xref: /dragonfly/contrib/gdb-7/gdb/infcall.c (revision 10f4bf95)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5    2008, 2009, 2010 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "tracepoint.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "inferior.h"
28 #include "gdb_assert.h"
29 #include "block.h"
30 #include "gdbcore.h"
31 #include "language.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "command.h"
35 #include "gdb_string.h"
36 #include "infcall.h"
37 #include "dummy-frame.h"
38 #include "ada-lang.h"
39 #include "gdbthread.h"
40 #include "exceptions.h"
41 
42 /* If we can't find a function's name from its address,
43    we print this instead.  */
44 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
45 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
46                                    + 2 * sizeof (CORE_ADDR))
47 
48 /* NOTE: cagney/2003-04-16: What's the future of this code?
49 
50    GDB needs an asynchronous expression evaluator, that means an
51    asynchronous inferior function call implementation, and that in
52    turn means restructuring the code so that it is event driven.  */
53 
54 /* How you should pass arguments to a function depends on whether it
55    was defined in K&R style or prototype style.  If you define a
56    function using the K&R syntax that takes a `float' argument, then
57    callers must pass that argument as a `double'.  If you define the
58    function using the prototype syntax, then you must pass the
59    argument as a `float', with no promotion.
60 
61    Unfortunately, on certain older platforms, the debug info doesn't
62    indicate reliably how each function was defined.  A function type's
63    TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
64    defined in prototype style.  When calling a function whose
65    TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
66    decide what to do.
67 
68    For modern targets, it is proper to assume that, if the prototype
69    flag is clear, that can be trusted: `float' arguments should be
70    promoted to `double'.  For some older targets, if the prototype
71    flag is clear, that doesn't tell us anything.  The default is to
72    trust the debug information; the user can override this behavior
73    with "set coerce-float-to-double 0".  */
74 
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78 			       struct cmd_list_element *c, const char *value)
79 {
80   fprintf_filtered (file, _("\
81 Coercion of floats to doubles when calling functions is %s.\n"),
82 		    value);
83 }
84 
85 /* This boolean tells what gdb should do if a signal is received while
86    in a function called from gdb (call dummy).  If set, gdb unwinds
87    the stack and restore the context to what as it was before the
88    call.
89 
90    The default is to stop in the frame where the signal was received. */
91 
92 int unwind_on_signal_p = 0;
93 static void
94 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
95 			 struct cmd_list_element *c, const char *value)
96 {
97   fprintf_filtered (file, _("\
98 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
99 		    value);
100 }
101 
102 /* This boolean tells what gdb should do if a std::terminate call is
103    made while in a function called from gdb (call dummy).
104    As the confines of a single dummy stack prohibit out-of-frame
105    handlers from handling a raised exception, and as out-of-frame
106    handlers are common in C++, this can lead to no handler being found
107    by the unwinder, and a std::terminate call.  This is a false positive.
108    If set, gdb unwinds the stack and restores the context to what it
109    was before the call.
110 
111    The default is to unwind the frame if a std::terminate call is
112    made.  */
113 
114 static int unwind_on_terminating_exception_p = 1;
115 
116 static void
117 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
118 					struct cmd_list_element *c,
119 					const char *value)
120 
121 {
122   fprintf_filtered (file, _("\
123 Unwind stack if a C++ exception is unhandled while in a call dummy is %s.\n"),
124 		    value);
125 }
126 
127 /* Perform the standard coercions that are specified
128    for arguments to be passed to C or Ada functions.
129 
130    If PARAM_TYPE is non-NULL, it is the expected parameter type.
131    IS_PROTOTYPED is non-zero if the function declaration is prototyped.
132    SP is the stack pointer were additional data can be pushed (updating
133    its value as needed).  */
134 
135 static struct value *
136 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
137 		  struct type *param_type, int is_prototyped, CORE_ADDR *sp)
138 {
139   const struct builtin_type *builtin = builtin_type (gdbarch);
140   struct type *arg_type = check_typedef (value_type (arg));
141   struct type *type
142     = param_type ? check_typedef (param_type) : arg_type;
143 
144   /* Perform any Ada-specific coercion first.  */
145   if (current_language->la_language == language_ada)
146     arg = ada_convert_actual (arg, type, gdbarch, sp);
147 
148   /* Force the value to the target if we will need its address.  At
149      this point, we could allocate arguments on the stack instead of
150      calling malloc if we knew that their addresses would not be
151      saved by the called function.  */
152   arg = value_coerce_to_target (arg);
153 
154   switch (TYPE_CODE (type))
155     {
156     case TYPE_CODE_REF:
157       {
158 	struct value *new_value;
159 
160 	if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
161 	  return value_cast_pointers (type, arg);
162 
163 	/* Cast the value to the reference's target type, and then
164 	   convert it back to a reference.  This will issue an error
165 	   if the value was not previously in memory - in some cases
166 	   we should clearly be allowing this, but how?  */
167 	new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
168 	new_value = value_ref (new_value);
169 	return new_value;
170       }
171     case TYPE_CODE_INT:
172     case TYPE_CODE_CHAR:
173     case TYPE_CODE_BOOL:
174     case TYPE_CODE_ENUM:
175       /* If we don't have a prototype, coerce to integer type if necessary.  */
176       if (!is_prototyped)
177 	{
178 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
179 	    type = builtin->builtin_int;
180 	}
181       /* Currently all target ABIs require at least the width of an integer
182          type for an argument.  We may have to conditionalize the following
183          type coercion for future targets.  */
184       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
185 	type = builtin->builtin_int;
186       break;
187     case TYPE_CODE_FLT:
188       if (!is_prototyped && coerce_float_to_double_p)
189 	{
190 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
191 	    type = builtin->builtin_double;
192 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
193 	    type = builtin->builtin_long_double;
194 	}
195       break;
196     case TYPE_CODE_FUNC:
197       type = lookup_pointer_type (type);
198       break;
199     case TYPE_CODE_ARRAY:
200       /* Arrays are coerced to pointers to their first element, unless
201          they are vectors, in which case we want to leave them alone,
202          because they are passed by value.  */
203       if (current_language->c_style_arrays)
204 	if (!TYPE_VECTOR (type))
205 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
206       break;
207     case TYPE_CODE_UNDEF:
208     case TYPE_CODE_PTR:
209     case TYPE_CODE_STRUCT:
210     case TYPE_CODE_UNION:
211     case TYPE_CODE_VOID:
212     case TYPE_CODE_SET:
213     case TYPE_CODE_RANGE:
214     case TYPE_CODE_STRING:
215     case TYPE_CODE_BITSTRING:
216     case TYPE_CODE_ERROR:
217     case TYPE_CODE_MEMBERPTR:
218     case TYPE_CODE_METHODPTR:
219     case TYPE_CODE_METHOD:
220     case TYPE_CODE_COMPLEX:
221     default:
222       break;
223     }
224 
225   return value_cast (type, arg);
226 }
227 
228 /* Determine a function's address and its return type from its value.
229    Calls error() if the function is not valid for calling.  */
230 
231 CORE_ADDR
232 find_function_addr (struct value *function, struct type **retval_type)
233 {
234   struct type *ftype = check_typedef (value_type (function));
235   struct gdbarch *gdbarch = get_type_arch (ftype);
236   enum type_code code = TYPE_CODE (ftype);
237   struct type *value_type = NULL;
238   CORE_ADDR funaddr;
239 
240   /* If it's a member function, just look at the function
241      part of it.  */
242 
243   /* Determine address to call.  */
244   if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
245     {
246       funaddr = value_address (function);
247       value_type = TYPE_TARGET_TYPE (ftype);
248     }
249   else if (code == TYPE_CODE_PTR)
250     {
251       funaddr = value_as_address (function);
252       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
253       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
254 	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
255 	{
256 	  funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
257 							&current_target);
258 	  value_type = TYPE_TARGET_TYPE (ftype);
259 	}
260     }
261   else if (code == TYPE_CODE_INT)
262     {
263       /* Handle the case of functions lacking debugging info.
264          Their values are characters since their addresses are char */
265       if (TYPE_LENGTH (ftype) == 1)
266 	funaddr = value_as_address (value_addr (function));
267       else
268 	{
269 	  /* Handle function descriptors lacking debug info.  */
270 	  int found_descriptor = 0;
271 
272 	  funaddr = 0;	/* pacify "gcc -Werror" */
273 	  if (VALUE_LVAL (function) == lval_memory)
274 	    {
275 	      CORE_ADDR nfunaddr;
276 
277 	      funaddr = value_as_address (value_addr (function));
278 	      nfunaddr = funaddr;
279 	      funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
280 							    &current_target);
281 	      if (funaddr != nfunaddr)
282 		found_descriptor = 1;
283 	    }
284 	  if (!found_descriptor)
285 	    /* Handle integer used as address of a function.  */
286 	    funaddr = (CORE_ADDR) value_as_long (function);
287 	}
288     }
289   else
290     error (_("Invalid data type for function to be called."));
291 
292   if (retval_type != NULL)
293     *retval_type = value_type;
294   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
295 }
296 
297 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
298    function returns to.  */
299 
300 static CORE_ADDR
301 push_dummy_code (struct gdbarch *gdbarch,
302 		 CORE_ADDR sp, CORE_ADDR funaddr,
303 		 struct value **args, int nargs,
304 		 struct type *value_type,
305 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
306 		 struct regcache *regcache)
307 {
308   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
309 
310   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
311 				  args, nargs, value_type, real_pc, bp_addr,
312 				  regcache);
313 }
314 
315 /* Fetch the name of the function at FUNADDR.
316    This is used in printing an error message for call_function_by_hand.
317    BUF is used to print FUNADDR in hex if the function name cannot be
318    determined.  It must be large enough to hold formatted result of
319    RAW_FUNCTION_ADDRESS_FORMAT.  */
320 
321 static const char *
322 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
323 {
324   {
325     struct symbol *symbol = find_pc_function (funaddr);
326 
327     if (symbol)
328       return SYMBOL_PRINT_NAME (symbol);
329   }
330 
331   {
332     /* Try the minimal symbols.  */
333     struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
334 
335     if (msymbol)
336       return SYMBOL_PRINT_NAME (msymbol);
337   }
338 
339   {
340     char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
341                             hex_string (funaddr));
342 
343     gdb_assert (strlen (tmp) + 1 <= buf_size);
344     strcpy (buf, tmp);
345     xfree (tmp);
346     return buf;
347   }
348 }
349 
350 /* Subroutine of call_function_by_hand to simplify it.
351    Start up the inferior and wait for it to stop.
352    Return the exception if there's an error, or an exception with
353    reason >= 0 if there's no error.
354 
355    This is done inside a TRY_CATCH so the caller needn't worry about
356    thrown errors.  The caller should rethrow if there's an error.  */
357 
358 static struct gdb_exception
359 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
360 {
361   volatile struct gdb_exception e;
362   int saved_async = 0;
363   int saved_in_infcall = call_thread->in_infcall;
364   ptid_t call_thread_ptid = call_thread->ptid;
365   char *saved_target_shortname = xstrdup (target_shortname);
366 
367   call_thread->in_infcall = 1;
368 
369   clear_proceed_status ();
370 
371   disable_watchpoints_before_interactive_call_start ();
372   call_thread->proceed_to_finish = 1; /* We want stop_registers, please... */
373 
374   if (target_can_async_p ())
375     saved_async = target_async_mask (0);
376 
377   TRY_CATCH (e, RETURN_MASK_ALL)
378     proceed (real_pc, TARGET_SIGNAL_0, 0);
379 
380   /* At this point the current thread may have changed.  Refresh
381      CALL_THREAD as it could be invalid if its thread has exited.  */
382   call_thread = find_thread_ptid (call_thread_ptid);
383 
384   /* Don't restore the async mask if the target has changed,
385      saved_async is for the original target.  */
386   if (saved_async
387       && strcmp (saved_target_shortname, target_shortname) == 0)
388     target_async_mask (saved_async);
389 
390   enable_watchpoints_after_interactive_call_stop ();
391 
392   /* Call breakpoint_auto_delete on the current contents of the bpstat
393      of inferior call thread.
394      If all error()s out of proceed ended up calling normal_stop
395      (and perhaps they should; it already does in the special case
396      of error out of resume()), then we wouldn't need this.  */
397   if (e.reason < 0)
398     {
399       if (call_thread != NULL)
400 	breakpoint_auto_delete (call_thread->stop_bpstat);
401     }
402 
403   if (call_thread != NULL)
404     call_thread->in_infcall = saved_in_infcall;
405 
406   xfree (saved_target_shortname);
407 
408   return e;
409 }
410 
411 /* A cleanup function that calls delete_std_terminate_breakpoint.  */
412 static void
413 cleanup_delete_std_terminate_breakpoint (void *ignore)
414 {
415   delete_std_terminate_breakpoint ();
416 }
417 
418 /* All this stuff with a dummy frame may seem unnecessarily complicated
419    (why not just save registers in GDB?).  The purpose of pushing a dummy
420    frame which looks just like a real frame is so that if you call a
421    function and then hit a breakpoint (get a signal, etc), "backtrace"
422    will look right.  Whether the backtrace needs to actually show the
423    stack at the time the inferior function was called is debatable, but
424    it certainly needs to not display garbage.  So if you are contemplating
425    making dummy frames be different from normal frames, consider that.  */
426 
427 /* Perform a function call in the inferior.
428    ARGS is a vector of values of arguments (NARGS of them).
429    FUNCTION is a value, the function to be called.
430    Returns a value representing what the function returned.
431    May fail to return, if a breakpoint or signal is hit
432    during the execution of the function.
433 
434    ARGS is modified to contain coerced values. */
435 
436 struct value *
437 call_function_by_hand (struct value *function, int nargs, struct value **args)
438 {
439   CORE_ADDR sp;
440   struct type *values_type, *target_values_type;
441   unsigned char struct_return = 0, lang_struct_return = 0;
442   CORE_ADDR struct_addr = 0;
443   struct inferior_status *inf_status;
444   struct cleanup *inf_status_cleanup;
445   struct inferior_thread_state *caller_state;
446   struct cleanup *caller_state_cleanup;
447   CORE_ADDR funaddr;
448   CORE_ADDR real_pc;
449   struct type *ftype = check_typedef (value_type (function));
450   CORE_ADDR bp_addr;
451   struct frame_id dummy_id;
452   struct cleanup *args_cleanup;
453   struct frame_info *frame;
454   struct gdbarch *gdbarch;
455   struct cleanup *terminate_bp_cleanup;
456   ptid_t call_thread_ptid;
457   struct gdb_exception e;
458   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
459 
460   if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
461     ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
462 
463   if (!target_has_execution)
464     noprocess ();
465 
466   if (get_traceframe_number () >= 0)
467     error (_("May not call functions while looking at trace frames."));
468 
469   frame = get_current_frame ();
470   gdbarch = get_frame_arch (frame);
471 
472   if (!gdbarch_push_dummy_call_p (gdbarch))
473     error (_("This target does not support function calls."));
474 
475   /* A cleanup for the inferior status.
476      This is only needed while we're preparing the inferior function call.  */
477   inf_status = save_inferior_status ();
478   inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
479 
480   /* Save the caller's registers and other state associated with the
481      inferior itself so that they can be restored once the
482      callee returns.  To allow nested calls the registers are (further
483      down) pushed onto a dummy frame stack.  Include a cleanup (which
484      is tossed once the regcache has been pushed).  */
485   caller_state = save_inferior_thread_state ();
486   caller_state_cleanup = make_cleanup_restore_inferior_thread_state (caller_state);
487 
488   /* Ensure that the initial SP is correctly aligned.  */
489   {
490     CORE_ADDR old_sp = get_frame_sp (frame);
491 
492     if (gdbarch_frame_align_p (gdbarch))
493       {
494 	sp = gdbarch_frame_align (gdbarch, old_sp);
495 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
496 	   ABIs, a function can use memory beyond the inner most stack
497 	   address.  AMD64 called that region the "red zone".  Skip at
498 	   least the "red zone" size before allocating any space on
499 	   the stack.  */
500 	if (gdbarch_inner_than (gdbarch, 1, 2))
501 	  sp -= gdbarch_frame_red_zone_size (gdbarch);
502 	else
503 	  sp += gdbarch_frame_red_zone_size (gdbarch);
504 	/* Still aligned?  */
505 	gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
506 	/* NOTE: cagney/2002-09-18:
507 
508 	   On a RISC architecture, a void parameterless generic dummy
509 	   frame (i.e., no parameters, no result) typically does not
510 	   need to push anything the stack and hence can leave SP and
511 	   FP.  Similarly, a frameless (possibly leaf) function does
512 	   not push anything on the stack and, hence, that too can
513 	   leave FP and SP unchanged.  As a consequence, a sequence of
514 	   void parameterless generic dummy frame calls to frameless
515 	   functions will create a sequence of effectively identical
516 	   frames (SP, FP and TOS and PC the same).  This, not
517 	   suprisingly, results in what appears to be a stack in an
518 	   infinite loop --- when GDB tries to find a generic dummy
519 	   frame on the internal dummy frame stack, it will always
520 	   find the first one.
521 
522 	   To avoid this problem, the code below always grows the
523 	   stack.  That way, two dummy frames can never be identical.
524 	   It does burn a few bytes of stack but that is a small price
525 	   to pay :-).  */
526 	if (sp == old_sp)
527 	  {
528 	    if (gdbarch_inner_than (gdbarch, 1, 2))
529 	      /* Stack grows down.  */
530 	      sp = gdbarch_frame_align (gdbarch, old_sp - 1);
531 	    else
532 	      /* Stack grows up.  */
533 	      sp = gdbarch_frame_align (gdbarch, old_sp + 1);
534 	  }
535 	/* SP may have underflown address zero here from OLD_SP.  Memory access
536 	   functions will probably fail in such case but that is a target's
537 	   problem.  */
538       }
539     else
540       /* FIXME: cagney/2002-09-18: Hey, you loose!
541 
542 	 Who knows how badly aligned the SP is!
543 
544 	 If the generic dummy frame ends up empty (because nothing is
545 	 pushed) GDB won't be able to correctly perform back traces.
546 	 If a target is having trouble with backtraces, first thing to
547 	 do is add FRAME_ALIGN() to the architecture vector. If that
548 	 fails, try dummy_id().
549 
550          If the ABI specifies a "Red Zone" (see the doco) the code
551          below will quietly trash it.  */
552       sp = old_sp;
553   }
554 
555   funaddr = find_function_addr (function, &values_type);
556   if (!values_type)
557     values_type = builtin_type (gdbarch)->builtin_int;
558 
559   CHECK_TYPEDEF (values_type);
560 
561   /* Are we returning a value using a structure return (passing a
562      hidden argument pointing to storage) or a normal value return?
563      There are two cases: language-mandated structure return and
564      target ABI structure return.  The variable STRUCT_RETURN only
565      describes the latter.  The language version is handled by passing
566      the return location as the first parameter to the function,
567      even preceding "this".  This is different from the target
568      ABI version, which is target-specific; for instance, on ia64
569      the first argument is passed in out0 but the hidden structure
570      return pointer would normally be passed in r8.  */
571 
572   if (language_pass_by_reference (values_type))
573     {
574       lang_struct_return = 1;
575 
576       /* Tell the target specific argument pushing routine not to
577 	 expect a value.  */
578       target_values_type = builtin_type (gdbarch)->builtin_void;
579     }
580   else
581     {
582       struct_return = using_struct_return (gdbarch,
583 					   value_type (function), values_type);
584       target_values_type = values_type;
585     }
586 
587   /* Determine the location of the breakpoint (and possibly other
588      stuff) that the called function will return to.  The SPARC, for a
589      function returning a structure or union, needs to make space for
590      not just the breakpoint but also an extra word containing the
591      size (?) of the structure being passed.  */
592 
593   /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
594      is no need to write that out.  */
595 
596   switch (gdbarch_call_dummy_location (gdbarch))
597     {
598     case ON_STACK:
599       sp = push_dummy_code (gdbarch, sp, funaddr,
600 				args, nargs, target_values_type,
601 				&real_pc, &bp_addr, get_current_regcache ());
602       break;
603     case AT_ENTRY_POINT:
604       {
605 	CORE_ADDR dummy_addr;
606 
607 	real_pc = funaddr;
608 	dummy_addr = entry_point_address ();
609 	/* A call dummy always consists of just a single breakpoint, so
610 	   its address is the same as the address of the dummy.  */
611 	bp_addr = dummy_addr;
612 	break;
613       }
614     case AT_SYMBOL:
615       /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
616 	 address is the location where the breakpoint should be
617 	 placed.  Once all targets are using the overhauled frame code
618 	 this can be deleted - ON_STACK is a better option.  */
619       {
620 	struct minimal_symbol *sym;
621 	CORE_ADDR dummy_addr;
622 
623 	sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
624 	real_pc = funaddr;
625 	if (sym)
626 	  {
627 	    dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
628 	    /* Make certain that the address points at real code, and not
629 	       a function descriptor.  */
630 	    dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
631 							     dummy_addr,
632 							     &current_target);
633 	  }
634 	else
635 	  dummy_addr = entry_point_address ();
636 	/* A call dummy always consists of just a single breakpoint,
637 	   so it's address is the same as the address of the dummy.  */
638 	bp_addr = dummy_addr;
639 	break;
640       }
641     default:
642       internal_error (__FILE__, __LINE__, _("bad switch"));
643     }
644 
645   if (nargs < TYPE_NFIELDS (ftype))
646     error (_("Too few arguments in function call."));
647 
648   {
649     int i;
650 
651     for (i = nargs - 1; i >= 0; i--)
652       {
653 	int prototyped;
654 	struct type *param_type;
655 
656 	/* FIXME drow/2002-05-31: Should just always mark methods as
657 	   prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
658 	if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
659 	  prototyped = 1;
660 	else if (i < TYPE_NFIELDS (ftype))
661 	  prototyped = TYPE_PROTOTYPED (ftype);
662 	else
663 	  prototyped = 0;
664 
665 	if (i < TYPE_NFIELDS (ftype))
666 	  param_type = TYPE_FIELD_TYPE (ftype, i);
667 	else
668 	  param_type = NULL;
669 
670 	args[i] = value_arg_coerce (gdbarch, args[i],
671 				    param_type, prototyped, &sp);
672 
673 	if (param_type != NULL && language_pass_by_reference (param_type))
674 	  args[i] = value_addr (args[i]);
675       }
676   }
677 
678   /* Reserve space for the return structure to be written on the
679      stack, if necessary.  Make certain that the value is correctly
680      aligned. */
681 
682   if (struct_return || lang_struct_return)
683     {
684       int len = TYPE_LENGTH (values_type);
685 
686       if (gdbarch_inner_than (gdbarch, 1, 2))
687 	{
688 	  /* Stack grows downward.  Align STRUCT_ADDR and SP after
689              making space for the return value.  */
690 	  sp -= len;
691 	  if (gdbarch_frame_align_p (gdbarch))
692 	    sp = gdbarch_frame_align (gdbarch, sp);
693 	  struct_addr = sp;
694 	}
695       else
696 	{
697 	  /* Stack grows upward.  Align the frame, allocate space, and
698              then again, re-align the frame??? */
699 	  if (gdbarch_frame_align_p (gdbarch))
700 	    sp = gdbarch_frame_align (gdbarch, sp);
701 	  struct_addr = sp;
702 	  sp += len;
703 	  if (gdbarch_frame_align_p (gdbarch))
704 	    sp = gdbarch_frame_align (gdbarch, sp);
705 	}
706     }
707 
708   if (lang_struct_return)
709     {
710       struct value **new_args;
711 
712       /* Add the new argument to the front of the argument list.  */
713       new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
714       new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
715 					struct_addr);
716       memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
717       args = new_args;
718       nargs++;
719       args_cleanup = make_cleanup (xfree, args);
720     }
721   else
722     args_cleanup = make_cleanup (null_cleanup, NULL);
723 
724   /* Create the dummy stack frame.  Pass in the call dummy address as,
725      presumably, the ABI code knows where, in the call dummy, the
726      return address should be pointed.  */
727   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
728 				bp_addr, nargs, args,
729 				sp, struct_return, struct_addr);
730 
731   do_cleanups (args_cleanup);
732 
733   /* Set up a frame ID for the dummy frame so we can pass it to
734      set_momentary_breakpoint.  We need to give the breakpoint a frame
735      ID so that the breakpoint code can correctly re-identify the
736      dummy breakpoint.  */
737   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
738      saved as the dummy-frame TOS, and used by dummy_id to form
739      the frame ID's stack address.  */
740   dummy_id = frame_id_build (sp, bp_addr);
741 
742   /* Create a momentary breakpoint at the return address of the
743      inferior.  That way it breaks when it returns.  */
744 
745   {
746     struct breakpoint *bpt;
747     struct symtab_and_line sal;
748 
749     init_sal (&sal);		/* initialize to zeroes */
750     sal.pspace = current_program_space;
751     sal.pc = bp_addr;
752     sal.section = find_pc_overlay (sal.pc);
753     /* Sanity.  The exact same SP value is returned by
754        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
755        dummy_id to form the frame ID's stack address.  */
756     bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
757     bpt->disposition = disp_del;
758   }
759 
760   /* Create a breakpoint in std::terminate.
761      If a C++ exception is raised in the dummy-frame, and the
762      exception handler is (normally, and expected to be) out-of-frame,
763      the default C++ handler will (wrongly) be called in an inferior
764      function call.  This is wrong, as an exception can be  normally
765      and legally handled out-of-frame.  The confines of the dummy frame
766      prevent the unwinder from finding the correct handler (or any
767      handler, unless it is in-frame).  The default handler calls
768      std::terminate.  This will kill the inferior.  Assert that
769      terminate should never be called in an inferior function
770      call.  Place a momentary breakpoint in the std::terminate function
771      and if triggered in the call, rewind.  */
772   if (unwind_on_terminating_exception_p)
773     set_std_terminate_breakpoint ();
774 
775   /* Everything's ready, push all the info needed to restore the
776      caller (and identify the dummy-frame) onto the dummy-frame
777      stack.  */
778   dummy_frame_push (caller_state, &dummy_id);
779 
780   /* Discard both inf_status and caller_state cleanups.
781      From this point on we explicitly restore the associated state
782      or discard it.  */
783   discard_cleanups (inf_status_cleanup);
784 
785   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
786   terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
787 				       NULL);
788 
789   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
790      If you're looking to implement asynchronous dummy-frames, then
791      just below is the place to chop this function in two..  */
792 
793   /* TP is invalid after run_inferior_call returns, so enclose this
794      in a block so that it's only in scope during the time it's valid.  */
795   {
796     struct thread_info *tp = inferior_thread ();
797 
798     /* Save this thread's ptid, we need it later but the thread
799        may have exited.  */
800     call_thread_ptid = tp->ptid;
801 
802     /* Run the inferior until it stops.  */
803 
804     e = run_inferior_call (tp, real_pc);
805   }
806 
807   /* Rethrow an error if we got one trying to run the inferior.  */
808 
809   if (e.reason < 0)
810     {
811       const char *name = get_function_name (funaddr,
812                                             name_buf, sizeof (name_buf));
813 
814       discard_inferior_status (inf_status);
815 
816       /* We could discard the dummy frame here if the program exited,
817          but it will get garbage collected the next time the program is
818          run anyway.  */
819 
820       switch (e.reason)
821 	{
822 	case RETURN_ERROR:
823 	  throw_error (e.error, _("\
824 %s\n\
825 An error occurred while in a function called from GDB.\n\
826 Evaluation of the expression containing the function\n\
827 (%s) will be abandoned.\n\
828 When the function is done executing, GDB will silently stop."),
829 		       e.message, name);
830 	case RETURN_QUIT:
831 	default:
832 	  throw_exception (e);
833 	}
834     }
835 
836   /* If the program has exited, or we stopped at a different thread,
837      exit and inform the user.  */
838 
839   if (! target_has_execution)
840     {
841       const char *name = get_function_name (funaddr,
842 					    name_buf, sizeof (name_buf));
843 
844       /* If we try to restore the inferior status,
845 	 we'll crash as the inferior is no longer running.  */
846       discard_inferior_status (inf_status);
847 
848       /* We could discard the dummy frame here given that the program exited,
849          but it will get garbage collected the next time the program is
850          run anyway.  */
851 
852       error (_("\
853 The program being debugged exited while in a function called from GDB.\n\
854 Evaluation of the expression containing the function\n\
855 (%s) will be abandoned."),
856 	     name);
857     }
858 
859   if (! ptid_equal (call_thread_ptid, inferior_ptid))
860     {
861       const char *name = get_function_name (funaddr,
862 					    name_buf, sizeof (name_buf));
863 
864       /* We've switched threads.  This can happen if another thread gets a
865 	 signal or breakpoint while our thread was running.
866 	 There's no point in restoring the inferior status,
867 	 we're in a different thread.  */
868       discard_inferior_status (inf_status);
869       /* Keep the dummy frame record, if the user switches back to the
870 	 thread with the hand-call, we'll need it.  */
871       if (stopped_by_random_signal)
872 	error (_("\
873 The program received a signal in another thread while\n\
874 making a function call from GDB.\n\
875 Evaluation of the expression containing the function\n\
876 (%s) will be abandoned.\n\
877 When the function is done executing, GDB will silently stop."),
878 	       name);
879       else
880 	error (_("\
881 The program stopped in another thread while making a function call from GDB.\n\
882 Evaluation of the expression containing the function\n\
883 (%s) will be abandoned.\n\
884 When the function is done executing, GDB will silently stop."),
885 	       name);
886     }
887 
888   if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
889     {
890       const char *name = get_function_name (funaddr,
891 					    name_buf, sizeof (name_buf));
892 
893       if (stopped_by_random_signal)
894 	{
895 	  /* We stopped inside the FUNCTION because of a random
896 	     signal.  Further execution of the FUNCTION is not
897 	     allowed. */
898 
899 	  if (unwind_on_signal_p)
900 	    {
901 	      /* The user wants the context restored. */
902 
903 	      /* We must get back to the frame we were before the
904 		 dummy call.  */
905 	      dummy_frame_pop (dummy_id);
906 
907 	      /* We also need to restore inferior status to that before the
908 		 dummy call.  */
909 	      restore_inferior_status (inf_status);
910 
911 	      /* FIXME: Insert a bunch of wrap_here; name can be very
912 		 long if it's a C++ name with arguments and stuff.  */
913 	      error (_("\
914 The program being debugged was signaled while in a function called from GDB.\n\
915 GDB has restored the context to what it was before the call.\n\
916 To change this behavior use \"set unwindonsignal off\".\n\
917 Evaluation of the expression containing the function\n\
918 (%s) will be abandoned."),
919 		     name);
920 	    }
921 	  else
922 	    {
923 	      /* The user wants to stay in the frame where we stopped
924 		 (default).
925 		 Discard inferior status, we're not at the same point
926 		 we started at.  */
927 	      discard_inferior_status (inf_status);
928 
929 	      /* FIXME: Insert a bunch of wrap_here; name can be very
930 		 long if it's a C++ name with arguments and stuff.  */
931 	      error (_("\
932 The program being debugged was signaled while in a function called from GDB.\n\
933 GDB remains in the frame where the signal was received.\n\
934 To change this behavior use \"set unwindonsignal on\".\n\
935 Evaluation of the expression containing the function\n\
936 (%s) will be abandoned.\n\
937 When the function is done executing, GDB will silently stop."),
938 		     name);
939 	    }
940 	}
941 
942       if (stop_stack_dummy == STOP_STD_TERMINATE)
943 	{
944 	  /* We must get back to the frame we were before the dummy
945 	     call.  */
946 	  dummy_frame_pop (dummy_id);
947 
948 	  /* We also need to restore inferior status to that before
949 	     the dummy call.  */
950 	  restore_inferior_status (inf_status);
951 
952 	  error (_("\
953 The program being debugged entered a std::terminate call, most likely\n\
954 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
955 to prevent the program from being terminated, and has restored the\n\
956 context to its original state before the call.\n\
957 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
958 Evaluation of the expression containing the function (%s)\n\
959 will be abandoned."),
960 		 name);
961 	}
962       else if (stop_stack_dummy == STOP_NONE)
963 	{
964 
965 	  /* We hit a breakpoint inside the FUNCTION.
966 	     Keep the dummy frame, the user may want to examine its state.
967 	     Discard inferior status, we're not at the same point
968 	     we started at.  */
969 	  discard_inferior_status (inf_status);
970 
971 	  /* The following error message used to say "The expression
972 	     which contained the function call has been discarded."
973 	     It is a hard concept to explain in a few words.  Ideally,
974 	     GDB would be able to resume evaluation of the expression
975 	     when the function finally is done executing.  Perhaps
976 	     someday this will be implemented (it would not be easy).  */
977 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
978 	     a C++ name with arguments and stuff.  */
979 	  error (_("\
980 The program being debugged stopped while in a function called from GDB.\n\
981 Evaluation of the expression containing the function\n\
982 (%s) will be abandoned.\n\
983 When the function is done executing, GDB will silently stop."),
984 		 name);
985 	}
986 
987       /* The above code errors out, so ...  */
988       internal_error (__FILE__, __LINE__, _("... should not be here"));
989     }
990 
991   do_cleanups (terminate_bp_cleanup);
992 
993   /* If we get here the called FUNCTION ran to completion,
994      and the dummy frame has already been popped.  */
995 
996   {
997     struct address_space *aspace = get_regcache_aspace (stop_registers);
998     struct regcache *retbuf = regcache_xmalloc (gdbarch, aspace);
999     struct cleanup *retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1000     struct value *retval = NULL;
1001 
1002     regcache_cpy_no_passthrough (retbuf, stop_registers);
1003 
1004     /* Inferior call is successful.  Restore the inferior status.
1005        At this stage, leave the RETBUF alone.  */
1006     restore_inferior_status (inf_status);
1007 
1008     /* Figure out the value returned by the function.  */
1009 
1010     if (lang_struct_return)
1011       retval = value_at (values_type, struct_addr);
1012     else if (TYPE_CODE (target_values_type) == TYPE_CODE_VOID)
1013       {
1014 	/* If the function returns void, don't bother fetching the
1015 	   return value.  */
1016 	retval = allocate_value (values_type);
1017       }
1018     else
1019       {
1020 	switch (gdbarch_return_value (gdbarch, value_type (function),
1021 				      target_values_type, NULL, NULL, NULL))
1022 	  {
1023 	  case RETURN_VALUE_REGISTER_CONVENTION:
1024 	  case RETURN_VALUE_ABI_RETURNS_ADDRESS:
1025 	  case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
1026 	    retval = allocate_value (values_type);
1027 	    gdbarch_return_value (gdbarch, value_type (function), values_type,
1028 				  retbuf, value_contents_raw (retval), NULL);
1029 	    break;
1030 	  case RETURN_VALUE_STRUCT_CONVENTION:
1031 	    retval = value_at (values_type, struct_addr);
1032 	    break;
1033 	  }
1034       }
1035 
1036     do_cleanups (retbuf_cleanup);
1037 
1038     gdb_assert (retval);
1039     return retval;
1040   }
1041 }
1042 
1043 
1044 /* Provide a prototype to silence -Wmissing-prototypes.  */
1045 void _initialize_infcall (void);
1046 
1047 void
1048 _initialize_infcall (void)
1049 {
1050   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1051 			   &coerce_float_to_double_p, _("\
1052 Set coercion of floats to doubles when calling functions."), _("\
1053 Show coercion of floats to doubles when calling functions"), _("\
1054 Variables of type float should generally be converted to doubles before\n\
1055 calling an unprototyped function, and left alone when calling a prototyped\n\
1056 function.  However, some older debug info formats do not provide enough\n\
1057 information to determine that a function is prototyped.  If this flag is\n\
1058 set, GDB will perform the conversion for a function it considers\n\
1059 unprototyped.\n\
1060 The default is to perform the conversion.\n"),
1061 			   NULL,
1062 			   show_coerce_float_to_double_p,
1063 			   &setlist, &showlist);
1064 
1065   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1066 			   &unwind_on_signal_p, _("\
1067 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1068 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1069 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1070 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1071 unwinds the stack and restore the context to what as it was before the call.\n\
1072 The default is to stop in the frame where the signal was received."),
1073 			   NULL,
1074 			   show_unwind_on_signal_p,
1075 			   &setlist, &showlist);
1076 
1077   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1078 			   &unwind_on_terminating_exception_p, _("\
1079 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1080 Show unwinding of stack if std::terminate() is called while in a call dummy."), _("\
1081 The unwind on terminating exception flag lets the user determine\n\
1082 what gdb should do if a std::terminate() call is made from the\n\
1083 default exception handler.  If set, gdb unwinds the stack and restores\n\
1084 the context to what it was before the call.  If unset, gdb allows the\n\
1085 std::terminate call to proceed.\n\
1086 The default is to unwind the frame."),
1087 			   NULL,
1088 			   show_unwind_on_terminating_exception_p,
1089 			   &setlist, &showlist);
1090 
1091 }
1092