xref: /dragonfly/contrib/gdb-7/gdb/infcall.c (revision 77b0c609)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2012 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "breakpoint.h"
22 #include "tracepoint.h"
23 #include "target.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "gdb_assert.h"
27 #include "block.h"
28 #include "gdbcore.h"
29 #include "language.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "gdb_string.h"
34 #include "infcall.h"
35 #include "dummy-frame.h"
36 #include "ada-lang.h"
37 #include "gdbthread.h"
38 #include "exceptions.h"
39 
40 /* If we can't find a function's name from its address,
41    we print this instead.  */
42 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
43 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
44                                    + 2 * sizeof (CORE_ADDR))
45 
46 /* NOTE: cagney/2003-04-16: What's the future of this code?
47 
48    GDB needs an asynchronous expression evaluator, that means an
49    asynchronous inferior function call implementation, and that in
50    turn means restructuring the code so that it is event driven.  */
51 
52 /* How you should pass arguments to a function depends on whether it
53    was defined in K&R style or prototype style.  If you define a
54    function using the K&R syntax that takes a `float' argument, then
55    callers must pass that argument as a `double'.  If you define the
56    function using the prototype syntax, then you must pass the
57    argument as a `float', with no promotion.
58 
59    Unfortunately, on certain older platforms, the debug info doesn't
60    indicate reliably how each function was defined.  A function type's
61    TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
62    defined in prototype style.  When calling a function whose
63    TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
64    decide what to do.
65 
66    For modern targets, it is proper to assume that, if the prototype
67    flag is clear, that can be trusted: `float' arguments should be
68    promoted to `double'.  For some older targets, if the prototype
69    flag is clear, that doesn't tell us anything.  The default is to
70    trust the debug information; the user can override this behavior
71    with "set coerce-float-to-double 0".  */
72 
73 static int coerce_float_to_double_p = 1;
74 static void
75 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
76 			       struct cmd_list_element *c, const char *value)
77 {
78   fprintf_filtered (file,
79 		    _("Coercion of floats to doubles "
80 		      "when calling functions is %s.\n"),
81 		    value);
82 }
83 
84 /* This boolean tells what gdb should do if a signal is received while
85    in a function called from gdb (call dummy).  If set, gdb unwinds
86    the stack and restore the context to what as it was before the
87    call.
88 
89    The default is to stop in the frame where the signal was received.  */
90 
91 int unwind_on_signal_p = 0;
92 static void
93 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
94 			 struct cmd_list_element *c, const char *value)
95 {
96   fprintf_filtered (file,
97 		    _("Unwinding of stack if a signal is "
98 		      "received while in a call dummy is %s.\n"),
99 		    value);
100 }
101 
102 /* This boolean tells what gdb should do if a std::terminate call is
103    made while in a function called from gdb (call dummy).
104    As the confines of a single dummy stack prohibit out-of-frame
105    handlers from handling a raised exception, and as out-of-frame
106    handlers are common in C++, this can lead to no handler being found
107    by the unwinder, and a std::terminate call.  This is a false positive.
108    If set, gdb unwinds the stack and restores the context to what it
109    was before the call.
110 
111    The default is to unwind the frame if a std::terminate call is
112    made.  */
113 
114 static int unwind_on_terminating_exception_p = 1;
115 
116 static void
117 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
118 					struct cmd_list_element *c,
119 					const char *value)
120 
121 {
122   fprintf_filtered (file,
123 		    _("Unwind stack if a C++ exception is "
124 		      "unhandled while in a call dummy is %s.\n"),
125 		    value);
126 }
127 
128 /* Perform the standard coercions that are specified
129    for arguments to be passed to C or Ada functions.
130 
131    If PARAM_TYPE is non-NULL, it is the expected parameter type.
132    IS_PROTOTYPED is non-zero if the function declaration is prototyped.
133    SP is the stack pointer were additional data can be pushed (updating
134    its value as needed).  */
135 
136 static struct value *
137 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
138 		  struct type *param_type, int is_prototyped, CORE_ADDR *sp)
139 {
140   const struct builtin_type *builtin = builtin_type (gdbarch);
141   struct type *arg_type = check_typedef (value_type (arg));
142   struct type *type
143     = param_type ? check_typedef (param_type) : arg_type;
144 
145   /* Perform any Ada-specific coercion first.  */
146   if (current_language->la_language == language_ada)
147     arg = ada_convert_actual (arg, type);
148 
149   /* Force the value to the target if we will need its address.  At
150      this point, we could allocate arguments on the stack instead of
151      calling malloc if we knew that their addresses would not be
152      saved by the called function.  */
153   arg = value_coerce_to_target (arg);
154 
155   switch (TYPE_CODE (type))
156     {
157     case TYPE_CODE_REF:
158       {
159 	struct value *new_value;
160 
161 	if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
162 	  return value_cast_pointers (type, arg);
163 
164 	/* Cast the value to the reference's target type, and then
165 	   convert it back to a reference.  This will issue an error
166 	   if the value was not previously in memory - in some cases
167 	   we should clearly be allowing this, but how?  */
168 	new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
169 	new_value = value_ref (new_value);
170 	return new_value;
171       }
172     case TYPE_CODE_INT:
173     case TYPE_CODE_CHAR:
174     case TYPE_CODE_BOOL:
175     case TYPE_CODE_ENUM:
176       /* If we don't have a prototype, coerce to integer type if necessary.  */
177       if (!is_prototyped)
178 	{
179 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
180 	    type = builtin->builtin_int;
181 	}
182       /* Currently all target ABIs require at least the width of an integer
183          type for an argument.  We may have to conditionalize the following
184          type coercion for future targets.  */
185       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
186 	type = builtin->builtin_int;
187       break;
188     case TYPE_CODE_FLT:
189       if (!is_prototyped && coerce_float_to_double_p)
190 	{
191 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
192 	    type = builtin->builtin_double;
193 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
194 	    type = builtin->builtin_long_double;
195 	}
196       break;
197     case TYPE_CODE_FUNC:
198       type = lookup_pointer_type (type);
199       break;
200     case TYPE_CODE_ARRAY:
201       /* Arrays are coerced to pointers to their first element, unless
202          they are vectors, in which case we want to leave them alone,
203          because they are passed by value.  */
204       if (current_language->c_style_arrays)
205 	if (!TYPE_VECTOR (type))
206 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
207       break;
208     case TYPE_CODE_UNDEF:
209     case TYPE_CODE_PTR:
210     case TYPE_CODE_STRUCT:
211     case TYPE_CODE_UNION:
212     case TYPE_CODE_VOID:
213     case TYPE_CODE_SET:
214     case TYPE_CODE_RANGE:
215     case TYPE_CODE_STRING:
216     case TYPE_CODE_BITSTRING:
217     case TYPE_CODE_ERROR:
218     case TYPE_CODE_MEMBERPTR:
219     case TYPE_CODE_METHODPTR:
220     case TYPE_CODE_METHOD:
221     case TYPE_CODE_COMPLEX:
222     default:
223       break;
224     }
225 
226   return value_cast (type, arg);
227 }
228 
229 /* Return the return type of a function with its first instruction exactly at
230    the PC address.  Return NULL otherwise.  */
231 
232 static struct type *
233 find_function_return_type (CORE_ADDR pc)
234 {
235   struct symbol *sym = find_pc_function (pc);
236 
237   if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
238       && SYMBOL_TYPE (sym) != NULL)
239     return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
240 
241   return NULL;
242 }
243 
244 /* Determine a function's address and its return type from its value.
245    Calls error() if the function is not valid for calling.  */
246 
247 CORE_ADDR
248 find_function_addr (struct value *function, struct type **retval_type)
249 {
250   struct type *ftype = check_typedef (value_type (function));
251   struct gdbarch *gdbarch = get_type_arch (ftype);
252   struct type *value_type = NULL;
253   /* Initialize it just to avoid a GCC false warning.  */
254   CORE_ADDR funaddr = 0;
255 
256   /* If it's a member function, just look at the function
257      part of it.  */
258 
259   /* Determine address to call.  */
260   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
261       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
262     funaddr = value_address (function);
263   else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
264     {
265       funaddr = value_as_address (function);
266       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
267       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
268 	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
269 	funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
270 						      &current_target);
271     }
272   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
273       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
274     {
275       value_type = TYPE_TARGET_TYPE (ftype);
276 
277       if (TYPE_GNU_IFUNC (ftype))
278 	{
279 	  funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
280 
281 	  /* Skip querying the function symbol if no RETVAL_TYPE has been
282 	     asked for.  */
283 	  if (retval_type)
284 	    value_type = find_function_return_type (funaddr);
285 	}
286     }
287   else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
288     {
289       /* Handle the case of functions lacking debugging info.
290          Their values are characters since their addresses are char.  */
291       if (TYPE_LENGTH (ftype) == 1)
292 	funaddr = value_as_address (value_addr (function));
293       else
294 	{
295 	  /* Handle function descriptors lacking debug info.  */
296 	  int found_descriptor = 0;
297 
298 	  funaddr = 0;	/* pacify "gcc -Werror" */
299 	  if (VALUE_LVAL (function) == lval_memory)
300 	    {
301 	      CORE_ADDR nfunaddr;
302 
303 	      funaddr = value_as_address (value_addr (function));
304 	      nfunaddr = funaddr;
305 	      funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
306 							    &current_target);
307 	      if (funaddr != nfunaddr)
308 		found_descriptor = 1;
309 	    }
310 	  if (!found_descriptor)
311 	    /* Handle integer used as address of a function.  */
312 	    funaddr = (CORE_ADDR) value_as_long (function);
313 	}
314     }
315   else
316     error (_("Invalid data type for function to be called."));
317 
318   if (retval_type != NULL)
319     *retval_type = value_type;
320   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
321 }
322 
323 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
324    function returns to.  */
325 
326 static CORE_ADDR
327 push_dummy_code (struct gdbarch *gdbarch,
328 		 CORE_ADDR sp, CORE_ADDR funaddr,
329 		 struct value **args, int nargs,
330 		 struct type *value_type,
331 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
332 		 struct regcache *regcache)
333 {
334   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
335 
336   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
337 				  args, nargs, value_type, real_pc, bp_addr,
338 				  regcache);
339 }
340 
341 /* Fetch the name of the function at FUNADDR.
342    This is used in printing an error message for call_function_by_hand.
343    BUF is used to print FUNADDR in hex if the function name cannot be
344    determined.  It must be large enough to hold formatted result of
345    RAW_FUNCTION_ADDRESS_FORMAT.  */
346 
347 static const char *
348 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
349 {
350   {
351     struct symbol *symbol = find_pc_function (funaddr);
352 
353     if (symbol)
354       return SYMBOL_PRINT_NAME (symbol);
355   }
356 
357   {
358     /* Try the minimal symbols.  */
359     struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
360 
361     if (msymbol)
362       return SYMBOL_PRINT_NAME (msymbol);
363   }
364 
365   {
366     char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
367                             hex_string (funaddr));
368 
369     gdb_assert (strlen (tmp) + 1 <= buf_size);
370     strcpy (buf, tmp);
371     xfree (tmp);
372     return buf;
373   }
374 }
375 
376 /* Subroutine of call_function_by_hand to simplify it.
377    Start up the inferior and wait for it to stop.
378    Return the exception if there's an error, or an exception with
379    reason >= 0 if there's no error.
380 
381    This is done inside a TRY_CATCH so the caller needn't worry about
382    thrown errors.  The caller should rethrow if there's an error.  */
383 
384 static struct gdb_exception
385 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
386 {
387   volatile struct gdb_exception e;
388   int saved_in_infcall = call_thread->control.in_infcall;
389   ptid_t call_thread_ptid = call_thread->ptid;
390 
391   call_thread->control.in_infcall = 1;
392 
393   clear_proceed_status ();
394 
395   disable_watchpoints_before_interactive_call_start ();
396 
397   /* We want stop_registers, please...  */
398   call_thread->control.proceed_to_finish = 1;
399 
400   TRY_CATCH (e, RETURN_MASK_ALL)
401     {
402       proceed (real_pc, TARGET_SIGNAL_0, 0);
403 
404       /* Inferior function calls are always synchronous, even if the
405 	 target supports asynchronous execution.  Do here what
406 	 `proceed' itself does in sync mode.  */
407       if (target_can_async_p () && is_running (inferior_ptid))
408 	{
409 	  wait_for_inferior ();
410 	  normal_stop ();
411 	}
412     }
413 
414   /* At this point the current thread may have changed.  Refresh
415      CALL_THREAD as it could be invalid if its thread has exited.  */
416   call_thread = find_thread_ptid (call_thread_ptid);
417 
418   enable_watchpoints_after_interactive_call_stop ();
419 
420   /* Call breakpoint_auto_delete on the current contents of the bpstat
421      of inferior call thread.
422      If all error()s out of proceed ended up calling normal_stop
423      (and perhaps they should; it already does in the special case
424      of error out of resume()), then we wouldn't need this.  */
425   if (e.reason < 0)
426     {
427       if (call_thread != NULL)
428 	breakpoint_auto_delete (call_thread->control.stop_bpstat);
429     }
430 
431   if (call_thread != NULL)
432     call_thread->control.in_infcall = saved_in_infcall;
433 
434   return e;
435 }
436 
437 /* A cleanup function that calls delete_std_terminate_breakpoint.  */
438 static void
439 cleanup_delete_std_terminate_breakpoint (void *ignore)
440 {
441   delete_std_terminate_breakpoint ();
442 }
443 
444 /* All this stuff with a dummy frame may seem unnecessarily complicated
445    (why not just save registers in GDB?).  The purpose of pushing a dummy
446    frame which looks just like a real frame is so that if you call a
447    function and then hit a breakpoint (get a signal, etc), "backtrace"
448    will look right.  Whether the backtrace needs to actually show the
449    stack at the time the inferior function was called is debatable, but
450    it certainly needs to not display garbage.  So if you are contemplating
451    making dummy frames be different from normal frames, consider that.  */
452 
453 /* Perform a function call in the inferior.
454    ARGS is a vector of values of arguments (NARGS of them).
455    FUNCTION is a value, the function to be called.
456    Returns a value representing what the function returned.
457    May fail to return, if a breakpoint or signal is hit
458    during the execution of the function.
459 
460    ARGS is modified to contain coerced values.  */
461 
462 struct value *
463 call_function_by_hand (struct value *function, int nargs, struct value **args)
464 {
465   CORE_ADDR sp;
466   struct type *values_type, *target_values_type;
467   unsigned char struct_return = 0, lang_struct_return = 0;
468   CORE_ADDR struct_addr = 0;
469   struct infcall_control_state *inf_status;
470   struct cleanup *inf_status_cleanup;
471   struct infcall_suspend_state *caller_state;
472   CORE_ADDR funaddr;
473   CORE_ADDR real_pc;
474   struct type *ftype = check_typedef (value_type (function));
475   CORE_ADDR bp_addr;
476   struct frame_id dummy_id;
477   struct cleanup *args_cleanup;
478   struct frame_info *frame;
479   struct gdbarch *gdbarch;
480   struct cleanup *terminate_bp_cleanup;
481   ptid_t call_thread_ptid;
482   struct gdb_exception e;
483   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
484 
485   if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
486     ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
487 
488   if (!target_has_execution)
489     noprocess ();
490 
491   if (get_traceframe_number () >= 0)
492     error (_("May not call functions while looking at trace frames."));
493 
494   if (execution_direction == EXEC_REVERSE)
495     error (_("Cannot call functions in reverse mode."));
496 
497   frame = get_current_frame ();
498   gdbarch = get_frame_arch (frame);
499 
500   if (!gdbarch_push_dummy_call_p (gdbarch))
501     error (_("This target does not support function calls."));
502 
503   /* A cleanup for the inferior status.
504      This is only needed while we're preparing the inferior function call.  */
505   inf_status = save_infcall_control_state ();
506   inf_status_cleanup
507     = make_cleanup_restore_infcall_control_state (inf_status);
508 
509   /* Save the caller's registers and other state associated with the
510      inferior itself so that they can be restored once the
511      callee returns.  To allow nested calls the registers are (further
512      down) pushed onto a dummy frame stack.  Include a cleanup (which
513      is tossed once the regcache has been pushed).  */
514   caller_state = save_infcall_suspend_state ();
515   make_cleanup_restore_infcall_suspend_state (caller_state);
516 
517   /* Ensure that the initial SP is correctly aligned.  */
518   {
519     CORE_ADDR old_sp = get_frame_sp (frame);
520 
521     if (gdbarch_frame_align_p (gdbarch))
522       {
523 	sp = gdbarch_frame_align (gdbarch, old_sp);
524 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
525 	   ABIs, a function can use memory beyond the inner most stack
526 	   address.  AMD64 called that region the "red zone".  Skip at
527 	   least the "red zone" size before allocating any space on
528 	   the stack.  */
529 	if (gdbarch_inner_than (gdbarch, 1, 2))
530 	  sp -= gdbarch_frame_red_zone_size (gdbarch);
531 	else
532 	  sp += gdbarch_frame_red_zone_size (gdbarch);
533 	/* Still aligned?  */
534 	gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
535 	/* NOTE: cagney/2002-09-18:
536 
537 	   On a RISC architecture, a void parameterless generic dummy
538 	   frame (i.e., no parameters, no result) typically does not
539 	   need to push anything the stack and hence can leave SP and
540 	   FP.  Similarly, a frameless (possibly leaf) function does
541 	   not push anything on the stack and, hence, that too can
542 	   leave FP and SP unchanged.  As a consequence, a sequence of
543 	   void parameterless generic dummy frame calls to frameless
544 	   functions will create a sequence of effectively identical
545 	   frames (SP, FP and TOS and PC the same).  This, not
546 	   suprisingly, results in what appears to be a stack in an
547 	   infinite loop --- when GDB tries to find a generic dummy
548 	   frame on the internal dummy frame stack, it will always
549 	   find the first one.
550 
551 	   To avoid this problem, the code below always grows the
552 	   stack.  That way, two dummy frames can never be identical.
553 	   It does burn a few bytes of stack but that is a small price
554 	   to pay :-).  */
555 	if (sp == old_sp)
556 	  {
557 	    if (gdbarch_inner_than (gdbarch, 1, 2))
558 	      /* Stack grows down.  */
559 	      sp = gdbarch_frame_align (gdbarch, old_sp - 1);
560 	    else
561 	      /* Stack grows up.  */
562 	      sp = gdbarch_frame_align (gdbarch, old_sp + 1);
563 	  }
564 	/* SP may have underflown address zero here from OLD_SP.  Memory access
565 	   functions will probably fail in such case but that is a target's
566 	   problem.  */
567       }
568     else
569       /* FIXME: cagney/2002-09-18: Hey, you loose!
570 
571 	 Who knows how badly aligned the SP is!
572 
573 	 If the generic dummy frame ends up empty (because nothing is
574 	 pushed) GDB won't be able to correctly perform back traces.
575 	 If a target is having trouble with backtraces, first thing to
576 	 do is add FRAME_ALIGN() to the architecture vector.  If that
577 	 fails, try dummy_id().
578 
579          If the ABI specifies a "Red Zone" (see the doco) the code
580          below will quietly trash it.  */
581       sp = old_sp;
582   }
583 
584   funaddr = find_function_addr (function, &values_type);
585   if (!values_type)
586     values_type = builtin_type (gdbarch)->builtin_int;
587 
588   CHECK_TYPEDEF (values_type);
589 
590   /* Are we returning a value using a structure return (passing a
591      hidden argument pointing to storage) or a normal value return?
592      There are two cases: language-mandated structure return and
593      target ABI structure return.  The variable STRUCT_RETURN only
594      describes the latter.  The language version is handled by passing
595      the return location as the first parameter to the function,
596      even preceding "this".  This is different from the target
597      ABI version, which is target-specific; for instance, on ia64
598      the first argument is passed in out0 but the hidden structure
599      return pointer would normally be passed in r8.  */
600 
601   if (language_pass_by_reference (values_type))
602     {
603       lang_struct_return = 1;
604 
605       /* Tell the target specific argument pushing routine not to
606 	 expect a value.  */
607       target_values_type = builtin_type (gdbarch)->builtin_void;
608     }
609   else
610     {
611       struct_return = using_struct_return (gdbarch,
612 					   value_type (function), values_type);
613       target_values_type = values_type;
614     }
615 
616   /* Determine the location of the breakpoint (and possibly other
617      stuff) that the called function will return to.  The SPARC, for a
618      function returning a structure or union, needs to make space for
619      not just the breakpoint but also an extra word containing the
620      size (?) of the structure being passed.  */
621 
622   /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
623      is no need to write that out.  */
624 
625   switch (gdbarch_call_dummy_location (gdbarch))
626     {
627     case ON_STACK:
628       sp = push_dummy_code (gdbarch, sp, funaddr,
629 				args, nargs, target_values_type,
630 				&real_pc, &bp_addr, get_current_regcache ());
631       break;
632     case AT_ENTRY_POINT:
633       {
634 	CORE_ADDR dummy_addr;
635 
636 	real_pc = funaddr;
637 	dummy_addr = entry_point_address ();
638 	/* A call dummy always consists of just a single breakpoint, so
639 	   its address is the same as the address of the dummy.  */
640 	bp_addr = dummy_addr;
641 	break;
642       }
643     case AT_SYMBOL:
644       /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
645 	 address is the location where the breakpoint should be
646 	 placed.  Once all targets are using the overhauled frame code
647 	 this can be deleted - ON_STACK is a better option.  */
648       {
649 	struct minimal_symbol *sym;
650 	CORE_ADDR dummy_addr;
651 
652 	sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
653 	real_pc = funaddr;
654 	if (sym)
655 	  {
656 	    dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
657 	    /* Make certain that the address points at real code, and not
658 	       a function descriptor.  */
659 	    dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
660 							     dummy_addr,
661 							     &current_target);
662 	  }
663 	else
664 	  dummy_addr = entry_point_address ();
665 	/* A call dummy always consists of just a single breakpoint,
666 	   so it's address is the same as the address of the dummy.  */
667 	bp_addr = dummy_addr;
668 	break;
669       }
670     default:
671       internal_error (__FILE__, __LINE__, _("bad switch"));
672     }
673 
674   if (nargs < TYPE_NFIELDS (ftype))
675     error (_("Too few arguments in function call."));
676 
677   {
678     int i;
679 
680     for (i = nargs - 1; i >= 0; i--)
681       {
682 	int prototyped;
683 	struct type *param_type;
684 
685 	/* FIXME drow/2002-05-31: Should just always mark methods as
686 	   prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
687 	if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
688 	  prototyped = 1;
689 	else if (i < TYPE_NFIELDS (ftype))
690 	  prototyped = TYPE_PROTOTYPED (ftype);
691 	else
692 	  prototyped = 0;
693 
694 	if (i < TYPE_NFIELDS (ftype))
695 	  param_type = TYPE_FIELD_TYPE (ftype, i);
696 	else
697 	  param_type = NULL;
698 
699 	args[i] = value_arg_coerce (gdbarch, args[i],
700 				    param_type, prototyped, &sp);
701 
702 	if (param_type != NULL && language_pass_by_reference (param_type))
703 	  args[i] = value_addr (args[i]);
704       }
705   }
706 
707   /* Reserve space for the return structure to be written on the
708      stack, if necessary.  Make certain that the value is correctly
709      aligned.  */
710 
711   if (struct_return || lang_struct_return)
712     {
713       int len = TYPE_LENGTH (values_type);
714 
715       if (gdbarch_inner_than (gdbarch, 1, 2))
716 	{
717 	  /* Stack grows downward.  Align STRUCT_ADDR and SP after
718              making space for the return value.  */
719 	  sp -= len;
720 	  if (gdbarch_frame_align_p (gdbarch))
721 	    sp = gdbarch_frame_align (gdbarch, sp);
722 	  struct_addr = sp;
723 	}
724       else
725 	{
726 	  /* Stack grows upward.  Align the frame, allocate space, and
727              then again, re-align the frame???  */
728 	  if (gdbarch_frame_align_p (gdbarch))
729 	    sp = gdbarch_frame_align (gdbarch, sp);
730 	  struct_addr = sp;
731 	  sp += len;
732 	  if (gdbarch_frame_align_p (gdbarch))
733 	    sp = gdbarch_frame_align (gdbarch, sp);
734 	}
735     }
736 
737   if (lang_struct_return)
738     {
739       struct value **new_args;
740 
741       /* Add the new argument to the front of the argument list.  */
742       new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
743       new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
744 					struct_addr);
745       memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
746       args = new_args;
747       nargs++;
748       args_cleanup = make_cleanup (xfree, args);
749     }
750   else
751     args_cleanup = make_cleanup (null_cleanup, NULL);
752 
753   /* Create the dummy stack frame.  Pass in the call dummy address as,
754      presumably, the ABI code knows where, in the call dummy, the
755      return address should be pointed.  */
756   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
757 				bp_addr, nargs, args,
758 				sp, struct_return, struct_addr);
759 
760   do_cleanups (args_cleanup);
761 
762   /* Set up a frame ID for the dummy frame so we can pass it to
763      set_momentary_breakpoint.  We need to give the breakpoint a frame
764      ID so that the breakpoint code can correctly re-identify the
765      dummy breakpoint.  */
766   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
767      saved as the dummy-frame TOS, and used by dummy_id to form
768      the frame ID's stack address.  */
769   dummy_id = frame_id_build (sp, bp_addr);
770 
771   /* Create a momentary breakpoint at the return address of the
772      inferior.  That way it breaks when it returns.  */
773 
774   {
775     struct breakpoint *bpt;
776     struct symtab_and_line sal;
777 
778     init_sal (&sal);		/* initialize to zeroes */
779     sal.pspace = current_program_space;
780     sal.pc = bp_addr;
781     sal.section = find_pc_overlay (sal.pc);
782     /* Sanity.  The exact same SP value is returned by
783        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
784        dummy_id to form the frame ID's stack address.  */
785     bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
786     bpt->disposition = disp_del;
787   }
788 
789   /* Create a breakpoint in std::terminate.
790      If a C++ exception is raised in the dummy-frame, and the
791      exception handler is (normally, and expected to be) out-of-frame,
792      the default C++ handler will (wrongly) be called in an inferior
793      function call.  This is wrong, as an exception can be  normally
794      and legally handled out-of-frame.  The confines of the dummy frame
795      prevent the unwinder from finding the correct handler (or any
796      handler, unless it is in-frame).  The default handler calls
797      std::terminate.  This will kill the inferior.  Assert that
798      terminate should never be called in an inferior function
799      call.  Place a momentary breakpoint in the std::terminate function
800      and if triggered in the call, rewind.  */
801   if (unwind_on_terminating_exception_p)
802     set_std_terminate_breakpoint ();
803 
804   /* Everything's ready, push all the info needed to restore the
805      caller (and identify the dummy-frame) onto the dummy-frame
806      stack.  */
807   dummy_frame_push (caller_state, &dummy_id);
808 
809   /* Discard both inf_status and caller_state cleanups.
810      From this point on we explicitly restore the associated state
811      or discard it.  */
812   discard_cleanups (inf_status_cleanup);
813 
814   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
815   terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
816 				       NULL);
817 
818   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
819      If you're looking to implement asynchronous dummy-frames, then
820      just below is the place to chop this function in two..  */
821 
822   /* TP is invalid after run_inferior_call returns, so enclose this
823      in a block so that it's only in scope during the time it's valid.  */
824   {
825     struct thread_info *tp = inferior_thread ();
826 
827     /* Save this thread's ptid, we need it later but the thread
828        may have exited.  */
829     call_thread_ptid = tp->ptid;
830 
831     /* Run the inferior until it stops.  */
832 
833     e = run_inferior_call (tp, real_pc);
834   }
835 
836   /* Rethrow an error if we got one trying to run the inferior.  */
837 
838   if (e.reason < 0)
839     {
840       const char *name = get_function_name (funaddr,
841                                             name_buf, sizeof (name_buf));
842 
843       discard_infcall_control_state (inf_status);
844 
845       /* We could discard the dummy frame here if the program exited,
846          but it will get garbage collected the next time the program is
847          run anyway.  */
848 
849       switch (e.reason)
850 	{
851 	case RETURN_ERROR:
852 	  throw_error (e.error, _("%s\n\
853 An error occurred while in a function called from GDB.\n\
854 Evaluation of the expression containing the function\n\
855 (%s) will be abandoned.\n\
856 When the function is done executing, GDB will silently stop."),
857 		       e.message, name);
858 	case RETURN_QUIT:
859 	default:
860 	  throw_exception (e);
861 	}
862     }
863 
864   /* If the program has exited, or we stopped at a different thread,
865      exit and inform the user.  */
866 
867   if (! target_has_execution)
868     {
869       const char *name = get_function_name (funaddr,
870 					    name_buf, sizeof (name_buf));
871 
872       /* If we try to restore the inferior status,
873 	 we'll crash as the inferior is no longer running.  */
874       discard_infcall_control_state (inf_status);
875 
876       /* We could discard the dummy frame here given that the program exited,
877          but it will get garbage collected the next time the program is
878          run anyway.  */
879 
880       error (_("The program being debugged exited while in a function "
881 	       "called from GDB.\n"
882 	       "Evaluation of the expression containing the function\n"
883 	       "(%s) will be abandoned."),
884 	     name);
885     }
886 
887   if (! ptid_equal (call_thread_ptid, inferior_ptid))
888     {
889       const char *name = get_function_name (funaddr,
890 					    name_buf, sizeof (name_buf));
891 
892       /* We've switched threads.  This can happen if another thread gets a
893 	 signal or breakpoint while our thread was running.
894 	 There's no point in restoring the inferior status,
895 	 we're in a different thread.  */
896       discard_infcall_control_state (inf_status);
897       /* Keep the dummy frame record, if the user switches back to the
898 	 thread with the hand-call, we'll need it.  */
899       if (stopped_by_random_signal)
900 	error (_("\
901 The program received a signal in another thread while\n\
902 making a function call from GDB.\n\
903 Evaluation of the expression containing the function\n\
904 (%s) will be abandoned.\n\
905 When the function is done executing, GDB will silently stop."),
906 	       name);
907       else
908 	error (_("\
909 The program stopped in another thread while making a function call from GDB.\n\
910 Evaluation of the expression containing the function\n\
911 (%s) will be abandoned.\n\
912 When the function is done executing, GDB will silently stop."),
913 	       name);
914     }
915 
916   if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
917     {
918       const char *name = get_function_name (funaddr,
919 					    name_buf, sizeof (name_buf));
920 
921       if (stopped_by_random_signal)
922 	{
923 	  /* We stopped inside the FUNCTION because of a random
924 	     signal.  Further execution of the FUNCTION is not
925 	     allowed.  */
926 
927 	  if (unwind_on_signal_p)
928 	    {
929 	      /* The user wants the context restored.  */
930 
931 	      /* We must get back to the frame we were before the
932 		 dummy call.  */
933 	      dummy_frame_pop (dummy_id);
934 
935 	      /* We also need to restore inferior status to that before the
936 		 dummy call.  */
937 	      restore_infcall_control_state (inf_status);
938 
939 	      /* FIXME: Insert a bunch of wrap_here; name can be very
940 		 long if it's a C++ name with arguments and stuff.  */
941 	      error (_("\
942 The program being debugged was signaled while in a function called from GDB.\n\
943 GDB has restored the context to what it was before the call.\n\
944 To change this behavior use \"set unwindonsignal off\".\n\
945 Evaluation of the expression containing the function\n\
946 (%s) will be abandoned."),
947 		     name);
948 	    }
949 	  else
950 	    {
951 	      /* The user wants to stay in the frame where we stopped
952 		 (default).
953 		 Discard inferior status, we're not at the same point
954 		 we started at.  */
955 	      discard_infcall_control_state (inf_status);
956 
957 	      /* FIXME: Insert a bunch of wrap_here; name can be very
958 		 long if it's a C++ name with arguments and stuff.  */
959 	      error (_("\
960 The program being debugged was signaled while in a function called from GDB.\n\
961 GDB remains in the frame where the signal was received.\n\
962 To change this behavior use \"set unwindonsignal on\".\n\
963 Evaluation of the expression containing the function\n\
964 (%s) will be abandoned.\n\
965 When the function is done executing, GDB will silently stop."),
966 		     name);
967 	    }
968 	}
969 
970       if (stop_stack_dummy == STOP_STD_TERMINATE)
971 	{
972 	  /* We must get back to the frame we were before the dummy
973 	     call.  */
974 	  dummy_frame_pop (dummy_id);
975 
976 	  /* We also need to restore inferior status to that before
977 	     the dummy call.  */
978 	  restore_infcall_control_state (inf_status);
979 
980 	  error (_("\
981 The program being debugged entered a std::terminate call, most likely\n\
982 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
983 to prevent the program from being terminated, and has restored the\n\
984 context to its original state before the call.\n\
985 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
986 Evaluation of the expression containing the function (%s)\n\
987 will be abandoned."),
988 		 name);
989 	}
990       else if (stop_stack_dummy == STOP_NONE)
991 	{
992 
993 	  /* We hit a breakpoint inside the FUNCTION.
994 	     Keep the dummy frame, the user may want to examine its state.
995 	     Discard inferior status, we're not at the same point
996 	     we started at.  */
997 	  discard_infcall_control_state (inf_status);
998 
999 	  /* The following error message used to say "The expression
1000 	     which contained the function call has been discarded."
1001 	     It is a hard concept to explain in a few words.  Ideally,
1002 	     GDB would be able to resume evaluation of the expression
1003 	     when the function finally is done executing.  Perhaps
1004 	     someday this will be implemented (it would not be easy).  */
1005 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1006 	     a C++ name with arguments and stuff.  */
1007 	  error (_("\
1008 The program being debugged stopped while in a function called from GDB.\n\
1009 Evaluation of the expression containing the function\n\
1010 (%s) will be abandoned.\n\
1011 When the function is done executing, GDB will silently stop."),
1012 		 name);
1013 	}
1014 
1015       /* The above code errors out, so ...  */
1016       internal_error (__FILE__, __LINE__, _("... should not be here"));
1017     }
1018 
1019   do_cleanups (terminate_bp_cleanup);
1020 
1021   /* If we get here the called FUNCTION ran to completion,
1022      and the dummy frame has already been popped.  */
1023 
1024   {
1025     struct address_space *aspace = get_regcache_aspace (stop_registers);
1026     struct regcache *retbuf = regcache_xmalloc (gdbarch, aspace);
1027     struct cleanup *retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1028     struct value *retval = NULL;
1029 
1030     regcache_cpy_no_passthrough (retbuf, stop_registers);
1031 
1032     /* Inferior call is successful.  Restore the inferior status.
1033        At this stage, leave the RETBUF alone.  */
1034     restore_infcall_control_state (inf_status);
1035 
1036     /* Figure out the value returned by the function.  */
1037     retval = allocate_value (values_type);
1038 
1039     if (lang_struct_return)
1040       read_value_memory (retval, 0, 1, struct_addr,
1041 			 value_contents_raw (retval),
1042 			 TYPE_LENGTH (values_type));
1043     else if (TYPE_CODE (target_values_type) != TYPE_CODE_VOID)
1044       {
1045 	/* If the function returns void, don't bother fetching the
1046 	   return value.  */
1047 	switch (gdbarch_return_value (gdbarch, value_type (function),
1048 				      target_values_type, NULL, NULL, NULL))
1049 	  {
1050 	  case RETURN_VALUE_REGISTER_CONVENTION:
1051 	  case RETURN_VALUE_ABI_RETURNS_ADDRESS:
1052 	  case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
1053 	    gdbarch_return_value (gdbarch, value_type (function), values_type,
1054 				  retbuf, value_contents_raw (retval), NULL);
1055 	    break;
1056 	  case RETURN_VALUE_STRUCT_CONVENTION:
1057 	    read_value_memory (retval, 0, 1, struct_addr,
1058 			       value_contents_raw (retval),
1059 			       TYPE_LENGTH (values_type));
1060 	    break;
1061 	  }
1062       }
1063 
1064     do_cleanups (retbuf_cleanup);
1065 
1066     gdb_assert (retval);
1067     return retval;
1068   }
1069 }
1070 
1071 
1072 /* Provide a prototype to silence -Wmissing-prototypes.  */
1073 void _initialize_infcall (void);
1074 
1075 void
1076 _initialize_infcall (void)
1077 {
1078   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1079 			   &coerce_float_to_double_p, _("\
1080 Set coercion of floats to doubles when calling functions."), _("\
1081 Show coercion of floats to doubles when calling functions"), _("\
1082 Variables of type float should generally be converted to doubles before\n\
1083 calling an unprototyped function, and left alone when calling a prototyped\n\
1084 function.  However, some older debug info formats do not provide enough\n\
1085 information to determine that a function is prototyped.  If this flag is\n\
1086 set, GDB will perform the conversion for a function it considers\n\
1087 unprototyped.\n\
1088 The default is to perform the conversion.\n"),
1089 			   NULL,
1090 			   show_coerce_float_to_double_p,
1091 			   &setlist, &showlist);
1092 
1093   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1094 			   &unwind_on_signal_p, _("\
1095 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1096 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1097 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1098 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1099 unwinds the stack and restore the context to what as it was before the call.\n\
1100 The default is to stop in the frame where the signal was received."),
1101 			   NULL,
1102 			   show_unwind_on_signal_p,
1103 			   &setlist, &showlist);
1104 
1105   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1106 			   &unwind_on_terminating_exception_p, _("\
1107 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1108 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1109 			   _("\
1110 The unwind on terminating exception flag lets the user determine\n\
1111 what gdb should do if a std::terminate() call is made from the\n\
1112 default exception handler.  If set, gdb unwinds the stack and restores\n\
1113 the context to what it was before the call.  If unset, gdb allows the\n\
1114 std::terminate call to proceed.\n\
1115 The default is to unwind the frame."),
1116 			   NULL,
1117 			   show_unwind_on_terminating_exception_p,
1118 			   &setlist, &showlist);
1119 
1120 }
1121