xref: /dragonfly/contrib/gdb-7/gdb/objfiles.c (revision 10cbe914)
1 /* GDB routines for manipulating objfiles.
2 
3    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4    2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5 
6    Contributed by Cygnus Support, using pieces from other GDB modules.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* This file contains support routines for creating, manipulating, and
24    destroying objfile structures. */
25 
26 #include "defs.h"
27 #include "bfd.h"		/* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45 
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55 
56 /* Prototypes for local functions */
57 
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60 
61 /* Externally visible variables that are owned by this module.
62    See declarations in objfile.h for more info. */
63 
64 struct objfile *object_files;	/* Linked list of all objfiles */
65 struct objfile *current_objfile;	/* For symbol file being read in */
66 struct objfile *symfile_objfile;	/* Main symbol table loaded from */
67 struct objfile *rt_common_objfile;	/* For runtime common symbols */
68 
69 /* Records whether any objfiles appeared or disappeared since we last updated
70    address to obj section map.  */
71 
72 static int objfiles_changed_p;
73 
74 /* Locate all mappable sections of a BFD file.
75    objfile_p_char is a char * to get it through
76    bfd_map_over_sections; we cast it back to its proper type.  */
77 
78 /* Called via bfd_map_over_sections to build up the section table that
79    the objfile references.  The objfile contains pointers to the start
80    of the table (objfile->sections) and to the first location after
81    the end of the table (objfile->sections_end). */
82 
83 static void
84 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
85 			 void *objfile_p_char)
86 {
87   struct objfile *objfile = (struct objfile *) objfile_p_char;
88   struct obj_section section;
89   flagword aflag;
90 
91   aflag = bfd_get_section_flags (abfd, asect);
92 
93   if (!(aflag & SEC_ALLOC))
94     return;
95 
96   if (0 == bfd_section_size (abfd, asect))
97     return;
98   section.objfile = objfile;
99   section.the_bfd_section = asect;
100   section.ovly_mapped = 0;
101   obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
102   objfile->sections_end
103     = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
104 }
105 
106 /* Builds a section table for OBJFILE.
107    Returns 0 if OK, 1 on error (in which case bfd_error contains the
108    error).
109 
110    Note that while we are building the table, which goes into the
111    psymbol obstack, we hijack the sections_end pointer to instead hold
112    a count of the number of sections.  When bfd_map_over_sections
113    returns, this count is used to compute the pointer to the end of
114    the sections table, which then overwrites the count.
115 
116    Also note that the OFFSET and OVLY_MAPPED in each table entry
117    are initialized to zero.
118 
119    Also note that if anything else writes to the psymbol obstack while
120    we are building the table, we're pretty much hosed. */
121 
122 int
123 build_objfile_section_table (struct objfile *objfile)
124 {
125   /* objfile->sections can be already set when reading a mapped symbol
126      file.  I believe that we do need to rebuild the section table in
127      this case (we rebuild other things derived from the bfd), but we
128      can't free the old one (it's in the objfile_obstack).  So we just
129      waste some memory.  */
130 
131   objfile->sections_end = 0;
132   bfd_map_over_sections (objfile->obfd,
133 			 add_to_objfile_sections, (void *) objfile);
134   objfile->sections = obstack_finish (&objfile->objfile_obstack);
135   objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
136   return (0);
137 }
138 
139 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
140    allocate a new objfile struct, fill it in as best we can, link it
141    into the list of all known objfiles, and return a pointer to the
142    new objfile struct.
143 
144    The FLAGS word contains various bits (OBJF_*) that can be taken as
145    requests for specific operations.  Other bits like OBJF_SHARED are
146    simply copied through to the new objfile flags member. */
147 
148 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
149    by jv-lang.c, to create an artificial objfile used to hold
150    information about dynamically-loaded Java classes.  Unfortunately,
151    that branch of this function doesn't get tested very frequently, so
152    it's prone to breakage.  (E.g. at one time the name was set to NULL
153    in that situation, which broke a loop over all names in the dynamic
154    library loader.)  If you change this function, please try to leave
155    things in a consistent state even if abfd is NULL.  */
156 
157 struct objfile *
158 allocate_objfile (bfd *abfd, int flags)
159 {
160   struct objfile *objfile = NULL;
161   struct objfile *last_one = NULL;
162 
163   /* If we don't support mapped symbol files, didn't ask for the file to be
164      mapped, or failed to open the mapped file for some reason, then revert
165      back to an unmapped objfile. */
166 
167   if (objfile == NULL)
168     {
169       objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
170       memset (objfile, 0, sizeof (struct objfile));
171       objfile->psymbol_cache = bcache_xmalloc ();
172       objfile->macro_cache = bcache_xmalloc ();
173       /* We could use obstack_specify_allocation here instead, but
174 	 gdb_obstack.h specifies the alloc/dealloc functions.  */
175       obstack_init (&objfile->objfile_obstack);
176       terminate_minimal_symbol_table (objfile);
177     }
178 
179   objfile_alloc_data (objfile);
180 
181   /* Update the per-objfile information that comes from the bfd, ensuring
182      that any data that is reference is saved in the per-objfile data
183      region. */
184 
185   objfile->obfd = gdb_bfd_ref (abfd);
186   if (objfile->name != NULL)
187     {
188       xfree (objfile->name);
189     }
190   if (abfd != NULL)
191     {
192       /* Look up the gdbarch associated with the BFD.  */
193       objfile->gdbarch = gdbarch_from_bfd (abfd);
194 
195       objfile->name = xstrdup (bfd_get_filename (abfd));
196       objfile->mtime = bfd_get_mtime (abfd);
197 
198       /* Build section table.  */
199 
200       if (build_objfile_section_table (objfile))
201 	{
202 	  error (_("Can't find the file sections in `%s': %s"),
203 		 objfile->name, bfd_errmsg (bfd_get_error ()));
204 	}
205     }
206   else
207     {
208       objfile->name = xstrdup ("<<anonymous objfile>>");
209     }
210 
211   /* Initialize the section indexes for this objfile, so that we can
212      later detect if they are used w/o being properly assigned to. */
213 
214   objfile->sect_index_text = -1;
215   objfile->sect_index_data = -1;
216   objfile->sect_index_bss = -1;
217   objfile->sect_index_rodata = -1;
218 
219   /* We don't yet have a C++-specific namespace symtab.  */
220 
221   objfile->cp_namespace_symtab = NULL;
222 
223   /* Add this file onto the tail of the linked list of other such files. */
224 
225   objfile->next = NULL;
226   if (object_files == NULL)
227     object_files = objfile;
228   else
229     {
230       for (last_one = object_files;
231 	   last_one->next;
232 	   last_one = last_one->next);
233       last_one->next = objfile;
234     }
235 
236   /* Save passed in flag bits. */
237   objfile->flags |= flags;
238 
239   objfiles_changed_p = 1;  /* Rebuild section map next time we need it.  */
240 
241   return (objfile);
242 }
243 
244 /* Retrieve the gdbarch associated with OBJFILE.  */
245 struct gdbarch *
246 get_objfile_arch (struct objfile *objfile)
247 {
248   return objfile->gdbarch;
249 }
250 
251 /* Initialize entry point information for this objfile. */
252 
253 void
254 init_entry_point_info (struct objfile *objfile)
255 {
256   /* Save startup file's range of PC addresses to help blockframe.c
257      decide where the bottom of the stack is.  */
258 
259   if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
260     {
261       /* Executable file -- record its entry point so we'll recognize
262          the startup file because it contains the entry point.  */
263       objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
264     }
265   else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
266 	   && bfd_get_start_address (objfile->obfd) != 0)
267     /* Some shared libraries may have entry points set and be
268        runnable.  There's no clear way to indicate this, so just check
269        for values other than zero.  */
270     objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
271   else
272     {
273       /* Examination of non-executable.o files.  Short-circuit this stuff.  */
274       objfile->ei.entry_point = INVALID_ENTRY_POINT;
275     }
276 }
277 
278 /* Get current entry point address.  */
279 
280 CORE_ADDR
281 entry_point_address (void)
282 {
283   struct gdbarch *gdbarch;
284   CORE_ADDR entry_point;
285 
286   if (symfile_objfile == NULL)
287     return 0;
288 
289   gdbarch = get_objfile_arch (symfile_objfile);
290 
291   entry_point = symfile_objfile->ei.entry_point;
292 
293   /* Make certain that the address points at real code, and not a
294      function descriptor.  */
295   entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
296 						    &current_target);
297 
298   /* Remove any ISA markers, so that this matches entries in the
299      symbol table.  */
300   entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
301 
302   return entry_point;
303 }
304 
305 /* Create the terminating entry of OBJFILE's minimal symbol table.
306    If OBJFILE->msymbols is zero, allocate a single entry from
307    OBJFILE->objfile_obstack; otherwise, just initialize
308    OBJFILE->msymbols[OBJFILE->minimal_symbol_count].  */
309 void
310 terminate_minimal_symbol_table (struct objfile *objfile)
311 {
312   if (! objfile->msymbols)
313     objfile->msymbols = ((struct minimal_symbol *)
314                          obstack_alloc (&objfile->objfile_obstack,
315                                         sizeof (objfile->msymbols[0])));
316 
317   {
318     struct minimal_symbol *m
319       = &objfile->msymbols[objfile->minimal_symbol_count];
320 
321     memset (m, 0, sizeof (*m));
322     /* Don't rely on these enumeration values being 0's.  */
323     MSYMBOL_TYPE (m) = mst_unknown;
324     SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
325   }
326 }
327 
328 
329 /* Put one object file before a specified on in the global list.
330    This can be used to make sure an object file is destroyed before
331    another when using ALL_OBJFILES_SAFE to free all objfiles. */
332 void
333 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
334 {
335   struct objfile **objp;
336 
337   unlink_objfile (objfile);
338 
339   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
340     {
341       if (*objp == before_this)
342 	{
343 	  objfile->next = *objp;
344 	  *objp = objfile;
345 	  return;
346 	}
347     }
348 
349   internal_error (__FILE__, __LINE__,
350 		  _("put_objfile_before: before objfile not in list"));
351 }
352 
353 /* Put OBJFILE at the front of the list.  */
354 
355 void
356 objfile_to_front (struct objfile *objfile)
357 {
358   struct objfile **objp;
359   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
360     {
361       if (*objp == objfile)
362 	{
363 	  /* Unhook it from where it is.  */
364 	  *objp = objfile->next;
365 	  /* Put it in the front.  */
366 	  objfile->next = object_files;
367 	  object_files = objfile;
368 	  break;
369 	}
370     }
371 }
372 
373 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
374    list.
375 
376    It is not a bug, or error, to call this function if OBJFILE is not known
377    to be in the current list.  This is done in the case of mapped objfiles,
378    for example, just to ensure that the mapped objfile doesn't appear twice
379    in the list.  Since the list is threaded, linking in a mapped objfile
380    twice would create a circular list.
381 
382    If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
383    unlinking it, just to ensure that we have completely severed any linkages
384    between the OBJFILE and the list. */
385 
386 void
387 unlink_objfile (struct objfile *objfile)
388 {
389   struct objfile **objpp;
390 
391   for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
392     {
393       if (*objpp == objfile)
394 	{
395 	  *objpp = (*objpp)->next;
396 	  objfile->next = NULL;
397 	  return;
398 	}
399     }
400 
401   internal_error (__FILE__, __LINE__,
402 		  _("unlink_objfile: objfile already unlinked"));
403 }
404 
405 
406 /* Destroy an objfile and all the symtabs and psymtabs under it.  Note
407    that as much as possible is allocated on the objfile_obstack
408    so that the memory can be efficiently freed.
409 
410    Things which we do NOT free because they are not in malloc'd memory
411    or not in memory specific to the objfile include:
412 
413    objfile -> sf
414 
415    FIXME:  If the objfile is using reusable symbol information (via mmalloc),
416    then we need to take into account the fact that more than one process
417    may be using the symbol information at the same time (when mmalloc is
418    extended to support cooperative locking).  When more than one process
419    is using the mapped symbol info, we need to be more careful about when
420    we free objects in the reusable area. */
421 
422 void
423 free_objfile (struct objfile *objfile)
424 {
425   if (objfile->separate_debug_objfile)
426     {
427       free_objfile (objfile->separate_debug_objfile);
428     }
429 
430   if (objfile->separate_debug_objfile_backlink)
431     {
432       /* We freed the separate debug file, make sure the base objfile
433 	 doesn't reference it.  */
434       objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
435     }
436 
437   /* Remove any references to this objfile in the global value
438      lists.  */
439   preserve_values (objfile);
440 
441   /* First do any symbol file specific actions required when we are
442      finished with a particular symbol file.  Note that if the objfile
443      is using reusable symbol information (via mmalloc) then each of
444      these routines is responsible for doing the correct thing, either
445      freeing things which are valid only during this particular gdb
446      execution, or leaving them to be reused during the next one. */
447 
448   if (objfile->sf != NULL)
449     {
450       (*objfile->sf->sym_finish) (objfile);
451     }
452 
453   /* Discard any data modules have associated with the objfile.  */
454   objfile_free_data (objfile);
455 
456   gdb_bfd_unref (objfile->obfd);
457 
458   /* Remove it from the chain of all objfiles. */
459 
460   unlink_objfile (objfile);
461 
462   if (objfile == symfile_objfile)
463     symfile_objfile = NULL;
464 
465   if (objfile == rt_common_objfile)
466     rt_common_objfile = NULL;
467 
468   /* Before the symbol table code was redone to make it easier to
469      selectively load and remove information particular to a specific
470      linkage unit, gdb used to do these things whenever the monolithic
471      symbol table was blown away.  How much still needs to be done
472      is unknown, but we play it safe for now and keep each action until
473      it is shown to be no longer needed. */
474 
475   /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
476      for example), so we need to call this here.  */
477   clear_pc_function_cache ();
478 
479   /* Clear globals which might have pointed into a removed objfile.
480      FIXME: It's not clear which of these are supposed to persist
481      between expressions and which ought to be reset each time.  */
482   expression_context_block = NULL;
483   innermost_block = NULL;
484 
485   /* Check to see if the current_source_symtab belongs to this objfile,
486      and if so, call clear_current_source_symtab_and_line. */
487 
488   {
489     struct symtab_and_line cursal = get_current_source_symtab_and_line ();
490     struct symtab *s;
491 
492     ALL_OBJFILE_SYMTABS (objfile, s)
493       {
494 	if (s == cursal.symtab)
495 	  clear_current_source_symtab_and_line ();
496       }
497   }
498 
499   /* The last thing we do is free the objfile struct itself. */
500 
501   if (objfile->name != NULL)
502     {
503       xfree (objfile->name);
504     }
505   if (objfile->global_psymbols.list)
506     xfree (objfile->global_psymbols.list);
507   if (objfile->static_psymbols.list)
508     xfree (objfile->static_psymbols.list);
509   /* Free the obstacks for non-reusable objfiles */
510   bcache_xfree (objfile->psymbol_cache);
511   bcache_xfree (objfile->macro_cache);
512   if (objfile->demangled_names_hash)
513     htab_delete (objfile->demangled_names_hash);
514   obstack_free (&objfile->objfile_obstack, 0);
515   xfree (objfile);
516   objfile = NULL;
517   objfiles_changed_p = 1;  /* Rebuild section map next time we need it.  */
518 }
519 
520 static void
521 do_free_objfile_cleanup (void *obj)
522 {
523   free_objfile (obj);
524 }
525 
526 struct cleanup *
527 make_cleanup_free_objfile (struct objfile *obj)
528 {
529   return make_cleanup (do_free_objfile_cleanup, obj);
530 }
531 
532 /* Free all the object files at once and clean up their users.  */
533 
534 void
535 free_all_objfiles (void)
536 {
537   struct objfile *objfile, *temp;
538 
539   ALL_OBJFILES_SAFE (objfile, temp)
540   {
541     free_objfile (objfile);
542   }
543   clear_symtab_users ();
544 }
545 
546 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
547    entries in new_offsets.  */
548 void
549 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
550 {
551   struct obj_section *s;
552   struct section_offsets *delta =
553     ((struct section_offsets *)
554      alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
555 
556   {
557     int i;
558     int something_changed = 0;
559     for (i = 0; i < objfile->num_sections; ++i)
560       {
561 	delta->offsets[i] =
562 	  ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
563 	if (ANOFFSET (delta, i) != 0)
564 	  something_changed = 1;
565       }
566     if (!something_changed)
567       return;
568   }
569 
570   /* OK, get all the symtabs.  */
571   {
572     struct symtab *s;
573 
574     ALL_OBJFILE_SYMTABS (objfile, s)
575     {
576       struct linetable *l;
577       struct blockvector *bv;
578       int i;
579 
580       /* First the line table.  */
581       l = LINETABLE (s);
582       if (l)
583 	{
584 	  for (i = 0; i < l->nitems; ++i)
585 	    l->item[i].pc += ANOFFSET (delta, s->block_line_section);
586 	}
587 
588       /* Don't relocate a shared blockvector more than once.  */
589       if (!s->primary)
590 	continue;
591 
592       bv = BLOCKVECTOR (s);
593       if (BLOCKVECTOR_MAP (bv))
594 	addrmap_relocate (BLOCKVECTOR_MAP (bv),
595 			  ANOFFSET (delta, s->block_line_section));
596 
597       for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
598 	{
599 	  struct block *b;
600 	  struct symbol *sym;
601 	  struct dict_iterator iter;
602 
603 	  b = BLOCKVECTOR_BLOCK (bv, i);
604 	  BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
605 	  BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
606 
607 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
608 	    {
609 	      fixup_symbol_section (sym, objfile);
610 
611 	      /* The RS6000 code from which this was taken skipped
612 	         any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
613 	         But I'm leaving out that test, on the theory that
614 	         they can't possibly pass the tests below.  */
615 	      if ((SYMBOL_CLASS (sym) == LOC_LABEL
616 		   || SYMBOL_CLASS (sym) == LOC_STATIC)
617 		  && SYMBOL_SECTION (sym) >= 0)
618 		{
619 		  SYMBOL_VALUE_ADDRESS (sym) +=
620 		    ANOFFSET (delta, SYMBOL_SECTION (sym));
621 		}
622 	    }
623 	}
624     }
625   }
626 
627   {
628     struct partial_symtab *p;
629 
630     ALL_OBJFILE_PSYMTABS (objfile, p)
631     {
632       p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
633       p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
634     }
635   }
636 
637   {
638     struct partial_symbol **psym;
639 
640     for (psym = objfile->global_psymbols.list;
641 	 psym < objfile->global_psymbols.next;
642 	 psym++)
643       {
644 	fixup_psymbol_section (*psym, objfile);
645 	if (SYMBOL_SECTION (*psym) >= 0)
646 	  SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
647 						    SYMBOL_SECTION (*psym));
648       }
649     for (psym = objfile->static_psymbols.list;
650 	 psym < objfile->static_psymbols.next;
651 	 psym++)
652       {
653 	fixup_psymbol_section (*psym, objfile);
654 	if (SYMBOL_SECTION (*psym) >= 0)
655 	  SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
656 						    SYMBOL_SECTION (*psym));
657       }
658   }
659 
660   {
661     struct minimal_symbol *msym;
662     ALL_OBJFILE_MSYMBOLS (objfile, msym)
663       if (SYMBOL_SECTION (msym) >= 0)
664       SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
665   }
666   /* Relocating different sections by different amounts may cause the symbols
667      to be out of order.  */
668   msymbols_sort (objfile);
669 
670   if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
671     {
672       /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
673 	 only as a fallback.  */
674       struct obj_section *s;
675       s = find_pc_section (objfile->ei.entry_point);
676       if (s)
677         objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
678       else
679         objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
680     }
681 
682   {
683     int i;
684     for (i = 0; i < objfile->num_sections; ++i)
685       (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
686   }
687 
688   /* Rebuild section map next time we need it.  */
689   objfiles_changed_p = 1;
690 
691   /* Update the table in exec_ops, used to read memory.  */
692   ALL_OBJFILE_OSECTIONS (objfile, s)
693     {
694       int idx = s->the_bfd_section->index;
695 
696       exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
697 				obj_section_addr (s));
698     }
699 
700   /* Relocate breakpoints as necessary, after things are relocated. */
701   breakpoint_re_set ();
702 }
703 
704 /* Return non-zero if OBJFILE has partial symbols.  */
705 
706 int
707 objfile_has_partial_symbols (struct objfile *objfile)
708 {
709   return objfile->psymtabs != NULL;
710 }
711 
712 /* Return non-zero if OBJFILE has full symbols.  */
713 
714 int
715 objfile_has_full_symbols (struct objfile *objfile)
716 {
717   return objfile->symtabs != NULL;
718 }
719 
720 /* Many places in gdb want to test just to see if we have any partial
721    symbols available.  This function returns zero if none are currently
722    available, nonzero otherwise. */
723 
724 int
725 have_partial_symbols (void)
726 {
727   struct objfile *ofp;
728 
729   ALL_OBJFILES (ofp)
730   {
731     if (objfile_has_partial_symbols (ofp))
732       return 1;
733   }
734   return 0;
735 }
736 
737 /* Many places in gdb want to test just to see if we have any full
738    symbols available.  This function returns zero if none are currently
739    available, nonzero otherwise. */
740 
741 int
742 have_full_symbols (void)
743 {
744   struct objfile *ofp;
745 
746   ALL_OBJFILES (ofp)
747   {
748     if (objfile_has_full_symbols (ofp))
749       return 1;
750   }
751   return 0;
752 }
753 
754 
755 /* This operations deletes all objfile entries that represent solibs that
756    weren't explicitly loaded by the user, via e.g., the add-symbol-file
757    command.
758  */
759 void
760 objfile_purge_solibs (void)
761 {
762   struct objfile *objf;
763   struct objfile *temp;
764 
765   ALL_OBJFILES_SAFE (objf, temp)
766   {
767     /* We assume that the solib package has been purged already, or will
768        be soon.
769      */
770     if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
771       free_objfile (objf);
772   }
773 }
774 
775 
776 /* Many places in gdb want to test just to see if we have any minimal
777    symbols available.  This function returns zero if none are currently
778    available, nonzero otherwise. */
779 
780 int
781 have_minimal_symbols (void)
782 {
783   struct objfile *ofp;
784 
785   ALL_OBJFILES (ofp)
786   {
787     if (ofp->minimal_symbol_count > 0)
788       {
789 	return 1;
790       }
791   }
792   return 0;
793 }
794 
795 /* Qsort comparison function.  */
796 
797 static int
798 qsort_cmp (const void *a, const void *b)
799 {
800   const struct obj_section *sect1 = *(const struct obj_section **) a;
801   const struct obj_section *sect2 = *(const struct obj_section **) b;
802   const CORE_ADDR sect1_addr = obj_section_addr (sect1);
803   const CORE_ADDR sect2_addr = obj_section_addr (sect2);
804 
805   if (sect1_addr < sect2_addr)
806     return -1;
807   else if (sect1_addr > sect2_addr)
808     return 1;
809   else
810    {
811      /* Sections are at the same address.  This could happen if
812 	A) we have an objfile and a separate debuginfo.
813 	B) we are confused, and have added sections without proper relocation,
814 	or something like that. */
815 
816      const struct objfile *const objfile1 = sect1->objfile;
817      const struct objfile *const objfile2 = sect2->objfile;
818 
819      if (objfile1->separate_debug_objfile == objfile2
820 	 || objfile2->separate_debug_objfile == objfile1)
821        {
822 	 /* Case A.  The ordering doesn't matter: separate debuginfo files
823 	    will be filtered out later.  */
824 
825 	 return 0;
826        }
827 
828      /* Case B.  Maintain stable sort order, so bugs in GDB are easier to
829 	triage.  This section could be slow (since we iterate over all
830 	objfiles in each call to qsort_cmp), but this shouldn't happen
831 	very often (GDB is already in a confused state; one hopes this
832 	doesn't happen at all).  If you discover that significant time is
833 	spent in the loops below, do 'set complaints 100' and examine the
834 	resulting complaints.  */
835 
836      if (objfile1 == objfile2)
837        {
838 	 /* Both sections came from the same objfile.  We are really confused.
839 	    Sort on sequence order of sections within the objfile.  */
840 
841 	 const struct obj_section *osect;
842 
843 	 ALL_OBJFILE_OSECTIONS (objfile1, osect)
844 	   if (osect == sect1)
845 	     return -1;
846 	   else if (osect == sect2)
847 	     return 1;
848 
849 	 /* We should have found one of the sections before getting here.  */
850 	 gdb_assert (0);
851        }
852      else
853        {
854 	 /* Sort on sequence number of the objfile in the chain.  */
855 
856 	 const struct objfile *objfile;
857 
858 	 ALL_OBJFILES (objfile)
859 	   if (objfile == objfile1)
860 	     return -1;
861 	   else if (objfile == objfile2)
862 	     return 1;
863 
864 	 /* We should have found one of the objfiles before getting here.  */
865 	 gdb_assert (0);
866        }
867 
868    }
869 
870   /* Unreachable.  */
871   gdb_assert (0);
872   return 0;
873 }
874 
875 /* Select "better" obj_section to keep.  We prefer the one that came from
876    the real object, rather than the one from separate debuginfo.
877    Most of the time the two sections are exactly identical, but with
878    prelinking the .rel.dyn section in the real object may have different
879    size.  */
880 
881 static struct obj_section *
882 preferred_obj_section (struct obj_section *a, struct obj_section *b)
883 {
884   gdb_assert (obj_section_addr (a) == obj_section_addr (b));
885   gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
886 	      || (b->objfile->separate_debug_objfile == a->objfile));
887   gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
888 	      || (b->objfile->separate_debug_objfile_backlink == a->objfile));
889 
890   if (a->objfile->separate_debug_objfile != NULL)
891     return a;
892   return b;
893 }
894 
895 /* Return 1 if SECTION should be inserted into the section map.
896    We want to insert only non-overlay and non-TLS section.  */
897 
898 static int
899 insert_section_p (const struct bfd *abfd,
900 		  const struct bfd_section *section)
901 {
902   const bfd_vma lma = bfd_section_lma (abfd, section);
903 
904   if (lma != 0 && lma != bfd_section_vma (abfd, section)
905       && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
906     /* This is an overlay section.  IN_MEMORY check is needed to avoid
907        discarding sections from the "system supplied DSO" (aka vdso)
908        on some Linux systems (e.g. Fedora 11).  */
909     return 0;
910   if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
911     /* This is a TLS section.  */
912     return 0;
913 
914   return 1;
915 }
916 
917 /* Filter out overlapping sections where one section came from the real
918    objfile, and the other from a separate debuginfo file.
919    Return the size of table after redundant sections have been eliminated.  */
920 
921 static int
922 filter_debuginfo_sections (struct obj_section **map, int map_size)
923 {
924   int i, j;
925 
926   for (i = 0, j = 0; i < map_size - 1; i++)
927     {
928       struct obj_section *const sect1 = map[i];
929       struct obj_section *const sect2 = map[i + 1];
930       const struct objfile *const objfile1 = sect1->objfile;
931       const struct objfile *const objfile2 = sect2->objfile;
932       const CORE_ADDR sect1_addr = obj_section_addr (sect1);
933       const CORE_ADDR sect2_addr = obj_section_addr (sect2);
934 
935       if (sect1_addr == sect2_addr
936 	  && (objfile1->separate_debug_objfile == objfile2
937 	      || objfile2->separate_debug_objfile == objfile1))
938 	{
939 	  map[j++] = preferred_obj_section (sect1, sect2);
940 	  ++i;
941 	}
942       else
943 	map[j++] = sect1;
944     }
945 
946   if (i < map_size)
947     {
948       gdb_assert (i == map_size - 1);
949       map[j++] = map[i];
950     }
951 
952   /* The map should not have shrunk to less than half the original size.  */
953   gdb_assert (map_size / 2 <= j);
954 
955   return j;
956 }
957 
958 /* Filter out overlapping sections, issuing a warning if any are found.
959    Overlapping sections could really be overlay sections which we didn't
960    classify as such in insert_section_p, or we could be dealing with a
961    corrupt binary.  */
962 
963 static int
964 filter_overlapping_sections (struct obj_section **map, int map_size)
965 {
966   int i, j;
967 
968   for (i = 0, j = 0; i < map_size - 1; )
969     {
970       int k;
971 
972       map[j++] = map[i];
973       for (k = i + 1; k < map_size; k++)
974 	{
975 	  struct obj_section *const sect1 = map[i];
976 	  struct obj_section *const sect2 = map[k];
977 	  const CORE_ADDR sect1_addr = obj_section_addr (sect1);
978 	  const CORE_ADDR sect2_addr = obj_section_addr (sect2);
979 	  const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
980 
981 	  gdb_assert (sect1_addr <= sect2_addr);
982 
983 	  if (sect1_endaddr <= sect2_addr)
984 	    break;
985 	  else
986 	    {
987 	      /* We have an overlap.  Report it.  */
988 
989 	      struct objfile *const objf1 = sect1->objfile;
990 	      struct objfile *const objf2 = sect2->objfile;
991 
992 	      const struct bfd *const abfd1 = objf1->obfd;
993 	      const struct bfd *const abfd2 = objf2->obfd;
994 
995 	      const struct bfd_section *const bfds1 = sect1->the_bfd_section;
996 	      const struct bfd_section *const bfds2 = sect2->the_bfd_section;
997 
998 	      const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
999 
1000 	      struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1001 
1002 	      complaint (&symfile_complaints,
1003 			 _("unexpected overlap between:\n"
1004 			   " (A) section `%s' from `%s' [%s, %s)\n"
1005 			   " (B) section `%s' from `%s' [%s, %s).\n"
1006 			   "Will ignore section B"),
1007 			 bfd_section_name (abfd1, bfds1), objf1->name,
1008 			 paddress (gdbarch, sect1_addr),
1009 			 paddress (gdbarch, sect1_endaddr),
1010 			 bfd_section_name (abfd2, bfds2), objf2->name,
1011 			 paddress (gdbarch, sect2_addr),
1012 			 paddress (gdbarch, sect2_endaddr));
1013 	    }
1014 	}
1015       i = k;
1016     }
1017 
1018   if (i < map_size)
1019     {
1020       gdb_assert (i == map_size - 1);
1021       map[j++] = map[i];
1022     }
1023 
1024   return j;
1025 }
1026 
1027 
1028 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1029    TLS, overlay and overlapping sections.  */
1030 
1031 static void
1032 update_section_map (struct obj_section ***pmap, int *pmap_size)
1033 {
1034   int alloc_size, map_size, i;
1035   struct obj_section *s, **map;
1036   struct objfile *objfile;
1037 
1038   gdb_assert (objfiles_changed_p != 0);
1039 
1040   map = *pmap;
1041   xfree (map);
1042 
1043   alloc_size = 0;
1044   ALL_OBJSECTIONS (objfile, s)
1045     if (insert_section_p (objfile->obfd, s->the_bfd_section))
1046       alloc_size += 1;
1047 
1048   map = xmalloc (alloc_size * sizeof (*map));
1049 
1050   i = 0;
1051   ALL_OBJSECTIONS (objfile, s)
1052     if (insert_section_p (objfile->obfd, s->the_bfd_section))
1053       map[i++] = s;
1054 
1055   qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1056   map_size = filter_debuginfo_sections(map, alloc_size);
1057   map_size = filter_overlapping_sections(map, map_size);
1058 
1059   if (map_size < alloc_size)
1060     /* Some sections were eliminated.  Trim excess space.  */
1061     map = xrealloc (map, map_size * sizeof (*map));
1062   else
1063     gdb_assert (alloc_size == map_size);
1064 
1065   *pmap = map;
1066   *pmap_size = map_size;
1067 }
1068 
1069 /* Bsearch comparison function. */
1070 
1071 static int
1072 bsearch_cmp (const void *key, const void *elt)
1073 {
1074   const CORE_ADDR pc = *(CORE_ADDR *) key;
1075   const struct obj_section *section = *(const struct obj_section **) elt;
1076 
1077   if (pc < obj_section_addr (section))
1078     return -1;
1079   if (pc < obj_section_endaddr (section))
1080     return 0;
1081   return 1;
1082 }
1083 
1084 /* Returns a section whose range includes PC or NULL if none found.   */
1085 
1086 struct obj_section *
1087 find_pc_section (CORE_ADDR pc)
1088 {
1089   static struct obj_section **sections;
1090   static int num_sections;
1091 
1092   struct obj_section *s, **sp;
1093 
1094   /* Check for mapped overlay section first.  */
1095   s = find_pc_mapped_section (pc);
1096   if (s)
1097     return s;
1098 
1099   if (objfiles_changed_p != 0)
1100     {
1101       update_section_map (&sections, &num_sections);
1102 
1103       /* Don't need updates to section map until objfiles are added
1104          or removed.  */
1105       objfiles_changed_p = 0;
1106     }
1107 
1108   sp = (struct obj_section **) bsearch (&pc, sections, num_sections,
1109 					sizeof (*sections), bsearch_cmp);
1110   if (sp != NULL)
1111     return *sp;
1112   return NULL;
1113 }
1114 
1115 
1116 /* In SVR4, we recognize a trampoline by it's section name.
1117    That is, if the pc is in a section named ".plt" then we are in
1118    a trampoline.  */
1119 
1120 int
1121 in_plt_section (CORE_ADDR pc, char *name)
1122 {
1123   struct obj_section *s;
1124   int retval = 0;
1125 
1126   s = find_pc_section (pc);
1127 
1128   retval = (s != NULL
1129 	    && s->the_bfd_section->name != NULL
1130 	    && strcmp (s->the_bfd_section->name, ".plt") == 0);
1131   return (retval);
1132 }
1133 
1134 
1135 /* Keep a registry of per-objfile data-pointers required by other GDB
1136    modules.  */
1137 
1138 struct objfile_data
1139 {
1140   unsigned index;
1141   void (*save) (struct objfile *, void *);
1142   void (*free) (struct objfile *, void *);
1143 };
1144 
1145 struct objfile_data_registration
1146 {
1147   struct objfile_data *data;
1148   struct objfile_data_registration *next;
1149 };
1150 
1151 struct objfile_data_registry
1152 {
1153   struct objfile_data_registration *registrations;
1154   unsigned num_registrations;
1155 };
1156 
1157 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1158 
1159 const struct objfile_data *
1160 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1161 				    void (*free) (struct objfile *, void *))
1162 {
1163   struct objfile_data_registration **curr;
1164 
1165   /* Append new registration.  */
1166   for (curr = &objfile_data_registry.registrations;
1167        *curr != NULL; curr = &(*curr)->next);
1168 
1169   *curr = XMALLOC (struct objfile_data_registration);
1170   (*curr)->next = NULL;
1171   (*curr)->data = XMALLOC (struct objfile_data);
1172   (*curr)->data->index = objfile_data_registry.num_registrations++;
1173   (*curr)->data->save = save;
1174   (*curr)->data->free = free;
1175 
1176   return (*curr)->data;
1177 }
1178 
1179 const struct objfile_data *
1180 register_objfile_data (void)
1181 {
1182   return register_objfile_data_with_cleanup (NULL, NULL);
1183 }
1184 
1185 static void
1186 objfile_alloc_data (struct objfile *objfile)
1187 {
1188   gdb_assert (objfile->data == NULL);
1189   objfile->num_data = objfile_data_registry.num_registrations;
1190   objfile->data = XCALLOC (objfile->num_data, void *);
1191 }
1192 
1193 static void
1194 objfile_free_data (struct objfile *objfile)
1195 {
1196   gdb_assert (objfile->data != NULL);
1197   clear_objfile_data (objfile);
1198   xfree (objfile->data);
1199   objfile->data = NULL;
1200 }
1201 
1202 void
1203 clear_objfile_data (struct objfile *objfile)
1204 {
1205   struct objfile_data_registration *registration;
1206   int i;
1207 
1208   gdb_assert (objfile->data != NULL);
1209 
1210   /* Process all the save handlers.  */
1211 
1212   for (registration = objfile_data_registry.registrations, i = 0;
1213        i < objfile->num_data;
1214        registration = registration->next, i++)
1215     if (objfile->data[i] != NULL && registration->data->save != NULL)
1216       registration->data->save (objfile, objfile->data[i]);
1217 
1218   /* Now process all the free handlers.  */
1219 
1220   for (registration = objfile_data_registry.registrations, i = 0;
1221        i < objfile->num_data;
1222        registration = registration->next, i++)
1223     if (objfile->data[i] != NULL && registration->data->free != NULL)
1224       registration->data->free (objfile, objfile->data[i]);
1225 
1226   memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1227 }
1228 
1229 void
1230 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1231 		  void *value)
1232 {
1233   gdb_assert (data->index < objfile->num_data);
1234   objfile->data[data->index] = value;
1235 }
1236 
1237 void *
1238 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1239 {
1240   gdb_assert (data->index < objfile->num_data);
1241   return objfile->data[data->index];
1242 }
1243 
1244 /* Set objfiles_changed_p so section map will be rebuilt next time it
1245    is used.  Called by reread_symbols.  */
1246 
1247 void
1248 objfiles_changed (void)
1249 {
1250   objfiles_changed_p = 1;  /* Rebuild section map next time we need it.  */
1251 }
1252 
1253 /* Add reference to ABFD.  Returns ABFD.  */
1254 struct bfd *
1255 gdb_bfd_ref (struct bfd *abfd)
1256 {
1257   int *p_refcount = bfd_usrdata (abfd);
1258 
1259   if (p_refcount != NULL)
1260     {
1261       *p_refcount += 1;
1262       return abfd;
1263     }
1264 
1265   p_refcount = xmalloc (sizeof (*p_refcount));
1266   *p_refcount = 1;
1267   bfd_usrdata (abfd) = p_refcount;
1268 
1269   return abfd;
1270 }
1271 
1272 /* Unreference and possibly close ABFD.  */
1273 void
1274 gdb_bfd_unref (struct bfd *abfd)
1275 {
1276   int *p_refcount;
1277   char *name;
1278 
1279   if (abfd == NULL)
1280     return;
1281 
1282   p_refcount = bfd_usrdata (abfd);
1283 
1284   /* Valid range for p_refcount: a pointer to int counter, which has a
1285      value of 1 (single owner) or 2 (shared).  */
1286   gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1287 
1288   *p_refcount -= 1;
1289   if (*p_refcount > 0)
1290     return;
1291 
1292   xfree (p_refcount);
1293   bfd_usrdata (abfd) = NULL;  /* Paranoia.  */
1294 
1295   name = bfd_get_filename (abfd);
1296   if (!bfd_close (abfd))
1297     warning (_("cannot close \"%s\": %s"),
1298 	     name, bfd_errmsg (bfd_get_error ()));
1299   xfree (name);
1300 }
1301