xref: /dragonfly/contrib/gdb-7/gdb/objfiles.h (revision a4da4a90)
1 /* Definitions for symbol file management in GDB.
2 
3    Copyright (C) 1992-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22 
23 #include "gdb_obstack.h"	/* For obstack internals.  */
24 #include "symfile.h"		/* For struct psymbol_allocation_list.  */
25 #include "progspace.h"
26 #include "registry.h"
27 
28 struct bcache;
29 struct htab;
30 struct symtab;
31 struct objfile_data;
32 
33 /* This structure maintains information on a per-objfile basis about the
34    "entry point" of the objfile, and the scope within which the entry point
35    exists.  It is possible that gdb will see more than one objfile that is
36    executable, each with its own entry point.
37 
38    For example, for dynamically linked executables in SVR4, the dynamic linker
39    code is contained within the shared C library, which is actually executable
40    and is run by the kernel first when an exec is done of a user executable
41    that is dynamically linked.  The dynamic linker within the shared C library
42    then maps in the various program segments in the user executable and jumps
43    to the user executable's recorded entry point, as if the call had been made
44    directly by the kernel.
45 
46    The traditional gdb method of using this info was to use the
47    recorded entry point to set the entry-file's lowpc and highpc from
48    the debugging information, where these values are the starting
49    address (inclusive) and ending address (exclusive) of the
50    instruction space in the executable which correspond to the
51    "startup file", i.e. crt0.o in most cases.  This file is assumed to
52    be a startup file and frames with pc's inside it are treated as
53    nonexistent.  Setting these variables is necessary so that
54    backtraces do not fly off the bottom of the stack.
55 
56    NOTE: cagney/2003-09-09: It turns out that this "traditional"
57    method doesn't work.  Corinna writes: ``It turns out that the call
58    to test for "inside entry file" destroys a meaningful backtrace
59    under some conditions.  E.g. the backtrace tests in the asm-source
60    testcase are broken for some targets.  In this test the functions
61    are all implemented as part of one file and the testcase is not
62    necessarily linked with a start file (depending on the target).
63    What happens is, that the first frame is printed normaly and
64    following frames are treated as being inside the enttry file then.
65    This way, only the #0 frame is printed in the backtrace output.''
66    Ref "frame.c" "NOTE: vinschen/2003-04-01".
67 
68    Gdb also supports an alternate method to avoid running off the bottom
69    of the stack.
70 
71    There are two frames that are "special", the frame for the function
72    containing the process entry point, since it has no predecessor frame,
73    and the frame for the function containing the user code entry point
74    (the main() function), since all the predecessor frames are for the
75    process startup code.  Since we have no guarantee that the linked
76    in startup modules have any debugging information that gdb can use,
77    we need to avoid following frame pointers back into frames that might
78    have been built in the startup code, as we might get hopelessly
79    confused.  However, we almost always have debugging information
80    available for main().
81 
82    These variables are used to save the range of PC values which are
83    valid within the main() function and within the function containing
84    the process entry point.  If we always consider the frame for
85    main() as the outermost frame when debugging user code, and the
86    frame for the process entry point function as the outermost frame
87    when debugging startup code, then all we have to do is have
88    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
89    current PC is within the range specified by these variables.  In
90    essence, we set "ceilings" in the frame chain beyond which we will
91    not proceed when following the frame chain back up the stack.
92 
93    A nice side effect is that we can still debug startup code without
94    running off the end of the frame chain, assuming that we have usable
95    debugging information in the startup modules, and if we choose to not
96    use the block at main, or can't find it for some reason, everything
97    still works as before.  And if we have no startup code debugging
98    information but we do have usable information for main(), backtraces
99    from user code don't go wandering off into the startup code.  */
100 
101 struct entry_info
102   {
103     /* The relocated value we should use for this objfile entry point.  */
104     CORE_ADDR entry_point;
105 
106     /* Set to 1 iff ENTRY_POINT contains a valid value.  */
107     unsigned entry_point_p : 1;
108   };
109 
110 /* Sections in an objfile.  The section offsets are stored in the
111    OBJFILE.  */
112 
113 struct obj_section
114   {
115     struct bfd_section *the_bfd_section;	/* BFD section pointer */
116 
117     /* Objfile this section is part of.  */
118     struct objfile *objfile;
119 
120     /* True if this "overlay section" is mapped into an "overlay region".  */
121     int ovly_mapped;
122   };
123 
124 /* Relocation offset applied to S.  */
125 #define obj_section_offset(s)						\
126   (((s)->objfile->section_offsets)->offsets[(s)->the_bfd_section->index])
127 
128 /* The memory address of section S (vma + offset).  */
129 #define obj_section_addr(s)				      		\
130   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)		\
131    + obj_section_offset (s))
132 
133 /* The one-passed-the-end memory address of section S
134    (vma + size + offset).  */
135 #define obj_section_endaddr(s)						\
136   (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section)		\
137    + bfd_get_section_size ((s)->the_bfd_section)			\
138    + obj_section_offset (s))
139 
140 /* The "objstats" structure provides a place for gdb to record some
141    interesting information about its internal state at runtime, on a
142    per objfile basis, such as information about the number of symbols
143    read, size of string table (if any), etc.  */
144 
145 struct objstats
146   {
147     int n_minsyms;		/* Number of minimal symbols read */
148     int n_psyms;		/* Number of partial symbols read */
149     int n_syms;			/* Number of full symbols read */
150     int n_stabs;		/* Number of ".stabs" read (if applicable) */
151     int n_types;		/* Number of types */
152     int sz_strtab;		/* Size of stringtable, (if applicable) */
153   };
154 
155 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
156 #define OBJSTATS struct objstats stats
157 extern void print_objfile_statistics (void);
158 extern void print_symbol_bcache_statistics (void);
159 
160 /* Number of entries in the minimal symbol hash table.  */
161 #define MINIMAL_SYMBOL_HASH_SIZE 2039
162 
163 /* Some objfile data is hung off the BFD.  This enables sharing of the
164    data across all objfiles using the BFD.  The data is stored in an
165    instance of this structure, and associated with the BFD using the
166    registry system.  */
167 
168 struct objfile_per_bfd_storage
169 {
170   /* The storage has an obstack of its own.  */
171 
172   struct obstack storage_obstack;
173 
174   /* Byte cache for file names.  */
175 
176   struct bcache *filename_cache;
177 
178   /* Byte cache for macros.  */
179   struct bcache *macro_cache;
180 };
181 
182 /* Master structure for keeping track of each file from which
183    gdb reads symbols.  There are several ways these get allocated: 1.
184    The main symbol file, symfile_objfile, set by the symbol-file command,
185    2.  Additional symbol files added by the add-symbol-file command,
186    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
187    for modules that were loaded when GDB attached to a remote system
188    (see remote-vx.c).  */
189 
190 struct objfile
191   {
192 
193     /* All struct objfile's are chained together by their next pointers.
194        The program space field "objfiles"  (frequently referenced via
195        the macro "object_files") points to the first link in this
196        chain.  */
197 
198     struct objfile *next;
199 
200     /* The object file's name, tilde-expanded and absolute.  This
201        pointer is never NULL.  This does not have to be freed; it is
202        guaranteed to have a lifetime at least as long as the objfile.  */
203 
204     char *name;
205 
206     CORE_ADDR addr_low;
207 
208     /* Some flag bits for this objfile.
209        The values are defined by OBJF_*.  */
210 
211     unsigned short flags;
212 
213     /* The program space associated with this objfile.  */
214 
215     struct program_space *pspace;
216 
217     /* Each objfile points to a linked list of symtabs derived from this file,
218        one symtab structure for each compilation unit (source file).  Each link
219        in the symtab list contains a backpointer to this objfile.  */
220 
221     struct symtab *symtabs;
222 
223     /* Each objfile points to a linked list of partial symtabs derived from
224        this file, one partial symtab structure for each compilation unit
225        (source file).  */
226 
227     struct partial_symtab *psymtabs;
228 
229     /* Map addresses to the entries of PSYMTABS.  It would be more efficient to
230        have a map per the whole process but ADDRMAP cannot selectively remove
231        its items during FREE_OBJFILE.  This mapping is already present even for
232        PARTIAL_SYMTABs which still have no corresponding full SYMTABs read.  */
233 
234     struct addrmap *psymtabs_addrmap;
235 
236     /* List of freed partial symtabs, available for re-use.  */
237 
238     struct partial_symtab *free_psymtabs;
239 
240     /* The object file's BFD.  Can be null if the objfile contains only
241        minimal symbols, e.g. the run time common symbols for SunOS4.  */
242 
243     bfd *obfd;
244 
245     /* The per-BFD data.  Note that this is treated specially if OBFD
246        is NULL.  */
247 
248     struct objfile_per_bfd_storage *per_bfd;
249 
250     /* The gdbarch associated with the BFD.  Note that this gdbarch is
251        determined solely from BFD information, without looking at target
252        information.  The gdbarch determined from a running target may
253        differ from this e.g. with respect to register types and names.  */
254 
255     struct gdbarch *gdbarch;
256 
257     /* The modification timestamp of the object file, as of the last time
258        we read its symbols.  */
259 
260     long mtime;
261 
262     /* Cached 32-bit CRC as computed by gnu_debuglink_crc32.  CRC32 is valid
263        iff CRC32_P.  */
264     unsigned long crc32;
265     int crc32_p;
266 
267     /* Obstack to hold objects that should be freed when we load a new symbol
268        table from this object file.  */
269 
270     struct obstack objfile_obstack;
271 
272     /* A byte cache where we can stash arbitrary "chunks" of bytes that
273        will not change.  */
274 
275     struct psymbol_bcache *psymbol_cache; /* Byte cache for partial syms.  */
276 
277     /* Hash table for mapping symbol names to demangled names.  Each
278        entry in the hash table is actually two consecutive strings,
279        both null-terminated; the first one is a mangled or linkage
280        name, and the second is the demangled name or just a zero byte
281        if the name doesn't demangle.  */
282     struct htab *demangled_names_hash;
283 
284     /* Vectors of all partial symbols read in from file.  The actual data
285        is stored in the objfile_obstack.  */
286 
287     struct psymbol_allocation_list global_psymbols;
288     struct psymbol_allocation_list static_psymbols;
289 
290     /* Each file contains a pointer to an array of minimal symbols for all
291        global symbols that are defined within the file.  The array is
292        terminated by a "null symbol", one that has a NULL pointer for the
293        name and a zero value for the address.  This makes it easy to walk
294        through the array when passed a pointer to somewhere in the middle
295        of it.  There is also a count of the number of symbols, which does
296        not include the terminating null symbol.  The array itself, as well
297        as all the data that it points to, should be allocated on the
298        objfile_obstack for this file.  */
299 
300     struct minimal_symbol *msymbols;
301     int minimal_symbol_count;
302 
303     /* This is a hash table used to index the minimal symbols by name.  */
304 
305     struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];
306 
307     /* This hash table is used to index the minimal symbols by their
308        demangled names.  */
309 
310     struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
311 
312     /* Structure which keeps track of functions that manipulate objfile's
313        of the same type as this objfile.  I.e. the function to read partial
314        symbols for example.  Note that this structure is in statically
315        allocated memory, and is shared by all objfiles that use the
316        object module reader of this type.  */
317 
318     const struct sym_fns *sf;
319 
320     /* The per-objfile information about the entry point, the scope (file/func)
321        containing the entry point, and the scope of the user's main() func.  */
322 
323     struct entry_info ei;
324 
325     /* Per objfile data-pointers required by other GDB modules.  */
326 
327     REGISTRY_FIELDS;
328 
329     /* Set of relocation offsets to apply to each section.
330        The table is indexed by the_bfd_section->index, thus it is generally
331        as large as the number of sections in the binary.
332        The table is stored on the objfile_obstack.
333 
334        These offsets indicate that all symbols (including partial and
335        minimal symbols) which have been read have been relocated by this
336        much.  Symbols which are yet to be read need to be relocated by it.  */
337 
338     struct section_offsets *section_offsets;
339     int num_sections;
340 
341     /* Indexes in the section_offsets array.  These are initialized by the
342        *_symfile_offsets() family of functions (som_symfile_offsets,
343        xcoff_symfile_offsets, default_symfile_offsets).  In theory they
344        should correspond to the section indexes used by bfd for the
345        current objfile.  The exception to this for the time being is the
346        SOM version.  */
347 
348     int sect_index_text;
349     int sect_index_data;
350     int sect_index_bss;
351     int sect_index_rodata;
352 
353     /* These pointers are used to locate the section table, which
354        among other things, is used to map pc addresses into sections.
355        SECTIONS points to the first entry in the table, and
356        SECTIONS_END points to the first location past the last entry
357        in the table.  The table is stored on the objfile_obstack.
358        There is no particular order to the sections in this table, and it
359        only contains sections we care about (e.g. non-empty, SEC_ALLOC).  */
360 
361     struct obj_section *sections, *sections_end;
362 
363     /* GDB allows to have debug symbols in separate object files.  This is
364        used by .gnu_debuglink, ELF build id note and Mach-O OSO.
365        Although this is a tree structure, GDB only support one level
366        (ie a separate debug for a separate debug is not supported).  Note that
367        separate debug object are in the main chain and therefore will be
368        visited by ALL_OBJFILES & co iterators.  Separate debug objfile always
369        has a non-nul separate_debug_objfile_backlink.  */
370 
371     /* Link to the first separate debug object, if any.  */
372     struct objfile *separate_debug_objfile;
373 
374     /* If this is a separate debug object, this is used as a link to the
375        actual executable objfile.  */
376     struct objfile *separate_debug_objfile_backlink;
377 
378     /* If this is a separate debug object, this is a link to the next one
379        for the same executable objfile.  */
380     struct objfile *separate_debug_objfile_link;
381 
382     /* Place to stash various statistics about this objfile.  */
383     OBJSTATS;
384 
385     /* A linked list of symbols created when reading template types or
386        function templates.  These symbols are not stored in any symbol
387        table, so we have to keep them here to relocate them
388        properly.  */
389     struct symbol *template_symbols;
390   };
391 
392 /* Defines for the objfile flag word.  */
393 
394 /* When an object file has its functions reordered (currently Irix-5.2
395    shared libraries exhibit this behaviour), we will need an expensive
396    algorithm to locate a partial symtab or symtab via an address.
397    To avoid this penalty for normal object files, we use this flag,
398    whose setting is determined upon symbol table read in.  */
399 
400 #define OBJF_REORDERED	(1 << 0)	/* Functions are reordered */
401 
402 /* Distinguish between an objfile for a shared library and a "vanilla"
403    objfile.  (If not set, the objfile may still actually be a solib.
404    This can happen if the user created the objfile by using the
405    add-symbol-file command.  GDB doesn't in that situation actually
406    check whether the file is a solib.  Rather, the target's
407    implementation of the solib interface is responsible for setting
408    this flag when noticing solibs used by an inferior.)  */
409 
410 #define OBJF_SHARED     (1 << 1)	/* From a shared library */
411 
412 /* User requested that this objfile be read in it's entirety.  */
413 
414 #define OBJF_READNOW	(1 << 2)	/* Immediate full read */
415 
416 /* This objfile was created because the user explicitly caused it
417    (e.g., used the add-symbol-file command).  This bit offers a way
418    for run_command to remove old objfile entries which are no longer
419    valid (i.e., are associated with an old inferior), but to preserve
420    ones that the user explicitly loaded via the add-symbol-file
421    command.  */
422 
423 #define OBJF_USERLOADED	(1 << 3)	/* User loaded */
424 
425 /* Set if we have tried to read partial symtabs for this objfile.
426    This is used to allow lazy reading of partial symtabs.  */
427 
428 #define OBJF_PSYMTABS_READ (1 << 4)
429 
430 /* Set if this is the main symbol file
431    (as opposed to symbol file for dynamically loaded code).  */
432 
433 #define OBJF_MAINLINE (1 << 5)
434 
435 /* The object file that contains the runtime common minimal symbols
436    for SunOS4.  Note that this objfile has no associated BFD.  */
437 
438 extern struct objfile *rt_common_objfile;
439 
440 /* Declarations for functions defined in objfiles.c */
441 
442 extern struct objfile *allocate_objfile (bfd *, int);
443 
444 extern struct gdbarch *get_objfile_arch (struct objfile *);
445 
446 extern int entry_point_address_query (CORE_ADDR *entry_p);
447 
448 extern CORE_ADDR entry_point_address (void);
449 
450 extern void build_objfile_section_table (struct objfile *);
451 
452 extern void terminate_minimal_symbol_table (struct objfile *objfile);
453 
454 extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
455                                                        const struct objfile *);
456 
457 extern void put_objfile_before (struct objfile *, struct objfile *);
458 
459 extern void objfile_to_front (struct objfile *);
460 
461 extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
462 
463 extern void unlink_objfile (struct objfile *);
464 
465 extern void free_objfile (struct objfile *);
466 
467 extern void free_objfile_separate_debug (struct objfile *);
468 
469 extern struct cleanup *make_cleanup_free_objfile (struct objfile *);
470 
471 extern void free_all_objfiles (void);
472 
473 extern void objfile_relocate (struct objfile *, struct section_offsets *);
474 extern void objfile_rebase (struct objfile *, CORE_ADDR);
475 
476 extern int objfile_has_partial_symbols (struct objfile *objfile);
477 
478 extern int objfile_has_full_symbols (struct objfile *objfile);
479 
480 extern int objfile_has_symbols (struct objfile *objfile);
481 
482 extern int have_partial_symbols (void);
483 
484 extern int have_full_symbols (void);
485 
486 extern void objfiles_changed (void);
487 
488 /* This operation deletes all objfile entries that represent solibs that
489    weren't explicitly loaded by the user, via e.g., the add-symbol-file
490    command.  */
491 
492 extern void objfile_purge_solibs (void);
493 
494 /* Functions for dealing with the minimal symbol table, really a misc
495    address<->symbol mapping for things we don't have debug symbols for.  */
496 
497 extern int have_minimal_symbols (void);
498 
499 extern struct obj_section *find_pc_section (CORE_ADDR pc);
500 
501 extern int in_plt_section (CORE_ADDR, char *);
502 
503 /* Keep a registry of per-objfile data-pointers required by other GDB
504    modules.  */
505 DECLARE_REGISTRY(objfile);
506 
507 extern void default_iterate_over_objfiles_in_search_order
508   (struct gdbarch *gdbarch,
509    iterate_over_objfiles_in_search_order_cb_ftype *cb,
510    void *cb_data, struct objfile *current_objfile);
511 
512 
513 /* Traverse all object files in the current program space.
514    ALL_OBJFILES_SAFE works even if you delete the objfile during the
515    traversal.  */
516 
517 /* Traverse all object files in program space SS.  */
518 
519 #define ALL_PSPACE_OBJFILES(ss, obj)					\
520   for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)
521 
522 #define ALL_PSPACE_OBJFILES_SAFE(ss, obj, nxt)		\
523   for ((obj) = ss->objfiles;			\
524        (obj) != NULL? ((nxt)=(obj)->next,1) :0;	\
525        (obj) = (nxt))
526 
527 #define ALL_OBJFILES(obj)			    \
528   for ((obj) = current_program_space->objfiles; \
529        (obj) != NULL;				    \
530        (obj) = (obj)->next)
531 
532 #define ALL_OBJFILES_SAFE(obj,nxt)			\
533   for ((obj) = current_program_space->objfiles;	\
534        (obj) != NULL? ((nxt)=(obj)->next,1) :0;	\
535        (obj) = (nxt))
536 
537 /* Traverse all symtabs in one objfile.  */
538 
539 #define	ALL_OBJFILE_SYMTABS(objfile, s) \
540     for ((s) = (objfile) -> symtabs; (s) != NULL; (s) = (s) -> next)
541 
542 /* Traverse all primary symtabs in one objfile.  */
543 
544 #define ALL_OBJFILE_PRIMARY_SYMTABS(objfile, s) \
545   ALL_OBJFILE_SYMTABS ((objfile), (s)) \
546     if ((s)->primary)
547 
548 /* Traverse all minimal symbols in one objfile.  */
549 
550 #define	ALL_OBJFILE_MSYMBOLS(objfile, m) \
551     for ((m) = (objfile) -> msymbols; SYMBOL_LINKAGE_NAME(m) != NULL; (m)++)
552 
553 /* Traverse all symtabs in all objfiles in the current symbol
554    space.  */
555 
556 #define	ALL_SYMTABS(objfile, s) \
557   ALL_OBJFILES (objfile)	 \
558     ALL_OBJFILE_SYMTABS (objfile, s)
559 
560 #define ALL_PSPACE_SYMTABS(ss, objfile, s)		\
561   ALL_PSPACE_OBJFILES (ss, objfile)			\
562     ALL_OBJFILE_SYMTABS (objfile, s)
563 
564 /* Traverse all symtabs in all objfiles in the current program space,
565    skipping included files (which share a blockvector with their
566    primary symtab).  */
567 
568 #define ALL_PRIMARY_SYMTABS(objfile, s) \
569   ALL_OBJFILES (objfile)		\
570     ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
571 
572 #define ALL_PSPACE_PRIMARY_SYMTABS(pspace, objfile, s)	\
573   ALL_PSPACE_OBJFILES (ss, objfile)			\
574     ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
575 
576 /* Traverse all minimal symbols in all objfiles in the current symbol
577    space.  */
578 
579 #define	ALL_MSYMBOLS(objfile, m) \
580   ALL_OBJFILES (objfile)	 \
581     ALL_OBJFILE_MSYMBOLS (objfile, m)
582 
583 #define ALL_OBJFILE_OSECTIONS(objfile, osect)	\
584   for (osect = objfile->sections; osect < objfile->sections_end; osect++)
585 
586 /* Traverse all obj_sections in all objfiles in the current program
587    space.
588 
589    Note that this detects a "break" in the inner loop, and exits
590    immediately from the outer loop as well, thus, client code doesn't
591    need to know that this is implemented with a double for.  The extra
592    hair is to make sure that a "break;" stops the outer loop iterating
593    as well, and both OBJFILE and OSECT are left unmodified:
594 
595     - The outer loop learns about the inner loop's end condition, and
596       stops iterating if it detects the inner loop didn't reach its
597       end.  In other words, the outer loop keeps going only if the
598       inner loop reached its end cleanly [(osect) ==
599       (objfile)->sections_end].
600 
601     - OSECT is initialized in the outer loop initialization
602       expressions, such as if the inner loop has reached its end, so
603       the check mentioned above succeeds the first time.
604 
605     - The trick to not clearing OBJFILE on a "break;" is, in the outer
606       loop's loop expression, advance OBJFILE, but iff the inner loop
607       reached its end.  If not, there was a "break;", so leave OBJFILE
608       as is; the outer loop's conditional will break immediately as
609       well (as OSECT will be different from OBJFILE->sections_end).  */
610 
611 #define ALL_OBJSECTIONS(objfile, osect)					\
612   for ((objfile) = current_program_space->objfiles,			\
613 	 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0;	\
614        (objfile) != NULL						\
615 	 && (osect) == (objfile)->sections_end;				\
616        ((osect) == (objfile)->sections_end				\
617 	? ((objfile) = (objfile)->next,					\
618 	   (objfile) != NULL ? (osect) = (objfile)->sections_end : 0)	\
619 	: 0))								\
620     for ((osect) = (objfile)->sections;					\
621 	 (osect) < (objfile)->sections_end;				\
622 	 (osect)++)
623 
624 #define SECT_OFF_DATA(objfile) \
625      ((objfile->sect_index_data == -1) \
626       ? (internal_error (__FILE__, __LINE__, \
627 			 _("sect_index_data not initialized")), -1)	\
628       : objfile->sect_index_data)
629 
630 #define SECT_OFF_RODATA(objfile) \
631      ((objfile->sect_index_rodata == -1) \
632       ? (internal_error (__FILE__, __LINE__, \
633 			 _("sect_index_rodata not initialized")), -1)	\
634       : objfile->sect_index_rodata)
635 
636 #define SECT_OFF_TEXT(objfile) \
637      ((objfile->sect_index_text == -1) \
638       ? (internal_error (__FILE__, __LINE__, \
639 			 _("sect_index_text not initialized")), -1)	\
640       : objfile->sect_index_text)
641 
642 /* Sometimes the .bss section is missing from the objfile, so we don't
643    want to die here.  Let the users of SECT_OFF_BSS deal with an
644    uninitialized section index.  */
645 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
646 
647 /* Answer whether there is more than one object file loaded.  */
648 
649 #define MULTI_OBJFILE_P() (object_files && object_files->next)
650 
651 /* Reset the per-BFD storage area on OBJ.  */
652 
653 void set_objfile_per_bfd (struct objfile *obj);
654 
655 #endif /* !defined (OBJFILES_H) */
656