xref: /dragonfly/contrib/gdb-7/gdb/infcall.c (revision 9348a738)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "breakpoint.h"
22 #include "tracepoint.h"
23 #include "target.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "gdb_assert.h"
27 #include "block.h"
28 #include "gdbcore.h"
29 #include "language.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "gdb_string.h"
34 #include "infcall.h"
35 #include "dummy-frame.h"
36 #include "ada-lang.h"
37 #include "gdbthread.h"
38 #include "exceptions.h"
39 
40 /* If we can't find a function's name from its address,
41    we print this instead.  */
42 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
43 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
44                                    + 2 * sizeof (CORE_ADDR))
45 
46 /* NOTE: cagney/2003-04-16: What's the future of this code?
47 
48    GDB needs an asynchronous expression evaluator, that means an
49    asynchronous inferior function call implementation, and that in
50    turn means restructuring the code so that it is event driven.  */
51 
52 /* How you should pass arguments to a function depends on whether it
53    was defined in K&R style or prototype style.  If you define a
54    function using the K&R syntax that takes a `float' argument, then
55    callers must pass that argument as a `double'.  If you define the
56    function using the prototype syntax, then you must pass the
57    argument as a `float', with no promotion.
58 
59    Unfortunately, on certain older platforms, the debug info doesn't
60    indicate reliably how each function was defined.  A function type's
61    TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
62    defined in prototype style.  When calling a function whose
63    TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
64    decide what to do.
65 
66    For modern targets, it is proper to assume that, if the prototype
67    flag is clear, that can be trusted: `float' arguments should be
68    promoted to `double'.  For some older targets, if the prototype
69    flag is clear, that doesn't tell us anything.  The default is to
70    trust the debug information; the user can override this behavior
71    with "set coerce-float-to-double 0".  */
72 
73 static int coerce_float_to_double_p = 1;
74 static void
75 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
76 			       struct cmd_list_element *c, const char *value)
77 {
78   fprintf_filtered (file,
79 		    _("Coercion of floats to doubles "
80 		      "when calling functions is %s.\n"),
81 		    value);
82 }
83 
84 /* This boolean tells what gdb should do if a signal is received while
85    in a function called from gdb (call dummy).  If set, gdb unwinds
86    the stack and restore the context to what as it was before the
87    call.
88 
89    The default is to stop in the frame where the signal was received.  */
90 
91 static int unwind_on_signal_p = 0;
92 static void
93 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
94 			 struct cmd_list_element *c, const char *value)
95 {
96   fprintf_filtered (file,
97 		    _("Unwinding of stack if a signal is "
98 		      "received while in a call dummy is %s.\n"),
99 		    value);
100 }
101 
102 /* This boolean tells what gdb should do if a std::terminate call is
103    made while in a function called from gdb (call dummy).
104    As the confines of a single dummy stack prohibit out-of-frame
105    handlers from handling a raised exception, and as out-of-frame
106    handlers are common in C++, this can lead to no handler being found
107    by the unwinder, and a std::terminate call.  This is a false positive.
108    If set, gdb unwinds the stack and restores the context to what it
109    was before the call.
110 
111    The default is to unwind the frame if a std::terminate call is
112    made.  */
113 
114 static int unwind_on_terminating_exception_p = 1;
115 
116 static void
117 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
118 					struct cmd_list_element *c,
119 					const char *value)
120 
121 {
122   fprintf_filtered (file,
123 		    _("Unwind stack if a C++ exception is "
124 		      "unhandled while in a call dummy is %s.\n"),
125 		    value);
126 }
127 
128 /* Perform the standard coercions that are specified
129    for arguments to be passed to C or Ada functions.
130 
131    If PARAM_TYPE is non-NULL, it is the expected parameter type.
132    IS_PROTOTYPED is non-zero if the function declaration is prototyped.
133    SP is the stack pointer were additional data can be pushed (updating
134    its value as needed).  */
135 
136 static struct value *
137 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
138 		  struct type *param_type, int is_prototyped, CORE_ADDR *sp)
139 {
140   const struct builtin_type *builtin = builtin_type (gdbarch);
141   struct type *arg_type = check_typedef (value_type (arg));
142   struct type *type
143     = param_type ? check_typedef (param_type) : arg_type;
144 
145   /* Perform any Ada-specific coercion first.  */
146   if (current_language->la_language == language_ada)
147     arg = ada_convert_actual (arg, type);
148 
149   /* Force the value to the target if we will need its address.  At
150      this point, we could allocate arguments on the stack instead of
151      calling malloc if we knew that their addresses would not be
152      saved by the called function.  */
153   arg = value_coerce_to_target (arg);
154 
155   switch (TYPE_CODE (type))
156     {
157     case TYPE_CODE_REF:
158       {
159 	struct value *new_value;
160 
161 	if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
162 	  return value_cast_pointers (type, arg, 0);
163 
164 	/* Cast the value to the reference's target type, and then
165 	   convert it back to a reference.  This will issue an error
166 	   if the value was not previously in memory - in some cases
167 	   we should clearly be allowing this, but how?  */
168 	new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
169 	new_value = value_ref (new_value);
170 	return new_value;
171       }
172     case TYPE_CODE_INT:
173     case TYPE_CODE_CHAR:
174     case TYPE_CODE_BOOL:
175     case TYPE_CODE_ENUM:
176       /* If we don't have a prototype, coerce to integer type if necessary.  */
177       if (!is_prototyped)
178 	{
179 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
180 	    type = builtin->builtin_int;
181 	}
182       /* Currently all target ABIs require at least the width of an integer
183          type for an argument.  We may have to conditionalize the following
184          type coercion for future targets.  */
185       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
186 	type = builtin->builtin_int;
187       break;
188     case TYPE_CODE_FLT:
189       if (!is_prototyped && coerce_float_to_double_p)
190 	{
191 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
192 	    type = builtin->builtin_double;
193 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
194 	    type = builtin->builtin_long_double;
195 	}
196       break;
197     case TYPE_CODE_FUNC:
198       type = lookup_pointer_type (type);
199       break;
200     case TYPE_CODE_ARRAY:
201       /* Arrays are coerced to pointers to their first element, unless
202          they are vectors, in which case we want to leave them alone,
203          because they are passed by value.  */
204       if (current_language->c_style_arrays)
205 	if (!TYPE_VECTOR (type))
206 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
207       break;
208     case TYPE_CODE_UNDEF:
209     case TYPE_CODE_PTR:
210     case TYPE_CODE_STRUCT:
211     case TYPE_CODE_UNION:
212     case TYPE_CODE_VOID:
213     case TYPE_CODE_SET:
214     case TYPE_CODE_RANGE:
215     case TYPE_CODE_STRING:
216     case TYPE_CODE_ERROR:
217     case TYPE_CODE_MEMBERPTR:
218     case TYPE_CODE_METHODPTR:
219     case TYPE_CODE_METHOD:
220     case TYPE_CODE_COMPLEX:
221     default:
222       break;
223     }
224 
225   return value_cast (type, arg);
226 }
227 
228 /* Return the return type of a function with its first instruction exactly at
229    the PC address.  Return NULL otherwise.  */
230 
231 static struct type *
232 find_function_return_type (CORE_ADDR pc)
233 {
234   struct symbol *sym = find_pc_function (pc);
235 
236   if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
237       && SYMBOL_TYPE (sym) != NULL)
238     return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
239 
240   return NULL;
241 }
242 
243 /* Determine a function's address and its return type from its value.
244    Calls error() if the function is not valid for calling.  */
245 
246 CORE_ADDR
247 find_function_addr (struct value *function, struct type **retval_type)
248 {
249   struct type *ftype = check_typedef (value_type (function));
250   struct gdbarch *gdbarch = get_type_arch (ftype);
251   struct type *value_type = NULL;
252   /* Initialize it just to avoid a GCC false warning.  */
253   CORE_ADDR funaddr = 0;
254 
255   /* If it's a member function, just look at the function
256      part of it.  */
257 
258   /* Determine address to call.  */
259   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
260       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
261     funaddr = value_address (function);
262   else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
263     {
264       funaddr = value_as_address (function);
265       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
266       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
267 	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
268 	funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
269 						      &current_target);
270     }
271   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
272       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
273     {
274       value_type = TYPE_TARGET_TYPE (ftype);
275 
276       if (TYPE_GNU_IFUNC (ftype))
277 	{
278 	  funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
279 
280 	  /* Skip querying the function symbol if no RETVAL_TYPE has been
281 	     asked for.  */
282 	  if (retval_type)
283 	    value_type = find_function_return_type (funaddr);
284 	}
285     }
286   else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
287     {
288       /* Handle the case of functions lacking debugging info.
289          Their values are characters since their addresses are char.  */
290       if (TYPE_LENGTH (ftype) == 1)
291 	funaddr = value_as_address (value_addr (function));
292       else
293 	{
294 	  /* Handle function descriptors lacking debug info.  */
295 	  int found_descriptor = 0;
296 
297 	  funaddr = 0;	/* pacify "gcc -Werror" */
298 	  if (VALUE_LVAL (function) == lval_memory)
299 	    {
300 	      CORE_ADDR nfunaddr;
301 
302 	      funaddr = value_as_address (value_addr (function));
303 	      nfunaddr = funaddr;
304 	      funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
305 							    &current_target);
306 	      if (funaddr != nfunaddr)
307 		found_descriptor = 1;
308 	    }
309 	  if (!found_descriptor)
310 	    /* Handle integer used as address of a function.  */
311 	    funaddr = (CORE_ADDR) value_as_long (function);
312 	}
313     }
314   else
315     error (_("Invalid data type for function to be called."));
316 
317   if (retval_type != NULL)
318     *retval_type = value_type;
319   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
320 }
321 
322 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
323    function returns to.  */
324 
325 static CORE_ADDR
326 push_dummy_code (struct gdbarch *gdbarch,
327 		 CORE_ADDR sp, CORE_ADDR funaddr,
328 		 struct value **args, int nargs,
329 		 struct type *value_type,
330 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
331 		 struct regcache *regcache)
332 {
333   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
334 
335   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
336 				  args, nargs, value_type, real_pc, bp_addr,
337 				  regcache);
338 }
339 
340 /* Fetch the name of the function at FUNADDR.
341    This is used in printing an error message for call_function_by_hand.
342    BUF is used to print FUNADDR in hex if the function name cannot be
343    determined.  It must be large enough to hold formatted result of
344    RAW_FUNCTION_ADDRESS_FORMAT.  */
345 
346 static const char *
347 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
348 {
349   {
350     struct symbol *symbol = find_pc_function (funaddr);
351 
352     if (symbol)
353       return SYMBOL_PRINT_NAME (symbol);
354   }
355 
356   {
357     /* Try the minimal symbols.  */
358     struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
359 
360     if (msymbol)
361       return SYMBOL_PRINT_NAME (msymbol);
362   }
363 
364   {
365     char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
366                             hex_string (funaddr));
367 
368     gdb_assert (strlen (tmp) + 1 <= buf_size);
369     strcpy (buf, tmp);
370     xfree (tmp);
371     return buf;
372   }
373 }
374 
375 /* Subroutine of call_function_by_hand to simplify it.
376    Start up the inferior and wait for it to stop.
377    Return the exception if there's an error, or an exception with
378    reason >= 0 if there's no error.
379 
380    This is done inside a TRY_CATCH so the caller needn't worry about
381    thrown errors.  The caller should rethrow if there's an error.  */
382 
383 static struct gdb_exception
384 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
385 {
386   volatile struct gdb_exception e;
387   int saved_in_infcall = call_thread->control.in_infcall;
388   ptid_t call_thread_ptid = call_thread->ptid;
389 
390   call_thread->control.in_infcall = 1;
391 
392   clear_proceed_status ();
393 
394   disable_watchpoints_before_interactive_call_start ();
395 
396   /* We want stop_registers, please...  */
397   call_thread->control.proceed_to_finish = 1;
398 
399   TRY_CATCH (e, RETURN_MASK_ALL)
400     {
401       proceed (real_pc, GDB_SIGNAL_0, 0);
402 
403       /* Inferior function calls are always synchronous, even if the
404 	 target supports asynchronous execution.  Do here what
405 	 `proceed' itself does in sync mode.  */
406       if (target_can_async_p () && is_running (inferior_ptid))
407 	{
408 	  wait_for_inferior ();
409 	  normal_stop ();
410 	}
411     }
412 
413   /* At this point the current thread may have changed.  Refresh
414      CALL_THREAD as it could be invalid if its thread has exited.  */
415   call_thread = find_thread_ptid (call_thread_ptid);
416 
417   enable_watchpoints_after_interactive_call_stop ();
418 
419   /* Call breakpoint_auto_delete on the current contents of the bpstat
420      of inferior call thread.
421      If all error()s out of proceed ended up calling normal_stop
422      (and perhaps they should; it already does in the special case
423      of error out of resume()), then we wouldn't need this.  */
424   if (e.reason < 0)
425     {
426       if (call_thread != NULL)
427 	breakpoint_auto_delete (call_thread->control.stop_bpstat);
428     }
429 
430   if (call_thread != NULL)
431     call_thread->control.in_infcall = saved_in_infcall;
432 
433   return e;
434 }
435 
436 /* A cleanup function that calls delete_std_terminate_breakpoint.  */
437 static void
438 cleanup_delete_std_terminate_breakpoint (void *ignore)
439 {
440   delete_std_terminate_breakpoint ();
441 }
442 
443 /* All this stuff with a dummy frame may seem unnecessarily complicated
444    (why not just save registers in GDB?).  The purpose of pushing a dummy
445    frame which looks just like a real frame is so that if you call a
446    function and then hit a breakpoint (get a signal, etc), "backtrace"
447    will look right.  Whether the backtrace needs to actually show the
448    stack at the time the inferior function was called is debatable, but
449    it certainly needs to not display garbage.  So if you are contemplating
450    making dummy frames be different from normal frames, consider that.  */
451 
452 /* Perform a function call in the inferior.
453    ARGS is a vector of values of arguments (NARGS of them).
454    FUNCTION is a value, the function to be called.
455    Returns a value representing what the function returned.
456    May fail to return, if a breakpoint or signal is hit
457    during the execution of the function.
458 
459    ARGS is modified to contain coerced values.  */
460 
461 struct value *
462 call_function_by_hand (struct value *function, int nargs, struct value **args)
463 {
464   CORE_ADDR sp;
465   struct type *values_type, *target_values_type;
466   unsigned char struct_return = 0, hidden_first_param_p = 0;
467   CORE_ADDR struct_addr = 0;
468   struct infcall_control_state *inf_status;
469   struct cleanup *inf_status_cleanup;
470   struct infcall_suspend_state *caller_state;
471   CORE_ADDR funaddr;
472   CORE_ADDR real_pc;
473   struct type *ftype = check_typedef (value_type (function));
474   CORE_ADDR bp_addr;
475   struct frame_id dummy_id;
476   struct cleanup *args_cleanup;
477   struct frame_info *frame;
478   struct gdbarch *gdbarch;
479   struct cleanup *terminate_bp_cleanup;
480   ptid_t call_thread_ptid;
481   struct gdb_exception e;
482   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
483 
484   if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
485     ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
486 
487   if (!target_has_execution)
488     noprocess ();
489 
490   if (get_traceframe_number () >= 0)
491     error (_("May not call functions while looking at trace frames."));
492 
493   if (execution_direction == EXEC_REVERSE)
494     error (_("Cannot call functions in reverse mode."));
495 
496   frame = get_current_frame ();
497   gdbarch = get_frame_arch (frame);
498 
499   if (!gdbarch_push_dummy_call_p (gdbarch))
500     error (_("This target does not support function calls."));
501 
502   /* A cleanup for the inferior status.
503      This is only needed while we're preparing the inferior function call.  */
504   inf_status = save_infcall_control_state ();
505   inf_status_cleanup
506     = make_cleanup_restore_infcall_control_state (inf_status);
507 
508   /* Save the caller's registers and other state associated with the
509      inferior itself so that they can be restored once the
510      callee returns.  To allow nested calls the registers are (further
511      down) pushed onto a dummy frame stack.  Include a cleanup (which
512      is tossed once the regcache has been pushed).  */
513   caller_state = save_infcall_suspend_state ();
514   make_cleanup_restore_infcall_suspend_state (caller_state);
515 
516   /* Ensure that the initial SP is correctly aligned.  */
517   {
518     CORE_ADDR old_sp = get_frame_sp (frame);
519 
520     if (gdbarch_frame_align_p (gdbarch))
521       {
522 	sp = gdbarch_frame_align (gdbarch, old_sp);
523 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
524 	   ABIs, a function can use memory beyond the inner most stack
525 	   address.  AMD64 called that region the "red zone".  Skip at
526 	   least the "red zone" size before allocating any space on
527 	   the stack.  */
528 	if (gdbarch_inner_than (gdbarch, 1, 2))
529 	  sp -= gdbarch_frame_red_zone_size (gdbarch);
530 	else
531 	  sp += gdbarch_frame_red_zone_size (gdbarch);
532 	/* Still aligned?  */
533 	gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
534 	/* NOTE: cagney/2002-09-18:
535 
536 	   On a RISC architecture, a void parameterless generic dummy
537 	   frame (i.e., no parameters, no result) typically does not
538 	   need to push anything the stack and hence can leave SP and
539 	   FP.  Similarly, a frameless (possibly leaf) function does
540 	   not push anything on the stack and, hence, that too can
541 	   leave FP and SP unchanged.  As a consequence, a sequence of
542 	   void parameterless generic dummy frame calls to frameless
543 	   functions will create a sequence of effectively identical
544 	   frames (SP, FP and TOS and PC the same).  This, not
545 	   suprisingly, results in what appears to be a stack in an
546 	   infinite loop --- when GDB tries to find a generic dummy
547 	   frame on the internal dummy frame stack, it will always
548 	   find the first one.
549 
550 	   To avoid this problem, the code below always grows the
551 	   stack.  That way, two dummy frames can never be identical.
552 	   It does burn a few bytes of stack but that is a small price
553 	   to pay :-).  */
554 	if (sp == old_sp)
555 	  {
556 	    if (gdbarch_inner_than (gdbarch, 1, 2))
557 	      /* Stack grows down.  */
558 	      sp = gdbarch_frame_align (gdbarch, old_sp - 1);
559 	    else
560 	      /* Stack grows up.  */
561 	      sp = gdbarch_frame_align (gdbarch, old_sp + 1);
562 	  }
563 	/* SP may have underflown address zero here from OLD_SP.  Memory access
564 	   functions will probably fail in such case but that is a target's
565 	   problem.  */
566       }
567     else
568       /* FIXME: cagney/2002-09-18: Hey, you loose!
569 
570 	 Who knows how badly aligned the SP is!
571 
572 	 If the generic dummy frame ends up empty (because nothing is
573 	 pushed) GDB won't be able to correctly perform back traces.
574 	 If a target is having trouble with backtraces, first thing to
575 	 do is add FRAME_ALIGN() to the architecture vector.  If that
576 	 fails, try dummy_id().
577 
578          If the ABI specifies a "Red Zone" (see the doco) the code
579          below will quietly trash it.  */
580       sp = old_sp;
581   }
582 
583   funaddr = find_function_addr (function, &values_type);
584   if (!values_type)
585     values_type = builtin_type (gdbarch)->builtin_int;
586 
587   CHECK_TYPEDEF (values_type);
588 
589   /* Are we returning a value using a structure return (passing a
590      hidden argument pointing to storage) or a normal value return?
591      There are two cases: language-mandated structure return and
592      target ABI structure return.  The variable STRUCT_RETURN only
593      describes the latter.  The language version is handled by passing
594      the return location as the first parameter to the function,
595      even preceding "this".  This is different from the target
596      ABI version, which is target-specific; for instance, on ia64
597      the first argument is passed in out0 but the hidden structure
598      return pointer would normally be passed in r8.  */
599 
600   if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
601     {
602       hidden_first_param_p = 1;
603 
604       /* Tell the target specific argument pushing routine not to
605 	 expect a value.  */
606       target_values_type = builtin_type (gdbarch)->builtin_void;
607     }
608   else
609     {
610       struct_return = using_struct_return (gdbarch, function, values_type);
611       target_values_type = values_type;
612     }
613 
614   /* Determine the location of the breakpoint (and possibly other
615      stuff) that the called function will return to.  The SPARC, for a
616      function returning a structure or union, needs to make space for
617      not just the breakpoint but also an extra word containing the
618      size (?) of the structure being passed.  */
619 
620   switch (gdbarch_call_dummy_location (gdbarch))
621     {
622     case ON_STACK:
623       {
624 	const gdb_byte *bp_bytes;
625 	CORE_ADDR bp_addr_as_address;
626 	int bp_size;
627 
628 	/* Be careful BP_ADDR is in inferior PC encoding while
629 	   BP_ADDR_AS_ADDRESS is a plain memory address.  */
630 
631 	sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
632 			      target_values_type, &real_pc, &bp_addr,
633 			      get_current_regcache ());
634 
635 	/* Write a legitimate instruction at the point where the infcall
636 	   breakpoint is going to be inserted.  While this instruction
637 	   is never going to be executed, a user investigating the
638 	   memory from GDB would see this instruction instead of random
639 	   uninitialized bytes.  We chose the breakpoint instruction
640 	   as it may look as the most logical one to the user and also
641 	   valgrind 3.7.0 needs it for proper vgdb inferior calls.
642 
643 	   If software breakpoints are unsupported for this target we
644 	   leave the user visible memory content uninitialized.  */
645 
646 	bp_addr_as_address = bp_addr;
647 	bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
648 					       &bp_size);
649 	if (bp_bytes != NULL)
650 	  write_memory (bp_addr_as_address, bp_bytes, bp_size);
651       }
652       break;
653     case AT_ENTRY_POINT:
654       {
655 	CORE_ADDR dummy_addr;
656 
657 	real_pc = funaddr;
658 	dummy_addr = entry_point_address ();
659 
660 	/* A call dummy always consists of just a single breakpoint, so
661 	   its address is the same as the address of the dummy.
662 
663 	   The actual breakpoint is inserted separatly so there is no need to
664 	   write that out.  */
665 	bp_addr = dummy_addr;
666 	break;
667       }
668     default:
669       internal_error (__FILE__, __LINE__, _("bad switch"));
670     }
671 
672   if (nargs < TYPE_NFIELDS (ftype))
673     error (_("Too few arguments in function call."));
674 
675   {
676     int i;
677 
678     for (i = nargs - 1; i >= 0; i--)
679       {
680 	int prototyped;
681 	struct type *param_type;
682 
683 	/* FIXME drow/2002-05-31: Should just always mark methods as
684 	   prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
685 	if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
686 	  prototyped = 1;
687 	else if (i < TYPE_NFIELDS (ftype))
688 	  prototyped = TYPE_PROTOTYPED (ftype);
689 	else
690 	  prototyped = 0;
691 
692 	if (i < TYPE_NFIELDS (ftype))
693 	  param_type = TYPE_FIELD_TYPE (ftype, i);
694 	else
695 	  param_type = NULL;
696 
697 	args[i] = value_arg_coerce (gdbarch, args[i],
698 				    param_type, prototyped, &sp);
699 
700 	if (param_type != NULL && language_pass_by_reference (param_type))
701 	  args[i] = value_addr (args[i]);
702       }
703   }
704 
705   /* Reserve space for the return structure to be written on the
706      stack, if necessary.  Make certain that the value is correctly
707      aligned.  */
708 
709   if (struct_return || hidden_first_param_p)
710     {
711       if (gdbarch_inner_than (gdbarch, 1, 2))
712 	{
713 	  /* Stack grows downward.  Align STRUCT_ADDR and SP after
714              making space for the return value.  */
715 	  sp -= TYPE_LENGTH (values_type);
716 	  if (gdbarch_frame_align_p (gdbarch))
717 	    sp = gdbarch_frame_align (gdbarch, sp);
718 	  struct_addr = sp;
719 	}
720       else
721 	{
722 	  /* Stack grows upward.  Align the frame, allocate space, and
723              then again, re-align the frame???  */
724 	  if (gdbarch_frame_align_p (gdbarch))
725 	    sp = gdbarch_frame_align (gdbarch, sp);
726 	  struct_addr = sp;
727 	  sp += TYPE_LENGTH (values_type);
728 	  if (gdbarch_frame_align_p (gdbarch))
729 	    sp = gdbarch_frame_align (gdbarch, sp);
730 	}
731     }
732 
733   if (hidden_first_param_p)
734     {
735       struct value **new_args;
736 
737       /* Add the new argument to the front of the argument list.  */
738       new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
739       new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
740 					struct_addr);
741       memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
742       args = new_args;
743       nargs++;
744       args_cleanup = make_cleanup (xfree, args);
745     }
746   else
747     args_cleanup = make_cleanup (null_cleanup, NULL);
748 
749   /* Create the dummy stack frame.  Pass in the call dummy address as,
750      presumably, the ABI code knows where, in the call dummy, the
751      return address should be pointed.  */
752   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
753 				bp_addr, nargs, args,
754 				sp, struct_return, struct_addr);
755 
756   do_cleanups (args_cleanup);
757 
758   /* Set up a frame ID for the dummy frame so we can pass it to
759      set_momentary_breakpoint.  We need to give the breakpoint a frame
760      ID so that the breakpoint code can correctly re-identify the
761      dummy breakpoint.  */
762   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
763      saved as the dummy-frame TOS, and used by dummy_id to form
764      the frame ID's stack address.  */
765   dummy_id = frame_id_build (sp, bp_addr);
766 
767   /* Create a momentary breakpoint at the return address of the
768      inferior.  That way it breaks when it returns.  */
769 
770   {
771     struct breakpoint *bpt, *longjmp_b;
772     struct symtab_and_line sal;
773 
774     init_sal (&sal);		/* initialize to zeroes */
775     sal.pspace = current_program_space;
776     sal.pc = bp_addr;
777     sal.section = find_pc_overlay (sal.pc);
778     /* Sanity.  The exact same SP value is returned by
779        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
780        dummy_id to form the frame ID's stack address.  */
781     bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
782 
783     /* set_momentary_breakpoint invalidates FRAME.  */
784     frame = NULL;
785 
786     bpt->disposition = disp_del;
787     gdb_assert (bpt->related_breakpoint == bpt);
788 
789     longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
790     if (longjmp_b)
791       {
792 	/* Link BPT into the chain of LONGJMP_B.  */
793 	bpt->related_breakpoint = longjmp_b;
794 	while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
795 	  longjmp_b = longjmp_b->related_breakpoint;
796 	longjmp_b->related_breakpoint = bpt;
797       }
798   }
799 
800   /* Create a breakpoint in std::terminate.
801      If a C++ exception is raised in the dummy-frame, and the
802      exception handler is (normally, and expected to be) out-of-frame,
803      the default C++ handler will (wrongly) be called in an inferior
804      function call.  This is wrong, as an exception can be  normally
805      and legally handled out-of-frame.  The confines of the dummy frame
806      prevent the unwinder from finding the correct handler (or any
807      handler, unless it is in-frame).  The default handler calls
808      std::terminate.  This will kill the inferior.  Assert that
809      terminate should never be called in an inferior function
810      call.  Place a momentary breakpoint in the std::terminate function
811      and if triggered in the call, rewind.  */
812   if (unwind_on_terminating_exception_p)
813     set_std_terminate_breakpoint ();
814 
815   /* Everything's ready, push all the info needed to restore the
816      caller (and identify the dummy-frame) onto the dummy-frame
817      stack.  */
818   dummy_frame_push (caller_state, &dummy_id);
819 
820   /* Discard both inf_status and caller_state cleanups.
821      From this point on we explicitly restore the associated state
822      or discard it.  */
823   discard_cleanups (inf_status_cleanup);
824 
825   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
826   terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
827 				       NULL);
828 
829   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
830      If you're looking to implement asynchronous dummy-frames, then
831      just below is the place to chop this function in two..  */
832 
833   /* TP is invalid after run_inferior_call returns, so enclose this
834      in a block so that it's only in scope during the time it's valid.  */
835   {
836     struct thread_info *tp = inferior_thread ();
837 
838     /* Save this thread's ptid, we need it later but the thread
839        may have exited.  */
840     call_thread_ptid = tp->ptid;
841 
842     /* Run the inferior until it stops.  */
843 
844     e = run_inferior_call (tp, real_pc);
845   }
846 
847   /* Rethrow an error if we got one trying to run the inferior.  */
848 
849   if (e.reason < 0)
850     {
851       const char *name = get_function_name (funaddr,
852                                             name_buf, sizeof (name_buf));
853 
854       discard_infcall_control_state (inf_status);
855 
856       /* We could discard the dummy frame here if the program exited,
857          but it will get garbage collected the next time the program is
858          run anyway.  */
859 
860       switch (e.reason)
861 	{
862 	case RETURN_ERROR:
863 	  throw_error (e.error, _("%s\n\
864 An error occurred while in a function called from GDB.\n\
865 Evaluation of the expression containing the function\n\
866 (%s) will be abandoned.\n\
867 When the function is done executing, GDB will silently stop."),
868 		       e.message, name);
869 	case RETURN_QUIT:
870 	default:
871 	  throw_exception (e);
872 	}
873     }
874 
875   /* If the program has exited, or we stopped at a different thread,
876      exit and inform the user.  */
877 
878   if (! target_has_execution)
879     {
880       const char *name = get_function_name (funaddr,
881 					    name_buf, sizeof (name_buf));
882 
883       /* If we try to restore the inferior status,
884 	 we'll crash as the inferior is no longer running.  */
885       discard_infcall_control_state (inf_status);
886 
887       /* We could discard the dummy frame here given that the program exited,
888          but it will get garbage collected the next time the program is
889          run anyway.  */
890 
891       error (_("The program being debugged exited while in a function "
892 	       "called from GDB.\n"
893 	       "Evaluation of the expression containing the function\n"
894 	       "(%s) will be abandoned."),
895 	     name);
896     }
897 
898   if (! ptid_equal (call_thread_ptid, inferior_ptid))
899     {
900       const char *name = get_function_name (funaddr,
901 					    name_buf, sizeof (name_buf));
902 
903       /* We've switched threads.  This can happen if another thread gets a
904 	 signal or breakpoint while our thread was running.
905 	 There's no point in restoring the inferior status,
906 	 we're in a different thread.  */
907       discard_infcall_control_state (inf_status);
908       /* Keep the dummy frame record, if the user switches back to the
909 	 thread with the hand-call, we'll need it.  */
910       if (stopped_by_random_signal)
911 	error (_("\
912 The program received a signal in another thread while\n\
913 making a function call from GDB.\n\
914 Evaluation of the expression containing the function\n\
915 (%s) will be abandoned.\n\
916 When the function is done executing, GDB will silently stop."),
917 	       name);
918       else
919 	error (_("\
920 The program stopped in another thread while making a function call from GDB.\n\
921 Evaluation of the expression containing the function\n\
922 (%s) will be abandoned.\n\
923 When the function is done executing, GDB will silently stop."),
924 	       name);
925     }
926 
927   if (stopped_by_random_signal || stop_stack_dummy != STOP_STACK_DUMMY)
928     {
929       const char *name = get_function_name (funaddr,
930 					    name_buf, sizeof (name_buf));
931 
932       if (stopped_by_random_signal)
933 	{
934 	  /* We stopped inside the FUNCTION because of a random
935 	     signal.  Further execution of the FUNCTION is not
936 	     allowed.  */
937 
938 	  if (unwind_on_signal_p)
939 	    {
940 	      /* The user wants the context restored.  */
941 
942 	      /* We must get back to the frame we were before the
943 		 dummy call.  */
944 	      dummy_frame_pop (dummy_id);
945 
946 	      /* We also need to restore inferior status to that before the
947 		 dummy call.  */
948 	      restore_infcall_control_state (inf_status);
949 
950 	      /* FIXME: Insert a bunch of wrap_here; name can be very
951 		 long if it's a C++ name with arguments and stuff.  */
952 	      error (_("\
953 The program being debugged was signaled while in a function called from GDB.\n\
954 GDB has restored the context to what it was before the call.\n\
955 To change this behavior use \"set unwindonsignal off\".\n\
956 Evaluation of the expression containing the function\n\
957 (%s) will be abandoned."),
958 		     name);
959 	    }
960 	  else
961 	    {
962 	      /* The user wants to stay in the frame where we stopped
963 		 (default).
964 		 Discard inferior status, we're not at the same point
965 		 we started at.  */
966 	      discard_infcall_control_state (inf_status);
967 
968 	      /* FIXME: Insert a bunch of wrap_here; name can be very
969 		 long if it's a C++ name with arguments and stuff.  */
970 	      error (_("\
971 The program being debugged was signaled while in a function called from GDB.\n\
972 GDB remains in the frame where the signal was received.\n\
973 To change this behavior use \"set unwindonsignal on\".\n\
974 Evaluation of the expression containing the function\n\
975 (%s) will be abandoned.\n\
976 When the function is done executing, GDB will silently stop."),
977 		     name);
978 	    }
979 	}
980 
981       if (stop_stack_dummy == STOP_STD_TERMINATE)
982 	{
983 	  /* We must get back to the frame we were before the dummy
984 	     call.  */
985 	  dummy_frame_pop (dummy_id);
986 
987 	  /* We also need to restore inferior status to that before
988 	     the dummy call.  */
989 	  restore_infcall_control_state (inf_status);
990 
991 	  error (_("\
992 The program being debugged entered a std::terminate call, most likely\n\
993 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
994 to prevent the program from being terminated, and has restored the\n\
995 context to its original state before the call.\n\
996 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
997 Evaluation of the expression containing the function (%s)\n\
998 will be abandoned."),
999 		 name);
1000 	}
1001       else if (stop_stack_dummy == STOP_NONE)
1002 	{
1003 
1004 	  /* We hit a breakpoint inside the FUNCTION.
1005 	     Keep the dummy frame, the user may want to examine its state.
1006 	     Discard inferior status, we're not at the same point
1007 	     we started at.  */
1008 	  discard_infcall_control_state (inf_status);
1009 
1010 	  /* The following error message used to say "The expression
1011 	     which contained the function call has been discarded."
1012 	     It is a hard concept to explain in a few words.  Ideally,
1013 	     GDB would be able to resume evaluation of the expression
1014 	     when the function finally is done executing.  Perhaps
1015 	     someday this will be implemented (it would not be easy).  */
1016 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1017 	     a C++ name with arguments and stuff.  */
1018 	  error (_("\
1019 The program being debugged stopped while in a function called from GDB.\n\
1020 Evaluation of the expression containing the function\n\
1021 (%s) will be abandoned.\n\
1022 When the function is done executing, GDB will silently stop."),
1023 		 name);
1024 	}
1025 
1026       /* The above code errors out, so ...  */
1027       internal_error (__FILE__, __LINE__, _("... should not be here"));
1028     }
1029 
1030   do_cleanups (terminate_bp_cleanup);
1031 
1032   /* If we get here the called FUNCTION ran to completion,
1033      and the dummy frame has already been popped.  */
1034 
1035   {
1036     struct address_space *aspace = get_regcache_aspace (stop_registers);
1037     struct regcache *retbuf = regcache_xmalloc (gdbarch, aspace);
1038     struct cleanup *retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
1039     struct value *retval = NULL;
1040 
1041     regcache_cpy_no_passthrough (retbuf, stop_registers);
1042 
1043     /* Inferior call is successful.  Restore the inferior status.
1044        At this stage, leave the RETBUF alone.  */
1045     restore_infcall_control_state (inf_status);
1046 
1047     /* Figure out the value returned by the function.  */
1048     retval = allocate_value (values_type);
1049 
1050     if (hidden_first_param_p)
1051       read_value_memory (retval, 0, 1, struct_addr,
1052 			 value_contents_raw (retval),
1053 			 TYPE_LENGTH (values_type));
1054     else if (TYPE_CODE (target_values_type) != TYPE_CODE_VOID)
1055       {
1056 	/* If the function returns void, don't bother fetching the
1057 	   return value.  */
1058 	switch (gdbarch_return_value (gdbarch, function, target_values_type,
1059 				      NULL, NULL, NULL))
1060 	  {
1061 	  case RETURN_VALUE_REGISTER_CONVENTION:
1062 	  case RETURN_VALUE_ABI_RETURNS_ADDRESS:
1063 	  case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
1064 	    gdbarch_return_value (gdbarch, function, values_type,
1065 				  retbuf, value_contents_raw (retval), NULL);
1066 	    break;
1067 	  case RETURN_VALUE_STRUCT_CONVENTION:
1068 	    read_value_memory (retval, 0, 1, struct_addr,
1069 			       value_contents_raw (retval),
1070 			       TYPE_LENGTH (values_type));
1071 	    break;
1072 	  }
1073       }
1074 
1075     do_cleanups (retbuf_cleanup);
1076 
1077     gdb_assert (retval);
1078     return retval;
1079   }
1080 }
1081 
1082 
1083 /* Provide a prototype to silence -Wmissing-prototypes.  */
1084 void _initialize_infcall (void);
1085 
1086 void
1087 _initialize_infcall (void)
1088 {
1089   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1090 			   &coerce_float_to_double_p, _("\
1091 Set coercion of floats to doubles when calling functions."), _("\
1092 Show coercion of floats to doubles when calling functions"), _("\
1093 Variables of type float should generally be converted to doubles before\n\
1094 calling an unprototyped function, and left alone when calling a prototyped\n\
1095 function.  However, some older debug info formats do not provide enough\n\
1096 information to determine that a function is prototyped.  If this flag is\n\
1097 set, GDB will perform the conversion for a function it considers\n\
1098 unprototyped.\n\
1099 The default is to perform the conversion.\n"),
1100 			   NULL,
1101 			   show_coerce_float_to_double_p,
1102 			   &setlist, &showlist);
1103 
1104   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1105 			   &unwind_on_signal_p, _("\
1106 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1107 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1108 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1109 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1110 unwinds the stack and restore the context to what as it was before the call.\n\
1111 The default is to stop in the frame where the signal was received."),
1112 			   NULL,
1113 			   show_unwind_on_signal_p,
1114 			   &setlist, &showlist);
1115 
1116   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1117 			   &unwind_on_terminating_exception_p, _("\
1118 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1119 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1120 			   _("\
1121 The unwind on terminating exception flag lets the user determine\n\
1122 what gdb should do if a std::terminate() call is made from the\n\
1123 default exception handler.  If set, gdb unwinds the stack and restores\n\
1124 the context to what it was before the call.  If unset, gdb allows the\n\
1125 std::terminate call to proceed.\n\
1126 The default is to unwind the frame."),
1127 			   NULL,
1128 			   show_unwind_on_terminating_exception_p,
1129 			   &setlist, &showlist);
1130 
1131 }
1132