xref: /dragonfly/contrib/gdb-7/gdb/minsyms.c (revision e7d467f4)
1 /* GDB routines for manipulating the minimal symbol tables.
2    Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
3    Contributed by Cygnus Support, using pieces from other GDB modules.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 /* This file contains support routines for creating, manipulating, and
22    destroying minimal symbol tables.
23 
24    Minimal symbol tables are used to hold some very basic information about
25    all defined global symbols (text, data, bss, abs, etc).  The only two
26    required pieces of information are the symbol's name and the address
27    associated with that symbol.
28 
29    In many cases, even if a file was compiled with no special options for
30    debugging at all, as long as was not stripped it will contain sufficient
31    information to build useful minimal symbol tables using this structure.
32 
33    Even when a file contains enough debugging information to build a full
34    symbol table, these minimal symbols are still useful for quickly mapping
35    between names and addresses, and vice versa.  They are also sometimes used
36    to figure out what full symbol table entries need to be read in.  */
37 
38 
39 #include "defs.h"
40 #include <ctype.h>
41 #include "gdb_string.h"
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53 
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55    At the end, copy them all into one newly allocated location on an objfile's
56    symbol obstack.  */
57 
58 #define BUNCH_SIZE 127
59 
60 struct msym_bunch
61   {
62     struct msym_bunch *next;
63     struct minimal_symbol contents[BUNCH_SIZE];
64   };
65 
66 /* Bunch currently being filled up.
67    The next field points to chain of filled bunches.  */
68 
69 static struct msym_bunch *msym_bunch;
70 
71 /* Number of slots filled in current bunch.  */
72 
73 static int msym_bunch_index;
74 
75 /* Total number of minimal symbols recorded so far for the objfile.  */
76 
77 static int msym_count;
78 
79 /* Compute a hash code based using the same criteria as `strcmp_iw'.  */
80 
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84   unsigned int hash = 0;
85 
86   while (*string && *string != '(')
87     {
88       while (isspace (*string))
89 	++string;
90       if (*string && *string != '(')
91 	{
92 	  hash = SYMBOL_HASH_NEXT (hash, *string);
93 	  ++string;
94 	}
95     }
96   return hash;
97 }
98 
99 /* Compute a hash code for a string.  */
100 
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104   unsigned int hash = 0;
105 
106   for (; *string; ++string)
107     hash = SYMBOL_HASH_NEXT (hash, *string);
108   return hash;
109 }
110 
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE.  */
112 void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 			  struct minimal_symbol **table)
115 {
116   if (sym->hash_next == NULL)
117     {
118       unsigned int hash
119 	= msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120 
121       sym->hash_next = table[hash];
122       table[hash] = sym;
123     }
124 }
125 
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127    TABLE.  */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130                                   struct minimal_symbol **table)
131 {
132   if (sym->demangled_hash_next == NULL)
133     {
134       unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
135 	% MINIMAL_SYMBOL_HASH_SIZE;
136 
137       sym->demangled_hash_next = table[hash];
138       table[hash] = sym;
139     }
140 }
141 
142 
143 /* Return OBJFILE where minimal symbol SYM is defined.  */
144 struct objfile *
145 msymbol_objfile (struct minimal_symbol *sym)
146 {
147   struct objfile *objf;
148   struct minimal_symbol *tsym;
149 
150   unsigned int hash
151     = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
152 
153   for (objf = object_files; objf; objf = objf->next)
154     for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
155       if (tsym == sym)
156 	return objf;
157 
158   /* We should always be able to find the objfile ...  */
159   internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
160 }
161 
162 
163 /* Look through all the current minimal symbol tables and find the
164    first minimal symbol that matches NAME.  If OBJF is non-NULL, limit
165    the search to that objfile.  If SFILE is non-NULL, the only file-scope
166    symbols considered will be from that source file (global symbols are
167    still preferred).  Returns a pointer to the minimal symbol that
168    matches, or NULL if no match is found.
169 
170    Note:  One instance where there may be duplicate minimal symbols with
171    the same name is when the symbol tables for a shared library and the
172    symbol tables for an executable contain global symbols with the same
173    names (the dynamic linker deals with the duplication).
174 
175    It's also possible to have minimal symbols with different mangled
176    names, but identical demangled names.  For example, the GNU C++ v3
177    ABI requires the generation of two (or perhaps three) copies of
178    constructor functions --- "in-charge", "not-in-charge", and
179    "allocate" copies; destructors may be duplicated as well.
180    Obviously, there must be distinct mangled names for each of these,
181    but the demangled names are all the same: S::S or S::~S.  */
182 
183 struct minimal_symbol *
184 lookup_minimal_symbol (const char *name, const char *sfile,
185 		       struct objfile *objf)
186 {
187   struct objfile *objfile;
188   struct minimal_symbol *msymbol;
189   struct minimal_symbol *found_symbol = NULL;
190   struct minimal_symbol *found_file_symbol = NULL;
191   struct minimal_symbol *trampoline_symbol = NULL;
192 
193   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
194   unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
195 
196   int needtofreename = 0;
197   const char *modified_name;
198 
199   if (sfile != NULL)
200     sfile = lbasename (sfile);
201 
202   /* For C++, canonicalize the input name.  */
203   modified_name = name;
204   if (current_language->la_language == language_cplus)
205     {
206       char *cname = cp_canonicalize_string (name);
207 
208       if (cname)
209 	{
210 	  modified_name = cname;
211 	  needtofreename = 1;
212 	}
213     }
214 
215   for (objfile = object_files;
216        objfile != NULL && found_symbol == NULL;
217        objfile = objfile->next)
218     {
219       if (objf == NULL || objf == objfile
220 	  || objf == objfile->separate_debug_objfile_backlink)
221 	{
222 	  /* Do two passes: the first over the ordinary hash table,
223 	     and the second over the demangled hash table.  */
224         int pass;
225 
226         for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
227 	    {
228             /* Select hash list according to pass.  */
229             if (pass == 1)
230               msymbol = objfile->msymbol_hash[hash];
231             else
232               msymbol = objfile->msymbol_demangled_hash[dem_hash];
233 
234             while (msymbol != NULL && found_symbol == NULL)
235 		{
236 		  int match;
237 
238 		  if (pass == 1)
239 		    {
240 		      int (*cmp) (const char *, const char *);
241 
242 		      cmp = (case_sensitivity == case_sensitive_on
243 		             ? strcmp : strcasecmp);
244 		      match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
245 				   modified_name) == 0;
246 		    }
247 		  else
248 		    {
249 		      /* The function respects CASE_SENSITIVITY.  */
250 		      match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
251 							  modified_name);
252 		    }
253 
254 		  if (match)
255 		    {
256                     switch (MSYMBOL_TYPE (msymbol))
257                       {
258                       case mst_file_text:
259                       case mst_file_data:
260                       case mst_file_bss:
261                         if (sfile == NULL
262 			    || filename_cmp (msymbol->filename, sfile) == 0)
263                           found_file_symbol = msymbol;
264                         break;
265 
266                       case mst_solib_trampoline:
267 
268                         /* If a trampoline symbol is found, we prefer to
269                            keep looking for the *real* symbol.  If the
270                            actual symbol is not found, then we'll use the
271                            trampoline entry.  */
272                         if (trampoline_symbol == NULL)
273                           trampoline_symbol = msymbol;
274                         break;
275 
276                       case mst_unknown:
277                       default:
278                         found_symbol = msymbol;
279                         break;
280                       }
281 		    }
282 
283                 /* Find the next symbol on the hash chain.  */
284                 if (pass == 1)
285                   msymbol = msymbol->hash_next;
286                 else
287                   msymbol = msymbol->demangled_hash_next;
288 		}
289 	    }
290 	}
291     }
292 
293   if (needtofreename)
294     xfree ((void *) modified_name);
295 
296   /* External symbols are best.  */
297   if (found_symbol)
298     return found_symbol;
299 
300   /* File-local symbols are next best.  */
301   if (found_file_symbol)
302     return found_file_symbol;
303 
304   /* Symbols for shared library trampolines are next best.  */
305   if (trampoline_symbol)
306     return trampoline_symbol;
307 
308   return NULL;
309 }
310 
311 /* Iterate over all the minimal symbols in the objfile OBJF which
312    match NAME.  Both the ordinary and demangled names of each symbol
313    are considered.  The caller is responsible for canonicalizing NAME,
314    should that need to be done.
315 
316    For each matching symbol, CALLBACK is called with the symbol and
317    USER_DATA as arguments.  */
318 
319 void
320 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
321 			      void (*callback) (struct minimal_symbol *,
322 						void *),
323 			      void *user_data)
324 {
325   unsigned int hash;
326   struct minimal_symbol *iter;
327   int (*cmp) (const char *, const char *);
328 
329   /* The first pass is over the ordinary hash table.  */
330   hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
331   iter = objf->msymbol_hash[hash];
332   cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
333   while (iter)
334     {
335       if (cmp (SYMBOL_LINKAGE_NAME (iter), name) == 0)
336 	(*callback) (iter, user_data);
337       iter = iter->hash_next;
338     }
339 
340   /* The second pass is over the demangled table.  */
341   hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
342   iter = objf->msymbol_demangled_hash[hash];
343   while (iter)
344     {
345       if (SYMBOL_MATCHES_SEARCH_NAME (iter, name))
346 	(*callback) (iter, user_data);
347       iter = iter->demangled_hash_next;
348     }
349 }
350 
351 /* Look through all the current minimal symbol tables and find the
352    first minimal symbol that matches NAME and has text type.  If OBJF
353    is non-NULL, limit the search to that objfile.  Returns a pointer
354    to the minimal symbol that matches, or NULL if no match is found.
355 
356    This function only searches the mangled (linkage) names.  */
357 
358 struct minimal_symbol *
359 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
360 {
361   struct objfile *objfile;
362   struct minimal_symbol *msymbol;
363   struct minimal_symbol *found_symbol = NULL;
364   struct minimal_symbol *found_file_symbol = NULL;
365 
366   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
367 
368   for (objfile = object_files;
369        objfile != NULL && found_symbol == NULL;
370        objfile = objfile->next)
371     {
372       if (objf == NULL || objf == objfile
373 	  || objf == objfile->separate_debug_objfile_backlink)
374 	{
375 	  for (msymbol = objfile->msymbol_hash[hash];
376 	       msymbol != NULL && found_symbol == NULL;
377 	       msymbol = msymbol->hash_next)
378 	    {
379 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
380 		  (MSYMBOL_TYPE (msymbol) == mst_text
381 		   || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
382 		   || MSYMBOL_TYPE (msymbol) == mst_file_text))
383 		{
384 		  switch (MSYMBOL_TYPE (msymbol))
385 		    {
386 		    case mst_file_text:
387 		      found_file_symbol = msymbol;
388 		      break;
389 		    default:
390 		      found_symbol = msymbol;
391 		      break;
392 		    }
393 		}
394 	    }
395 	}
396     }
397   /* External symbols are best.  */
398   if (found_symbol)
399     return found_symbol;
400 
401   /* File-local symbols are next best.  */
402   if (found_file_symbol)
403     return found_file_symbol;
404 
405   return NULL;
406 }
407 
408 /* Look through all the current minimal symbol tables and find the
409    first minimal symbol that matches NAME and PC.  If OBJF is non-NULL,
410    limit the search to that objfile.  Returns a pointer to the minimal
411    symbol that matches, or NULL if no match is found.  */
412 
413 struct minimal_symbol *
414 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
415 				  struct objfile *objf)
416 {
417   struct objfile *objfile;
418   struct minimal_symbol *msymbol;
419 
420   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
421 
422   for (objfile = object_files;
423        objfile != NULL;
424        objfile = objfile->next)
425     {
426       if (objf == NULL || objf == objfile
427 	  || objf == objfile->separate_debug_objfile_backlink)
428 	{
429 	  for (msymbol = objfile->msymbol_hash[hash];
430 	       msymbol != NULL;
431 	       msymbol = msymbol->hash_next)
432 	    {
433 	      if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
434 		  && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
435 		return msymbol;
436 	    }
437 	}
438     }
439 
440   return NULL;
441 }
442 
443 /* Look through all the current minimal symbol tables and find the
444    first minimal symbol that matches NAME and is a solib trampoline.
445    If OBJF is non-NULL, limit the search to that objfile.  Returns a
446    pointer to the minimal symbol that matches, or NULL if no match is
447    found.
448 
449    This function only searches the mangled (linkage) names.  */
450 
451 struct minimal_symbol *
452 lookup_minimal_symbol_solib_trampoline (const char *name,
453 					struct objfile *objf)
454 {
455   struct objfile *objfile;
456   struct minimal_symbol *msymbol;
457   struct minimal_symbol *found_symbol = NULL;
458 
459   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
460 
461   for (objfile = object_files;
462        objfile != NULL && found_symbol == NULL;
463        objfile = objfile->next)
464     {
465       if (objf == NULL || objf == objfile
466 	  || objf == objfile->separate_debug_objfile_backlink)
467 	{
468 	  for (msymbol = objfile->msymbol_hash[hash];
469 	       msymbol != NULL && found_symbol == NULL;
470 	       msymbol = msymbol->hash_next)
471 	    {
472 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
473 		  MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
474 		return msymbol;
475 	    }
476 	}
477     }
478 
479   return NULL;
480 }
481 
482 /* Search through the minimal symbol table for each objfile and find
483    the symbol whose address is the largest address that is still less
484    than or equal to PC, and matches SECTION (which is not NULL).
485    Returns a pointer to the minimal symbol if such a symbol is found,
486    or NULL if PC is not in a suitable range.
487    Note that we need to look through ALL the minimal symbol tables
488    before deciding on the symbol that comes closest to the specified PC.
489    This is because objfiles can overlap, for example objfile A has .text
490    at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
491    .data at 0x40048.
492 
493    If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
494    there are text and trampoline symbols at the same address.
495    Otherwise prefer mst_text symbols.  */
496 
497 static struct minimal_symbol *
498 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
499 				       struct obj_section *section,
500 				       int want_trampoline)
501 {
502   int lo;
503   int hi;
504   int new;
505   struct objfile *objfile;
506   struct minimal_symbol *msymbol;
507   struct minimal_symbol *best_symbol = NULL;
508   enum minimal_symbol_type want_type, other_type;
509 
510   want_type = want_trampoline ? mst_solib_trampoline : mst_text;
511   other_type = want_trampoline ? mst_text : mst_solib_trampoline;
512 
513   /* We can not require the symbol found to be in section, because
514      e.g. IRIX 6.5 mdebug relies on this code returning an absolute
515      symbol - but find_pc_section won't return an absolute section and
516      hence the code below would skip over absolute symbols.  We can
517      still take advantage of the call to find_pc_section, though - the
518      object file still must match.  In case we have separate debug
519      files, search both the file and its separate debug file.  There's
520      no telling which one will have the minimal symbols.  */
521 
522   gdb_assert (section != NULL);
523 
524   for (objfile = section->objfile;
525        objfile != NULL;
526        objfile = objfile_separate_debug_iterate (section->objfile, objfile))
527     {
528       /* If this objfile has a minimal symbol table, go search it using
529          a binary search.  Note that a minimal symbol table always consists
530          of at least two symbols, a "real" symbol and the terminating
531          "null symbol".  If there are no real symbols, then there is no
532          minimal symbol table at all.  */
533 
534       if (objfile->minimal_symbol_count > 0)
535 	{
536 	  int best_zero_sized = -1;
537 
538           msymbol = objfile->msymbols;
539 	  lo = 0;
540 	  hi = objfile->minimal_symbol_count - 1;
541 
542 	  /* This code assumes that the minimal symbols are sorted by
543 	     ascending address values.  If the pc value is greater than or
544 	     equal to the first symbol's address, then some symbol in this
545 	     minimal symbol table is a suitable candidate for being the
546 	     "best" symbol.  This includes the last real symbol, for cases
547 	     where the pc value is larger than any address in this vector.
548 
549 	     By iterating until the address associated with the current
550 	     hi index (the endpoint of the test interval) is less than
551 	     or equal to the desired pc value, we accomplish two things:
552 	     (1) the case where the pc value is larger than any minimal
553 	     symbol address is trivially solved, (2) the address associated
554 	     with the hi index is always the one we want when the interation
555 	     terminates.  In essence, we are iterating the test interval
556 	     down until the pc value is pushed out of it from the high end.
557 
558 	     Warning: this code is trickier than it would appear at first.  */
559 
560 	  /* Should also require that pc is <= end of objfile.  FIXME!  */
561 	  if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
562 	    {
563 	      while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
564 		{
565 		  /* pc is still strictly less than highest address.  */
566 		  /* Note "new" will always be >= lo.  */
567 		  new = (lo + hi) / 2;
568 		  if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
569 		      (lo == new))
570 		    {
571 		      hi = new;
572 		    }
573 		  else
574 		    {
575 		      lo = new;
576 		    }
577 		}
578 
579 	      /* If we have multiple symbols at the same address, we want
580 	         hi to point to the last one.  That way we can find the
581 	         right symbol if it has an index greater than hi.  */
582 	      while (hi < objfile->minimal_symbol_count - 1
583 		     && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
584 			 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
585 		hi++;
586 
587 	      /* Skip various undesirable symbols.  */
588 	      while (hi >= 0)
589 		{
590 		  /* Skip any absolute symbols.  This is apparently
591 		     what adb and dbx do, and is needed for the CM-5.
592 		     There are two known possible problems: (1) on
593 		     ELF, apparently end, edata, etc. are absolute.
594 		     Not sure ignoring them here is a big deal, but if
595 		     we want to use them, the fix would go in
596 		     elfread.c.  (2) I think shared library entry
597 		     points on the NeXT are absolute.  If we want
598 		     special handling for this it probably should be
599 		     triggered by a special mst_abs_or_lib or some
600 		     such.  */
601 
602 		  if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
603 		    {
604 		      hi--;
605 		      continue;
606 		    }
607 
608 		  /* If SECTION was specified, skip any symbol from
609 		     wrong section.  */
610 		  if (section
611 		      /* Some types of debug info, such as COFF,
612 			 don't fill the bfd_section member, so don't
613 			 throw away symbols on those platforms.  */
614 		      && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
615 		      && (!matching_obj_sections
616 			  (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
617 		    {
618 		      hi--;
619 		      continue;
620 		    }
621 
622 		  /* If we are looking for a trampoline and this is a
623 		     text symbol, or the other way around, check the
624 		     preceding symbol too.  If they are otherwise
625 		     identical prefer that one.  */
626 		  if (hi > 0
627 		      && MSYMBOL_TYPE (&msymbol[hi]) == other_type
628 		      && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
629 		      && (MSYMBOL_SIZE (&msymbol[hi])
630 			  == MSYMBOL_SIZE (&msymbol[hi - 1]))
631 		      && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
632 			  == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
633 		      && (SYMBOL_OBJ_SECTION (&msymbol[hi])
634 			  == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
635 		    {
636 		      hi--;
637 		      continue;
638 		    }
639 
640 		  /* If the minimal symbol has a zero size, save it
641 		     but keep scanning backwards looking for one with
642 		     a non-zero size.  A zero size may mean that the
643 		     symbol isn't an object or function (e.g. a
644 		     label), or it may just mean that the size was not
645 		     specified.  */
646 		  if (MSYMBOL_SIZE (&msymbol[hi]) == 0
647 		      && best_zero_sized == -1)
648 		    {
649 		      best_zero_sized = hi;
650 		      hi--;
651 		      continue;
652 		    }
653 
654 		  /* If we are past the end of the current symbol, try
655 		     the previous symbol if it has a larger overlapping
656 		     size.  This happens on i686-pc-linux-gnu with glibc;
657 		     the nocancel variants of system calls are inside
658 		     the cancellable variants, but both have sizes.  */
659 		  if (hi > 0
660 		      && MSYMBOL_SIZE (&msymbol[hi]) != 0
661 		      && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
662 				+ MSYMBOL_SIZE (&msymbol[hi]))
663 		      && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
664 			       + MSYMBOL_SIZE (&msymbol[hi - 1])))
665 		    {
666 		      hi--;
667 		      continue;
668 		    }
669 
670 		  /* Otherwise, this symbol must be as good as we're going
671 		     to get.  */
672 		  break;
673 		}
674 
675 	      /* If HI has a zero size, and best_zero_sized is set,
676 		 then we had two or more zero-sized symbols; prefer
677 		 the first one we found (which may have a higher
678 		 address).  Also, if we ran off the end, be sure
679 		 to back up.  */
680 	      if (best_zero_sized != -1
681 		  && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
682 		hi = best_zero_sized;
683 
684 	      /* If the minimal symbol has a non-zero size, and this
685 		 PC appears to be outside the symbol's contents, then
686 		 refuse to use this symbol.  If we found a zero-sized
687 		 symbol with an address greater than this symbol's,
688 		 use that instead.  We assume that if symbols have
689 		 specified sizes, they do not overlap.  */
690 
691 	      if (hi >= 0
692 		  && MSYMBOL_SIZE (&msymbol[hi]) != 0
693 		  && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
694 			    + MSYMBOL_SIZE (&msymbol[hi])))
695 		{
696 		  if (best_zero_sized != -1)
697 		    hi = best_zero_sized;
698 		  else
699 		    /* Go on to the next object file.  */
700 		    continue;
701 		}
702 
703 	      /* The minimal symbol indexed by hi now is the best one in this
704 	         objfile's minimal symbol table.  See if it is the best one
705 	         overall.  */
706 
707 	      if (hi >= 0
708 		  && ((best_symbol == NULL) ||
709 		      (SYMBOL_VALUE_ADDRESS (best_symbol) <
710 		       SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
711 		{
712 		  best_symbol = &msymbol[hi];
713 		}
714 	    }
715 	}
716     }
717   return (best_symbol);
718 }
719 
720 struct minimal_symbol *
721 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
722 {
723   if (section == NULL)
724     {
725       /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
726 	 force the section but that (well unless you're doing overlay
727 	 debugging) always returns NULL making the call somewhat useless.  */
728       section = find_pc_section (pc);
729       if (section == NULL)
730 	return NULL;
731     }
732   return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
733 }
734 
735 /* Backward compatibility: search through the minimal symbol table
736    for a matching PC (no section given).  */
737 
738 struct minimal_symbol *
739 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
740 {
741   return lookup_minimal_symbol_by_pc_section (pc, NULL);
742 }
743 
744 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver.  */
745 
746 int
747 in_gnu_ifunc_stub (CORE_ADDR pc)
748 {
749   struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
750 
751   return msymbol && MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc;
752 }
753 
754 /* See elf_gnu_ifunc_resolve_addr for its real implementation.  */
755 
756 static CORE_ADDR
757 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759   error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
760 	   "the ELF support compiled in."),
761 	 paddress (gdbarch, pc));
762 }
763 
764 /* See elf_gnu_ifunc_resolve_name for its real implementation.  */
765 
766 static int
767 stub_gnu_ifunc_resolve_name (const char *function_name,
768 			     CORE_ADDR *function_address_p)
769 {
770   error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
771 	   "the ELF support compiled in."),
772 	 function_name);
773 }
774 
775 /* See elf_gnu_ifunc_resolver_stop for its real implementation.  */
776 
777 static void
778 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
779 {
780   internal_error (__FILE__, __LINE__,
781 		  _("elf_gnu_ifunc_resolver_stop cannot be reached."));
782 }
783 
784 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation.  */
785 
786 static void
787 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
788 {
789   internal_error (__FILE__, __LINE__,
790 		  _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
791 }
792 
793 /* See elf_gnu_ifunc_fns for its real implementation.  */
794 
795 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
796 {
797   stub_gnu_ifunc_resolve_addr,
798   stub_gnu_ifunc_resolve_name,
799   stub_gnu_ifunc_resolver_stop,
800   stub_gnu_ifunc_resolver_return_stop,
801 };
802 
803 /* A placeholder for &elf_gnu_ifunc_fns.  */
804 
805 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
806 
807 /* Find the minimal symbol named NAME, and return both the minsym
808    struct and its objfile.  This only checks the linkage name.  Sets
809    *OBJFILE_P and returns the minimal symbol, if it is found.  If it
810    is not found, returns NULL.  */
811 
812 struct minimal_symbol *
813 lookup_minimal_symbol_and_objfile (const char *name,
814 				   struct objfile **objfile_p)
815 {
816   struct objfile *objfile;
817   unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
818 
819   ALL_OBJFILES (objfile)
820     {
821       struct minimal_symbol *msym;
822 
823       for (msym = objfile->msymbol_hash[hash];
824 	   msym != NULL;
825 	   msym = msym->hash_next)
826 	{
827 	  if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
828 	    {
829 	      *objfile_p = objfile;
830 	      return msym;
831 	    }
832 	}
833     }
834 
835   return 0;
836 }
837 
838 
839 /* Return leading symbol character for a BFD.  If BFD is NULL,
840    return the leading symbol character from the main objfile.  */
841 
842 static int get_symbol_leading_char (bfd *);
843 
844 static int
845 get_symbol_leading_char (bfd *abfd)
846 {
847   if (abfd != NULL)
848     return bfd_get_symbol_leading_char (abfd);
849   if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
850     return bfd_get_symbol_leading_char (symfile_objfile->obfd);
851   return 0;
852 }
853 
854 /* Prepare to start collecting minimal symbols.  Note that presetting
855    msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
856    symbol to allocate the memory for the first bunch.  */
857 
858 void
859 init_minimal_symbol_collection (void)
860 {
861   msym_count = 0;
862   msym_bunch = NULL;
863   msym_bunch_index = BUNCH_SIZE;
864 }
865 
866 void
867 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
868 			    enum minimal_symbol_type ms_type,
869 			    struct objfile *objfile)
870 {
871   int section;
872 
873   switch (ms_type)
874     {
875     case mst_text:
876     case mst_text_gnu_ifunc:
877     case mst_file_text:
878     case mst_solib_trampoline:
879       section = SECT_OFF_TEXT (objfile);
880       break;
881     case mst_data:
882     case mst_file_data:
883       section = SECT_OFF_DATA (objfile);
884       break;
885     case mst_bss:
886     case mst_file_bss:
887       section = SECT_OFF_BSS (objfile);
888       break;
889     default:
890       section = -1;
891     }
892 
893   prim_record_minimal_symbol_and_info (name, address, ms_type,
894 				       section, NULL, objfile);
895 }
896 
897 /* Record a minimal symbol in the msym bunches.  Returns the symbol
898    newly created.  */
899 
900 struct minimal_symbol *
901 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
902 				 CORE_ADDR address,
903 				 enum minimal_symbol_type ms_type,
904 				 int section,
905 				 asection *bfd_section,
906 				 struct objfile *objfile)
907 {
908   struct obj_section *obj_section;
909   struct msym_bunch *new;
910   struct minimal_symbol *msymbol;
911 
912   /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
913      the minimal symbols, because if there is also another symbol
914      at the same address (e.g. the first function of the file),
915      lookup_minimal_symbol_by_pc would have no way of getting the
916      right one.  */
917   if (ms_type == mst_file_text && name[0] == 'g'
918       && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
919 	  || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
920     return (NULL);
921 
922   /* It's safe to strip the leading char here once, since the name
923      is also stored stripped in the minimal symbol table.  */
924   if (name[0] == get_symbol_leading_char (objfile->obfd))
925     {
926       ++name;
927       --name_len;
928     }
929 
930   if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
931     return (NULL);
932 
933   if (msym_bunch_index == BUNCH_SIZE)
934     {
935       new = XCALLOC (1, struct msym_bunch);
936       msym_bunch_index = 0;
937       new->next = msym_bunch;
938       msym_bunch = new;
939     }
940   msymbol = &msym_bunch->contents[msym_bunch_index];
941   SYMBOL_SET_LANGUAGE (msymbol, language_auto);
942   SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
943 
944   SYMBOL_VALUE_ADDRESS (msymbol) = address;
945   SYMBOL_SECTION (msymbol) = section;
946   SYMBOL_OBJ_SECTION (msymbol) = NULL;
947 
948   /* Find obj_section corresponding to bfd_section.  */
949   if (bfd_section)
950     ALL_OBJFILE_OSECTIONS (objfile, obj_section)
951       {
952 	if (obj_section->the_bfd_section == bfd_section)
953 	  {
954 	    SYMBOL_OBJ_SECTION (msymbol) = obj_section;
955 	    break;
956 	  }
957       }
958 
959   MSYMBOL_TYPE (msymbol) = ms_type;
960   MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
961   MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
962   MSYMBOL_SIZE (msymbol) = 0;
963 
964   /* The hash pointers must be cleared! If they're not,
965      add_minsym_to_hash_table will NOT add this msymbol to the hash table.  */
966   msymbol->hash_next = NULL;
967   msymbol->demangled_hash_next = NULL;
968 
969   msym_bunch_index++;
970   msym_count++;
971   OBJSTAT (objfile, n_minsyms++);
972   return msymbol;
973 }
974 
975 /* Record a minimal symbol in the msym bunches.  Returns the symbol
976    newly created.  */
977 
978 struct minimal_symbol *
979 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
980 				     enum minimal_symbol_type ms_type,
981 				     int section,
982 				     asection *bfd_section,
983 				     struct objfile *objfile)
984 {
985   return prim_record_minimal_symbol_full (name, strlen (name), 1,
986 					  address, ms_type, section,
987 					  bfd_section, objfile);
988 }
989 
990 /* Compare two minimal symbols by address and return a signed result based
991    on unsigned comparisons, so that we sort into unsigned numeric order.
992    Within groups with the same address, sort by name.  */
993 
994 static int
995 compare_minimal_symbols (const void *fn1p, const void *fn2p)
996 {
997   const struct minimal_symbol *fn1;
998   const struct minimal_symbol *fn2;
999 
1000   fn1 = (const struct minimal_symbol *) fn1p;
1001   fn2 = (const struct minimal_symbol *) fn2p;
1002 
1003   if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
1004     {
1005       return (-1);		/* addr 1 is less than addr 2.  */
1006     }
1007   else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
1008     {
1009       return (1);		/* addr 1 is greater than addr 2.  */
1010     }
1011   else
1012     /* addrs are equal: sort by name */
1013     {
1014       char *name1 = SYMBOL_LINKAGE_NAME (fn1);
1015       char *name2 = SYMBOL_LINKAGE_NAME (fn2);
1016 
1017       if (name1 && name2)	/* both have names */
1018 	return strcmp (name1, name2);
1019       else if (name2)
1020 	return 1;		/* fn1 has no name, so it is "less".  */
1021       else if (name1)		/* fn2 has no name, so it is "less".  */
1022 	return -1;
1023       else
1024 	return (0);		/* Neither has a name, so they're equal.  */
1025     }
1026 }
1027 
1028 /* Discard the currently collected minimal symbols, if any.  If we wish
1029    to save them for later use, we must have already copied them somewhere
1030    else before calling this function.
1031 
1032    FIXME:  We could allocate the minimal symbol bunches on their own
1033    obstack and then simply blow the obstack away when we are done with
1034    it.  Is it worth the extra trouble though?  */
1035 
1036 static void
1037 do_discard_minimal_symbols_cleanup (void *arg)
1038 {
1039   struct msym_bunch *next;
1040 
1041   while (msym_bunch != NULL)
1042     {
1043       next = msym_bunch->next;
1044       xfree (msym_bunch);
1045       msym_bunch = next;
1046     }
1047 }
1048 
1049 struct cleanup *
1050 make_cleanup_discard_minimal_symbols (void)
1051 {
1052   return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1053 }
1054 
1055 
1056 
1057 /* Compact duplicate entries out of a minimal symbol table by walking
1058    through the table and compacting out entries with duplicate addresses
1059    and matching names.  Return the number of entries remaining.
1060 
1061    On entry, the table resides between msymbol[0] and msymbol[mcount].
1062    On exit, it resides between msymbol[0] and msymbol[result_count].
1063 
1064    When files contain multiple sources of symbol information, it is
1065    possible for the minimal symbol table to contain many duplicate entries.
1066    As an example, SVR4 systems use ELF formatted object files, which
1067    usually contain at least two different types of symbol tables (a
1068    standard ELF one and a smaller dynamic linking table), as well as
1069    DWARF debugging information for files compiled with -g.
1070 
1071    Without compacting, the minimal symbol table for gdb itself contains
1072    over a 1000 duplicates, about a third of the total table size.  Aside
1073    from the potential trap of not noticing that two successive entries
1074    identify the same location, this duplication impacts the time required
1075    to linearly scan the table, which is done in a number of places.  So we
1076    just do one linear scan here and toss out the duplicates.
1077 
1078    Note that we are not concerned here about recovering the space that
1079    is potentially freed up, because the strings themselves are allocated
1080    on the objfile_obstack, and will get automatically freed when the symbol
1081    table is freed.  The caller can free up the unused minimal symbols at
1082    the end of the compacted region if their allocation strategy allows it.
1083 
1084    Also note we only go up to the next to last entry within the loop
1085    and then copy the last entry explicitly after the loop terminates.
1086 
1087    Since the different sources of information for each symbol may
1088    have different levels of "completeness", we may have duplicates
1089    that have one entry with type "mst_unknown" and the other with a
1090    known type.  So if the one we are leaving alone has type mst_unknown,
1091    overwrite its type with the type from the one we are compacting out.  */
1092 
1093 static int
1094 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1095 			 struct objfile *objfile)
1096 {
1097   struct minimal_symbol *copyfrom;
1098   struct minimal_symbol *copyto;
1099 
1100   if (mcount > 0)
1101     {
1102       copyfrom = copyto = msymbol;
1103       while (copyfrom < msymbol + mcount - 1)
1104 	{
1105 	  if (SYMBOL_VALUE_ADDRESS (copyfrom)
1106 	      == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1107 	      && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1108 			 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1109 	    {
1110 	      if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1111 		{
1112 		  MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1113 		}
1114 	      copyfrom++;
1115 	    }
1116 	  else
1117 	    *copyto++ = *copyfrom++;
1118 	}
1119       *copyto++ = *copyfrom++;
1120       mcount = copyto - msymbol;
1121     }
1122   return (mcount);
1123 }
1124 
1125 /* Build (or rebuild) the minimal symbol hash tables.  This is necessary
1126    after compacting or sorting the table since the entries move around
1127    thus causing the internal minimal_symbol pointers to become jumbled.  */
1128 
1129 static void
1130 build_minimal_symbol_hash_tables (struct objfile *objfile)
1131 {
1132   int i;
1133   struct minimal_symbol *msym;
1134 
1135   /* Clear the hash tables.  */
1136   for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1137     {
1138       objfile->msymbol_hash[i] = 0;
1139       objfile->msymbol_demangled_hash[i] = 0;
1140     }
1141 
1142   /* Now, (re)insert the actual entries.  */
1143   for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1144        i > 0;
1145        i--, msym++)
1146     {
1147       msym->hash_next = 0;
1148       add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1149 
1150       msym->demangled_hash_next = 0;
1151       if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1152 	add_minsym_to_demangled_hash_table (msym,
1153                                             objfile->msymbol_demangled_hash);
1154     }
1155 }
1156 
1157 /* Add the minimal symbols in the existing bunches to the objfile's official
1158    minimal symbol table.  In most cases there is no minimal symbol table yet
1159    for this objfile, and the existing bunches are used to create one.  Once
1160    in a while (for shared libraries for example), we add symbols (e.g. common
1161    symbols) to an existing objfile.
1162 
1163    Because of the way minimal symbols are collected, we generally have no way
1164    of knowing what source language applies to any particular minimal symbol.
1165    Specifically, we have no way of knowing if the minimal symbol comes from a
1166    C++ compilation unit or not.  So for the sake of supporting cached
1167    demangled C++ names, we have no choice but to try and demangle each new one
1168    that comes in.  If the demangling succeeds, then we assume it is a C++
1169    symbol and set the symbol's language and demangled name fields
1170    appropriately.  Note that in order to avoid unnecessary demanglings, and
1171    allocating obstack space that subsequently can't be freed for the demangled
1172    names, we mark all newly added symbols with language_auto.  After
1173    compaction of the minimal symbols, we go back and scan the entire minimal
1174    symbol table looking for these new symbols.  For each new symbol we attempt
1175    to demangle it, and if successful, record it as a language_cplus symbol
1176    and cache the demangled form on the symbol obstack.  Symbols which don't
1177    demangle are marked as language_unknown symbols, which inhibits future
1178    attempts to demangle them if we later add more minimal symbols.  */
1179 
1180 void
1181 install_minimal_symbols (struct objfile *objfile)
1182 {
1183   int bindex;
1184   int mcount;
1185   struct msym_bunch *bunch;
1186   struct minimal_symbol *msymbols;
1187   int alloc_count;
1188 
1189   if (msym_count > 0)
1190     {
1191       /* Allocate enough space in the obstack, into which we will gather the
1192          bunches of new and existing minimal symbols, sort them, and then
1193          compact out the duplicate entries.  Once we have a final table,
1194          we will give back the excess space.  */
1195 
1196       alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1197       obstack_blank (&objfile->objfile_obstack,
1198 		     alloc_count * sizeof (struct minimal_symbol));
1199       msymbols = (struct minimal_symbol *)
1200 	obstack_base (&objfile->objfile_obstack);
1201 
1202       /* Copy in the existing minimal symbols, if there are any.  */
1203 
1204       if (objfile->minimal_symbol_count)
1205 	memcpy ((char *) msymbols, (char *) objfile->msymbols,
1206 	    objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1207 
1208       /* Walk through the list of minimal symbol bunches, adding each symbol
1209          to the new contiguous array of symbols.  Note that we start with the
1210          current, possibly partially filled bunch (thus we use the current
1211          msym_bunch_index for the first bunch we copy over), and thereafter
1212          each bunch is full.  */
1213 
1214       mcount = objfile->minimal_symbol_count;
1215 
1216       for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1217 	{
1218 	  for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1219 	    msymbols[mcount] = bunch->contents[bindex];
1220 	  msym_bunch_index = BUNCH_SIZE;
1221 	}
1222 
1223       /* Sort the minimal symbols by address.  */
1224 
1225       qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1226 	     compare_minimal_symbols);
1227 
1228       /* Compact out any duplicates, and free up whatever space we are
1229          no longer using.  */
1230 
1231       mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1232 
1233       obstack_blank (&objfile->objfile_obstack,
1234 	       (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1235       msymbols = (struct minimal_symbol *)
1236 	obstack_finish (&objfile->objfile_obstack);
1237 
1238       /* We also terminate the minimal symbol table with a "null symbol",
1239          which is *not* included in the size of the table.  This makes it
1240          easier to find the end of the table when we are handed a pointer
1241          to some symbol in the middle of it.  Zero out the fields in the
1242          "null symbol" allocated at the end of the array.  Note that the
1243          symbol count does *not* include this null symbol, which is why it
1244          is indexed by mcount and not mcount-1.  */
1245 
1246       SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1247       SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1248       MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1249       MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1250       MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1251       MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1252       SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1253 
1254       /* Attach the minimal symbol table to the specified objfile.
1255          The strings themselves are also located in the objfile_obstack
1256          of this objfile.  */
1257 
1258       objfile->minimal_symbol_count = mcount;
1259       objfile->msymbols = msymbols;
1260 
1261       /* Try to guess the appropriate C++ ABI by looking at the names
1262 	 of the minimal symbols in the table.  */
1263       {
1264 	int i;
1265 
1266 	for (i = 0; i < mcount; i++)
1267 	  {
1268 	    /* If a symbol's name starts with _Z and was successfully
1269 	       demangled, then we can assume we've found a GNU v3 symbol.
1270 	       For now we set the C++ ABI globally; if the user is
1271 	       mixing ABIs then the user will need to "set cp-abi"
1272 	       manually.  */
1273 	    const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1274 
1275 	    if (name[0] == '_' && name[1] == 'Z'
1276 		&& SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1277 	      {
1278 		set_cp_abi_as_auto_default ("gnu-v3");
1279 		break;
1280 	      }
1281 	  }
1282       }
1283 
1284       /* Now build the hash tables; we can't do this incrementally
1285          at an earlier point since we weren't finished with the obstack
1286 	 yet.  (And if the msymbol obstack gets moved, all the internal
1287 	 pointers to other msymbols need to be adjusted.)  */
1288       build_minimal_symbol_hash_tables (objfile);
1289     }
1290 }
1291 
1292 /* Sort all the minimal symbols in OBJFILE.  */
1293 
1294 void
1295 msymbols_sort (struct objfile *objfile)
1296 {
1297   qsort (objfile->msymbols, objfile->minimal_symbol_count,
1298 	 sizeof (struct minimal_symbol), compare_minimal_symbols);
1299   build_minimal_symbol_hash_tables (objfile);
1300 }
1301 
1302 /* Check if PC is in a shared library trampoline code stub.
1303    Return minimal symbol for the trampoline entry or NULL if PC is not
1304    in a trampoline code stub.  */
1305 
1306 struct minimal_symbol *
1307 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1308 {
1309   struct obj_section *section = find_pc_section (pc);
1310   struct minimal_symbol *msymbol;
1311 
1312   if (section == NULL)
1313     return NULL;
1314   msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1315 
1316   if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1317     return msymbol;
1318   return NULL;
1319 }
1320 
1321 /* If PC is in a shared library trampoline code stub, return the
1322    address of the `real' function belonging to the stub.
1323    Return 0 if PC is not in a trampoline code stub or if the real
1324    function is not found in the minimal symbol table.
1325 
1326    We may fail to find the right function if a function with the
1327    same name is defined in more than one shared library, but this
1328    is considered bad programming style.  We could return 0 if we find
1329    a duplicate function in case this matters someday.  */
1330 
1331 CORE_ADDR
1332 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1333 {
1334   struct objfile *objfile;
1335   struct minimal_symbol *msymbol;
1336   struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1337 
1338   if (tsymbol != NULL)
1339     {
1340       ALL_MSYMBOLS (objfile, msymbol)
1341       {
1342 	if ((MSYMBOL_TYPE (msymbol) == mst_text
1343 	    || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1344 	    && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1345 		       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1346 	  return SYMBOL_VALUE_ADDRESS (msymbol);
1347 
1348 	/* Also handle minimal symbols pointing to function descriptors.  */
1349 	if (MSYMBOL_TYPE (msymbol) == mst_data
1350 	    && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1351 		       SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1352 	  {
1353 	    CORE_ADDR func;
1354 
1355 	    func = gdbarch_convert_from_func_ptr_addr
1356 		    (get_objfile_arch (objfile),
1357 		     SYMBOL_VALUE_ADDRESS (msymbol),
1358 		     &current_target);
1359 
1360 	    /* Ignore data symbols that are not function descriptors.  */
1361 	    if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1362 	      return func;
1363 	  }
1364       }
1365     }
1366   return 0;
1367 }
1368