xref: /dragonfly/contrib/gdb-7/gdb/objfiles.c (revision 77b0c609)
1 /* GDB routines for manipulating objfiles.
2 
3    Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* This file contains support routines for creating, manipulating, and
23    destroying objfile structures.  */
24 
25 #include "defs.h"
26 #include "bfd.h"		/* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36 
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44 
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 
57 /* Prototypes for local functions */
58 
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61 
62 /* Externally visible variables that are owned by this module.
63    See declarations in objfile.h for more info.  */
64 
65 struct objfile *rt_common_objfile;	/* For runtime common symbols */
66 
67 struct objfile_pspace_info
68 {
69   int objfiles_changed_p;
70   struct obj_section **sections;
71   int num_sections;
72 };
73 
74 /* Per-program-space data key.  */
75 static const struct program_space_data *objfiles_pspace_data;
76 
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80   struct objfile_pspace_info *info;
81 
82   info = program_space_data (pspace, objfiles_pspace_data);
83   if (info != NULL)
84     {
85       xfree (info->sections);
86       xfree (info);
87     }
88 }
89 
90 /* Get the current svr4 data.  If none is found yet, add it now.  This
91    function always returns a valid object.  */
92 
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96   struct objfile_pspace_info *info;
97 
98   info = program_space_data (pspace, objfiles_pspace_data);
99   if (info == NULL)
100     {
101       info = XZALLOC (struct objfile_pspace_info);
102       set_program_space_data (pspace, objfiles_pspace_data, info);
103     }
104 
105   return info;
106 }
107 
108 /* Records whether any objfiles appeared or disappeared since we last updated
109    address to obj section map.  */
110 
111 /* Locate all mappable sections of a BFD file.
112    objfile_p_char is a char * to get it through
113    bfd_map_over_sections; we cast it back to its proper type.  */
114 
115 /* Called via bfd_map_over_sections to build up the section table that
116    the objfile references.  The objfile contains pointers to the start
117    of the table (objfile->sections) and to the first location after
118    the end of the table (objfile->sections_end).  */
119 
120 static void
121 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
122 			 void *objfile_p_char)
123 {
124   struct objfile *objfile = (struct objfile *) objfile_p_char;
125   struct obj_section section;
126   flagword aflag;
127 
128   aflag = bfd_get_section_flags (abfd, asect);
129 
130   if (!(aflag & SEC_ALLOC))
131     return;
132 
133   if (0 == bfd_section_size (abfd, asect))
134     return;
135   section.objfile = objfile;
136   section.the_bfd_section = asect;
137   section.ovly_mapped = 0;
138   obstack_grow (&objfile->objfile_obstack,
139 		(char *) &section, sizeof (section));
140   objfile->sections_end
141     = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
142 }
143 
144 /* Builds a section table for OBJFILE.
145    Returns 0 if OK, 1 on error (in which case bfd_error contains the
146    error).
147 
148    Note that while we are building the table, which goes into the
149    psymbol obstack, we hijack the sections_end pointer to instead hold
150    a count of the number of sections.  When bfd_map_over_sections
151    returns, this count is used to compute the pointer to the end of
152    the sections table, which then overwrites the count.
153 
154    Also note that the OFFSET and OVLY_MAPPED in each table entry
155    are initialized to zero.
156 
157    Also note that if anything else writes to the psymbol obstack while
158    we are building the table, we're pretty much hosed.  */
159 
160 int
161 build_objfile_section_table (struct objfile *objfile)
162 {
163   objfile->sections_end = 0;
164   bfd_map_over_sections (objfile->obfd,
165 			 add_to_objfile_sections, (void *) objfile);
166   objfile->sections = obstack_finish (&objfile->objfile_obstack);
167   objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
168   return (0);
169 }
170 
171 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
172    allocate a new objfile struct, fill it in as best we can, link it
173    into the list of all known objfiles, and return a pointer to the
174    new objfile struct.
175 
176    The FLAGS word contains various bits (OBJF_*) that can be taken as
177    requests for specific operations.  Other bits like OBJF_SHARED are
178    simply copied through to the new objfile flags member.  */
179 
180 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
181    by jv-lang.c, to create an artificial objfile used to hold
182    information about dynamically-loaded Java classes.  Unfortunately,
183    that branch of this function doesn't get tested very frequently, so
184    it's prone to breakage.  (E.g. at one time the name was set to NULL
185    in that situation, which broke a loop over all names in the dynamic
186    library loader.)  If you change this function, please try to leave
187    things in a consistent state even if abfd is NULL.  */
188 
189 struct objfile *
190 allocate_objfile (bfd *abfd, int flags)
191 {
192   struct objfile *objfile;
193 
194   objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
195   objfile->psymbol_cache = psymbol_bcache_init ();
196   objfile->macro_cache = bcache_xmalloc (NULL, NULL);
197   objfile->filename_cache = bcache_xmalloc (NULL, NULL);
198   /* We could use obstack_specify_allocation here instead, but
199      gdb_obstack.h specifies the alloc/dealloc functions.  */
200   obstack_init (&objfile->objfile_obstack);
201   terminate_minimal_symbol_table (objfile);
202 
203   objfile_alloc_data (objfile);
204 
205   /* Update the per-objfile information that comes from the bfd, ensuring
206      that any data that is reference is saved in the per-objfile data
207      region.  */
208 
209   objfile->obfd = gdb_bfd_ref (abfd);
210   if (abfd != NULL)
211     {
212       /* Look up the gdbarch associated with the BFD.  */
213       objfile->gdbarch = gdbarch_from_bfd (abfd);
214 
215       objfile->name = xstrdup (bfd_get_filename (abfd));
216       objfile->mtime = bfd_get_mtime (abfd);
217 
218       /* Build section table.  */
219 
220       if (build_objfile_section_table (objfile))
221 	{
222 	  error (_("Can't find the file sections in `%s': %s"),
223 		 objfile->name, bfd_errmsg (bfd_get_error ()));
224 	}
225     }
226   else
227     {
228       objfile->name = xstrdup ("<<anonymous objfile>>");
229     }
230 
231   objfile->pspace = current_program_space;
232 
233   /* Initialize the section indexes for this objfile, so that we can
234      later detect if they are used w/o being properly assigned to.  */
235 
236   objfile->sect_index_text = -1;
237   objfile->sect_index_data = -1;
238   objfile->sect_index_bss = -1;
239   objfile->sect_index_rodata = -1;
240 
241   /* Add this file onto the tail of the linked list of other such files.  */
242 
243   objfile->next = NULL;
244   if (object_files == NULL)
245     object_files = objfile;
246   else
247     {
248       struct objfile *last_one;
249 
250       for (last_one = object_files;
251 	   last_one->next;
252 	   last_one = last_one->next);
253       last_one->next = objfile;
254     }
255 
256   /* Save passed in flag bits.  */
257   objfile->flags |= flags;
258 
259   /* Rebuild section map next time we need it.  */
260   get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
261 
262   return objfile;
263 }
264 
265 /* Retrieve the gdbarch associated with OBJFILE.  */
266 struct gdbarch *
267 get_objfile_arch (struct objfile *objfile)
268 {
269   return objfile->gdbarch;
270 }
271 
272 /* Initialize entry point information for this objfile.  */
273 
274 void
275 init_entry_point_info (struct objfile *objfile)
276 {
277   /* Save startup file's range of PC addresses to help blockframe.c
278      decide where the bottom of the stack is.  */
279 
280   if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
281     {
282       /* Executable file -- record its entry point so we'll recognize
283          the startup file because it contains the entry point.  */
284       objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
285       objfile->ei.entry_point_p = 1;
286     }
287   else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
288 	   && bfd_get_start_address (objfile->obfd) != 0)
289     {
290       /* Some shared libraries may have entry points set and be
291 	 runnable.  There's no clear way to indicate this, so just check
292 	 for values other than zero.  */
293       objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
294       objfile->ei.entry_point_p = 1;
295     }
296   else
297     {
298       /* Examination of non-executable.o files.  Short-circuit this stuff.  */
299       objfile->ei.entry_point_p = 0;
300     }
301 }
302 
303 /* If there is a valid and known entry point, function fills *ENTRY_P with it
304    and returns non-zero; otherwise it returns zero.  */
305 
306 int
307 entry_point_address_query (CORE_ADDR *entry_p)
308 {
309   struct gdbarch *gdbarch;
310   CORE_ADDR entry_point;
311 
312   if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
313     return 0;
314 
315   gdbarch = get_objfile_arch (symfile_objfile);
316 
317   entry_point = symfile_objfile->ei.entry_point;
318 
319   /* Make certain that the address points at real code, and not a
320      function descriptor.  */
321   entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
322 						    &current_target);
323 
324   /* Remove any ISA markers, so that this matches entries in the
325      symbol table.  */
326   entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
327 
328   *entry_p = entry_point;
329   return 1;
330 }
331 
332 /* Get current entry point address.  Call error if it is not known.  */
333 
334 CORE_ADDR
335 entry_point_address (void)
336 {
337   CORE_ADDR retval;
338 
339   if (!entry_point_address_query (&retval))
340     error (_("Entry point address is not known."));
341 
342   return retval;
343 }
344 
345 /* Create the terminating entry of OBJFILE's minimal symbol table.
346    If OBJFILE->msymbols is zero, allocate a single entry from
347    OBJFILE->objfile_obstack; otherwise, just initialize
348    OBJFILE->msymbols[OBJFILE->minimal_symbol_count].  */
349 void
350 terminate_minimal_symbol_table (struct objfile *objfile)
351 {
352   if (! objfile->msymbols)
353     objfile->msymbols = ((struct minimal_symbol *)
354                          obstack_alloc (&objfile->objfile_obstack,
355                                         sizeof (objfile->msymbols[0])));
356 
357   {
358     struct minimal_symbol *m
359       = &objfile->msymbols[objfile->minimal_symbol_count];
360 
361     memset (m, 0, sizeof (*m));
362     /* Don't rely on these enumeration values being 0's.  */
363     MSYMBOL_TYPE (m) = mst_unknown;
364     SYMBOL_SET_LANGUAGE (m, language_unknown);
365   }
366 }
367 
368 /* Iterator on PARENT and every separate debug objfile of PARENT.
369    The usage pattern is:
370      for (objfile = parent;
371           objfile;
372           objfile = objfile_separate_debug_iterate (parent, objfile))
373        ...
374 */
375 
376 struct objfile *
377 objfile_separate_debug_iterate (const struct objfile *parent,
378                                 const struct objfile *objfile)
379 {
380   struct objfile *res;
381 
382   /* If any, return the first child.  */
383   res = objfile->separate_debug_objfile;
384   if (res)
385     return res;
386 
387   /* Common case where there is no separate debug objfile.  */
388   if (objfile == parent)
389     return NULL;
390 
391   /* Return the brother if any.  Note that we don't iterate on brothers of
392      the parents.  */
393   res = objfile->separate_debug_objfile_link;
394   if (res)
395     return res;
396 
397   for (res = objfile->separate_debug_objfile_backlink;
398        res != parent;
399        res = res->separate_debug_objfile_backlink)
400     {
401       gdb_assert (res != NULL);
402       if (res->separate_debug_objfile_link)
403         return res->separate_debug_objfile_link;
404     }
405   return NULL;
406 }
407 
408 /* Put one object file before a specified on in the global list.
409    This can be used to make sure an object file is destroyed before
410    another when using ALL_OBJFILES_SAFE to free all objfiles.  */
411 void
412 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
413 {
414   struct objfile **objp;
415 
416   unlink_objfile (objfile);
417 
418   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
419     {
420       if (*objp == before_this)
421 	{
422 	  objfile->next = *objp;
423 	  *objp = objfile;
424 	  return;
425 	}
426     }
427 
428   internal_error (__FILE__, __LINE__,
429 		  _("put_objfile_before: before objfile not in list"));
430 }
431 
432 /* Put OBJFILE at the front of the list.  */
433 
434 void
435 objfile_to_front (struct objfile *objfile)
436 {
437   struct objfile **objp;
438   for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
439     {
440       if (*objp == objfile)
441 	{
442 	  /* Unhook it from where it is.  */
443 	  *objp = objfile->next;
444 	  /* Put it in the front.  */
445 	  objfile->next = object_files;
446 	  object_files = objfile;
447 	  break;
448 	}
449     }
450 }
451 
452 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
453    list.
454 
455    It is not a bug, or error, to call this function if OBJFILE is not known
456    to be in the current list.  This is done in the case of mapped objfiles,
457    for example, just to ensure that the mapped objfile doesn't appear twice
458    in the list.  Since the list is threaded, linking in a mapped objfile
459    twice would create a circular list.
460 
461    If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
462    unlinking it, just to ensure that we have completely severed any linkages
463    between the OBJFILE and the list.  */
464 
465 void
466 unlink_objfile (struct objfile *objfile)
467 {
468   struct objfile **objpp;
469 
470   for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
471     {
472       if (*objpp == objfile)
473 	{
474 	  *objpp = (*objpp)->next;
475 	  objfile->next = NULL;
476 	  return;
477 	}
478     }
479 
480   internal_error (__FILE__, __LINE__,
481 		  _("unlink_objfile: objfile already unlinked"));
482 }
483 
484 /* Add OBJFILE as a separate debug objfile of PARENT.  */
485 
486 void
487 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
488 {
489   gdb_assert (objfile && parent);
490 
491   /* Must not be already in a list.  */
492   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
493   gdb_assert (objfile->separate_debug_objfile_link == NULL);
494 
495   objfile->separate_debug_objfile_backlink = parent;
496   objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
497   parent->separate_debug_objfile = objfile;
498 
499   /* Put the separate debug object before the normal one, this is so that
500      usage of the ALL_OBJFILES_SAFE macro will stay safe.  */
501   put_objfile_before (objfile, parent);
502 }
503 
504 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
505    itself.  */
506 
507 void
508 free_objfile_separate_debug (struct objfile *objfile)
509 {
510   struct objfile *child;
511 
512   for (child = objfile->separate_debug_objfile; child;)
513     {
514       struct objfile *next_child = child->separate_debug_objfile_link;
515       free_objfile (child);
516       child = next_child;
517     }
518 }
519 
520 /* Destroy an objfile and all the symtabs and psymtabs under it.  Note
521    that as much as possible is allocated on the objfile_obstack
522    so that the memory can be efficiently freed.
523 
524    Things which we do NOT free because they are not in malloc'd memory
525    or not in memory specific to the objfile include:
526 
527    objfile -> sf
528 
529    FIXME:  If the objfile is using reusable symbol information (via mmalloc),
530    then we need to take into account the fact that more than one process
531    may be using the symbol information at the same time (when mmalloc is
532    extended to support cooperative locking).  When more than one process
533    is using the mapped symbol info, we need to be more careful about when
534    we free objects in the reusable area.  */
535 
536 void
537 free_objfile (struct objfile *objfile)
538 {
539   /* Free all separate debug objfiles.  */
540   free_objfile_separate_debug (objfile);
541 
542   if (objfile->separate_debug_objfile_backlink)
543     {
544       /* We freed the separate debug file, make sure the base objfile
545 	 doesn't reference it.  */
546       struct objfile *child;
547 
548       child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
549 
550       if (child == objfile)
551         {
552           /* OBJFILE is the first child.  */
553           objfile->separate_debug_objfile_backlink->separate_debug_objfile =
554             objfile->separate_debug_objfile_link;
555         }
556       else
557         {
558           /* Find OBJFILE in the list.  */
559           while (1)
560             {
561               if (child->separate_debug_objfile_link == objfile)
562                 {
563                   child->separate_debug_objfile_link =
564                     objfile->separate_debug_objfile_link;
565                   break;
566                 }
567               child = child->separate_debug_objfile_link;
568               gdb_assert (child);
569             }
570         }
571     }
572 
573   /* Remove any references to this objfile in the global value
574      lists.  */
575   preserve_values (objfile);
576 
577   /* It still may reference data modules have associated with the objfile and
578      the symbol file data.  */
579   forget_cached_source_info_for_objfile (objfile);
580 
581   /* First do any symbol file specific actions required when we are
582      finished with a particular symbol file.  Note that if the objfile
583      is using reusable symbol information (via mmalloc) then each of
584      these routines is responsible for doing the correct thing, either
585      freeing things which are valid only during this particular gdb
586      execution, or leaving them to be reused during the next one.  */
587 
588   if (objfile->sf != NULL)
589     {
590       (*objfile->sf->sym_finish) (objfile);
591     }
592 
593   /* Discard any data modules have associated with the objfile.  The function
594      still may reference objfile->obfd.  */
595   objfile_free_data (objfile);
596 
597   gdb_bfd_unref (objfile->obfd);
598 
599   /* Remove it from the chain of all objfiles.  */
600 
601   unlink_objfile (objfile);
602 
603   if (objfile == symfile_objfile)
604     symfile_objfile = NULL;
605 
606   if (objfile == rt_common_objfile)
607     rt_common_objfile = NULL;
608 
609   /* Before the symbol table code was redone to make it easier to
610      selectively load and remove information particular to a specific
611      linkage unit, gdb used to do these things whenever the monolithic
612      symbol table was blown away.  How much still needs to be done
613      is unknown, but we play it safe for now and keep each action until
614      it is shown to be no longer needed.  */
615 
616   /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
617      for example), so we need to call this here.  */
618   clear_pc_function_cache ();
619 
620   /* Clear globals which might have pointed into a removed objfile.
621      FIXME: It's not clear which of these are supposed to persist
622      between expressions and which ought to be reset each time.  */
623   expression_context_block = NULL;
624   innermost_block = NULL;
625 
626   /* Check to see if the current_source_symtab belongs to this objfile,
627      and if so, call clear_current_source_symtab_and_line.  */
628 
629   {
630     struct symtab_and_line cursal = get_current_source_symtab_and_line ();
631 
632     if (cursal.symtab && cursal.symtab->objfile == objfile)
633       clear_current_source_symtab_and_line ();
634   }
635 
636   /* The last thing we do is free the objfile struct itself.  */
637 
638   xfree (objfile->name);
639   if (objfile->global_psymbols.list)
640     xfree (objfile->global_psymbols.list);
641   if (objfile->static_psymbols.list)
642     xfree (objfile->static_psymbols.list);
643   /* Free the obstacks for non-reusable objfiles.  */
644   psymbol_bcache_free (objfile->psymbol_cache);
645   bcache_xfree (objfile->macro_cache);
646   bcache_xfree (objfile->filename_cache);
647   if (objfile->demangled_names_hash)
648     htab_delete (objfile->demangled_names_hash);
649   obstack_free (&objfile->objfile_obstack, 0);
650 
651   /* Rebuild section map next time we need it.  */
652   get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
653 
654   xfree (objfile);
655 }
656 
657 static void
658 do_free_objfile_cleanup (void *obj)
659 {
660   free_objfile (obj);
661 }
662 
663 struct cleanup *
664 make_cleanup_free_objfile (struct objfile *obj)
665 {
666   return make_cleanup (do_free_objfile_cleanup, obj);
667 }
668 
669 /* Free all the object files at once and clean up their users.  */
670 
671 void
672 free_all_objfiles (void)
673 {
674   struct objfile *objfile, *temp;
675   struct so_list *so;
676 
677   /* Any objfile referencewould become stale.  */
678   for (so = master_so_list (); so; so = so->next)
679     gdb_assert (so->objfile == NULL);
680 
681   ALL_OBJFILES_SAFE (objfile, temp)
682   {
683     free_objfile (objfile);
684   }
685   clear_symtab_users (0);
686 }
687 
688 /* A helper function for objfile_relocate1 that relocates a single
689    symbol.  */
690 
691 static void
692 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
693 		     struct section_offsets *delta)
694 {
695   fixup_symbol_section (sym, objfile);
696 
697   /* The RS6000 code from which this was taken skipped
698      any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
699      But I'm leaving out that test, on the theory that
700      they can't possibly pass the tests below.  */
701   if ((SYMBOL_CLASS (sym) == LOC_LABEL
702        || SYMBOL_CLASS (sym) == LOC_STATIC)
703       && SYMBOL_SECTION (sym) >= 0)
704     {
705       SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
706     }
707 }
708 
709 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
710    entries in new_offsets.  SEPARATE_DEBUG_OBJFILE is not touched here.
711    Return non-zero iff any change happened.  */
712 
713 static int
714 objfile_relocate1 (struct objfile *objfile,
715 		   struct section_offsets *new_offsets)
716 {
717   struct obj_section *s;
718   struct section_offsets *delta =
719     ((struct section_offsets *)
720      alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
721 
722   int i;
723   int something_changed = 0;
724 
725   for (i = 0; i < objfile->num_sections; ++i)
726     {
727       delta->offsets[i] =
728 	ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
729       if (ANOFFSET (delta, i) != 0)
730 	something_changed = 1;
731     }
732   if (!something_changed)
733     return 0;
734 
735   /* OK, get all the symtabs.  */
736   {
737     struct symtab *s;
738 
739     ALL_OBJFILE_SYMTABS (objfile, s)
740     {
741       struct linetable *l;
742       struct blockvector *bv;
743       int i;
744 
745       /* First the line table.  */
746       l = LINETABLE (s);
747       if (l)
748 	{
749 	  for (i = 0; i < l->nitems; ++i)
750 	    l->item[i].pc += ANOFFSET (delta, s->block_line_section);
751 	}
752 
753       /* Don't relocate a shared blockvector more than once.  */
754       if (!s->primary)
755 	continue;
756 
757       bv = BLOCKVECTOR (s);
758       if (BLOCKVECTOR_MAP (bv))
759 	addrmap_relocate (BLOCKVECTOR_MAP (bv),
760 			  ANOFFSET (delta, s->block_line_section));
761 
762       for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
763 	{
764 	  struct block *b;
765 	  struct symbol *sym;
766 	  struct dict_iterator iter;
767 
768 	  b = BLOCKVECTOR_BLOCK (bv, i);
769 	  BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
770 	  BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
771 
772 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
773 	    {
774 	      relocate_one_symbol (sym, objfile, delta);
775 	    }
776 	}
777     }
778   }
779 
780   /* Relocate isolated symbols.  */
781   {
782     struct symbol *iter;
783 
784     for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
785       relocate_one_symbol (iter, objfile, delta);
786   }
787 
788   if (objfile->psymtabs_addrmap)
789     addrmap_relocate (objfile->psymtabs_addrmap,
790 		      ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
791 
792   if (objfile->sf)
793     objfile->sf->qf->relocate (objfile, new_offsets, delta);
794 
795   {
796     struct minimal_symbol *msym;
797 
798     ALL_OBJFILE_MSYMBOLS (objfile, msym)
799       if (SYMBOL_SECTION (msym) >= 0)
800       SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
801   }
802   /* Relocating different sections by different amounts may cause the symbols
803      to be out of order.  */
804   msymbols_sort (objfile);
805 
806   if (objfile->ei.entry_point_p)
807     {
808       /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
809 	 only as a fallback.  */
810       struct obj_section *s;
811       s = find_pc_section (objfile->ei.entry_point);
812       if (s)
813         objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
814       else
815         objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
816     }
817 
818   {
819     int i;
820 
821     for (i = 0; i < objfile->num_sections; ++i)
822       (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
823   }
824 
825   /* Rebuild section map next time we need it.  */
826   get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
827 
828   /* Update the table in exec_ops, used to read memory.  */
829   ALL_OBJFILE_OSECTIONS (objfile, s)
830     {
831       int idx = s->the_bfd_section->index;
832 
833       exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
834 				obj_section_addr (s));
835     }
836 
837   /* Data changed.  */
838   return 1;
839 }
840 
841 /* Relocate OBJFILE to NEW_OFFSETS.  There should be OBJFILE->NUM_SECTIONS
842    entries in new_offsets.  Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
843 
844    The number and ordering of sections does differ between the two objfiles.
845    Only their names match.  Also the file offsets will differ (objfile being
846    possibly prelinked but separate_debug_objfile is probably not prelinked) but
847    the in-memory absolute address as specified by NEW_OFFSETS must match both
848    files.  */
849 
850 void
851 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
852 {
853   struct objfile *debug_objfile;
854   int changed = 0;
855 
856   changed |= objfile_relocate1 (objfile, new_offsets);
857 
858   for (debug_objfile = objfile->separate_debug_objfile;
859        debug_objfile;
860        debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
861     {
862       struct section_addr_info *objfile_addrs;
863       struct section_offsets *new_debug_offsets;
864       struct cleanup *my_cleanups;
865 
866       objfile_addrs = build_section_addr_info_from_objfile (objfile);
867       my_cleanups = make_cleanup (xfree, objfile_addrs);
868 
869       /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
870 	 relative ones must be already created according to debug_objfile.  */
871 
872       addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
873 
874       gdb_assert (debug_objfile->num_sections
875 		  == bfd_count_sections (debug_objfile->obfd));
876       new_debug_offsets =
877 	xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
878       make_cleanup (xfree, new_debug_offsets);
879       relative_addr_info_to_section_offsets (new_debug_offsets,
880 					     debug_objfile->num_sections,
881 					     objfile_addrs);
882 
883       changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
884 
885       do_cleanups (my_cleanups);
886     }
887 
888   /* Relocate breakpoints as necessary, after things are relocated.  */
889   if (changed)
890     breakpoint_re_set ();
891 }
892 
893 /* Return non-zero if OBJFILE has partial symbols.  */
894 
895 int
896 objfile_has_partial_symbols (struct objfile *objfile)
897 {
898   if (!objfile->sf)
899     return 0;
900 
901   /* If we have not read psymbols, but we have a function capable of reading
902      them, then that is an indication that they are in fact available.  Without
903      this function the symbols may have been already read in but they also may
904      not be present in this objfile.  */
905   if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
906       && objfile->sf->sym_read_psymbols != NULL)
907     return 1;
908 
909   return objfile->sf->qf->has_symbols (objfile);
910 }
911 
912 /* Return non-zero if OBJFILE has full symbols.  */
913 
914 int
915 objfile_has_full_symbols (struct objfile *objfile)
916 {
917   return objfile->symtabs != NULL;
918 }
919 
920 /* Return non-zero if OBJFILE has full or partial symbols, either directly
921    or through a separate debug file.  */
922 
923 int
924 objfile_has_symbols (struct objfile *objfile)
925 {
926   struct objfile *o;
927 
928   for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
929     if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
930       return 1;
931   return 0;
932 }
933 
934 
935 /* Many places in gdb want to test just to see if we have any partial
936    symbols available.  This function returns zero if none are currently
937    available, nonzero otherwise.  */
938 
939 int
940 have_partial_symbols (void)
941 {
942   struct objfile *ofp;
943 
944   ALL_OBJFILES (ofp)
945   {
946     if (objfile_has_partial_symbols (ofp))
947       return 1;
948   }
949   return 0;
950 }
951 
952 /* Many places in gdb want to test just to see if we have any full
953    symbols available.  This function returns zero if none are currently
954    available, nonzero otherwise.  */
955 
956 int
957 have_full_symbols (void)
958 {
959   struct objfile *ofp;
960 
961   ALL_OBJFILES (ofp)
962   {
963     if (objfile_has_full_symbols (ofp))
964       return 1;
965   }
966   return 0;
967 }
968 
969 
970 /* This operations deletes all objfile entries that represent solibs that
971    weren't explicitly loaded by the user, via e.g., the add-symbol-file
972    command.  */
973 
974 void
975 objfile_purge_solibs (void)
976 {
977   struct objfile *objf;
978   struct objfile *temp;
979 
980   ALL_OBJFILES_SAFE (objf, temp)
981   {
982     /* We assume that the solib package has been purged already, or will
983        be soon.  */
984 
985     if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
986       free_objfile (objf);
987   }
988 }
989 
990 
991 /* Many places in gdb want to test just to see if we have any minimal
992    symbols available.  This function returns zero if none are currently
993    available, nonzero otherwise.  */
994 
995 int
996 have_minimal_symbols (void)
997 {
998   struct objfile *ofp;
999 
1000   ALL_OBJFILES (ofp)
1001   {
1002     if (ofp->minimal_symbol_count > 0)
1003       {
1004 	return 1;
1005       }
1006   }
1007   return 0;
1008 }
1009 
1010 /* Qsort comparison function.  */
1011 
1012 static int
1013 qsort_cmp (const void *a, const void *b)
1014 {
1015   const struct obj_section *sect1 = *(const struct obj_section **) a;
1016   const struct obj_section *sect2 = *(const struct obj_section **) b;
1017   const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1018   const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1019 
1020   if (sect1_addr < sect2_addr)
1021     return -1;
1022   else if (sect1_addr > sect2_addr)
1023     return 1;
1024   else
1025     {
1026       /* Sections are at the same address.  This could happen if
1027 	 A) we have an objfile and a separate debuginfo.
1028 	 B) we are confused, and have added sections without proper relocation,
1029 	 or something like that.  */
1030 
1031       const struct objfile *const objfile1 = sect1->objfile;
1032       const struct objfile *const objfile2 = sect2->objfile;
1033 
1034       if (objfile1->separate_debug_objfile == objfile2
1035 	  || objfile2->separate_debug_objfile == objfile1)
1036 	{
1037 	  /* Case A.  The ordering doesn't matter: separate debuginfo files
1038 	     will be filtered out later.  */
1039 
1040 	  return 0;
1041 	}
1042 
1043       /* Case B.  Maintain stable sort order, so bugs in GDB are easier to
1044 	 triage.  This section could be slow (since we iterate over all
1045 	 objfiles in each call to qsort_cmp), but this shouldn't happen
1046 	 very often (GDB is already in a confused state; one hopes this
1047 	 doesn't happen at all).  If you discover that significant time is
1048 	 spent in the loops below, do 'set complaints 100' and examine the
1049 	 resulting complaints.  */
1050 
1051       if (objfile1 == objfile2)
1052 	{
1053 	  /* Both sections came from the same objfile.  We are really confused.
1054 	     Sort on sequence order of sections within the objfile.  */
1055 
1056 	  const struct obj_section *osect;
1057 
1058 	  ALL_OBJFILE_OSECTIONS (objfile1, osect)
1059 	    if (osect == sect1)
1060 	      return -1;
1061 	    else if (osect == sect2)
1062 	      return 1;
1063 
1064 	  /* We should have found one of the sections before getting here.  */
1065 	  gdb_assert_not_reached ("section not found");
1066 	}
1067       else
1068 	{
1069 	  /* Sort on sequence number of the objfile in the chain.  */
1070 
1071 	  const struct objfile *objfile;
1072 
1073 	  ALL_OBJFILES (objfile)
1074 	    if (objfile == objfile1)
1075 	      return -1;
1076 	    else if (objfile == objfile2)
1077 	      return 1;
1078 
1079 	  /* We should have found one of the objfiles before getting here.  */
1080 	  gdb_assert_not_reached ("objfile not found");
1081 	}
1082     }
1083 
1084   /* Unreachable.  */
1085   gdb_assert_not_reached ("unexpected code path");
1086   return 0;
1087 }
1088 
1089 /* Select "better" obj_section to keep.  We prefer the one that came from
1090    the real object, rather than the one from separate debuginfo.
1091    Most of the time the two sections are exactly identical, but with
1092    prelinking the .rel.dyn section in the real object may have different
1093    size.  */
1094 
1095 static struct obj_section *
1096 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1097 {
1098   gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1099   gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1100 	      || (b->objfile->separate_debug_objfile == a->objfile));
1101   gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1102 	      || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1103 
1104   if (a->objfile->separate_debug_objfile != NULL)
1105     return a;
1106   return b;
1107 }
1108 
1109 /* Return 1 if SECTION should be inserted into the section map.
1110    We want to insert only non-overlay and non-TLS section.  */
1111 
1112 static int
1113 insert_section_p (const struct bfd *abfd,
1114 		  const struct bfd_section *section)
1115 {
1116   const bfd_vma lma = bfd_section_lma (abfd, section);
1117 
1118   if (lma != 0 && lma != bfd_section_vma (abfd, section)
1119       && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1120     /* This is an overlay section.  IN_MEMORY check is needed to avoid
1121        discarding sections from the "system supplied DSO" (aka vdso)
1122        on some Linux systems (e.g. Fedora 11).  */
1123     return 0;
1124   if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1125     /* This is a TLS section.  */
1126     return 0;
1127 
1128   return 1;
1129 }
1130 
1131 /* Filter out overlapping sections where one section came from the real
1132    objfile, and the other from a separate debuginfo file.
1133    Return the size of table after redundant sections have been eliminated.  */
1134 
1135 static int
1136 filter_debuginfo_sections (struct obj_section **map, int map_size)
1137 {
1138   int i, j;
1139 
1140   for (i = 0, j = 0; i < map_size - 1; i++)
1141     {
1142       struct obj_section *const sect1 = map[i];
1143       struct obj_section *const sect2 = map[i + 1];
1144       const struct objfile *const objfile1 = sect1->objfile;
1145       const struct objfile *const objfile2 = sect2->objfile;
1146       const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1147       const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1148 
1149       if (sect1_addr == sect2_addr
1150 	  && (objfile1->separate_debug_objfile == objfile2
1151 	      || objfile2->separate_debug_objfile == objfile1))
1152 	{
1153 	  map[j++] = preferred_obj_section (sect1, sect2);
1154 	  ++i;
1155 	}
1156       else
1157 	map[j++] = sect1;
1158     }
1159 
1160   if (i < map_size)
1161     {
1162       gdb_assert (i == map_size - 1);
1163       map[j++] = map[i];
1164     }
1165 
1166   /* The map should not have shrunk to less than half the original size.  */
1167   gdb_assert (map_size / 2 <= j);
1168 
1169   return j;
1170 }
1171 
1172 /* Filter out overlapping sections, issuing a warning if any are found.
1173    Overlapping sections could really be overlay sections which we didn't
1174    classify as such in insert_section_p, or we could be dealing with a
1175    corrupt binary.  */
1176 
1177 static int
1178 filter_overlapping_sections (struct obj_section **map, int map_size)
1179 {
1180   int i, j;
1181 
1182   for (i = 0, j = 0; i < map_size - 1; )
1183     {
1184       int k;
1185 
1186       map[j++] = map[i];
1187       for (k = i + 1; k < map_size; k++)
1188 	{
1189 	  struct obj_section *const sect1 = map[i];
1190 	  struct obj_section *const sect2 = map[k];
1191 	  const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1192 	  const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1193 	  const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1194 
1195 	  gdb_assert (sect1_addr <= sect2_addr);
1196 
1197 	  if (sect1_endaddr <= sect2_addr)
1198 	    break;
1199 	  else
1200 	    {
1201 	      /* We have an overlap.  Report it.  */
1202 
1203 	      struct objfile *const objf1 = sect1->objfile;
1204 	      struct objfile *const objf2 = sect2->objfile;
1205 
1206 	      const struct bfd *const abfd1 = objf1->obfd;
1207 	      const struct bfd *const abfd2 = objf2->obfd;
1208 
1209 	      const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1210 	      const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1211 
1212 	      const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1213 
1214 	      struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1215 
1216 	      complaint (&symfile_complaints,
1217 			 _("unexpected overlap between:\n"
1218 			   " (A) section `%s' from `%s' [%s, %s)\n"
1219 			   " (B) section `%s' from `%s' [%s, %s).\n"
1220 			   "Will ignore section B"),
1221 			 bfd_section_name (abfd1, bfds1), objf1->name,
1222 			 paddress (gdbarch, sect1_addr),
1223 			 paddress (gdbarch, sect1_endaddr),
1224 			 bfd_section_name (abfd2, bfds2), objf2->name,
1225 			 paddress (gdbarch, sect2_addr),
1226 			 paddress (gdbarch, sect2_endaddr));
1227 	    }
1228 	}
1229       i = k;
1230     }
1231 
1232   if (i < map_size)
1233     {
1234       gdb_assert (i == map_size - 1);
1235       map[j++] = map[i];
1236     }
1237 
1238   return j;
1239 }
1240 
1241 
1242 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1243    TLS, overlay and overlapping sections.  */
1244 
1245 static void
1246 update_section_map (struct program_space *pspace,
1247 		    struct obj_section ***pmap, int *pmap_size)
1248 {
1249   int alloc_size, map_size, i;
1250   struct obj_section *s, **map;
1251   struct objfile *objfile;
1252 
1253   gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1254 
1255   map = *pmap;
1256   xfree (map);
1257 
1258   alloc_size = 0;
1259   ALL_PSPACE_OBJFILES (pspace, objfile)
1260     ALL_OBJFILE_OSECTIONS (objfile, s)
1261       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1262 	alloc_size += 1;
1263 
1264   /* This happens on detach/attach (e.g. in gdb.base/attach.exp).  */
1265   if (alloc_size == 0)
1266     {
1267       *pmap = NULL;
1268       *pmap_size = 0;
1269       return;
1270     }
1271 
1272   map = xmalloc (alloc_size * sizeof (*map));
1273 
1274   i = 0;
1275   ALL_PSPACE_OBJFILES (pspace, objfile)
1276     ALL_OBJFILE_OSECTIONS (objfile, s)
1277       if (insert_section_p (objfile->obfd, s->the_bfd_section))
1278 	map[i++] = s;
1279 
1280   qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1281   map_size = filter_debuginfo_sections(map, alloc_size);
1282   map_size = filter_overlapping_sections(map, map_size);
1283 
1284   if (map_size < alloc_size)
1285     /* Some sections were eliminated.  Trim excess space.  */
1286     map = xrealloc (map, map_size * sizeof (*map));
1287   else
1288     gdb_assert (alloc_size == map_size);
1289 
1290   *pmap = map;
1291   *pmap_size = map_size;
1292 }
1293 
1294 /* Bsearch comparison function.  */
1295 
1296 static int
1297 bsearch_cmp (const void *key, const void *elt)
1298 {
1299   const CORE_ADDR pc = *(CORE_ADDR *) key;
1300   const struct obj_section *section = *(const struct obj_section **) elt;
1301 
1302   if (pc < obj_section_addr (section))
1303     return -1;
1304   if (pc < obj_section_endaddr (section))
1305     return 0;
1306   return 1;
1307 }
1308 
1309 /* Returns a section whose range includes PC or NULL if none found.   */
1310 
1311 struct obj_section *
1312 find_pc_section (CORE_ADDR pc)
1313 {
1314   struct objfile_pspace_info *pspace_info;
1315   struct obj_section *s, **sp;
1316 
1317   /* Check for mapped overlay section first.  */
1318   s = find_pc_mapped_section (pc);
1319   if (s)
1320     return s;
1321 
1322   pspace_info = get_objfile_pspace_data (current_program_space);
1323   if (pspace_info->objfiles_changed_p != 0)
1324     {
1325       update_section_map (current_program_space,
1326 			  &pspace_info->sections,
1327 			  &pspace_info->num_sections);
1328 
1329       /* Don't need updates to section map until objfiles are added,
1330          removed or relocated.  */
1331       pspace_info->objfiles_changed_p = 0;
1332     }
1333 
1334   /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1335      bsearch be non-NULL.  */
1336   if (pspace_info->sections == NULL)
1337     {
1338       gdb_assert (pspace_info->num_sections == 0);
1339       return NULL;
1340     }
1341 
1342   sp = (struct obj_section **) bsearch (&pc,
1343 					pspace_info->sections,
1344 					pspace_info->num_sections,
1345 					sizeof (*pspace_info->sections),
1346 					bsearch_cmp);
1347   if (sp != NULL)
1348     return *sp;
1349   return NULL;
1350 }
1351 
1352 
1353 /* In SVR4, we recognize a trampoline by it's section name.
1354    That is, if the pc is in a section named ".plt" then we are in
1355    a trampoline.  */
1356 
1357 int
1358 in_plt_section (CORE_ADDR pc, char *name)
1359 {
1360   struct obj_section *s;
1361   int retval = 0;
1362 
1363   s = find_pc_section (pc);
1364 
1365   retval = (s != NULL
1366 	    && s->the_bfd_section->name != NULL
1367 	    && strcmp (s->the_bfd_section->name, ".plt") == 0);
1368   return (retval);
1369 }
1370 
1371 
1372 /* Keep a registry of per-objfile data-pointers required by other GDB
1373    modules.  */
1374 
1375 struct objfile_data
1376 {
1377   unsigned index;
1378   void (*save) (struct objfile *, void *);
1379   void (*free) (struct objfile *, void *);
1380 };
1381 
1382 struct objfile_data_registration
1383 {
1384   struct objfile_data *data;
1385   struct objfile_data_registration *next;
1386 };
1387 
1388 struct objfile_data_registry
1389 {
1390   struct objfile_data_registration *registrations;
1391   unsigned num_registrations;
1392 };
1393 
1394 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1395 
1396 const struct objfile_data *
1397 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1398 				    void (*free) (struct objfile *, void *))
1399 {
1400   struct objfile_data_registration **curr;
1401 
1402   /* Append new registration.  */
1403   for (curr = &objfile_data_registry.registrations;
1404        *curr != NULL; curr = &(*curr)->next);
1405 
1406   *curr = XMALLOC (struct objfile_data_registration);
1407   (*curr)->next = NULL;
1408   (*curr)->data = XMALLOC (struct objfile_data);
1409   (*curr)->data->index = objfile_data_registry.num_registrations++;
1410   (*curr)->data->save = save;
1411   (*curr)->data->free = free;
1412 
1413   return (*curr)->data;
1414 }
1415 
1416 const struct objfile_data *
1417 register_objfile_data (void)
1418 {
1419   return register_objfile_data_with_cleanup (NULL, NULL);
1420 }
1421 
1422 static void
1423 objfile_alloc_data (struct objfile *objfile)
1424 {
1425   gdb_assert (objfile->data == NULL);
1426   objfile->num_data = objfile_data_registry.num_registrations;
1427   objfile->data = XCALLOC (objfile->num_data, void *);
1428 }
1429 
1430 static void
1431 objfile_free_data (struct objfile *objfile)
1432 {
1433   gdb_assert (objfile->data != NULL);
1434   clear_objfile_data (objfile);
1435   xfree (objfile->data);
1436   objfile->data = NULL;
1437 }
1438 
1439 void
1440 clear_objfile_data (struct objfile *objfile)
1441 {
1442   struct objfile_data_registration *registration;
1443   int i;
1444 
1445   gdb_assert (objfile->data != NULL);
1446 
1447   /* Process all the save handlers.  */
1448 
1449   for (registration = objfile_data_registry.registrations, i = 0;
1450        i < objfile->num_data;
1451        registration = registration->next, i++)
1452     if (objfile->data[i] != NULL && registration->data->save != NULL)
1453       registration->data->save (objfile, objfile->data[i]);
1454 
1455   /* Now process all the free handlers.  */
1456 
1457   for (registration = objfile_data_registry.registrations, i = 0;
1458        i < objfile->num_data;
1459        registration = registration->next, i++)
1460     if (objfile->data[i] != NULL && registration->data->free != NULL)
1461       registration->data->free (objfile, objfile->data[i]);
1462 
1463   memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1464 }
1465 
1466 void
1467 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1468 		  void *value)
1469 {
1470   gdb_assert (data->index < objfile->num_data);
1471   objfile->data[data->index] = value;
1472 }
1473 
1474 void *
1475 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1476 {
1477   gdb_assert (data->index < objfile->num_data);
1478   return objfile->data[data->index];
1479 }
1480 
1481 /* Set objfiles_changed_p so section map will be rebuilt next time it
1482    is used.  Called by reread_symbols.  */
1483 
1484 void
1485 objfiles_changed (void)
1486 {
1487   /* Rebuild section map next time we need it.  */
1488   get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1489 }
1490 
1491 /* Close ABFD, and warn if that fails.  */
1492 
1493 int
1494 gdb_bfd_close_or_warn (struct bfd *abfd)
1495 {
1496   int ret;
1497   char *name = bfd_get_filename (abfd);
1498 
1499   ret = bfd_close (abfd);
1500 
1501   if (!ret)
1502     warning (_("cannot close \"%s\": %s"),
1503 	     name, bfd_errmsg (bfd_get_error ()));
1504 
1505   return ret;
1506 }
1507 
1508 /* Add reference to ABFD.  Returns ABFD.  */
1509 struct bfd *
1510 gdb_bfd_ref (struct bfd *abfd)
1511 {
1512   int *p_refcount;
1513 
1514   if (abfd == NULL)
1515     return NULL;
1516 
1517   p_refcount = bfd_usrdata (abfd);
1518 
1519   if (p_refcount != NULL)
1520     {
1521       *p_refcount += 1;
1522       return abfd;
1523     }
1524 
1525   p_refcount = xmalloc (sizeof (*p_refcount));
1526   *p_refcount = 1;
1527   bfd_usrdata (abfd) = p_refcount;
1528 
1529   return abfd;
1530 }
1531 
1532 /* Unreference and possibly close ABFD.  */
1533 void
1534 gdb_bfd_unref (struct bfd *abfd)
1535 {
1536   int *p_refcount;
1537   char *name;
1538 
1539   if (abfd == NULL)
1540     return;
1541 
1542   p_refcount = bfd_usrdata (abfd);
1543 
1544   /* Valid range for p_refcount: a pointer to int counter, which has a
1545      value of 1 (single owner) or 2 (shared).  */
1546   gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1547 
1548   *p_refcount -= 1;
1549   if (*p_refcount > 0)
1550     return;
1551 
1552   xfree (p_refcount);
1553   bfd_usrdata (abfd) = NULL;  /* Paranoia.  */
1554 
1555   name = bfd_get_filename (abfd);
1556   gdb_bfd_close_or_warn (abfd);
1557   xfree (name);
1558 }
1559 
1560 /* Provide a prototype to silence -Wmissing-prototypes.  */
1561 extern initialize_file_ftype _initialize_objfiles;
1562 
1563 void
1564 _initialize_objfiles (void)
1565 {
1566   objfiles_pspace_data
1567     = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1568 }
1569