1 /* Prologue value handling for GDB.
2    Copyright 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>. */
18 
19 #include "defs.h"
20 #include "gdb_string.h"
21 #include "gdb_assert.h"
22 #include "prologue-value.h"
23 #include "regcache.h"
24 
25 
26 /* Constructors.  */
27 
28 pv_t
29 pv_unknown (void)
30 {
31   pv_t v = { pvk_unknown, 0, 0 };
32 
33   return v;
34 }
35 
36 
37 pv_t
38 pv_constant (CORE_ADDR k)
39 {
40   pv_t v;
41 
42   v.kind = pvk_constant;
43   v.reg = -1;                   /* for debugging */
44   v.k = k;
45 
46   return v;
47 }
48 
49 
50 pv_t
51 pv_register (int reg, CORE_ADDR k)
52 {
53   pv_t v;
54 
55   v.kind = pvk_register;
56   v.reg = reg;
57   v.k = k;
58 
59   return v;
60 }
61 
62 
63 
64 /* Arithmetic operations.  */
65 
66 /* If one of *A and *B is a constant, and the other isn't, swap the
67    values as necessary to ensure that *B is the constant.  This can
68    reduce the number of cases we need to analyze in the functions
69    below.  */
70 static void
71 constant_last (pv_t *a, pv_t *b)
72 {
73   if (a->kind == pvk_constant
74       && b->kind != pvk_constant)
75     {
76       pv_t temp = *a;
77       *a = *b;
78       *b = temp;
79     }
80 }
81 
82 
83 pv_t
84 pv_add (pv_t a, pv_t b)
85 {
86   constant_last (&a, &b);
87 
88   /* We can add a constant to a register.  */
89   if (a.kind == pvk_register
90       && b.kind == pvk_constant)
91     return pv_register (a.reg, a.k + b.k);
92 
93   /* We can add a constant to another constant.  */
94   else if (a.kind == pvk_constant
95            && b.kind == pvk_constant)
96     return pv_constant (a.k + b.k);
97 
98   /* Anything else we don't know how to add.  We don't have a
99      representation for, say, the sum of two registers, or a multiple
100      of a register's value (adding a register to itself).  */
101   else
102     return pv_unknown ();
103 }
104 
105 
106 pv_t
107 pv_add_constant (pv_t v, CORE_ADDR k)
108 {
109   /* Rather than thinking of all the cases we can and can't handle,
110      we'll just let pv_add take care of that for us.  */
111   return pv_add (v, pv_constant (k));
112 }
113 
114 
115 pv_t
116 pv_subtract (pv_t a, pv_t b)
117 {
118   /* This isn't quite the same as negating B and adding it to A, since
119      we don't have a representation for the negation of anything but a
120      constant.  For example, we can't negate { pvk_register, R1, 10 },
121      but we do know that { pvk_register, R1, 10 } minus { pvk_register,
122      R1, 5 } is { pvk_constant, <ignored>, 5 }.
123 
124      This means, for example, that we could subtract two stack
125      addresses; they're both relative to the original SP.  Since the
126      frame pointer is set based on the SP, its value will be the
127      original SP plus some constant (probably zero), so we can use its
128      value just fine, too.  */
129 
130   constant_last (&a, &b);
131 
132   /* We can subtract two constants.  */
133   if (a.kind == pvk_constant
134       && b.kind == pvk_constant)
135     return pv_constant (a.k - b.k);
136 
137   /* We can subtract a constant from a register.  */
138   else if (a.kind == pvk_register
139            && b.kind == pvk_constant)
140     return pv_register (a.reg, a.k - b.k);
141 
142   /* We can subtract a register from itself, yielding a constant.  */
143   else if (a.kind == pvk_register
144            && b.kind == pvk_register
145            && a.reg == b.reg)
146     return pv_constant (a.k - b.k);
147 
148   /* We don't know how to subtract anything else.  */
149   else
150     return pv_unknown ();
151 }
152 
153 
154 pv_t
155 pv_logical_and (pv_t a, pv_t b)
156 {
157   constant_last (&a, &b);
158 
159   /* We can 'and' two constants.  */
160   if (a.kind == pvk_constant
161       && b.kind == pvk_constant)
162     return pv_constant (a.k & b.k);
163 
164   /* We can 'and' anything with the constant zero.  */
165   else if (b.kind == pvk_constant
166            && b.k == 0)
167     return pv_constant (0);
168 
169   /* We can 'and' anything with ~0.  */
170   else if (b.kind == pvk_constant
171            && b.k == ~ (CORE_ADDR) 0)
172     return a;
173 
174   /* We can 'and' a register with itself.  */
175   else if (a.kind == pvk_register
176            && b.kind == pvk_register
177            && a.reg == b.reg
178            && a.k == b.k)
179     return a;
180 
181   /* Otherwise, we don't know.  */
182   else
183     return pv_unknown ();
184 }
185 
186 
187 
188 /* Examining prologue values.  */
189 
190 int
191 pv_is_identical (pv_t a, pv_t b)
192 {
193   if (a.kind != b.kind)
194     return 0;
195 
196   switch (a.kind)
197     {
198     case pvk_unknown:
199       return 1;
200     case pvk_constant:
201       return (a.k == b.k);
202     case pvk_register:
203       return (a.reg == b.reg && a.k == b.k);
204     default:
205       gdb_assert (0);
206     }
207 }
208 
209 
210 int
211 pv_is_constant (pv_t a)
212 {
213   return (a.kind == pvk_constant);
214 }
215 
216 
217 int
218 pv_is_register (pv_t a, int r)
219 {
220   return (a.kind == pvk_register
221           && a.reg == r);
222 }
223 
224 
225 int
226 pv_is_register_k (pv_t a, int r, CORE_ADDR k)
227 {
228   return (a.kind == pvk_register
229           && a.reg == r
230           && a.k == k);
231 }
232 
233 
234 enum pv_boolean
235 pv_is_array_ref (pv_t addr, CORE_ADDR size,
236                  pv_t array_addr, CORE_ADDR array_len,
237                  CORE_ADDR elt_size,
238                  int *i)
239 {
240   /* Note that, since .k is a CORE_ADDR, and CORE_ADDR is unsigned, if
241      addr is *before* the start of the array, then this isn't going to
242      be negative...  */
243   pv_t offset = pv_subtract (addr, array_addr);
244 
245   if (offset.kind == pvk_constant)
246     {
247       /* This is a rather odd test.  We want to know if the SIZE bytes
248          at ADDR don't overlap the array at all, so you'd expect it to
249          be an || expression: "if we're completely before || we're
250          completely after".  But with unsigned arithmetic, things are
251          different: since it's a number circle, not a number line, the
252          right values for offset.k are actually one contiguous range.  */
253       if (offset.k <= -size
254           && offset.k >= array_len * elt_size)
255         return pv_definite_no;
256       else if (offset.k % elt_size != 0
257                || size != elt_size)
258         return pv_maybe;
259       else
260         {
261           *i = offset.k / elt_size;
262           return pv_definite_yes;
263         }
264     }
265   else
266     return pv_maybe;
267 }
268 
269 
270 
271 /* Areas.  */
272 
273 
274 /* A particular value known to be stored in an area.
275 
276    Entries form a ring, sorted by unsigned offset from the area's base
277    register's value.  Since entries can straddle the wrap-around point,
278    unsigned offsets form a circle, not a number line, so the list
279    itself is structured the same way --- there is no inherent head.
280    The entry with the lowest offset simply follows the entry with the
281    highest offset.  Entries may abut, but never overlap.  The area's
282    'entry' pointer points to an arbitrary node in the ring.  */
283 struct area_entry
284 {
285   /* Links in the doubly-linked ring.  */
286   struct area_entry *prev, *next;
287 
288   /* Offset of this entry's address from the value of the base
289      register.  */
290   CORE_ADDR offset;
291 
292   /* The size of this entry.  Note that an entry may wrap around from
293      the end of the address space to the beginning.  */
294   CORE_ADDR size;
295 
296   /* The value stored here.  */
297   pv_t value;
298 };
299 
300 
301 struct pv_area
302 {
303   /* This area's base register.  */
304   int base_reg;
305 
306   /* The mask to apply to addresses, to make the wrap-around happen at
307      the right place.  */
308   CORE_ADDR addr_mask;
309 
310   /* An element of the doubly-linked ring of entries, or zero if we
311      have none.  */
312   struct area_entry *entry;
313 };
314 
315 
316 struct pv_area *
317 make_pv_area (int base_reg, int addr_bit)
318 {
319   struct pv_area *a = (struct pv_area *) xmalloc (sizeof (*a));
320 
321   memset (a, 0, sizeof (*a));
322 
323   a->base_reg = base_reg;
324   a->entry = 0;
325 
326   /* Remember that shift amounts equal to the type's width are
327      undefined.  */
328   a->addr_mask = ((((CORE_ADDR) 1 << (addr_bit - 1)) - 1) << 1) | 1;
329 
330   return a;
331 }
332 
333 
334 /* Delete all entries from AREA.  */
335 static void
336 clear_entries (struct pv_area *area)
337 {
338   struct area_entry *e = area->entry;
339 
340   if (e)
341     {
342       /* This needs to be a do-while loop, in order to actually
343          process the node being checked for in the terminating
344          condition.  */
345       do
346         {
347           struct area_entry *next = e->next;
348           xfree (e);
349           e = next;
350         }
351       while (e != area->entry);
352 
353       area->entry = 0;
354     }
355 }
356 
357 
358 void
359 free_pv_area (struct pv_area *area)
360 {
361   clear_entries (area);
362   xfree (area);
363 }
364 
365 
366 static void
367 do_free_pv_area_cleanup (void *arg)
368 {
369   free_pv_area ((struct pv_area *) arg);
370 }
371 
372 
373 struct cleanup *
374 make_cleanup_free_pv_area (struct pv_area *area)
375 {
376   return make_cleanup (do_free_pv_area_cleanup, (void *) area);
377 }
378 
379 
380 int
381 pv_area_store_would_trash (struct pv_area *area, pv_t addr)
382 {
383   /* It may seem odd that pvk_constant appears here --- after all,
384      that's the case where we know the most about the address!  But
385      pv_areas are always relative to a register, and we don't know the
386      value of the register, so we can't compare entry addresses to
387      constants.  */
388   return (addr.kind == pvk_unknown
389           || addr.kind == pvk_constant
390           || (addr.kind == pvk_register && addr.reg != area->base_reg));
391 }
392 
393 
394 /* Return a pointer to the first entry we hit in AREA starting at
395    OFFSET and going forward.
396 
397    This may return zero, if AREA has no entries.
398 
399    And since the entries are a ring, this may return an entry that
400    entirely preceeds OFFSET.  This is the correct behavior: depending
401    on the sizes involved, we could still overlap such an area, with
402    wrap-around.  */
403 static struct area_entry *
404 find_entry (struct pv_area *area, CORE_ADDR offset)
405 {
406   struct area_entry *e = area->entry;
407 
408   if (! e)
409     return 0;
410 
411   /* If the next entry would be better than the current one, then scan
412      forward.  Since we use '<' in this loop, it always terminates.
413 
414      Note that, even setting aside the addr_mask stuff, we must not
415      simplify this, in high school algebra fashion, to
416      (e->next->offset < e->offset), because of the way < interacts
417      with wrap-around.  We have to subtract offset from both sides to
418      make sure both things we're comparing are on the same side of the
419      discontinuity.  */
420   while (((e->next->offset - offset) & area->addr_mask)
421          < ((e->offset - offset) & area->addr_mask))
422     e = e->next;
423 
424   /* If the previous entry would be better than the current one, then
425      scan backwards.  */
426   while (((e->prev->offset - offset) & area->addr_mask)
427          < ((e->offset - offset) & area->addr_mask))
428     e = e->prev;
429 
430   /* In case there's some locality to the searches, set the area's
431      pointer to the entry we've found.  */
432   area->entry = e;
433 
434   return e;
435 }
436 
437 
438 /* Return non-zero if the SIZE bytes at OFFSET would overlap ENTRY;
439    return zero otherwise.  AREA is the area to which ENTRY belongs.  */
440 static int
441 overlaps (struct pv_area *area,
442           struct area_entry *entry,
443           CORE_ADDR offset,
444           CORE_ADDR size)
445 {
446   /* Think carefully about wrap-around before simplifying this.  */
447   return (((entry->offset - offset) & area->addr_mask) < size
448           || ((offset - entry->offset) & area->addr_mask) < entry->size);
449 }
450 
451 
452 void
453 pv_area_store (struct pv_area *area,
454                pv_t addr,
455                CORE_ADDR size,
456                pv_t value)
457 {
458   /* Remove any (potentially) overlapping entries.  */
459   if (pv_area_store_would_trash (area, addr))
460     clear_entries (area);
461   else
462     {
463       CORE_ADDR offset = addr.k;
464       struct area_entry *e = find_entry (area, offset);
465 
466       /* Delete all entries that we would overlap.  */
467       while (e && overlaps (area, e, offset, size))
468         {
469           struct area_entry *next = (e->next == e) ? 0 : e->next;
470           e->prev->next = e->next;
471           e->next->prev = e->prev;
472 
473           xfree (e);
474           e = next;
475         }
476 
477       /* Move the area's pointer to the next remaining entry.  This
478          will also zero the pointer if we've deleted all the entries.  */
479       area->entry = e;
480     }
481 
482   /* Now, there are no entries overlapping us, and area->entry is
483      either zero or pointing at the closest entry after us.  We can
484      just insert ourselves before that.
485 
486      But if we're storing an unknown value, don't bother --- that's
487      the default.  */
488   if (value.kind == pvk_unknown)
489     return;
490   else
491     {
492       CORE_ADDR offset = addr.k;
493       struct area_entry *e = (struct area_entry *) xmalloc (sizeof (*e));
494       e->offset = offset;
495       e->size = size;
496       e->value = value;
497 
498       if (area->entry)
499         {
500           e->prev = area->entry->prev;
501           e->next = area->entry;
502           e->prev->next = e->next->prev = e;
503         }
504       else
505         {
506           e->prev = e->next = e;
507           area->entry = e;
508         }
509     }
510 }
511 
512 
513 pv_t
514 pv_area_fetch (struct pv_area *area, pv_t addr, CORE_ADDR size)
515 {
516   /* If we have no entries, or we can't decide how ADDR relates to the
517      entries we do have, then the value is unknown.  */
518   if (! area->entry
519       || pv_area_store_would_trash (area, addr))
520     return pv_unknown ();
521   else
522     {
523       CORE_ADDR offset = addr.k;
524       struct area_entry *e = find_entry (area, offset);
525 
526       /* If this entry exactly matches what we're looking for, then
527          we're set.  Otherwise, say it's unknown.  */
528       if (e->offset == offset && e->size == size)
529         return e->value;
530       else
531         return pv_unknown ();
532     }
533 }
534 
535 
536 int
537 pv_area_find_reg (struct pv_area *area,
538                   struct gdbarch *gdbarch,
539                   int reg,
540                   CORE_ADDR *offset_p)
541 {
542   struct area_entry *e = area->entry;
543 
544   if (e)
545     do
546       {
547         if (e->value.kind == pvk_register
548             && e->value.reg == reg
549             && e->value.k == 0
550             && e->size == register_size (gdbarch, reg))
551           {
552             if (offset_p)
553               *offset_p = e->offset;
554             return 1;
555           }
556 
557         e = e->next;
558       }
559     while (e != area->entry);
560 
561   return 0;
562 }
563 
564 
565 void
566 pv_area_scan (struct pv_area *area,
567               void (*func) (void *closure,
568                             pv_t addr,
569                             CORE_ADDR size,
570                             pv_t value),
571               void *closure)
572 {
573   struct area_entry *e = area->entry;
574   pv_t addr;
575 
576   addr.kind = pvk_register;
577   addr.reg = area->base_reg;
578 
579   if (e)
580     do
581       {
582         addr.k = e->offset;
583         func (closure, addr, e->size, e->value);
584         e = e->next;
585       }
586     while (e != area->entry);
587 }
588