xref: /dragonfly/contrib/gdb-7/gdb/macroexp.c (revision 3170ffd7)
1 /* C preprocessor macro expansion for GDB.
2    Copyright (C) 2002, 2007-2012 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "bcache.h"
23 #include "macrotab.h"
24 #include "macroexp.h"
25 #include "gdb_assert.h"
26 #include "c-lang.h"
27 
28 
29 
30 /* A resizeable, substringable string type.  */
31 
32 
33 /* A string type that we can resize, quickly append to, and use to
34    refer to substrings of other strings.  */
35 struct macro_buffer
36 {
37   /* An array of characters.  The first LEN bytes are the real text,
38      but there are SIZE bytes allocated to the array.  If SIZE is
39      zero, then this doesn't point to a malloc'ed block.  If SHARED is
40      non-zero, then this buffer is actually a pointer into some larger
41      string, and we shouldn't append characters to it, etc.  Because
42      of sharing, we can't assume in general that the text is
43      null-terminated.  */
44   char *text;
45 
46   /* The number of characters in the string.  */
47   int len;
48 
49   /* The number of characters allocated to the string.  If SHARED is
50      non-zero, this is meaningless; in this case, we set it to zero so
51      that any "do we have room to append something?" tests will fail,
52      so we don't always have to check SHARED before using this field.  */
53   int size;
54 
55   /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
56      block).  Non-zero if TEXT is actually pointing into the middle of
57      some other block, and we shouldn't reallocate it.  */
58   int shared;
59 
60   /* For detecting token splicing.
61 
62      This is the index in TEXT of the first character of the token
63      that abuts the end of TEXT.  If TEXT contains no tokens, then we
64      set this equal to LEN.  If TEXT ends in whitespace, then there is
65      no token abutting the end of TEXT (it's just whitespace), and
66      again, we set this equal to LEN.  We set this to -1 if we don't
67      know the nature of TEXT.  */
68   int last_token;
69 
70   /* If this buffer is holding the result from get_token, then this
71      is non-zero if it is an identifier token, zero otherwise.  */
72   int is_identifier;
73 };
74 
75 
76 /* Set the macro buffer *B to the empty string, guessing that its
77    final contents will fit in N bytes.  (It'll get resized if it
78    doesn't, so the guess doesn't have to be right.)  Allocate the
79    initial storage with xmalloc.  */
80 static void
81 init_buffer (struct macro_buffer *b, int n)
82 {
83   b->size = n;
84   if (n > 0)
85     b->text = (char *) xmalloc (n);
86   else
87     b->text = NULL;
88   b->len = 0;
89   b->shared = 0;
90   b->last_token = -1;
91 }
92 
93 
94 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
95    shared substring.  */
96 static void
97 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
98 {
99   buf->text = addr;
100   buf->len = len;
101   buf->shared = 1;
102   buf->size = 0;
103   buf->last_token = -1;
104 }
105 
106 
107 /* Free the text of the buffer B.  Raise an error if B is shared.  */
108 static void
109 free_buffer (struct macro_buffer *b)
110 {
111   gdb_assert (! b->shared);
112   if (b->size)
113     xfree (b->text);
114 }
115 
116 
117 /* A cleanup function for macro buffers.  */
118 static void
119 cleanup_macro_buffer (void *untyped_buf)
120 {
121   free_buffer ((struct macro_buffer *) untyped_buf);
122 }
123 
124 
125 /* Resize the buffer B to be at least N bytes long.  Raise an error if
126    B shouldn't be resized.  */
127 static void
128 resize_buffer (struct macro_buffer *b, int n)
129 {
130   /* We shouldn't be trying to resize shared strings.  */
131   gdb_assert (! b->shared);
132 
133   if (b->size == 0)
134     b->size = n;
135   else
136     while (b->size <= n)
137       b->size *= 2;
138 
139   b->text = xrealloc (b->text, b->size);
140 }
141 
142 
143 /* Append the character C to the buffer B.  */
144 static void
145 appendc (struct macro_buffer *b, int c)
146 {
147   int new_len = b->len + 1;
148 
149   if (new_len > b->size)
150     resize_buffer (b, new_len);
151 
152   b->text[b->len] = c;
153   b->len = new_len;
154 }
155 
156 
157 /* Append the LEN bytes at ADDR to the buffer B.  */
158 static void
159 appendmem (struct macro_buffer *b, char *addr, int len)
160 {
161   int new_len = b->len + len;
162 
163   if (new_len > b->size)
164     resize_buffer (b, new_len);
165 
166   memcpy (b->text + b->len, addr, len);
167   b->len = new_len;
168 }
169 
170 
171 
172 /* Recognizing preprocessor tokens.  */
173 
174 
175 int
176 macro_is_whitespace (int c)
177 {
178   return (c == ' '
179           || c == '\t'
180           || c == '\n'
181           || c == '\v'
182           || c == '\f');
183 }
184 
185 
186 int
187 macro_is_digit (int c)
188 {
189   return ('0' <= c && c <= '9');
190 }
191 
192 
193 int
194 macro_is_identifier_nondigit (int c)
195 {
196   return (c == '_'
197           || ('a' <= c && c <= 'z')
198           || ('A' <= c && c <= 'Z'));
199 }
200 
201 
202 static void
203 set_token (struct macro_buffer *tok, char *start, char *end)
204 {
205   init_shared_buffer (tok, start, end - start);
206   tok->last_token = 0;
207 
208   /* Presumed; get_identifier may overwrite this.  */
209   tok->is_identifier = 0;
210 }
211 
212 
213 static int
214 get_comment (struct macro_buffer *tok, char *p, char *end)
215 {
216   if (p + 2 > end)
217     return 0;
218   else if (p[0] == '/'
219            && p[1] == '*')
220     {
221       char *tok_start = p;
222 
223       p += 2;
224 
225       for (; p < end; p++)
226         if (p + 2 <= end
227             && p[0] == '*'
228             && p[1] == '/')
229           {
230             p += 2;
231             set_token (tok, tok_start, p);
232             return 1;
233           }
234 
235       error (_("Unterminated comment in macro expansion."));
236     }
237   else if (p[0] == '/'
238            && p[1] == '/')
239     {
240       char *tok_start = p;
241 
242       p += 2;
243       for (; p < end; p++)
244         if (*p == '\n')
245           break;
246 
247       set_token (tok, tok_start, p);
248       return 1;
249     }
250   else
251     return 0;
252 }
253 
254 
255 static int
256 get_identifier (struct macro_buffer *tok, char *p, char *end)
257 {
258   if (p < end
259       && macro_is_identifier_nondigit (*p))
260     {
261       char *tok_start = p;
262 
263       while (p < end
264              && (macro_is_identifier_nondigit (*p)
265                  || macro_is_digit (*p)))
266         p++;
267 
268       set_token (tok, tok_start, p);
269       tok->is_identifier = 1;
270       return 1;
271     }
272   else
273     return 0;
274 }
275 
276 
277 static int
278 get_pp_number (struct macro_buffer *tok, char *p, char *end)
279 {
280   if (p < end
281       && (macro_is_digit (*p)
282           || (*p == '.'
283 	      && p + 2 <= end
284 	      && macro_is_digit (p[1]))))
285     {
286       char *tok_start = p;
287 
288       while (p < end)
289         {
290 	  if (p + 2 <= end
291 	      && strchr ("eEpP", *p)
292 	      && (p[1] == '+' || p[1] == '-'))
293             p += 2;
294           else if (macro_is_digit (*p)
295 		   || macro_is_identifier_nondigit (*p)
296 		   || *p == '.')
297             p++;
298           else
299             break;
300         }
301 
302       set_token (tok, tok_start, p);
303       return 1;
304     }
305   else
306     return 0;
307 }
308 
309 
310 
311 /* If the text starting at P going up to (but not including) END
312    starts with a character constant, set *TOK to point to that
313    character constant, and return 1.  Otherwise, return zero.
314    Signal an error if it contains a malformed or incomplete character
315    constant.  */
316 static int
317 get_character_constant (struct macro_buffer *tok, char *p, char *end)
318 {
319   /* ISO/IEC 9899:1999 (E)  Section 6.4.4.4  paragraph 1
320      But of course, what really matters is that we handle it the same
321      way GDB's C/C++ lexer does.  So we call parse_escape in utils.c
322      to handle escape sequences.  */
323   if ((p + 1 <= end && *p == '\'')
324       || (p + 2 <= end
325 	  && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
326 	  && p[1] == '\''))
327     {
328       char *tok_start = p;
329       char *body_start;
330       int char_count = 0;
331 
332       if (*p == '\'')
333         p++;
334       else if (*p == 'L' || *p == 'u' || *p == 'U')
335         p += 2;
336       else
337         gdb_assert_not_reached ("unexpected character constant");
338 
339       body_start = p;
340       for (;;)
341         {
342           if (p >= end)
343             error (_("Unmatched single quote."));
344           else if (*p == '\'')
345             {
346               if (!char_count)
347                 error (_("A character constant must contain at least one "
348                        "character."));
349               p++;
350               break;
351             }
352           else if (*p == '\\')
353             {
354               p++;
355 	      char_count += c_parse_escape (&p, NULL);
356             }
357           else
358 	    {
359 	      p++;
360 	      char_count++;
361 	    }
362         }
363 
364       set_token (tok, tok_start, p);
365       return 1;
366     }
367   else
368     return 0;
369 }
370 
371 
372 /* If the text starting at P going up to (but not including) END
373    starts with a string literal, set *TOK to point to that string
374    literal, and return 1.  Otherwise, return zero.  Signal an error if
375    it contains a malformed or incomplete string literal.  */
376 static int
377 get_string_literal (struct macro_buffer *tok, char *p, char *end)
378 {
379   if ((p + 1 <= end
380        && *p == '"')
381       || (p + 2 <= end
382           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
383           && p[1] == '"'))
384     {
385       char *tok_start = p;
386 
387       if (*p == '"')
388         p++;
389       else if (*p == 'L' || *p == 'u' || *p == 'U')
390         p += 2;
391       else
392         gdb_assert_not_reached ("unexpected string literal");
393 
394       for (;;)
395         {
396           if (p >= end)
397             error (_("Unterminated string in expression."));
398           else if (*p == '"')
399             {
400               p++;
401               break;
402             }
403           else if (*p == '\n')
404             error (_("Newline characters may not appear in string "
405                    "constants."));
406           else if (*p == '\\')
407             {
408               p++;
409               c_parse_escape (&p, NULL);
410             }
411           else
412             p++;
413         }
414 
415       set_token (tok, tok_start, p);
416       return 1;
417     }
418   else
419     return 0;
420 }
421 
422 
423 static int
424 get_punctuator (struct macro_buffer *tok, char *p, char *end)
425 {
426   /* Here, speed is much less important than correctness and clarity.  */
427 
428   /* ISO/IEC 9899:1999 (E)  Section 6.4.6  Paragraph 1.
429      Note that this table is ordered in a special way.  A punctuator
430      which is a prefix of another punctuator must appear after its
431      "extension".  Otherwise, the wrong token will be returned.  */
432   static const char * const punctuators[] = {
433     "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
434     "...", ".",
435     "->", "--", "-=", "-",
436     "++", "+=", "+",
437     "*=", "*",
438     "!=", "!",
439     "&&", "&=", "&",
440     "/=", "/",
441     "%>", "%:%:", "%:", "%=", "%",
442     "^=", "^",
443     "##", "#",
444     ":>", ":",
445     "||", "|=", "|",
446     "<<=", "<<", "<=", "<:", "<%", "<",
447     ">>=", ">>", ">=", ">",
448     "==", "=",
449     0
450   };
451 
452   int i;
453 
454   if (p + 1 <= end)
455     {
456       for (i = 0; punctuators[i]; i++)
457         {
458           const char *punctuator = punctuators[i];
459 
460           if (p[0] == punctuator[0])
461             {
462               int len = strlen (punctuator);
463 
464               if (p + len <= end
465                   && ! memcmp (p, punctuator, len))
466                 {
467                   set_token (tok, p, p + len);
468                   return 1;
469                 }
470             }
471         }
472     }
473 
474   return 0;
475 }
476 
477 
478 /* Peel the next preprocessor token off of SRC, and put it in TOK.
479    Mutate TOK to refer to the first token in SRC, and mutate SRC to
480    refer to the text after that token.  SRC must be a shared buffer;
481    the resulting TOK will be shared, pointing into the same string SRC
482    does.  Initialize TOK's last_token field.  Return non-zero if we
483    succeed, or 0 if we didn't find any more tokens in SRC.  */
484 static int
485 get_token (struct macro_buffer *tok,
486            struct macro_buffer *src)
487 {
488   char *p = src->text;
489   char *end = p + src->len;
490 
491   gdb_assert (src->shared);
492 
493   /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
494 
495      preprocessing-token:
496          header-name
497          identifier
498          pp-number
499          character-constant
500          string-literal
501          punctuator
502          each non-white-space character that cannot be one of the above
503 
504      We don't have to deal with header-name tokens, since those can
505      only occur after a #include, which we will never see.  */
506 
507   while (p < end)
508     if (macro_is_whitespace (*p))
509       p++;
510     else if (get_comment (tok, p, end))
511       p += tok->len;
512     else if (get_pp_number (tok, p, end)
513              || get_character_constant (tok, p, end)
514              || get_string_literal (tok, p, end)
515              /* Note: the grammar in the standard seems to be
516                 ambiguous: L'x' can be either a wide character
517                 constant, or an identifier followed by a normal
518                 character constant.  By trying `get_identifier' after
519                 we try get_character_constant and get_string_literal,
520                 we give the wide character syntax precedence.  Now,
521                 since GDB doesn't handle wide character constants
522                 anyway, is this the right thing to do?  */
523              || get_identifier (tok, p, end)
524              || get_punctuator (tok, p, end))
525       {
526         /* How many characters did we consume, including whitespace?  */
527         int consumed = p - src->text + tok->len;
528 
529         src->text += consumed;
530         src->len -= consumed;
531         return 1;
532       }
533     else
534       {
535         /* We have found a "non-whitespace character that cannot be
536            one of the above."  Make a token out of it.  */
537         int consumed;
538 
539         set_token (tok, p, p + 1);
540         consumed = p - src->text + tok->len;
541         src->text += consumed;
542         src->len -= consumed;
543         return 1;
544       }
545 
546   return 0;
547 }
548 
549 
550 
551 /* Appending token strings, with and without splicing  */
552 
553 
554 /* Append the macro buffer SRC to the end of DEST, and ensure that
555    doing so doesn't splice the token at the end of SRC with the token
556    at the beginning of DEST.  SRC and DEST must have their last_token
557    fields set.  Upon return, DEST's last_token field is set correctly.
558 
559    For example:
560 
561    If DEST is "(" and SRC is "y", then we can return with
562    DEST set to "(y" --- we've simply appended the two buffers.
563 
564    However, if DEST is "x" and SRC is "y", then we must not return
565    with DEST set to "xy" --- that would splice the two tokens "x" and
566    "y" together to make a single token "xy".  However, it would be
567    fine to return with DEST set to "x y".  Similarly, "<" and "<" must
568    yield "< <", not "<<", etc.  */
569 static void
570 append_tokens_without_splicing (struct macro_buffer *dest,
571                                 struct macro_buffer *src)
572 {
573   int original_dest_len = dest->len;
574   struct macro_buffer dest_tail, new_token;
575 
576   gdb_assert (src->last_token != -1);
577   gdb_assert (dest->last_token != -1);
578 
579   /* First, just try appending the two, and call get_token to see if
580      we got a splice.  */
581   appendmem (dest, src->text, src->len);
582 
583   /* If DEST originally had no token abutting its end, then we can't
584      have spliced anything, so we're done.  */
585   if (dest->last_token == original_dest_len)
586     {
587       dest->last_token = original_dest_len + src->last_token;
588       return;
589     }
590 
591   /* Set DEST_TAIL to point to the last token in DEST, followed by
592      all the stuff we just appended.  */
593   init_shared_buffer (&dest_tail,
594                       dest->text + dest->last_token,
595                       dest->len - dest->last_token);
596 
597   /* Re-parse DEST's last token.  We know that DEST used to contain
598      at least one token, so if it doesn't contain any after the
599      append, then we must have spliced "/" and "*" or "/" and "/" to
600      make a comment start.  (Just for the record, I got this right
601      the first time.  This is not a bug fix.)  */
602   if (get_token (&new_token, &dest_tail)
603       && (new_token.text + new_token.len
604           == dest->text + original_dest_len))
605     {
606       /* No splice, so we're done.  */
607       dest->last_token = original_dest_len + src->last_token;
608       return;
609     }
610 
611   /* Okay, a simple append caused a splice.  Let's chop dest back to
612      its original length and try again, but separate the texts with a
613      space.  */
614   dest->len = original_dest_len;
615   appendc (dest, ' ');
616   appendmem (dest, src->text, src->len);
617 
618   init_shared_buffer (&dest_tail,
619                       dest->text + dest->last_token,
620                       dest->len - dest->last_token);
621 
622   /* Try to re-parse DEST's last token, as above.  */
623   if (get_token (&new_token, &dest_tail)
624       && (new_token.text + new_token.len
625           == dest->text + original_dest_len))
626     {
627       /* No splice, so we're done.  */
628       dest->last_token = original_dest_len + 1 + src->last_token;
629       return;
630     }
631 
632   /* As far as I know, there's no case where inserting a space isn't
633      enough to prevent a splice.  */
634   internal_error (__FILE__, __LINE__,
635                   _("unable to avoid splicing tokens during macro expansion"));
636 }
637 
638 /* Stringify an argument, and insert it into DEST.  ARG is the text to
639    stringify; it is LEN bytes long.  */
640 
641 static void
642 stringify (struct macro_buffer *dest, char *arg, int len)
643 {
644   /* Trim initial whitespace from ARG.  */
645   while (len > 0 && macro_is_whitespace (*arg))
646     {
647       ++arg;
648       --len;
649     }
650 
651   /* Trim trailing whitespace from ARG.  */
652   while (len > 0 && macro_is_whitespace (arg[len - 1]))
653     --len;
654 
655   /* Insert the string.  */
656   appendc (dest, '"');
657   while (len > 0)
658     {
659       /* We could try to handle strange cases here, like control
660 	 characters, but there doesn't seem to be much point.  */
661       if (macro_is_whitespace (*arg))
662 	{
663 	  /* Replace a sequence of whitespace with a single space.  */
664 	  appendc (dest, ' ');
665 	  while (len > 1 && macro_is_whitespace (arg[1]))
666 	    {
667 	      ++arg;
668 	      --len;
669 	    }
670 	}
671       else if (*arg == '\\' || *arg == '"')
672 	{
673 	  appendc (dest, '\\');
674 	  appendc (dest, *arg);
675 	}
676       else
677 	appendc (dest, *arg);
678       ++arg;
679       --len;
680     }
681   appendc (dest, '"');
682   dest->last_token = dest->len;
683 }
684 
685 
686 /* Expanding macros!  */
687 
688 
689 /* A singly-linked list of the names of the macros we are currently
690    expanding --- for detecting expansion loops.  */
691 struct macro_name_list {
692   const char *name;
693   struct macro_name_list *next;
694 };
695 
696 
697 /* Return non-zero if we are currently expanding the macro named NAME,
698    according to LIST; otherwise, return zero.
699 
700    You know, it would be possible to get rid of all the NO_LOOP
701    arguments to these functions by simply generating a new lookup
702    function and baton which refuses to find the definition for a
703    particular macro, and otherwise delegates the decision to another
704    function/baton pair.  But that makes the linked list of excluded
705    macros chained through untyped baton pointers, which will make it
706    harder to debug.  :(  */
707 static int
708 currently_rescanning (struct macro_name_list *list, const char *name)
709 {
710   for (; list; list = list->next)
711     if (strcmp (name, list->name) == 0)
712       return 1;
713 
714   return 0;
715 }
716 
717 
718 /* Gather the arguments to a macro expansion.
719 
720    NAME is the name of the macro being invoked.  (It's only used for
721    printing error messages.)
722 
723    Assume that SRC is the text of the macro invocation immediately
724    following the macro name.  For example, if we're processing the
725    text foo(bar, baz), then NAME would be foo and SRC will be (bar,
726    baz).
727 
728    If SRC doesn't start with an open paren ( token at all, return
729    zero, leave SRC unchanged, and don't set *ARGC_P to anything.
730 
731    If SRC doesn't contain a properly terminated argument list, then
732    raise an error.
733 
734    For a variadic macro, NARGS holds the number of formal arguments to
735    the macro.  For a GNU-style variadic macro, this should be the
736    number of named arguments.  For a non-variadic macro, NARGS should
737    be -1.
738 
739    Otherwise, return a pointer to the first element of an array of
740    macro buffers referring to the argument texts, and set *ARGC_P to
741    the number of arguments we found --- the number of elements in the
742    array.  The macro buffers share their text with SRC, and their
743    last_token fields are initialized.  The array is allocated with
744    xmalloc, and the caller is responsible for freeing it.
745 
746    NOTE WELL: if SRC starts with a open paren ( token followed
747    immediately by a close paren ) token (e.g., the invocation looks
748    like "foo()"), we treat that as one argument, which happens to be
749    the empty list of tokens.  The caller should keep in mind that such
750    a sequence of tokens is a valid way to invoke one-parameter
751    function-like macros, but also a valid way to invoke zero-parameter
752    function-like macros.  Eeew.
753 
754    Consume the tokens from SRC; after this call, SRC contains the text
755    following the invocation.  */
756 
757 static struct macro_buffer *
758 gather_arguments (const char *name, struct macro_buffer *src,
759 		  int nargs, int *argc_p)
760 {
761   struct macro_buffer tok;
762   int args_len, args_size;
763   struct macro_buffer *args = NULL;
764   struct cleanup *back_to = make_cleanup (free_current_contents, &args);
765 
766   /* Does SRC start with an opening paren token?  Read from a copy of
767      SRC, so SRC itself is unaffected if we don't find an opening
768      paren.  */
769   {
770     struct macro_buffer temp;
771 
772     init_shared_buffer (&temp, src->text, src->len);
773 
774     if (! get_token (&tok, &temp)
775         || tok.len != 1
776         || tok.text[0] != '(')
777       {
778         discard_cleanups (back_to);
779         return 0;
780       }
781   }
782 
783   /* Consume SRC's opening paren.  */
784   get_token (&tok, src);
785 
786   args_len = 0;
787   args_size = 6;
788   args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
789 
790   for (;;)
791     {
792       struct macro_buffer *arg;
793       int depth;
794 
795       /* Make sure we have room for the next argument.  */
796       if (args_len >= args_size)
797         {
798           args_size *= 2;
799           args = xrealloc (args, sizeof (*args) * args_size);
800         }
801 
802       /* Initialize the next argument.  */
803       arg = &args[args_len++];
804       set_token (arg, src->text, src->text);
805 
806       /* Gather the argument's tokens.  */
807       depth = 0;
808       for (;;)
809         {
810           if (! get_token (&tok, src))
811             error (_("Malformed argument list for macro `%s'."), name);
812 
813           /* Is tok an opening paren?  */
814           if (tok.len == 1 && tok.text[0] == '(')
815             depth++;
816 
817           /* Is tok is a closing paren?  */
818           else if (tok.len == 1 && tok.text[0] == ')')
819             {
820               /* If it's a closing paren at the top level, then that's
821                  the end of the argument list.  */
822               if (depth == 0)
823                 {
824 		  /* In the varargs case, the last argument may be
825 		     missing.  Add an empty argument in this case.  */
826 		  if (nargs != -1 && args_len == nargs - 1)
827 		    {
828 		      /* Make sure we have room for the argument.  */
829 		      if (args_len >= args_size)
830 			{
831 			  args_size++;
832 			  args = xrealloc (args, sizeof (*args) * args_size);
833 			}
834 		      arg = &args[args_len++];
835 		      set_token (arg, src->text, src->text);
836 		    }
837 
838                   discard_cleanups (back_to);
839                   *argc_p = args_len;
840                   return args;
841                 }
842 
843               depth--;
844             }
845 
846           /* If tok is a comma at top level, then that's the end of
847              the current argument.  However, if we are handling a
848              variadic macro and we are computing the last argument, we
849              want to include the comma and remaining tokens.  */
850           else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
851 		   && (nargs == -1 || args_len < nargs))
852             break;
853 
854           /* Extend the current argument to enclose this token.  If
855              this is the current argument's first token, leave out any
856              leading whitespace, just for aesthetics.  */
857           if (arg->len == 0)
858             {
859               arg->text = tok.text;
860               arg->len = tok.len;
861               arg->last_token = 0;
862             }
863           else
864             {
865               arg->len = (tok.text + tok.len) - arg->text;
866               arg->last_token = tok.text - arg->text;
867             }
868         }
869     }
870 }
871 
872 
873 /* The `expand' and `substitute_args' functions both invoke `scan'
874    recursively, so we need a forward declaration somewhere.  */
875 static void scan (struct macro_buffer *dest,
876                   struct macro_buffer *src,
877                   struct macro_name_list *no_loop,
878                   macro_lookup_ftype *lookup_func,
879                   void *lookup_baton);
880 
881 
882 /* A helper function for substitute_args.
883 
884    ARGV is a vector of all the arguments; ARGC is the number of
885    arguments.  IS_VARARGS is true if the macro being substituted is a
886    varargs macro; in this case VA_ARG_NAME is the name of the
887    "variable" argument.  VA_ARG_NAME is ignored if IS_VARARGS is
888    false.
889 
890    If the token TOK is the name of a parameter, return the parameter's
891    index.  If TOK is not an argument, return -1.  */
892 
893 static int
894 find_parameter (const struct macro_buffer *tok,
895 		int is_varargs, const struct macro_buffer *va_arg_name,
896 		int argc, const char * const *argv)
897 {
898   int i;
899 
900   if (! tok->is_identifier)
901     return -1;
902 
903   for (i = 0; i < argc; ++i)
904     if (tok->len == strlen (argv[i])
905 	&& !memcmp (tok->text, argv[i], tok->len))
906       return i;
907 
908   if (is_varargs && tok->len == va_arg_name->len
909       && ! memcmp (tok->text, va_arg_name->text, tok->len))
910     return argc - 1;
911 
912   return -1;
913 }
914 
915 /* Given the macro definition DEF, being invoked with the actual
916    arguments given by ARGC and ARGV, substitute the arguments into the
917    replacement list, and store the result in DEST.
918 
919    IS_VARARGS should be true if DEF is a varargs macro.  In this case,
920    VA_ARG_NAME should be the name of the "variable" argument -- either
921    __VA_ARGS__ for c99-style varargs, or the final argument name, for
922    GNU-style varargs.  If IS_VARARGS is false, this parameter is
923    ignored.
924 
925    If it is necessary to expand macro invocations in one of the
926    arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
927    definitions, and don't expand invocations of the macros listed in
928    NO_LOOP.  */
929 
930 static void
931 substitute_args (struct macro_buffer *dest,
932                  struct macro_definition *def,
933 		 int is_varargs, const struct macro_buffer *va_arg_name,
934                  int argc, struct macro_buffer *argv,
935                  struct macro_name_list *no_loop,
936                  macro_lookup_ftype *lookup_func,
937                  void *lookup_baton)
938 {
939   /* A macro buffer for the macro's replacement list.  */
940   struct macro_buffer replacement_list;
941   /* The token we are currently considering.  */
942   struct macro_buffer tok;
943   /* The replacement list's pointer from just before TOK was lexed.  */
944   char *original_rl_start;
945   /* We have a single lookahead token to handle token splicing.  */
946   struct macro_buffer lookahead;
947   /* The lookahead token might not be valid.  */
948   int lookahead_valid;
949   /* The replacement list's pointer from just before LOOKAHEAD was
950      lexed.  */
951   char *lookahead_rl_start;
952 
953   init_shared_buffer (&replacement_list, (char *) def->replacement,
954                       strlen (def->replacement));
955 
956   gdb_assert (dest->len == 0);
957   dest->last_token = 0;
958 
959   original_rl_start = replacement_list.text;
960   if (! get_token (&tok, &replacement_list))
961     return;
962   lookahead_rl_start = replacement_list.text;
963   lookahead_valid = get_token (&lookahead, &replacement_list);
964 
965   for (;;)
966     {
967       /* Just for aesthetics.  If we skipped some whitespace, copy
968          that to DEST.  */
969       if (tok.text > original_rl_start)
970         {
971           appendmem (dest, original_rl_start, tok.text - original_rl_start);
972           dest->last_token = dest->len;
973         }
974 
975       /* Is this token the stringification operator?  */
976       if (tok.len == 1
977           && tok.text[0] == '#')
978 	{
979 	  int arg;
980 
981 	  if (!lookahead_valid)
982 	    error (_("Stringification operator requires an argument."));
983 
984 	  arg = find_parameter (&lookahead, is_varargs, va_arg_name,
985 				def->argc, def->argv);
986 	  if (arg == -1)
987 	    error (_("Argument to stringification operator must name "
988 		     "a macro parameter."));
989 
990 	  stringify (dest, argv[arg].text, argv[arg].len);
991 
992 	  /* Read one token and let the loop iteration code handle the
993 	     rest.  */
994 	  lookahead_rl_start = replacement_list.text;
995 	  lookahead_valid = get_token (&lookahead, &replacement_list);
996 	}
997       /* Is this token the splicing operator?  */
998       else if (tok.len == 2
999 	       && tok.text[0] == '#'
1000 	       && tok.text[1] == '#')
1001 	error (_("Stray splicing operator"));
1002       /* Is the next token the splicing operator?  */
1003       else if (lookahead_valid
1004 	       && lookahead.len == 2
1005 	       && lookahead.text[0] == '#'
1006 	       && lookahead.text[1] == '#')
1007 	{
1008 	  int finished = 0;
1009 	  int prev_was_comma = 0;
1010 
1011 	  /* Note that GCC warns if the result of splicing is not a
1012 	     token.  In the debugger there doesn't seem to be much
1013 	     benefit from doing this.  */
1014 
1015 	  /* Insert the first token.  */
1016 	  if (tok.len == 1 && tok.text[0] == ',')
1017 	    prev_was_comma = 1;
1018 	  else
1019 	    {
1020 	      int arg = find_parameter (&tok, is_varargs, va_arg_name,
1021 					def->argc, def->argv);
1022 
1023 	      if (arg != -1)
1024 		appendmem (dest, argv[arg].text, argv[arg].len);
1025 	      else
1026 		appendmem (dest, tok.text, tok.len);
1027 	    }
1028 
1029 	  /* Apply a possible sequence of ## operators.  */
1030 	  for (;;)
1031 	    {
1032 	      if (! get_token (&tok, &replacement_list))
1033 		error (_("Splicing operator at end of macro"));
1034 
1035 	      /* Handle a comma before a ##.  If we are handling
1036 		 varargs, and the token on the right hand side is the
1037 		 varargs marker, and the final argument is empty or
1038 		 missing, then drop the comma.  This is a GNU
1039 		 extension.  There is one ambiguous case here,
1040 		 involving pedantic behavior with an empty argument,
1041 		 but we settle that in favor of GNU-style (GCC uses an
1042 		 option).  If we aren't dealing with varargs, we
1043 		 simply insert the comma.  */
1044 	      if (prev_was_comma)
1045 		{
1046 		  if (! (is_varargs
1047 			 && tok.len == va_arg_name->len
1048 			 && !memcmp (tok.text, va_arg_name->text, tok.len)
1049 			 && argv[argc - 1].len == 0))
1050 		    appendmem (dest, ",", 1);
1051 		  prev_was_comma = 0;
1052 		}
1053 
1054 	      /* Insert the token.  If it is a parameter, insert the
1055 		 argument.  If it is a comma, treat it specially.  */
1056 	      if (tok.len == 1 && tok.text[0] == ',')
1057 		prev_was_comma = 1;
1058 	      else
1059 		{
1060 		  int arg = find_parameter (&tok, is_varargs, va_arg_name,
1061 					    def->argc, def->argv);
1062 
1063 		  if (arg != -1)
1064 		    appendmem (dest, argv[arg].text, argv[arg].len);
1065 		  else
1066 		    appendmem (dest, tok.text, tok.len);
1067 		}
1068 
1069 	      /* Now read another token.  If it is another splice, we
1070 		 loop.  */
1071 	      original_rl_start = replacement_list.text;
1072 	      if (! get_token (&tok, &replacement_list))
1073 		{
1074 		  finished = 1;
1075 		  break;
1076 		}
1077 
1078 	      if (! (tok.len == 2
1079 		     && tok.text[0] == '#'
1080 		     && tok.text[1] == '#'))
1081 		break;
1082 	    }
1083 
1084 	  if (prev_was_comma)
1085 	    {
1086 	      /* We saw a comma.  Insert it now.  */
1087 	      appendmem (dest, ",", 1);
1088 	    }
1089 
1090           dest->last_token = dest->len;
1091 	  if (finished)
1092 	    lookahead_valid = 0;
1093 	  else
1094 	    {
1095 	      /* Set up for the loop iterator.  */
1096 	      lookahead = tok;
1097 	      lookahead_rl_start = original_rl_start;
1098 	      lookahead_valid = 1;
1099 	    }
1100 	}
1101       else
1102 	{
1103 	  /* Is this token an identifier?  */
1104 	  int substituted = 0;
1105 	  int arg = find_parameter (&tok, is_varargs, va_arg_name,
1106 				    def->argc, def->argv);
1107 
1108 	  if (arg != -1)
1109 	    {
1110 	      struct macro_buffer arg_src;
1111 
1112 	      /* Expand any macro invocations in the argument text,
1113 		 and append the result to dest.  Remember that scan
1114 		 mutates its source, so we need to scan a new buffer
1115 		 referring to the argument's text, not the argument
1116 		 itself.  */
1117 	      init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1118 	      scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1119 	      substituted = 1;
1120 	    }
1121 
1122 	  /* If it wasn't a parameter, then just copy it across.  */
1123 	  if (! substituted)
1124 	    append_tokens_without_splicing (dest, &tok);
1125 	}
1126 
1127       if (! lookahead_valid)
1128 	break;
1129 
1130       tok = lookahead;
1131       original_rl_start = lookahead_rl_start;
1132 
1133       lookahead_rl_start = replacement_list.text;
1134       lookahead_valid = get_token (&lookahead, &replacement_list);
1135     }
1136 }
1137 
1138 
1139 /* Expand a call to a macro named ID, whose definition is DEF.  Append
1140    its expansion to DEST.  SRC is the input text following the ID
1141    token.  We are currently rescanning the expansions of the macros
1142    named in NO_LOOP; don't re-expand them.  Use LOOKUP_FUNC and
1143    LOOKUP_BATON to find definitions for any nested macro references.
1144 
1145    Return 1 if we decided to expand it, zero otherwise.  (If it's a
1146    function-like macro name that isn't followed by an argument list,
1147    we don't expand it.)  If we return zero, leave SRC unchanged.  */
1148 static int
1149 expand (const char *id,
1150         struct macro_definition *def,
1151         struct macro_buffer *dest,
1152         struct macro_buffer *src,
1153         struct macro_name_list *no_loop,
1154         macro_lookup_ftype *lookup_func,
1155         void *lookup_baton)
1156 {
1157   struct macro_name_list new_no_loop;
1158 
1159   /* Create a new node to be added to the front of the no-expand list.
1160      This list is appropriate for re-scanning replacement lists, but
1161      it is *not* appropriate for scanning macro arguments; invocations
1162      of the macro whose arguments we are gathering *do* get expanded
1163      there.  */
1164   new_no_loop.name = id;
1165   new_no_loop.next = no_loop;
1166 
1167   /* What kind of macro are we expanding?  */
1168   if (def->kind == macro_object_like)
1169     {
1170       struct macro_buffer replacement_list;
1171 
1172       init_shared_buffer (&replacement_list, (char *) def->replacement,
1173                           strlen (def->replacement));
1174 
1175       scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1176       return 1;
1177     }
1178   else if (def->kind == macro_function_like)
1179     {
1180       struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1181       int argc = 0;
1182       struct macro_buffer *argv = NULL;
1183       struct macro_buffer substituted;
1184       struct macro_buffer substituted_src;
1185       struct macro_buffer va_arg_name = {0};
1186       int is_varargs = 0;
1187 
1188       if (def->argc >= 1)
1189 	{
1190 	  if (strcmp (def->argv[def->argc - 1], "...") == 0)
1191 	    {
1192 	      /* In C99-style varargs, substitution is done using
1193 		 __VA_ARGS__.  */
1194 	      init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1195 				  strlen ("__VA_ARGS__"));
1196 	      is_varargs = 1;
1197 	    }
1198 	  else
1199 	    {
1200 	      int len = strlen (def->argv[def->argc - 1]);
1201 
1202 	      if (len > 3
1203 		  && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1204 		{
1205 		  /* In GNU-style varargs, the name of the
1206 		     substitution parameter is the name of the formal
1207 		     argument without the "...".  */
1208 		  init_shared_buffer (&va_arg_name,
1209 				      (char *) def->argv[def->argc - 1],
1210 				      len - 3);
1211 		  is_varargs = 1;
1212 		}
1213 	    }
1214 	}
1215 
1216       make_cleanup (free_current_contents, &argv);
1217       argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1218 			       &argc);
1219 
1220       /* If we couldn't find any argument list, then we don't expand
1221          this macro.  */
1222       if (! argv)
1223         {
1224           do_cleanups (back_to);
1225           return 0;
1226         }
1227 
1228       /* Check that we're passing an acceptable number of arguments for
1229          this macro.  */
1230       if (argc != def->argc)
1231         {
1232 	  if (is_varargs && argc >= def->argc - 1)
1233 	    {
1234 	      /* Ok.  */
1235 	    }
1236           /* Remember that a sequence of tokens like "foo()" is a
1237              valid invocation of a macro expecting either zero or one
1238              arguments.  */
1239           else if (! (argc == 1
1240 		      && argv[0].len == 0
1241 		      && def->argc == 0))
1242             error (_("Wrong number of arguments to macro `%s' "
1243                    "(expected %d, got %d)."),
1244                    id, def->argc, argc);
1245         }
1246 
1247       /* Note that we don't expand macro invocations in the arguments
1248          yet --- we let subst_args take care of that.  Parameters that
1249          appear as operands of the stringifying operator "#" or the
1250          splicing operator "##" don't get macro references expanded,
1251          so we can't really tell whether it's appropriate to macro-
1252          expand an argument until we see how it's being used.  */
1253       init_buffer (&substituted, 0);
1254       make_cleanup (cleanup_macro_buffer, &substituted);
1255       substitute_args (&substituted, def, is_varargs, &va_arg_name,
1256 		       argc, argv, no_loop, lookup_func, lookup_baton);
1257 
1258       /* Now `substituted' is the macro's replacement list, with all
1259          argument values substituted into it properly.  Re-scan it for
1260          macro references, but don't expand invocations of this macro.
1261 
1262          We create a new buffer, `substituted_src', which points into
1263          `substituted', and scan that.  We can't scan `substituted'
1264          itself, since the tokenization process moves the buffer's
1265          text pointer around, and we still need to be able to find
1266          `substituted's original text buffer after scanning it so we
1267          can free it.  */
1268       init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1269       scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1270 
1271       do_cleanups (back_to);
1272 
1273       return 1;
1274     }
1275   else
1276     internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1277 }
1278 
1279 
1280 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1281    constitute a macro invokation not forbidden in NO_LOOP, append its
1282    expansion to DEST and return non-zero.  Otherwise, return zero, and
1283    leave DEST unchanged.
1284 
1285    SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1286    SRC_FIRST must be a string built by get_token.  */
1287 static int
1288 maybe_expand (struct macro_buffer *dest,
1289               struct macro_buffer *src_first,
1290               struct macro_buffer *src_rest,
1291               struct macro_name_list *no_loop,
1292               macro_lookup_ftype *lookup_func,
1293               void *lookup_baton)
1294 {
1295   gdb_assert (src_first->shared);
1296   gdb_assert (src_rest->shared);
1297   gdb_assert (! dest->shared);
1298 
1299   /* Is this token an identifier?  */
1300   if (src_first->is_identifier)
1301     {
1302       /* Make a null-terminated copy of it, since that's what our
1303          lookup function expects.  */
1304       char *id = xmalloc (src_first->len + 1);
1305       struct cleanup *back_to = make_cleanup (xfree, id);
1306 
1307       memcpy (id, src_first->text, src_first->len);
1308       id[src_first->len] = 0;
1309 
1310       /* If we're currently re-scanning the result of expanding
1311          this macro, don't expand it again.  */
1312       if (! currently_rescanning (no_loop, id))
1313         {
1314           /* Does this identifier have a macro definition in scope?  */
1315           struct macro_definition *def = lookup_func (id, lookup_baton);
1316 
1317           if (def && expand (id, def, dest, src_rest, no_loop,
1318                              lookup_func, lookup_baton))
1319             {
1320               do_cleanups (back_to);
1321               return 1;
1322             }
1323         }
1324 
1325       do_cleanups (back_to);
1326     }
1327 
1328   return 0;
1329 }
1330 
1331 
1332 /* Expand macro references in SRC, appending the results to DEST.
1333    Assume we are re-scanning the result of expanding the macros named
1334    in NO_LOOP, and don't try to re-expand references to them.
1335 
1336    SRC must be a shared buffer; DEST must not be one.  */
1337 static void
1338 scan (struct macro_buffer *dest,
1339       struct macro_buffer *src,
1340       struct macro_name_list *no_loop,
1341       macro_lookup_ftype *lookup_func,
1342       void *lookup_baton)
1343 {
1344   gdb_assert (src->shared);
1345   gdb_assert (! dest->shared);
1346 
1347   for (;;)
1348     {
1349       struct macro_buffer tok;
1350       char *original_src_start = src->text;
1351 
1352       /* Find the next token in SRC.  */
1353       if (! get_token (&tok, src))
1354         break;
1355 
1356       /* Just for aesthetics.  If we skipped some whitespace, copy
1357          that to DEST.  */
1358       if (tok.text > original_src_start)
1359         {
1360           appendmem (dest, original_src_start, tok.text - original_src_start);
1361           dest->last_token = dest->len;
1362         }
1363 
1364       if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1365         /* We didn't end up expanding tok as a macro reference, so
1366            simply append it to dest.  */
1367         append_tokens_without_splicing (dest, &tok);
1368     }
1369 
1370   /* Just for aesthetics.  If there was any trailing whitespace in
1371      src, copy it to dest.  */
1372   if (src->len)
1373     {
1374       appendmem (dest, src->text, src->len);
1375       dest->last_token = dest->len;
1376     }
1377 }
1378 
1379 
1380 char *
1381 macro_expand (const char *source,
1382               macro_lookup_ftype *lookup_func,
1383               void *lookup_func_baton)
1384 {
1385   struct macro_buffer src, dest;
1386   struct cleanup *back_to;
1387 
1388   init_shared_buffer (&src, (char *) source, strlen (source));
1389 
1390   init_buffer (&dest, 0);
1391   dest.last_token = 0;
1392   back_to = make_cleanup (cleanup_macro_buffer, &dest);
1393 
1394   scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1395 
1396   appendc (&dest, '\0');
1397 
1398   discard_cleanups (back_to);
1399   return dest.text;
1400 }
1401 
1402 
1403 char *
1404 macro_expand_once (const char *source,
1405                    macro_lookup_ftype *lookup_func,
1406                    void *lookup_func_baton)
1407 {
1408   error (_("Expand-once not implemented yet."));
1409 }
1410 
1411 
1412 char *
1413 macro_expand_next (char **lexptr,
1414                    macro_lookup_ftype *lookup_func,
1415                    void *lookup_baton)
1416 {
1417   struct macro_buffer src, dest, tok;
1418   struct cleanup *back_to;
1419 
1420   /* Set up SRC to refer to the input text, pointed to by *lexptr.  */
1421   init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1422 
1423   /* Set up DEST to receive the expansion, if there is one.  */
1424   init_buffer (&dest, 0);
1425   dest.last_token = 0;
1426   back_to = make_cleanup (cleanup_macro_buffer, &dest);
1427 
1428   /* Get the text's first preprocessing token.  */
1429   if (! get_token (&tok, &src))
1430     {
1431       do_cleanups (back_to);
1432       return 0;
1433     }
1434 
1435   /* If it's a macro invocation, expand it.  */
1436   if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1437     {
1438       /* It was a macro invocation!  Package up the expansion as a
1439          null-terminated string and return it.  Set *lexptr to the
1440          start of the next token in the input.  */
1441       appendc (&dest, '\0');
1442       discard_cleanups (back_to);
1443       *lexptr = src.text;
1444       return dest.text;
1445     }
1446   else
1447     {
1448       /* It wasn't a macro invocation.  */
1449       do_cleanups (back_to);
1450       return 0;
1451     }
1452 }
1453