 0;
7758 
7759   tdesc_data = tdesc_data_alloc ();
7760 
7761   set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7762 
7763   set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7764 
7765   /* Hook in ABI-specific overrides, if they have been registered.  */
7766   info.tdep_info = (void *) tdesc_data;
7767   gdbarch_init_osabi (info, gdbarch);
7768 
7769   if (!i386_validate_tdesc_p (tdep, tdesc_data))
7770     {
7771       tdesc_data_cleanup (tdesc_data);
7772       xfree (tdep);
7773       gdbarch_free (gdbarch);
7774       return NULL;
7775     }
7776 
7777   /* Wire in pseudo registers.  Number of pseudo registers may be
7778      changed.  */
7779   set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7780 					 + tdep->num_word_regs
7781 					 + tdep->num_dword_regs
7782 					 + tdep->num_mmx_regs
7783 					 + tdep->num_ymm_regs));
7784 
7785   /* Target description may be changed.  */
7786   tdesc = tdep->tdesc;
7787 
7788   tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7789 
7790   /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
7791   set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7792 
7793   /* Make %al the first pseudo-register.  */
7794   tdep->al_regnum = gdbarch_num_regs (gdbarch);
7795   tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7796 
7797   ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7798   if (tdep->num_dword_regs)
7799     {
7800       /* Support dword pseudo-register if it hasn't been disabled.  */
7801       tdep->eax_regnum = ymm0_regnum;
7802       ymm0_regnum += tdep->num_dword_regs;
7803     }
7804   else
7805     tdep->eax_regnum = -1;
7806 
7807   mm0_regnum = ymm0_regnum;
7808   if (tdep->num_ymm_regs)
7809     {
7810       /* Support YMM pseudo-register if it is available.  */
7811       tdep->ymm0_regnum = ymm0_regnum;
7812       mm0_regnum += tdep->num_ymm_regs;
7813     }
7814   else
7815     tdep->ymm0_regnum = -1;
7816 
7817   if (tdep->num_mmx_regs != 0)
7818     {
7819       /* Support MMX pseudo-register if MMX hasn't been disabled.  */
7820       tdep->mm0_regnum = mm0_regnum;
7821     }
7822   else
7823     tdep->mm0_regnum = -1;
7824 
7825   /* Hook in the legacy prologue-based unwinders last (fallback).  */
7826   frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7827   frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7828   frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7829 
7830   /* If we have a register mapping, enable the generic core file
7831      support, unless it has already been enabled.  */
7832   if (tdep->gregset_reg_offset
7833       && !gdbarch_regset_from_core_section_p (gdbarch))
7834     set_gdbarch_regset_from_core_section (gdbarch,
7835 					  i386_regset_from_core_section);
7836 
7837   set_gdbarch_skip_permanent_breakpoint (gdbarch,
7838 					 i386_skip_permanent_breakpoint);
7839 
7840   set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7841 					i386_fast_tracepoint_valid_at);
7842 
7843   return gdbarch;
7844 }
7845 
7846 static enum gdb_osabi
7847 i386_coff_osabi_sniffer (bfd *abfd)
7848 {
7849   if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7850       || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7851     return GDB_OSABI_GO32;
7852 
7853   return GDB_OSABI_UNKNOWN;
7854 }
7855 
7856 
7857 /* Provide a prototype to silence -Wmissing-prototypes.  */
7858 void _initialize_i386_tdep (void);
7859 
7860 void
7861 _initialize_i386_tdep (void)
7862 {
7863   register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7864 
7865   /* Add the variable that controls the disassembly flavor.  */
7866   add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7867 			&disassembly_flavor, _("\
7868 Set the disassembly flavor."), _("\
7869 Show the disassembly flavor."), _("\
7870 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7871 			NULL,
7872 			NULL, /* FIXME: i18n: */
7873 			&setlist, &showlist);
7874 
7875   /* Add the variable that controls the convention for returning
7876      structs.  */
7877   add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7878 			&struct_convention, _("\
7879 Set the convention for returning small structs."), _("\
7880 Show the convention for returning small structs."), _("\
7881 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7882 is \"default\"."),
7883 			NULL,
7884 			NULL, /* FIXME: i18n: */
7885 			&setlist, &showlist);
7886 
7887   gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7888 				  i386_coff_osabi_sniffer);
7889 
7890   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7891 			  i386_svr4_init_abi);
7892   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7893 			  i386_go32_init_abi);
7894 
7895   /* Initialize the i386-specific register groups.  */
7896   i386_init_reggroups ();
7897 
7898   /* Initialize the standard target descriptions.  */
7899   initialize_tdesc_i386 ();
7900   initialize_tdesc_i386_mmx ();
7901   initialize_tdesc_i386_avx ();
7902 
7903   /* Tell remote stub that we support XML target description.  */
7904   register_remote_support_xml ("i386");
7905 }
7906