xref: /dragonfly/contrib/gdb-7/gdb/objfiles.h (revision ce7a3582)
1 /* Definitions for symbol file management in GDB.
2 
3    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4    2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #if !defined (OBJFILES_H)
23 #define OBJFILES_H
24 
25 #include "gdb_obstack.h"	/* For obstack internals.  */
26 #include "symfile.h"		/* For struct psymbol_allocation_list.  */
27 #include "progspace.h"
28 
29 struct bcache;
30 struct htab;
31 struct symtab;
32 struct objfile_data;
33 
34 /* This structure maintains information on a per-objfile basis about the
35    "entry point" of the objfile, and the scope within which the entry point
36    exists.  It is possible that gdb will see more than one objfile that is
37    executable, each with its own entry point.
38 
39    For example, for dynamically linked executables in SVR4, the dynamic linker
40    code is contained within the shared C library, which is actually executable
41    and is run by the kernel first when an exec is done of a user executable
42    that is dynamically linked.  The dynamic linker within the shared C library
43    then maps in the various program segments in the user executable and jumps
44    to the user executable's recorded entry point, as if the call had been made
45    directly by the kernel.
46 
47    The traditional gdb method of using this info was to use the
48    recorded entry point to set the entry-file's lowpc and highpc from
49    the debugging information, where these values are the starting
50    address (inclusive) and ending address (exclusive) of the
51    instruction space in the executable which correspond to the
52    "startup file", i.e. crt0.o in most cases.  This file is assumed to
53    be a startup file and frames with pc's inside it are treated as
54    nonexistent.  Setting these variables is necessary so that
55    backtraces do not fly off the bottom of the stack.
56 
57    NOTE: cagney/2003-09-09: It turns out that this "traditional"
58    method doesn't work.  Corinna writes: ``It turns out that the call
59    to test for "inside entry file" destroys a meaningful backtrace
60    under some conditions.  E.g. the backtrace tests in the asm-source
61    testcase are broken for some targets.  In this test the functions
62    are all implemented as part of one file and the testcase is not
63    necessarily linked with a start file (depending on the target).
64    What happens is, that the first frame is printed normaly and
65    following frames are treated as being inside the enttry file then.
66    This way, only the #0 frame is printed in the backtrace output.''
67    Ref "frame.c" "NOTE: vinschen/2003-04-01".
68 
69    Gdb also supports an alternate method to avoid running off the bottom
70    of the stack.
71 
72    There are two frames that are "special", the frame for the function
73    containing the process entry point, since it has no predecessor frame,
74    and the frame for the function containing the user code entry point
75    (the main() function), since all the predecessor frames are for the
76    process startup code.  Since we have no guarantee that the linked
77    in startup modules have any debugging information that gdb can use,
78    we need to avoid following frame pointers back into frames that might
79    have been built in the startup code, as we might get hopelessly
80    confused.  However, we almost always have debugging information
81    available for main().
82 
83    These variables are used to save the range of PC values which are
84    valid within the main() function and within the function containing
85    the process entry point.  If we always consider the frame for
86    main() as the outermost frame when debugging user code, and the
87    frame for the process entry point function as the outermost frame
88    when debugging startup code, then all we have to do is have
89    DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
90    current PC is within the range specified by these variables.  In
91    essence, we set "ceilings" in the frame chain beyond which we will
92    not proceed when following the frame chain back up the stack.
93 
94    A nice side effect is that we can still debug startup code without
95    running off the end of the frame chain, assuming that we have usable
96    debugging information in the startup modules, and if we choose to not
97    use the block at main, or can't find it for some reason, everything
98    still works as before.  And if we have no startup code debugging
99    information but we do have usable information for main(), backtraces
100    from user code don't go wandering off into the startup code.  */
101 
102 struct entry_info
103   {
104     /* The relocated value we should use for this objfile entry point.  */
105     CORE_ADDR entry_point;
106 
107     /* Set to 1 iff ENTRY_POINT contains a valid value.  */
108     unsigned entry_point_p : 1;
109   };
110 
111 /* Sections in an objfile.  The section offsets are stored in the
112    OBJFILE.  */
113 
114 struct obj_section
115   {
116     struct bfd_section *the_bfd_section;	/* BFD section pointer */
117 
118     /* Objfile this section is part of.  */
119     struct objfile *objfile;
120 
121     /* True if this "overlay section" is mapped into an "overlay region".  */
122     int ovly_mapped;
123   };
124 
125 /* Relocation offset applied to S.  */
126 #define obj_section_offset(s)						\
127   (((s)->objfile->section_offsets)->offsets[(s)->the_bfd_section->index])
128 
129 /* The memory address of section S (vma + offset).  */
130 #define obj_section_addr(s)				      		\
131   (bfd_get_section_vma ((s)->objfile->abfd, s->the_bfd_section)		\
132    + obj_section_offset (s))
133 
134 /* The one-passed-the-end memory address of section S
135    (vma + size + offset).  */
136 #define obj_section_endaddr(s)						\
137   (bfd_get_section_vma ((s)->objfile->abfd, s->the_bfd_section)		\
138    + bfd_get_section_size ((s)->the_bfd_section)			\
139    + obj_section_offset (s))
140 
141 /* The "objstats" structure provides a place for gdb to record some
142    interesting information about its internal state at runtime, on a
143    per objfile basis, such as information about the number of symbols
144    read, size of string table (if any), etc.  */
145 
146 struct objstats
147   {
148     int n_minsyms;		/* Number of minimal symbols read */
149     int n_psyms;		/* Number of partial symbols read */
150     int n_syms;			/* Number of full symbols read */
151     int n_stabs;		/* Number of ".stabs" read (if applicable) */
152     int n_types;		/* Number of types */
153     int sz_strtab;		/* Size of stringtable, (if applicable) */
154   };
155 
156 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
157 #define OBJSTATS struct objstats stats
158 extern void print_objfile_statistics (void);
159 extern void print_symbol_bcache_statistics (void);
160 
161 /* Number of entries in the minimal symbol hash table.  */
162 #define MINIMAL_SYMBOL_HASH_SIZE 2039
163 
164 /* Master structure for keeping track of each file from which
165    gdb reads symbols.  There are several ways these get allocated: 1.
166    The main symbol file, symfile_objfile, set by the symbol-file command,
167    2.  Additional symbol files added by the add-symbol-file command,
168    3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
169    for modules that were loaded when GDB attached to a remote system
170    (see remote-vx.c).  */
171 
172 struct objfile
173   {
174 
175     /* All struct objfile's are chained together by their next pointers.
176        The global variable "object_files" points to the first link in this
177        chain.
178 
179        FIXME:  There is a problem here if the objfile is reusable, and if
180        multiple users are to be supported.  The problem is that the objfile
181        list is linked through a member of the objfile struct itself, which
182        is only valid for one gdb process.  The list implementation needs to
183        be changed to something like:
184 
185        struct list {struct list *next; struct objfile *objfile};
186 
187        where the list structure is completely maintained separately within
188        each gdb process.  */
189 
190     struct objfile *next;
191 
192     /* The object file's name, tilde-expanded and absolute.  Malloc'd; free it
193        if you free this struct.  This pointer is never NULL.  */
194 
195     char *name;
196 
197     CORE_ADDR addr_low;
198 
199     /* Some flag bits for this objfile.  */
200 
201     unsigned short flags;
202 
203     /* The program space associated with this objfile.  */
204 
205     struct program_space *pspace;
206 
207     /* Each objfile points to a linked list of symtabs derived from this file,
208        one symtab structure for each compilation unit (source file).  Each link
209        in the symtab list contains a backpointer to this objfile.  */
210 
211     struct symtab *symtabs;
212 
213     /* Each objfile points to a linked list of partial symtabs derived from
214        this file, one partial symtab structure for each compilation unit
215        (source file).  */
216 
217     struct partial_symtab *psymtabs;
218 
219     /* Map addresses to the entries of PSYMTABS.  It would be more efficient to
220        have a map per the whole process but ADDRMAP cannot selectively remove
221        its items during FREE_OBJFILE.  This mapping is already present even for
222        PARTIAL_SYMTABs which still have no corresponding full SYMTABs read.  */
223 
224     struct addrmap *psymtabs_addrmap;
225 
226     /* List of freed partial symtabs, available for re-use.  */
227 
228     struct partial_symtab *free_psymtabs;
229 
230     /* The object file's BFD.  Can be null if the objfile contains only
231        minimal symbols, e.g. the run time common symbols for SunOS4.  */
232 
233     bfd *obfd;
234 
235     /* The gdbarch associated with the BFD.  Note that this gdbarch is
236        determined solely from BFD information, without looking at target
237        information.  The gdbarch determined from a running target may
238        differ from this e.g. with respect to register types and names.  */
239 
240     struct gdbarch *gdbarch;
241 
242     /* The modification timestamp of the object file, as of the last time
243        we read its symbols.  */
244 
245     long mtime;
246 
247     /* Obstack to hold objects that should be freed when we load a new symbol
248        table from this object file.  */
249 
250     struct obstack objfile_obstack;
251 
252     /* A byte cache where we can stash arbitrary "chunks" of bytes that
253        will not change.  */
254 
255     struct psymbol_bcache *psymbol_cache; /* Byte cache for partial syms.  */
256     struct bcache *macro_cache;           /* Byte cache for macros.  */
257     struct bcache *filename_cache;	  /* Byte cache for file names.  */
258 
259     /* Hash table for mapping symbol names to demangled names.  Each
260        entry in the hash table is actually two consecutive strings,
261        both null-terminated; the first one is a mangled or linkage
262        name, and the second is the demangled name or just a zero byte
263        if the name doesn't demangle.  */
264     struct htab *demangled_names_hash;
265 
266     /* Vectors of all partial symbols read in from file.  The actual data
267        is stored in the objfile_obstack.  */
268 
269     struct psymbol_allocation_list global_psymbols;
270     struct psymbol_allocation_list static_psymbols;
271 
272     /* Each file contains a pointer to an array of minimal symbols for all
273        global symbols that are defined within the file.  The array is
274        terminated by a "null symbol", one that has a NULL pointer for the
275        name and a zero value for the address.  This makes it easy to walk
276        through the array when passed a pointer to somewhere in the middle
277        of it.  There is also a count of the number of symbols, which does
278        not include the terminating null symbol.  The array itself, as well
279        as all the data that it points to, should be allocated on the
280        objfile_obstack for this file.  */
281 
282     struct minimal_symbol *msymbols;
283     int minimal_symbol_count;
284 
285     /* This is a hash table used to index the minimal symbols by name.  */
286 
287     struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];
288 
289     /* This hash table is used to index the minimal symbols by their
290        demangled names.  */
291 
292     struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
293 
294     /* Structure which keeps track of functions that manipulate objfile's
295        of the same type as this objfile.  I.e. the function to read partial
296        symbols for example.  Note that this structure is in statically
297        allocated memory, and is shared by all objfiles that use the
298        object module reader of this type.  */
299 
300     const struct sym_fns *sf;
301 
302     /* The per-objfile information about the entry point, the scope (file/func)
303        containing the entry point, and the scope of the user's main() func.  */
304 
305     struct entry_info ei;
306 
307     /* Information about stabs.  Will be filled in with a dbx_symfile_info
308        struct by those readers that need it.  */
309     /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
310        data points implemented using "data" and "num_data" below.  For
311        an example of how to use this replacement, see "objfile_data"
312        in "mips-tdep.c".  */
313 
314     struct dbx_symfile_info *deprecated_sym_stab_info;
315 
316     /* Hook for information for use by the symbol reader (currently used
317        for information shared by sym_init and sym_read).  It is
318        typically a pointer to malloc'd memory.  The symbol reader's finish
319        function is responsible for freeing the memory thusly allocated.  */
320     /* NOTE: cagney/2004-10-23: This has been replaced by per-objfile
321        data points implemented using "data" and "num_data" below.  For
322        an example of how to use this replacement, see "objfile_data"
323        in "mips-tdep.c".  */
324 
325     void *deprecated_sym_private;
326 
327     /* Per objfile data-pointers required by other GDB modules.  */
328     /* FIXME: kettenis/20030711: This mechanism could replace
329        deprecated_sym_stab_info and deprecated_sym_private
330        entirely.  */
331 
332     void **data;
333     unsigned num_data;
334 
335     /* Set of relocation offsets to apply to each section.
336        Currently on the objfile_obstack (which makes no sense, but I'm
337        not sure it's harming anything).
338 
339        These offsets indicate that all symbols (including partial and
340        minimal symbols) which have been read have been relocated by this
341        much.  Symbols which are yet to be read need to be relocated by
342        it.  */
343 
344     struct section_offsets *section_offsets;
345     int num_sections;
346 
347     /* Indexes in the section_offsets array.  These are initialized by the
348        *_symfile_offsets() family of functions (som_symfile_offsets,
349        xcoff_symfile_offsets, default_symfile_offsets).  In theory they
350        should correspond to the section indexes used by bfd for the
351        current objfile.  The exception to this for the time being is the
352        SOM version.  */
353 
354     int sect_index_text;
355     int sect_index_data;
356     int sect_index_bss;
357     int sect_index_rodata;
358 
359     /* These pointers are used to locate the section table, which
360        among other things, is used to map pc addresses into sections.
361        SECTIONS points to the first entry in the table, and
362        SECTIONS_END points to the first location past the last entry
363        in the table.  Currently the table is stored on the
364        objfile_obstack (which makes no sense, but I'm not sure it's
365        harming anything).  */
366 
367     struct obj_section
368      *sections, *sections_end;
369 
370     /* GDB allows to have debug symbols in separate object files.  This is
371        used by .gnu_debuglink, ELF build id note and Mach-O OSO.
372        Although this is a tree structure, GDB only support one level
373        (ie a separate debug for a separate debug is not supported).  Note that
374        separate debug object are in the main chain and therefore will be
375        visited by ALL_OBJFILES & co iterators.  Separate debug objfile always
376        has a non-nul separate_debug_objfile_backlink.  */
377 
378     /* Link to the first separate debug object, if any.  */
379     struct objfile *separate_debug_objfile;
380 
381     /* If this is a separate debug object, this is used as a link to the
382        actual executable objfile.  */
383     struct objfile *separate_debug_objfile_backlink;
384 
385     /* If this is a separate debug object, this is a link to the next one
386        for the same executable objfile.  */
387     struct objfile *separate_debug_objfile_link;
388 
389     /* Place to stash various statistics about this objfile.  */
390       OBJSTATS;
391 
392     /* A symtab that the C++ code uses to stash special symbols
393        associated to namespaces.  */
394 
395     /* FIXME/carlton-2003-06-27: Delete this in a few years once
396        "possible namespace symbols" go away.  */
397     struct symtab *cp_namespace_symtab;
398 
399     /* A linked list of symbols created when reading template types or
400        function templates.  These symbols are not stored in any symbol
401        table, so we have to keep them here to relocate them
402        properly.  */
403     struct symbol *template_symbols;
404   };
405 
406 /* Defines for the objfile flag word.  */
407 
408 /* When an object file has its functions reordered (currently Irix-5.2
409    shared libraries exhibit this behaviour), we will need an expensive
410    algorithm to locate a partial symtab or symtab via an address.
411    To avoid this penalty for normal object files, we use this flag,
412    whose setting is determined upon symbol table read in.  */
413 
414 #define OBJF_REORDERED	(1 << 0)	/* Functions are reordered */
415 
416 /* Distinguish between an objfile for a shared library and a "vanilla"
417    objfile.  (If not set, the objfile may still actually be a solib.
418    This can happen if the user created the objfile by using the
419    add-symbol-file command.  GDB doesn't in that situation actually
420    check whether the file is a solib.  Rather, the target's
421    implementation of the solib interface is responsible for setting
422    this flag when noticing solibs used by an inferior.)  */
423 
424 #define OBJF_SHARED     (1 << 1)	/* From a shared library */
425 
426 /* User requested that this objfile be read in it's entirety.  */
427 
428 #define OBJF_READNOW	(1 << 2)	/* Immediate full read */
429 
430 /* This objfile was created because the user explicitly caused it
431    (e.g., used the add-symbol-file command).  This bit offers a way
432    for run_command to remove old objfile entries which are no longer
433    valid (i.e., are associated with an old inferior), but to preserve
434    ones that the user explicitly loaded via the add-symbol-file
435    command.  */
436 
437 #define OBJF_USERLOADED	(1 << 3)	/* User loaded */
438 
439 /* Set if we have tried to read partial symtabs for this objfile.
440    This is used to allow lazy reading of partial symtabs.  */
441 
442 #define OBJF_PSYMTABS_READ (1 << 4)
443 
444 /* The object file that contains the runtime common minimal symbols
445    for SunOS4.  Note that this objfile has no associated BFD.  */
446 
447 extern struct objfile *rt_common_objfile;
448 
449 /* When we need to allocate a new type, we need to know which objfile_obstack
450    to allocate the type on, since there is one for each objfile.  The places
451    where types are allocated are deeply buried in function call hierarchies
452    which know nothing about objfiles, so rather than trying to pass a
453    particular objfile down to them, we just do an end run around them and
454    set current_objfile to be whatever objfile we expect to be using at the
455    time types are being allocated.  For instance, when we start reading
456    symbols for a particular objfile, we set current_objfile to point to that
457    objfile, and when we are done, we set it back to NULL, to ensure that we
458    never put a type someplace other than where we are expecting to put it.
459    FIXME:  Maybe we should review the entire type handling system and
460    see if there is a better way to avoid this problem.  */
461 
462 extern struct objfile *current_objfile;
463 
464 /* Declarations for functions defined in objfiles.c */
465 
466 extern struct objfile *allocate_objfile (bfd *, int);
467 
468 extern struct gdbarch *get_objfile_arch (struct objfile *);
469 
470 extern void init_entry_point_info (struct objfile *);
471 
472 extern int entry_point_address_query (CORE_ADDR *entry_p);
473 
474 extern CORE_ADDR entry_point_address (void);
475 
476 extern int build_objfile_section_table (struct objfile *);
477 
478 extern void terminate_minimal_symbol_table (struct objfile *objfile);
479 
480 extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
481                                                        const struct objfile *);
482 
483 extern void put_objfile_before (struct objfile *, struct objfile *);
484 
485 extern void objfile_to_front (struct objfile *);
486 
487 extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
488 
489 extern void unlink_objfile (struct objfile *);
490 
491 extern void free_objfile (struct objfile *);
492 
493 extern void free_objfile_separate_debug (struct objfile *);
494 
495 extern struct cleanup *make_cleanup_free_objfile (struct objfile *);
496 
497 extern void free_all_objfiles (void);
498 
499 extern void objfile_relocate (struct objfile *, struct section_offsets *);
500 
501 extern int objfile_has_partial_symbols (struct objfile *objfile);
502 
503 extern int objfile_has_full_symbols (struct objfile *objfile);
504 
505 extern int objfile_has_symbols (struct objfile *objfile);
506 
507 extern int have_partial_symbols (void);
508 
509 extern int have_full_symbols (void);
510 
511 extern void objfiles_changed (void);
512 
513 /* This operation deletes all objfile entries that represent solibs that
514    weren't explicitly loaded by the user, via e.g., the add-symbol-file
515    command.  */
516 
517 extern void objfile_purge_solibs (void);
518 
519 /* Functions for dealing with the minimal symbol table, really a misc
520    address<->symbol mapping for things we don't have debug symbols for.  */
521 
522 extern int have_minimal_symbols (void);
523 
524 extern struct obj_section *find_pc_section (CORE_ADDR pc);
525 
526 extern int in_plt_section (CORE_ADDR, char *);
527 
528 /* Keep a registry of per-objfile data-pointers required by other GDB
529    modules.  */
530 
531 /* Allocate an entry in the per-objfile registry.  */
532 extern const struct objfile_data *register_objfile_data (void);
533 
534 /* Allocate an entry in the per-objfile registry.
535    SAVE and FREE are called when clearing objfile data.
536    First all registered SAVE functions are called.
537    Then all registered FREE functions are called.
538    Either or both of SAVE, FREE may be NULL.  */
539 extern const struct objfile_data *register_objfile_data_with_cleanup
540   (void (*save) (struct objfile *, void *),
541    void (*free) (struct objfile *, void *));
542 
543 extern void clear_objfile_data (struct objfile *objfile);
544 extern void set_objfile_data (struct objfile *objfile,
545 			      const struct objfile_data *data, void *value);
546 extern void *objfile_data (struct objfile *objfile,
547 			   const struct objfile_data *data);
548 
549 extern struct bfd *gdb_bfd_ref (struct bfd *abfd);
550 extern void gdb_bfd_unref (struct bfd *abfd);
551 extern int gdb_bfd_close_or_warn (struct bfd *abfd);
552 
553 
554 /* Traverse all object files in the current program space.
555    ALL_OBJFILES_SAFE works even if you delete the objfile during the
556    traversal.  */
557 
558 /* Traverse all object files in program space SS.  */
559 
560 #define ALL_PSPACE_OBJFILES(ss, obj)					\
561   for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)	\
562 
563 #define ALL_PSPACE_OBJFILES_SAFE(ss, obj, nxt)		\
564   for ((obj) = ss->objfiles;			\
565        (obj) != NULL? ((nxt)=(obj)->next,1) :0;	\
566        (obj) = (nxt))
567 
568 #define ALL_OBJFILES(obj)			    \
569   for ((obj) = current_program_space->objfiles; \
570        (obj) != NULL;				    \
571        (obj) = (obj)->next)
572 
573 #define ALL_OBJFILES_SAFE(obj,nxt)			\
574   for ((obj) = current_program_space->objfiles;	\
575        (obj) != NULL? ((nxt)=(obj)->next,1) :0;	\
576        (obj) = (nxt))
577 
578 /* Traverse all symtabs in one objfile.  */
579 
580 #define	ALL_OBJFILE_SYMTABS(objfile, s) \
581     for ((s) = (objfile) -> symtabs; (s) != NULL; (s) = (s) -> next)
582 
583 /* Traverse all minimal symbols in one objfile.  */
584 
585 #define	ALL_OBJFILE_MSYMBOLS(objfile, m) \
586     for ((m) = (objfile) -> msymbols; SYMBOL_LINKAGE_NAME(m) != NULL; (m)++)
587 
588 /* Traverse all symtabs in all objfiles in the current symbol
589    space.  */
590 
591 #define	ALL_SYMTABS(objfile, s) \
592   ALL_OBJFILES (objfile)	 \
593     ALL_OBJFILE_SYMTABS (objfile, s)
594 
595 #define ALL_PSPACE_SYMTABS(ss, objfile, s)		\
596   ALL_PSPACE_OBJFILES (ss, objfile)			\
597     ALL_OBJFILE_SYMTABS (objfile, s)
598 
599 /* Traverse all symtabs in all objfiles in the current program space,
600    skipping included files (which share a blockvector with their
601    primary symtab).  */
602 
603 #define ALL_PRIMARY_SYMTABS(objfile, s) \
604   ALL_OBJFILES (objfile)		\
605     ALL_OBJFILE_SYMTABS (objfile, s)	\
606       if ((s)->primary)
607 
608 #define ALL_PSPACE_PRIMARY_SYMTABS(pspace, objfile, s)	\
609   ALL_PSPACE_OBJFILES (ss, objfile)			\
610     ALL_OBJFILE_SYMTABS (objfile, s)			\
611       if ((s)->primary)
612 
613 /* Traverse all minimal symbols in all objfiles in the current symbol
614    space.  */
615 
616 #define	ALL_MSYMBOLS(objfile, m) \
617   ALL_OBJFILES (objfile)	 \
618     ALL_OBJFILE_MSYMBOLS (objfile, m)
619 
620 #define ALL_OBJFILE_OSECTIONS(objfile, osect)	\
621   for (osect = objfile->sections; osect < objfile->sections_end; osect++)
622 
623 /* Traverse all obj_sections in all objfiles in the current program
624    space.
625 
626    Note that this detects a "break" in the inner loop, and exits
627    immediately from the outer loop as well, thus, client code doesn't
628    need to know that this is implemented with a double for.  The extra
629    hair is to make sure that a "break;" stops the outer loop iterating
630    as well, and both OBJFILE and OSECT are left unmodified:
631 
632     - The outer loop learns about the inner loop's end condition, and
633       stops iterating if it detects the inner loop didn't reach its
634       end.  In other words, the outer loop keeps going only if the
635       inner loop reached its end cleanly [(osect) ==
636       (objfile)->sections_end].
637 
638     - OSECT is initialized in the outer loop initialization
639       expressions, such as if the inner loop has reached its end, so
640       the check mentioned above succeeds the first time.
641 
642     - The trick to not clearing OBJFILE on a "break;" is, in the outer
643       loop's loop expression, advance OBJFILE, but iff the inner loop
644       reached its end.  If not, there was a "break;", so leave OBJFILE
645       as is; the outer loop's conditional will break immediately as
646       well (as OSECT will be different from OBJFILE->sections_end).  */
647 
648 #define ALL_OBJSECTIONS(objfile, osect)					\
649   for ((objfile) = current_program_space->objfiles,			\
650 	 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0;	\
651        (objfile) != NULL						\
652 	 && (osect) == (objfile)->sections_end;				\
653        ((osect) == (objfile)->sections_end				\
654 	? ((objfile) = (objfile)->next,					\
655 	   (objfile) != NULL ? (osect) = (objfile)->sections_end : 0)	\
656 	: 0))								\
657     for ((osect) = (objfile)->sections;					\
658 	 (osect) < (objfile)->sections_end;				\
659 	 (osect)++)
660 
661 #define SECT_OFF_DATA(objfile) \
662      ((objfile->sect_index_data == -1) \
663       ? (internal_error (__FILE__, __LINE__, \
664 			 _("sect_index_data not initialized")), -1)	\
665       : objfile->sect_index_data)
666 
667 #define SECT_OFF_RODATA(objfile) \
668      ((objfile->sect_index_rodata == -1) \
669       ? (internal_error (__FILE__, __LINE__, \
670 			 _("sect_index_rodata not initialized")), -1)	\
671       : objfile->sect_index_rodata)
672 
673 #define SECT_OFF_TEXT(objfile) \
674      ((objfile->sect_index_text == -1) \
675       ? (internal_error (__FILE__, __LINE__, \
676 			 _("sect_index_text not initialized")), -1)	\
677       : objfile->sect_index_text)
678 
679 /* Sometimes the .bss section is missing from the objfile, so we don't
680    want to die here.  Let the users of SECT_OFF_BSS deal with an
681    uninitialized section index.  */
682 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
683 
684 /* Answer whether there is more than one object file loaded.  */
685 
686 #define MULTI_OBJFILE_P() (object_files && object_files->next)
687 
688 #endif /* !defined (OBJFILES_H) */
689