xref: /dragonfly/contrib/gdb-7/gdb/remote.c (revision 92fc8b5c)
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 
3    Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5    2010 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* See the GDB User Guide for details of the GDB remote protocol.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47 
48 #include <ctype.h>
49 #include <sys/time.h>
50 
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54 
55 #include <signal.h>
56 #include "serial.h"
57 
58 #include "gdbcore.h" /* for exec_bfd */
59 
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64 
65 #include "memory-map.h"
66 
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 		char ***tdp_actions, char ***stepping_actions);
77 
78 /* The size to align memory write packets, when practical.  The protocol
79    does not guarantee any alignment, and gdb will generate short
80    writes and unaligned writes, but even as a best-effort attempt this
81    can improve bulk transfers.  For instance, if a write is misaligned
82    relative to the target's data bus, the stub may need to make an extra
83    round trip fetching data from the target.  This doesn't make a
84    huge difference, but it's easy to do, so we try to be helpful.
85 
86    The alignment chosen is arbitrary; usually data bus width is
87    important here, not the possibly larger cache line size.  */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89 
90 /* Prototypes for local functions.  */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 				 int forever);
96 
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101 
102 static void remote_files_info (struct target_ops *ignore);
103 
104 static void remote_prepare_to_store (struct regcache *regcache);
105 
106 static void remote_open (char *name, int from_tty);
107 
108 static void extended_remote_open (char *name, int from_tty);
109 
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111 
112 static void remote_close (int quitting);
113 
114 static void remote_mourn (struct target_ops *ops);
115 
116 static void extended_remote_restart (void);
117 
118 static void extended_remote_mourn (struct target_ops *);
119 
120 static void remote_mourn_1 (struct target_ops *);
121 
122 static void remote_send (char **buf, long *sizeof_buf_p);
123 
124 static int readchar (int timeout);
125 
126 static void remote_kill (struct target_ops *ops);
127 
128 static int tohex (int nib);
129 
130 static int remote_can_async_p (void);
131 
132 static int remote_is_async_p (void);
133 
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 					    void *context), void *context);
136 
137 static int remote_async_mask (int new_mask);
138 
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140 
141 static void remote_interrupt (int signo);
142 
143 static void remote_interrupt_twice (int signo);
144 
145 static void interrupt_query (void);
146 
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149 
150 static void get_offsets (void);
151 
152 static void skip_frame (void);
153 
154 static long read_frame (char **buf_p, long *sizeof_buf);
155 
156 static int hexnumlen (ULONGEST num);
157 
158 static void init_remote_ops (void);
159 
160 static void init_extended_remote_ops (void);
161 
162 static void remote_stop (ptid_t);
163 
164 static int ishex (int ch, int *val);
165 
166 static int stubhex (int ch);
167 
168 static int hexnumstr (char *, ULONGEST);
169 
170 static int hexnumnstr (char *, ULONGEST, int);
171 
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173 
174 static void print_packet (char *);
175 
176 static void compare_sections_command (char *, int);
177 
178 static void packet_command (char *, int);
179 
180 static int stub_unpack_int (char *buff, int fieldlength);
181 
182 static ptid_t remote_current_thread (ptid_t oldptid);
183 
184 static void remote_find_new_threads (void);
185 
186 static void record_currthread (ptid_t currthread);
187 
188 static int fromhex (int a);
189 
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191 
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193 
194 static int putpkt_binary (char *buf, int cnt);
195 
196 static void check_binary_download (CORE_ADDR addr);
197 
198 struct packet_config;
199 
200 static void show_packet_config_cmd (struct packet_config *config);
201 
202 static void update_packet_config (struct packet_config *config);
203 
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 					    struct cmd_list_element *c);
206 
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 					     int from_tty,
209 					     struct cmd_list_element *c,
210 					     const char *value);
211 
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214 
215 static void remote_set_permissions (void);
216 
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219 
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221 
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223 
224 static void remote_query_supported (void);
225 
226 static void remote_check_symbols (struct objfile *objfile);
227 
228 void _initialize_remote (void);
229 
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239 
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242 
243 static void remote_terminal_ours (void);
244 
245 static int remote_read_description_p (struct target_ops *target);
246 
247 static void remote_console_output (char *msg);
248 
249 /* The non-stop remote protocol provisions for one pending stop reply.
250    This is where we keep it until it is acknowledged.  */
251 
252 static struct stop_reply *pending_stop_reply = NULL;
253 
254 /* For "remote".  */
255 
256 static struct cmd_list_element *remote_cmdlist;
257 
258 /* For "set remote" and "show remote".  */
259 
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262 
263 /* Description of the remote protocol state for the currently
264    connected target.  This is per-target state, and independent of the
265    selected architecture.  */
266 
267 struct remote_state
268 {
269   /* A buffer to use for incoming packets, and its current size.  The
270      buffer is grown dynamically for larger incoming packets.
271      Outgoing packets may also be constructed in this buffer.
272      BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273      REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274      packets.  */
275   char *buf;
276   long buf_size;
277 
278   /* If we negotiated packet size explicitly (and thus can bypass
279      heuristics for the largest packet size that will not overflow
280      a buffer in the stub), this will be set to that packet size.
281      Otherwise zero, meaning to use the guessed size.  */
282   long explicit_packet_size;
283 
284   /* remote_wait is normally called when the target is running and
285      waits for a stop reply packet.  But sometimes we need to call it
286      when the target is already stopped.  We can send a "?" packet
287      and have remote_wait read the response.  Or, if we already have
288      the response, we can stash it in BUF and tell remote_wait to
289      skip calling getpkt.  This flag is set when BUF contains a
290      stop reply packet and the target is not waiting.  */
291   int cached_wait_status;
292 
293   /* True, if in no ack mode.  That is, neither GDB nor the stub will
294      expect acks from each other.  The connection is assumed to be
295      reliable.  */
296   int noack_mode;
297 
298   /* True if we're connected in extended remote mode.  */
299   int extended;
300 
301   /* True if the stub reported support for multi-process
302      extensions.  */
303   int multi_process_aware;
304 
305   /* True if we resumed the target and we're waiting for the target to
306      stop.  In the mean time, we can't start another command/query.
307      The remote server wouldn't be ready to process it, so we'd
308      timeout waiting for a reply that would never come and eventually
309      we'd close the connection.  This can happen in asynchronous mode
310      because we allow GDB commands while the target is running.  */
311   int waiting_for_stop_reply;
312 
313   /* True if the stub reports support for non-stop mode.  */
314   int non_stop_aware;
315 
316   /* True if the stub reports support for vCont;t.  */
317   int support_vCont_t;
318 
319   /* True if the stub reports support for conditional tracepoints.  */
320   int cond_tracepoints;
321 
322   /* True if the stub reports support for fast tracepoints.  */
323   int fast_tracepoints;
324 
325   /* True if the stub reports support for static tracepoints.  */
326   int static_tracepoints;
327 
328   /* True if the stub can continue running a trace while GDB is
329      disconnected.  */
330   int disconnected_tracing;
331 
332   /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333      responded to that.  */
334   int ctrlc_pending_p;
335 };
336 
337 /* Private data that we'll store in (struct thread_info)->private.  */
338 struct private_thread_info
339 {
340   char *extra;
341   int core;
342 };
343 
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347   xfree (info->extra);
348   xfree (info);
349 }
350 
351 /* Returns true if the multi-process extensions are in effect.  */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355   return rs->extended && rs->multi_process_aware;
356 }
357 
358 /* This data could be associated with a target, but we do not always
359    have access to the current target when we need it, so for now it is
360    static.  This will be fine for as long as only one target is in use
361    at a time.  */
362 static struct remote_state remote_state;
363 
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367   return &remote_state;
368 }
369 
370 /* Description of the remote protocol for a given architecture.  */
371 
372 struct packet_reg
373 {
374   long offset; /* Offset into G packet.  */
375   long regnum; /* GDB's internal register number.  */
376   LONGEST pnum; /* Remote protocol register number.  */
377   int in_g_packet; /* Always part of G packet.  */
378   /* long size in bytes;  == register_size (target_gdbarch, regnum);
379      at present.  */
380   /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381      at present.  */
382 };
383 
384 struct remote_arch_state
385 {
386   /* Description of the remote protocol registers.  */
387   long sizeof_g_packet;
388 
389   /* Description of the remote protocol registers indexed by REGNUM
390      (making an array gdbarch_num_regs in size).  */
391   struct packet_reg *regs;
392 
393   /* This is the size (in chars) of the first response to the ``g''
394      packet.  It is used as a heuristic when determining the maximum
395      size of memory-read and memory-write packets.  A target will
396      typically only reserve a buffer large enough to hold the ``g''
397      packet.  The size does not include packet overhead (headers and
398      trailers).  */
399   long actual_register_packet_size;
400 
401   /* This is the maximum size (in chars) of a non read/write packet.
402      It is also used as a cap on the size of read/write packets.  */
403   long remote_packet_size;
404 };
405 
406 long sizeof_pkt = 2000;
407 
408 /* Utility: generate error from an incoming stub packet.  */
409 static void
410 trace_error (char *buf)
411 {
412   if (*buf++ != 'E')
413     return;			/* not an error msg */
414   switch (*buf)
415     {
416     case '1':			/* malformed packet error */
417       if (*++buf == '0')	/*   general case: */
418 	error (_("remote.c: error in outgoing packet."));
419       else
420 	error (_("remote.c: error in outgoing packet at field #%ld."),
421 	       strtol (buf, NULL, 16));
422     case '2':
423       error (_("trace API error 0x%s."), ++buf);
424     default:
425       error (_("Target returns error code '%s'."), buf);
426     }
427 }
428 
429 /* Utility: wait for reply from stub, while accepting "O" packets.  */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 			long *sizeof_buf)
433 {
434   do				/* Loop on reply from remote stub.  */
435     {
436       char *buf;
437 
438       QUIT;			/* allow user to bail out with ^C */
439       getpkt (buf_p, sizeof_buf, 0);
440       buf = *buf_p;
441       if (buf[0] == 'E')
442 	trace_error (buf);
443       else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 	{
445 	  ULONGEST ul;
446 	  CORE_ADDR from, to, org_to;
447 	  char *p, *pp;
448 	  int adjusted_size = 0;
449 	  volatile struct gdb_exception ex;
450 
451 	  p = buf + strlen ("qRelocInsn:");
452 	  pp = unpack_varlen_hex (p, &ul);
453 	  if (*pp != ';')
454 	    error (_("invalid qRelocInsn packet: %s"), buf);
455 	  from = ul;
456 
457 	  p = pp + 1;
458 	  pp = unpack_varlen_hex (p, &ul);
459 	  to = ul;
460 
461 	  org_to = to;
462 
463 	  TRY_CATCH (ex, RETURN_MASK_ALL)
464 	    {
465 	      gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 	    }
467 	  if (ex.reason >= 0)
468 	    {
469 	      adjusted_size = to - org_to;
470 
471 	      sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 	      putpkt (buf);
473 	    }
474 	  else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 	    {
476 	      /* Propagate memory errors silently back to the target.
477 		 The stub may have limited the range of addresses we
478 		 can write to, for example.  */
479 	      putpkt ("E01");
480 	    }
481 	  else
482 	    {
483 	      /* Something unexpectedly bad happened.  Be verbose so
484 		 we can tell what, and propagate the error back to the
485 		 stub, so it doesn't get stuck waiting for a
486 		 response.  */
487 	      exception_fprintf (gdb_stderr, ex,
488 				 _("warning: relocating instruction: "));
489 	      putpkt ("E01");
490 	    }
491 	}
492       else if (buf[0] == 'O' && buf[1] != 'K')
493 	remote_console_output (buf + 1);	/* 'O' message from stub */
494       else
495 	return buf;		/* here's the actual reply */
496     }
497   while (1);
498 }
499 
500 /* Handle for retreving the remote protocol data from gdbarch.  */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502 
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506   return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508 
509 /* Fetch the global remote target state.  */
510 
511 static struct remote_state *
512 get_remote_state (void)
513 {
514   /* Make sure that the remote architecture state has been
515      initialized, because doing so might reallocate rs->buf.  Any
516      function which calls getpkt also needs to be mindful of changes
517      to rs->buf, but this call limits the number of places which run
518      into trouble.  */
519   get_remote_arch_state ();
520 
521   return get_remote_state_raw ();
522 }
523 
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527   const struct packet_reg * const *lhs = lhs_;
528   const struct packet_reg * const *rhs = rhs_;
529 
530   if ((*lhs)->pnum < (*rhs)->pnum)
531     return -1;
532   else if ((*lhs)->pnum == (*rhs)->pnum)
533     return 0;
534   else
535     return 1;
536 }
537 
538 static void *
539 init_remote_state (struct gdbarch *gdbarch)
540 {
541   int regnum, num_remote_regs, offset;
542   struct remote_state *rs = get_remote_state_raw ();
543   struct remote_arch_state *rsa;
544   struct packet_reg **remote_regs;
545 
546   rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547 
548   /* Use the architecture to build a regnum<->pnum table, which will be
549      1:1 unless a feature set specifies otherwise.  */
550   rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 				      gdbarch_num_regs (gdbarch),
552 				      struct packet_reg);
553   for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554     {
555       struct packet_reg *r = &rsa->regs[regnum];
556 
557       if (register_size (gdbarch, regnum) == 0)
558 	/* Do not try to fetch zero-sized (placeholder) registers.  */
559 	r->pnum = -1;
560       else
561 	r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562 
563       r->regnum = regnum;
564     }
565 
566   /* Define the g/G packet format as the contents of each register
567      with a remote protocol number, in order of ascending protocol
568      number.  */
569 
570   remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 			  * sizeof (struct packet_reg *));
572   for (num_remote_regs = 0, regnum = 0;
573        regnum < gdbarch_num_regs (gdbarch);
574        regnum++)
575     if (rsa->regs[regnum].pnum != -1)
576       remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577 
578   qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 	 compare_pnums);
580 
581   for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582     {
583       remote_regs[regnum]->in_g_packet = 1;
584       remote_regs[regnum]->offset = offset;
585       offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586     }
587 
588   /* Record the maximum possible size of the g packet - it may turn out
589      to be smaller.  */
590   rsa->sizeof_g_packet = offset;
591 
592   /* Default maximum number of characters in a packet body. Many
593      remote stubs have a hardwired buffer size of 400 bytes
594      (c.f. BUFMAX in m68k-stub.c and i386-stub.c).  BUFMAX-1 is used
595      as the maximum packet-size to ensure that the packet and an extra
596      NUL character can always fit in the buffer.  This stops GDB
597      trashing stubs that try to squeeze an extra NUL into what is
598      already a full buffer (As of 1999-12-04 that was most stubs).  */
599   rsa->remote_packet_size = 400 - 1;
600 
601   /* This one is filled in when a ``g'' packet is received.  */
602   rsa->actual_register_packet_size = 0;
603 
604   /* Should rsa->sizeof_g_packet needs more space than the
605      default, adjust the size accordingly. Remember that each byte is
606      encoded as two characters. 32 is the overhead for the packet
607      header / footer. NOTE: cagney/1999-10-26: I suspect that 8
608      (``$NN:G...#NN'') is a better guess, the below has been padded a
609      little.  */
610   if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611     rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612 
613   /* Make sure that the packet buffer is plenty big enough for
614      this architecture.  */
615   if (rs->buf_size < rsa->remote_packet_size)
616     {
617       rs->buf_size = 2 * rsa->remote_packet_size;
618       rs->buf = xrealloc (rs->buf, rs->buf_size);
619     }
620 
621   return rsa;
622 }
623 
624 /* Return the current allowed size of a remote packet.  This is
625    inferred from the current architecture, and should be used to
626    limit the length of outgoing packets.  */
627 static long
628 get_remote_packet_size (void)
629 {
630   struct remote_state *rs = get_remote_state ();
631   struct remote_arch_state *rsa = get_remote_arch_state ();
632 
633   if (rs->explicit_packet_size)
634     return rs->explicit_packet_size;
635 
636   return rsa->remote_packet_size;
637 }
638 
639 static struct packet_reg *
640 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641 {
642   if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643     return NULL;
644   else
645     {
646       struct packet_reg *r = &rsa->regs[regnum];
647 
648       gdb_assert (r->regnum == regnum);
649       return r;
650     }
651 }
652 
653 static struct packet_reg *
654 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655 {
656   int i;
657 
658   for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659     {
660       struct packet_reg *r = &rsa->regs[i];
661 
662       if (r->pnum == pnum)
663 	return r;
664     }
665   return NULL;
666 }
667 
668 /* FIXME: graces/2002-08-08: These variables should eventually be
669    bound to an instance of the target object (as in gdbarch-tdep()),
670    when such a thing exists.  */
671 
672 /* This is set to the data address of the access causing the target
673    to stop for a watchpoint.  */
674 static CORE_ADDR remote_watch_data_address;
675 
676 /* This is non-zero if target stopped for a watchpoint.  */
677 static int remote_stopped_by_watchpoint_p;
678 
679 static struct target_ops remote_ops;
680 
681 static struct target_ops extended_remote_ops;
682 
683 static int remote_async_mask_value = 1;
684 
685 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
686    ``forever'' still use the normal timeout mechanism.  This is
687    currently used by the ASYNC code to guarentee that target reads
688    during the initial connect always time-out.  Once getpkt has been
689    modified to return a timeout indication and, in turn
690    remote_wait()/wait_for_inferior() have gained a timeout parameter
691    this can go away.  */
692 static int wait_forever_enabled_p = 1;
693 
694 /* Allow the user to specify what sequence to send to the remote
695    when he requests a program interruption: Although ^C is usually
696    what remote systems expect (this is the default, here), it is
697    sometimes preferable to send a break.  On other systems such
698    as the Linux kernel, a break followed by g, which is Magic SysRq g
699    is required in order to interrupt the execution.  */
700 const char interrupt_sequence_control_c[] = "Ctrl-C";
701 const char interrupt_sequence_break[] = "BREAK";
702 const char interrupt_sequence_break_g[] = "BREAK-g";
703 static const char *interrupt_sequence_modes[] =
704   {
705     interrupt_sequence_control_c,
706     interrupt_sequence_break,
707     interrupt_sequence_break_g,
708     NULL
709   };
710 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711 
712 static void
713 show_interrupt_sequence (struct ui_file *file, int from_tty,
714 			 struct cmd_list_element *c,
715 			 const char *value)
716 {
717   if (interrupt_sequence_mode == interrupt_sequence_control_c)
718     fprintf_filtered (file,
719 		      _("Send the ASCII ETX character (Ctrl-c) "
720 			"to the remote target to interrupt the "
721 			"execution of the program.\n"));
722   else if (interrupt_sequence_mode == interrupt_sequence_break)
723     fprintf_filtered (file,
724 		      _("send a break signal to the remote target "
725 			"to interrupt the execution of the program.\n"));
726   else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727     fprintf_filtered (file,
728 		      _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 			"the remote target to interrupt the execution "
730 			"of Linux kernel.\n"));
731   else
732     internal_error (__FILE__, __LINE__,
733 		    _("Invalid value for interrupt_sequence_mode: %s."),
734 		    interrupt_sequence_mode);
735 }
736 
737 /* This boolean variable specifies whether interrupt_sequence is sent
738    to the remote target when gdb connects to it.
739    This is mostly needed when you debug the Linux kernel: The Linux kernel
740    expects BREAK g which is Magic SysRq g for connecting gdb.  */
741 static int interrupt_on_connect = 0;
742 
743 /* This variable is used to implement the "set/show remotebreak" commands.
744    Since these commands are now deprecated in favor of "set/show remote
745    interrupt-sequence", it no longer has any effect on the code.  */
746 static int remote_break;
747 
748 static void
749 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750 {
751   if (remote_break)
752     interrupt_sequence_mode = interrupt_sequence_break;
753   else
754     interrupt_sequence_mode = interrupt_sequence_control_c;
755 }
756 
757 static void
758 show_remotebreak (struct ui_file *file, int from_tty,
759 		  struct cmd_list_element *c,
760 		  const char *value)
761 {
762 }
763 
764 /* Descriptor for I/O to remote machine.  Initialize it to NULL so that
765    remote_open knows that we don't have a file open when the program
766    starts.  */
767 static struct serial *remote_desc = NULL;
768 
769 /* This variable sets the number of bits in an address that are to be
770    sent in a memory ("M" or "m") packet.  Normally, after stripping
771    leading zeros, the entire address would be sent. This variable
772    restricts the address to REMOTE_ADDRESS_SIZE bits.  HISTORY: The
773    initial implementation of remote.c restricted the address sent in
774    memory packets to ``host::sizeof long'' bytes - (typically 32
775    bits).  Consequently, for 64 bit targets, the upper 32 bits of an
776    address was never sent.  Since fixing this bug may cause a break in
777    some remote targets this variable is principly provided to
778    facilitate backward compatibility.  */
779 
780 static int remote_address_size;
781 
782 /* Temporary to track who currently owns the terminal.  See
783    remote_terminal_* for more details.  */
784 
785 static int remote_async_terminal_ours_p;
786 
787 /* The executable file to use for "run" on the remote side.  */
788 
789 static char *remote_exec_file = "";
790 
791 
792 /* User configurable variables for the number of characters in a
793    memory read/write packet.  MIN (rsa->remote_packet_size,
794    rsa->sizeof_g_packet) is the default.  Some targets need smaller
795    values (fifo overruns, et.al.) and some users need larger values
796    (speed up transfers).  The variables ``preferred_*'' (the user
797    request), ``current_*'' (what was actually set) and ``forced_*''
798    (Positive - a soft limit, negative - a hard limit).  */
799 
800 struct memory_packet_config
801 {
802   char *name;
803   long size;
804   int fixed_p;
805 };
806 
807 /* Compute the current size of a read/write packet.  Since this makes
808    use of ``actual_register_packet_size'' the computation is dynamic.  */
809 
810 static long
811 get_memory_packet_size (struct memory_packet_config *config)
812 {
813   struct remote_state *rs = get_remote_state ();
814   struct remote_arch_state *rsa = get_remote_arch_state ();
815 
816   /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817      law?) that some hosts don't cope very well with large alloca()
818      calls.  Eventually the alloca() code will be replaced by calls to
819      xmalloc() and make_cleanups() allowing this restriction to either
820      be lifted or removed.  */
821 #ifndef MAX_REMOTE_PACKET_SIZE
822 #define MAX_REMOTE_PACKET_SIZE 16384
823 #endif
824   /* NOTE: 20 ensures we can write at least one byte.  */
825 #ifndef MIN_REMOTE_PACKET_SIZE
826 #define MIN_REMOTE_PACKET_SIZE 20
827 #endif
828   long what_they_get;
829   if (config->fixed_p)
830     {
831       if (config->size <= 0)
832 	what_they_get = MAX_REMOTE_PACKET_SIZE;
833       else
834 	what_they_get = config->size;
835     }
836   else
837     {
838       what_they_get = get_remote_packet_size ();
839       /* Limit the packet to the size specified by the user.  */
840       if (config->size > 0
841 	  && what_they_get > config->size)
842 	what_they_get = config->size;
843 
844       /* Limit it to the size of the targets ``g'' response unless we have
845 	 permission from the stub to use a larger packet size.  */
846       if (rs->explicit_packet_size == 0
847 	  && rsa->actual_register_packet_size > 0
848 	  && what_they_get > rsa->actual_register_packet_size)
849 	what_they_get = rsa->actual_register_packet_size;
850     }
851   if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852     what_they_get = MAX_REMOTE_PACKET_SIZE;
853   if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854     what_they_get = MIN_REMOTE_PACKET_SIZE;
855 
856   /* Make sure there is room in the global buffer for this packet
857      (including its trailing NUL byte).  */
858   if (rs->buf_size < what_they_get + 1)
859     {
860       rs->buf_size = 2 * what_they_get;
861       rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862     }
863 
864   return what_they_get;
865 }
866 
867 /* Update the size of a read/write packet. If they user wants
868    something really big then do a sanity check.  */
869 
870 static void
871 set_memory_packet_size (char *args, struct memory_packet_config *config)
872 {
873   int fixed_p = config->fixed_p;
874   long size = config->size;
875 
876   if (args == NULL)
877     error (_("Argument required (integer, `fixed' or `limited')."));
878   else if (strcmp (args, "hard") == 0
879       || strcmp (args, "fixed") == 0)
880     fixed_p = 1;
881   else if (strcmp (args, "soft") == 0
882 	   || strcmp (args, "limit") == 0)
883     fixed_p = 0;
884   else
885     {
886       char *end;
887 
888       size = strtoul (args, &end, 0);
889       if (args == end)
890 	error (_("Invalid %s (bad syntax)."), config->name);
891 #if 0
892       /* Instead of explicitly capping the size of a packet to
893          MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894          instead allowed to set the size to something arbitrarily
895          large.  */
896       if (size > MAX_REMOTE_PACKET_SIZE)
897 	error (_("Invalid %s (too large)."), config->name);
898 #endif
899     }
900   /* Extra checks?  */
901   if (fixed_p && !config->fixed_p)
902     {
903       if (! query (_("The target may not be able to correctly handle a %s\n"
904 		   "of %ld bytes. Change the packet size? "),
905 		   config->name, size))
906 	error (_("Packet size not changed."));
907     }
908   /* Update the config.  */
909   config->fixed_p = fixed_p;
910   config->size = size;
911 }
912 
913 static void
914 show_memory_packet_size (struct memory_packet_config *config)
915 {
916   printf_filtered (_("The %s is %ld. "), config->name, config->size);
917   if (config->fixed_p)
918     printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 		     get_memory_packet_size (config));
920   else
921     printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 		     get_memory_packet_size (config));
923 }
924 
925 static struct memory_packet_config memory_write_packet_config =
926 {
927   "memory-write-packet-size",
928 };
929 
930 static void
931 set_memory_write_packet_size (char *args, int from_tty)
932 {
933   set_memory_packet_size (args, &memory_write_packet_config);
934 }
935 
936 static void
937 show_memory_write_packet_size (char *args, int from_tty)
938 {
939   show_memory_packet_size (&memory_write_packet_config);
940 }
941 
942 static long
943 get_memory_write_packet_size (void)
944 {
945   return get_memory_packet_size (&memory_write_packet_config);
946 }
947 
948 static struct memory_packet_config memory_read_packet_config =
949 {
950   "memory-read-packet-size",
951 };
952 
953 static void
954 set_memory_read_packet_size (char *args, int from_tty)
955 {
956   set_memory_packet_size (args, &memory_read_packet_config);
957 }
958 
959 static void
960 show_memory_read_packet_size (char *args, int from_tty)
961 {
962   show_memory_packet_size (&memory_read_packet_config);
963 }
964 
965 static long
966 get_memory_read_packet_size (void)
967 {
968   long size = get_memory_packet_size (&memory_read_packet_config);
969 
970   /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971      extra buffer size argument before the memory read size can be
972      increased beyond this.  */
973   if (size > get_remote_packet_size ())
974     size = get_remote_packet_size ();
975   return size;
976 }
977 
978 
979 /* Generic configuration support for packets the stub optionally
980    supports. Allows the user to specify the use of the packet as well
981    as allowing GDB to auto-detect support in the remote stub.  */
982 
983 enum packet_support
984   {
985     PACKET_SUPPORT_UNKNOWN = 0,
986     PACKET_ENABLE,
987     PACKET_DISABLE
988   };
989 
990 struct packet_config
991   {
992     const char *name;
993     const char *title;
994     enum auto_boolean detect;
995     enum packet_support support;
996   };
997 
998 /* Analyze a packet's return value and update the packet config
999    accordingly.  */
1000 
1001 enum packet_result
1002 {
1003   PACKET_ERROR,
1004   PACKET_OK,
1005   PACKET_UNKNOWN
1006 };
1007 
1008 static void
1009 update_packet_config (struct packet_config *config)
1010 {
1011   switch (config->detect)
1012     {
1013     case AUTO_BOOLEAN_TRUE:
1014       config->support = PACKET_ENABLE;
1015       break;
1016     case AUTO_BOOLEAN_FALSE:
1017       config->support = PACKET_DISABLE;
1018       break;
1019     case AUTO_BOOLEAN_AUTO:
1020       config->support = PACKET_SUPPORT_UNKNOWN;
1021       break;
1022     }
1023 }
1024 
1025 static void
1026 show_packet_config_cmd (struct packet_config *config)
1027 {
1028   char *support = "internal-error";
1029 
1030   switch (config->support)
1031     {
1032     case PACKET_ENABLE:
1033       support = "enabled";
1034       break;
1035     case PACKET_DISABLE:
1036       support = "disabled";
1037       break;
1038     case PACKET_SUPPORT_UNKNOWN:
1039       support = "unknown";
1040       break;
1041     }
1042   switch (config->detect)
1043     {
1044     case AUTO_BOOLEAN_AUTO:
1045       printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
1046 		       config->name, support);
1047       break;
1048     case AUTO_BOOLEAN_TRUE:
1049     case AUTO_BOOLEAN_FALSE:
1050       printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1051 		       config->name, support);
1052       break;
1053     }
1054 }
1055 
1056 static void
1057 add_packet_config_cmd (struct packet_config *config, const char *name,
1058 		       const char *title, int legacy)
1059 {
1060   char *set_doc;
1061   char *show_doc;
1062   char *cmd_name;
1063 
1064   config->name = name;
1065   config->title = title;
1066   config->detect = AUTO_BOOLEAN_AUTO;
1067   config->support = PACKET_SUPPORT_UNKNOWN;
1068   set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1069 			name, title);
1070   show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1071 			 name, title);
1072   /* set/show TITLE-packet {auto,on,off} */
1073   cmd_name = xstrprintf ("%s-packet", title);
1074   add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1075 				&config->detect, set_doc, show_doc, NULL, /* help_doc */
1076 				set_remote_protocol_packet_cmd,
1077 				show_remote_protocol_packet_cmd,
1078 				&remote_set_cmdlist, &remote_show_cmdlist);
1079   /* The command code copies the documentation strings.  */
1080   xfree (set_doc);
1081   xfree (show_doc);
1082   /* set/show remote NAME-packet {auto,on,off} -- legacy.  */
1083   if (legacy)
1084     {
1085       char *legacy_name;
1086 
1087       legacy_name = xstrprintf ("%s-packet", name);
1088       add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1089 		     &remote_set_cmdlist);
1090       add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1091 		     &remote_show_cmdlist);
1092     }
1093 }
1094 
1095 static enum packet_result
1096 packet_check_result (const char *buf)
1097 {
1098   if (buf[0] != '\0')
1099     {
1100       /* The stub recognized the packet request.  Check that the
1101 	 operation succeeded.  */
1102       if (buf[0] == 'E'
1103 	  && isxdigit (buf[1]) && isxdigit (buf[2])
1104 	  && buf[3] == '\0')
1105 	/* "Enn"  - definitly an error.  */
1106 	return PACKET_ERROR;
1107 
1108       /* Always treat "E." as an error.  This will be used for
1109 	 more verbose error messages, such as E.memtypes.  */
1110       if (buf[0] == 'E' && buf[1] == '.')
1111 	return PACKET_ERROR;
1112 
1113       /* The packet may or may not be OK.  Just assume it is.  */
1114       return PACKET_OK;
1115     }
1116   else
1117     /* The stub does not support the packet.  */
1118     return PACKET_UNKNOWN;
1119 }
1120 
1121 static enum packet_result
1122 packet_ok (const char *buf, struct packet_config *config)
1123 {
1124   enum packet_result result;
1125 
1126   result = packet_check_result (buf);
1127   switch (result)
1128     {
1129     case PACKET_OK:
1130     case PACKET_ERROR:
1131       /* The stub recognized the packet request.  */
1132       switch (config->support)
1133 	{
1134 	case PACKET_SUPPORT_UNKNOWN:
1135 	  if (remote_debug)
1136 	    fprintf_unfiltered (gdb_stdlog,
1137 				    "Packet %s (%s) is supported\n",
1138 				    config->name, config->title);
1139 	  config->support = PACKET_ENABLE;
1140 	  break;
1141 	case PACKET_DISABLE:
1142 	  internal_error (__FILE__, __LINE__,
1143 			  _("packet_ok: attempt to use a disabled packet"));
1144 	  break;
1145 	case PACKET_ENABLE:
1146 	  break;
1147 	}
1148       break;
1149     case PACKET_UNKNOWN:
1150       /* The stub does not support the packet.  */
1151       switch (config->support)
1152 	{
1153 	case PACKET_ENABLE:
1154 	  if (config->detect == AUTO_BOOLEAN_AUTO)
1155 	    /* If the stub previously indicated that the packet was
1156 	       supported then there is a protocol error..  */
1157 	    error (_("Protocol error: %s (%s) conflicting enabled responses."),
1158 		   config->name, config->title);
1159 	  else
1160 	    /* The user set it wrong.  */
1161 	    error (_("Enabled packet %s (%s) not recognized by stub"),
1162 		   config->name, config->title);
1163 	  break;
1164 	case PACKET_SUPPORT_UNKNOWN:
1165 	  if (remote_debug)
1166 	    fprintf_unfiltered (gdb_stdlog,
1167 				"Packet %s (%s) is NOT supported\n",
1168 				config->name, config->title);
1169 	  config->support = PACKET_DISABLE;
1170 	  break;
1171 	case PACKET_DISABLE:
1172 	  break;
1173 	}
1174       break;
1175     }
1176 
1177   return result;
1178 }
1179 
1180 enum {
1181   PACKET_vCont = 0,
1182   PACKET_X,
1183   PACKET_qSymbol,
1184   PACKET_P,
1185   PACKET_p,
1186   PACKET_Z0,
1187   PACKET_Z1,
1188   PACKET_Z2,
1189   PACKET_Z3,
1190   PACKET_Z4,
1191   PACKET_vFile_open,
1192   PACKET_vFile_pread,
1193   PACKET_vFile_pwrite,
1194   PACKET_vFile_close,
1195   PACKET_vFile_unlink,
1196   PACKET_qXfer_auxv,
1197   PACKET_qXfer_features,
1198   PACKET_qXfer_libraries,
1199   PACKET_qXfer_memory_map,
1200   PACKET_qXfer_spu_read,
1201   PACKET_qXfer_spu_write,
1202   PACKET_qXfer_osdata,
1203   PACKET_qXfer_threads,
1204   PACKET_qXfer_statictrace_read,
1205   PACKET_qGetTIBAddr,
1206   PACKET_qGetTLSAddr,
1207   PACKET_qSupported,
1208   PACKET_QPassSignals,
1209   PACKET_qSearch_memory,
1210   PACKET_vAttach,
1211   PACKET_vRun,
1212   PACKET_QStartNoAckMode,
1213   PACKET_vKill,
1214   PACKET_qXfer_siginfo_read,
1215   PACKET_qXfer_siginfo_write,
1216   PACKET_qAttached,
1217   PACKET_ConditionalTracepoints,
1218   PACKET_FastTracepoints,
1219   PACKET_StaticTracepoints,
1220   PACKET_bc,
1221   PACKET_bs,
1222   PACKET_TracepointSource,
1223   PACKET_QAllow,
1224   PACKET_MAX
1225 };
1226 
1227 static struct packet_config remote_protocol_packets[PACKET_MAX];
1228 
1229 static void
1230 set_remote_protocol_packet_cmd (char *args, int from_tty,
1231 				struct cmd_list_element *c)
1232 {
1233   struct packet_config *packet;
1234 
1235   for (packet = remote_protocol_packets;
1236        packet < &remote_protocol_packets[PACKET_MAX];
1237        packet++)
1238     {
1239       if (&packet->detect == c->var)
1240 	{
1241 	  update_packet_config (packet);
1242 	  return;
1243 	}
1244     }
1245   internal_error (__FILE__, __LINE__, "Could not find config for %s",
1246 		  c->name);
1247 }
1248 
1249 static void
1250 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1251 				 struct cmd_list_element *c,
1252 				 const char *value)
1253 {
1254   struct packet_config *packet;
1255 
1256   for (packet = remote_protocol_packets;
1257        packet < &remote_protocol_packets[PACKET_MAX];
1258        packet++)
1259     {
1260       if (&packet->detect == c->var)
1261 	{
1262 	  show_packet_config_cmd (packet);
1263 	  return;
1264 	}
1265     }
1266   internal_error (__FILE__, __LINE__, "Could not find config for %s",
1267 		  c->name);
1268 }
1269 
1270 /* Should we try one of the 'Z' requests?  */
1271 
1272 enum Z_packet_type
1273 {
1274   Z_PACKET_SOFTWARE_BP,
1275   Z_PACKET_HARDWARE_BP,
1276   Z_PACKET_WRITE_WP,
1277   Z_PACKET_READ_WP,
1278   Z_PACKET_ACCESS_WP,
1279   NR_Z_PACKET_TYPES
1280 };
1281 
1282 /* For compatibility with older distributions.  Provide a ``set remote
1283    Z-packet ...'' command that updates all the Z packet types.  */
1284 
1285 static enum auto_boolean remote_Z_packet_detect;
1286 
1287 static void
1288 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1289 				  struct cmd_list_element *c)
1290 {
1291   int i;
1292 
1293   for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1294     {
1295       remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1296       update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1297     }
1298 }
1299 
1300 static void
1301 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1302 				   struct cmd_list_element *c,
1303 				   const char *value)
1304 {
1305   int i;
1306 
1307   for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1308     {
1309       show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1310     }
1311 }
1312 
1313 /* Should we try the 'ThreadInfo' query packet?
1314 
1315    This variable (NOT available to the user: auto-detect only!)
1316    determines whether GDB will use the new, simpler "ThreadInfo"
1317    query or the older, more complex syntax for thread queries.
1318    This is an auto-detect variable (set to true at each connect,
1319    and set to false when the target fails to recognize it).  */
1320 
1321 static int use_threadinfo_query;
1322 static int use_threadextra_query;
1323 
1324 /* Tokens for use by the asynchronous signal handlers for SIGINT.  */
1325 static struct async_signal_handler *sigint_remote_twice_token;
1326 static struct async_signal_handler *sigint_remote_token;
1327 
1328 
1329 /* Asynchronous signal handle registered as event loop source for
1330    when we have pending events ready to be passed to the core.  */
1331 
1332 static struct async_event_handler *remote_async_inferior_event_token;
1333 
1334 /* Asynchronous signal handle registered as event loop source for when
1335    the remote sent us a %Stop notification.  The registered callback
1336    will do a vStopped sequence to pull the rest of the events out of
1337    the remote side into our event queue.  */
1338 
1339 static struct async_event_handler *remote_async_get_pending_events_token;
1340 
1341 
1342 static ptid_t magic_null_ptid;
1343 static ptid_t not_sent_ptid;
1344 static ptid_t any_thread_ptid;
1345 
1346 /* These are the threads which we last sent to the remote system.  The
1347    TID member will be -1 for all or -2 for not sent yet.  */
1348 
1349 static ptid_t general_thread;
1350 static ptid_t continue_thread;
1351 
1352 /* Find out if the stub attached to PID (and hence GDB should offer to
1353    detach instead of killing it when bailing out).  */
1354 
1355 static int
1356 remote_query_attached (int pid)
1357 {
1358   struct remote_state *rs = get_remote_state ();
1359 
1360   if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1361     return 0;
1362 
1363   if (remote_multi_process_p (rs))
1364     sprintf (rs->buf, "qAttached:%x", pid);
1365   else
1366     sprintf (rs->buf, "qAttached");
1367 
1368   putpkt (rs->buf);
1369   getpkt (&rs->buf, &rs->buf_size, 0);
1370 
1371   switch (packet_ok (rs->buf,
1372 		     &remote_protocol_packets[PACKET_qAttached]))
1373     {
1374     case PACKET_OK:
1375       if (strcmp (rs->buf, "1") == 0)
1376 	return 1;
1377       break;
1378     case PACKET_ERROR:
1379       warning (_("Remote failure reply: %s"), rs->buf);
1380       break;
1381     case PACKET_UNKNOWN:
1382       break;
1383     }
1384 
1385   return 0;
1386 }
1387 
1388 /* Add PID to GDB's inferior table.  Since we can be connected to a
1389    remote system before before knowing about any inferior, mark the
1390    target with execution when we find the first inferior.  If ATTACHED
1391    is 1, then we had just attached to this inferior.  If it is 0, then
1392    we just created this inferior.  If it is -1, then try querying the
1393    remote stub to find out if it had attached to the inferior or
1394    not.  */
1395 
1396 static struct inferior *
1397 remote_add_inferior (int pid, int attached)
1398 {
1399   struct inferior *inf;
1400 
1401   /* Check whether this process we're learning about is to be
1402      considered attached, or if is to be considered to have been
1403      spawned by the stub.  */
1404   if (attached == -1)
1405     attached = remote_query_attached (pid);
1406 
1407   if (gdbarch_has_global_solist (target_gdbarch))
1408     {
1409       /* If the target shares code across all inferiors, then every
1410 	 attach adds a new inferior.  */
1411       inf = add_inferior (pid);
1412 
1413       /* ... and every inferior is bound to the same program space.
1414 	 However, each inferior may still have its own address
1415 	 space.  */
1416       inf->aspace = maybe_new_address_space ();
1417       inf->pspace = current_program_space;
1418     }
1419   else
1420     {
1421       /* In the traditional debugging scenario, there's a 1-1 match
1422 	 between program/address spaces.  We simply bind the inferior
1423 	 to the program space's address space.  */
1424       inf = current_inferior ();
1425       inferior_appeared (inf, pid);
1426     }
1427 
1428   inf->attach_flag = attached;
1429 
1430   return inf;
1431 }
1432 
1433 /* Add thread PTID to GDB's thread list.  Tag it as executing/running
1434    according to RUNNING.  */
1435 
1436 static void
1437 remote_add_thread (ptid_t ptid, int running)
1438 {
1439   add_thread (ptid);
1440 
1441   set_executing (ptid, running);
1442   set_running (ptid, running);
1443 }
1444 
1445 /* Come here when we learn about a thread id from the remote target.
1446    It may be the first time we hear about such thread, so take the
1447    opportunity to add it to GDB's thread list.  In case this is the
1448    first time we're noticing its corresponding inferior, add it to
1449    GDB's inferior list as well.  */
1450 
1451 static void
1452 remote_notice_new_inferior (ptid_t currthread, int running)
1453 {
1454   /* If this is a new thread, add it to GDB's thread list.
1455      If we leave it up to WFI to do this, bad things will happen.  */
1456 
1457   if (in_thread_list (currthread) && is_exited (currthread))
1458     {
1459       /* We're seeing an event on a thread id we knew had exited.
1460 	 This has to be a new thread reusing the old id.  Add it.  */
1461       remote_add_thread (currthread, running);
1462       return;
1463     }
1464 
1465   if (!in_thread_list (currthread))
1466     {
1467       struct inferior *inf = NULL;
1468       int pid = ptid_get_pid (currthread);
1469 
1470       if (ptid_is_pid (inferior_ptid)
1471 	  && pid == ptid_get_pid (inferior_ptid))
1472 	{
1473 	  /* inferior_ptid has no thread member yet.  This can happen
1474 	     with the vAttach -> remote_wait,"TAAthread:" path if the
1475 	     stub doesn't support qC.  This is the first stop reported
1476 	     after an attach, so this is the main thread.  Update the
1477 	     ptid in the thread list.  */
1478 	  if (in_thread_list (pid_to_ptid (pid)))
1479 	    thread_change_ptid (inferior_ptid, currthread);
1480 	  else
1481 	    {
1482 	      remote_add_thread (currthread, running);
1483 	      inferior_ptid = currthread;
1484 	    }
1485 	  return;
1486 	}
1487 
1488       if (ptid_equal (magic_null_ptid, inferior_ptid))
1489 	{
1490 	  /* inferior_ptid is not set yet.  This can happen with the
1491 	     vRun -> remote_wait,"TAAthread:" path if the stub
1492 	     doesn't support qC.  This is the first stop reported
1493 	     after an attach, so this is the main thread.  Update the
1494 	     ptid in the thread list.  */
1495 	  thread_change_ptid (inferior_ptid, currthread);
1496 	  return;
1497 	}
1498 
1499       /* When connecting to a target remote, or to a target
1500 	 extended-remote which already was debugging an inferior, we
1501 	 may not know about it yet.  Add it before adding its child
1502 	 thread, so notifications are emitted in a sensible order.  */
1503       if (!in_inferior_list (ptid_get_pid (currthread)))
1504 	inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1505 
1506       /* This is really a new thread.  Add it.  */
1507       remote_add_thread (currthread, running);
1508 
1509       /* If we found a new inferior, let the common code do whatever
1510 	 it needs to with it (e.g., read shared libraries, insert
1511 	 breakpoints).  */
1512       if (inf != NULL)
1513 	notice_new_inferior (currthread, running, 0);
1514     }
1515 }
1516 
1517 /* Return the private thread data, creating it if necessary.  */
1518 
1519 struct private_thread_info *
1520 demand_private_info (ptid_t ptid)
1521 {
1522   struct thread_info *info = find_thread_ptid (ptid);
1523 
1524   gdb_assert (info);
1525 
1526   if (!info->private)
1527     {
1528       info->private = xmalloc (sizeof (*(info->private)));
1529       info->private_dtor = free_private_thread_info;
1530       info->private->core = -1;
1531       info->private->extra = 0;
1532     }
1533 
1534   return info->private;
1535 }
1536 
1537 /* Call this function as a result of
1538    1) A halt indication (T packet) containing a thread id
1539    2) A direct query of currthread
1540    3) Successful execution of set thread
1541  */
1542 
1543 static void
1544 record_currthread (ptid_t currthread)
1545 {
1546   general_thread = currthread;
1547 }
1548 
1549 static char *last_pass_packet;
1550 
1551 /* If 'QPassSignals' is supported, tell the remote stub what signals
1552    it can simply pass through to the inferior without reporting.  */
1553 
1554 static void
1555 remote_pass_signals (void)
1556 {
1557   if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1558     {
1559       char *pass_packet, *p;
1560       int numsigs = (int) TARGET_SIGNAL_LAST;
1561       int count = 0, i;
1562 
1563       gdb_assert (numsigs < 256);
1564       for (i = 0; i < numsigs; i++)
1565 	{
1566 	  if (signal_stop_state (i) == 0
1567 	      && signal_print_state (i) == 0
1568 	      && signal_pass_state (i) == 1)
1569 	    count++;
1570 	}
1571       pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1572       strcpy (pass_packet, "QPassSignals:");
1573       p = pass_packet + strlen (pass_packet);
1574       for (i = 0; i < numsigs; i++)
1575 	{
1576 	  if (signal_stop_state (i) == 0
1577 	      && signal_print_state (i) == 0
1578 	      && signal_pass_state (i) == 1)
1579 	    {
1580 	      if (i >= 16)
1581 		*p++ = tohex (i >> 4);
1582 	      *p++ = tohex (i & 15);
1583 	      if (count)
1584 		*p++ = ';';
1585 	      else
1586 		break;
1587 	      count--;
1588 	    }
1589 	}
1590       *p = 0;
1591       if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1592 	{
1593 	  struct remote_state *rs = get_remote_state ();
1594 	  char *buf = rs->buf;
1595 
1596 	  putpkt (pass_packet);
1597 	  getpkt (&rs->buf, &rs->buf_size, 0);
1598 	  packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1599 	  if (last_pass_packet)
1600 	    xfree (last_pass_packet);
1601 	  last_pass_packet = pass_packet;
1602 	}
1603       else
1604 	xfree (pass_packet);
1605     }
1606 }
1607 
1608 static void
1609 remote_notice_signals (ptid_t ptid)
1610 {
1611   /* Update the remote on signals to silently pass, if they've
1612      changed.  */
1613   remote_pass_signals ();
1614 }
1615 
1616 /* If PTID is MAGIC_NULL_PTID, don't set any thread.  If PTID is
1617    MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1618    thread.  If GEN is set, set the general thread, if not, then set
1619    the step/continue thread.  */
1620 static void
1621 set_thread (struct ptid ptid, int gen)
1622 {
1623   struct remote_state *rs = get_remote_state ();
1624   ptid_t state = gen ? general_thread : continue_thread;
1625   char *buf = rs->buf;
1626   char *endbuf = rs->buf + get_remote_packet_size ();
1627 
1628   if (ptid_equal (state, ptid))
1629     return;
1630 
1631   *buf++ = 'H';
1632   *buf++ = gen ? 'g' : 'c';
1633   if (ptid_equal (ptid, magic_null_ptid))
1634     xsnprintf (buf, endbuf - buf, "0");
1635   else if (ptid_equal (ptid, any_thread_ptid))
1636     xsnprintf (buf, endbuf - buf, "0");
1637   else if (ptid_equal (ptid, minus_one_ptid))
1638     xsnprintf (buf, endbuf - buf, "-1");
1639   else
1640     write_ptid (buf, endbuf, ptid);
1641   putpkt (rs->buf);
1642   getpkt (&rs->buf, &rs->buf_size, 0);
1643   if (gen)
1644     general_thread = ptid;
1645   else
1646     continue_thread = ptid;
1647 }
1648 
1649 static void
1650 set_general_thread (struct ptid ptid)
1651 {
1652   set_thread (ptid, 1);
1653 }
1654 
1655 static void
1656 set_continue_thread (struct ptid ptid)
1657 {
1658   set_thread (ptid, 0);
1659 }
1660 
1661 /* Change the remote current process.  Which thread within the process
1662    ends up selected isn't important, as long as it is the same process
1663    as what INFERIOR_PTID points to.
1664 
1665    This comes from that fact that there is no explicit notion of
1666    "selected process" in the protocol.  The selected process for
1667    general operations is the process the selected general thread
1668    belongs to.  */
1669 
1670 static void
1671 set_general_process (void)
1672 {
1673   struct remote_state *rs = get_remote_state ();
1674 
1675   /* If the remote can't handle multiple processes, don't bother.  */
1676   if (!remote_multi_process_p (rs))
1677     return;
1678 
1679   /* We only need to change the remote current thread if it's pointing
1680      at some other process.  */
1681   if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1682     set_general_thread (inferior_ptid);
1683 }
1684 
1685 
1686 /*  Return nonzero if the thread PTID is still alive on the remote
1687     system.  */
1688 
1689 static int
1690 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1691 {
1692   struct remote_state *rs = get_remote_state ();
1693   char *p, *endp;
1694 
1695   if (ptid_equal (ptid, magic_null_ptid))
1696     /* The main thread is always alive.  */
1697     return 1;
1698 
1699   if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1700     /* The main thread is always alive.  This can happen after a
1701        vAttach, if the remote side doesn't support
1702        multi-threading.  */
1703     return 1;
1704 
1705   p = rs->buf;
1706   endp = rs->buf + get_remote_packet_size ();
1707 
1708   *p++ = 'T';
1709   write_ptid (p, endp, ptid);
1710 
1711   putpkt (rs->buf);
1712   getpkt (&rs->buf, &rs->buf_size, 0);
1713   return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1714 }
1715 
1716 /* About these extended threadlist and threadinfo packets.  They are
1717    variable length packets but, the fields within them are often fixed
1718    length.  They are redundent enough to send over UDP as is the
1719    remote protocol in general.  There is a matching unit test module
1720    in libstub.  */
1721 
1722 #define OPAQUETHREADBYTES 8
1723 
1724 /* a 64 bit opaque identifier */
1725 typedef unsigned char threadref[OPAQUETHREADBYTES];
1726 
1727 /* WARNING: This threadref data structure comes from the remote O.S.,
1728    libstub protocol encoding, and remote.c. it is not particularly
1729    changable.  */
1730 
1731 /* Right now, the internal structure is int. We want it to be bigger.
1732    Plan to fix this.
1733  */
1734 
1735 typedef int gdb_threadref;	/* Internal GDB thread reference.  */
1736 
1737 /* gdb_ext_thread_info is an internal GDB data structure which is
1738    equivalent to the reply of the remote threadinfo packet.  */
1739 
1740 struct gdb_ext_thread_info
1741   {
1742     threadref threadid;		/* External form of thread reference.  */
1743     int active;			/* Has state interesting to GDB?
1744 				   regs, stack.  */
1745     char display[256];		/* Brief state display, name,
1746 				   blocked/suspended.  */
1747     char shortname[32];		/* To be used to name threads.  */
1748     char more_display[256];	/* Long info, statistics, queue depth,
1749 				   whatever.  */
1750   };
1751 
1752 /* The volume of remote transfers can be limited by submitting
1753    a mask containing bits specifying the desired information.
1754    Use a union of these values as the 'selection' parameter to
1755    get_thread_info. FIXME: Make these TAG names more thread specific.
1756  */
1757 
1758 #define TAG_THREADID 1
1759 #define TAG_EXISTS 2
1760 #define TAG_DISPLAY 4
1761 #define TAG_THREADNAME 8
1762 #define TAG_MOREDISPLAY 16
1763 
1764 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1765 
1766 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1767 
1768 static char *unpack_nibble (char *buf, int *val);
1769 
1770 static char *pack_nibble (char *buf, int nibble);
1771 
1772 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1773 
1774 static char *unpack_byte (char *buf, int *value);
1775 
1776 static char *pack_int (char *buf, int value);
1777 
1778 static char *unpack_int (char *buf, int *value);
1779 
1780 static char *unpack_string (char *src, char *dest, int length);
1781 
1782 static char *pack_threadid (char *pkt, threadref *id);
1783 
1784 static char *unpack_threadid (char *inbuf, threadref *id);
1785 
1786 void int_to_threadref (threadref *id, int value);
1787 
1788 static int threadref_to_int (threadref *ref);
1789 
1790 static void copy_threadref (threadref *dest, threadref *src);
1791 
1792 static int threadmatch (threadref *dest, threadref *src);
1793 
1794 static char *pack_threadinfo_request (char *pkt, int mode,
1795 				      threadref *id);
1796 
1797 static int remote_unpack_thread_info_response (char *pkt,
1798 					       threadref *expectedref,
1799 					       struct gdb_ext_thread_info
1800 					       *info);
1801 
1802 
1803 static int remote_get_threadinfo (threadref *threadid,
1804 				  int fieldset,	/*TAG mask */
1805 				  struct gdb_ext_thread_info *info);
1806 
1807 static char *pack_threadlist_request (char *pkt, int startflag,
1808 				      int threadcount,
1809 				      threadref *nextthread);
1810 
1811 static int parse_threadlist_response (char *pkt,
1812 				      int result_limit,
1813 				      threadref *original_echo,
1814 				      threadref *resultlist,
1815 				      int *doneflag);
1816 
1817 static int remote_get_threadlist (int startflag,
1818 				  threadref *nextthread,
1819 				  int result_limit,
1820 				  int *done,
1821 				  int *result_count,
1822 				  threadref *threadlist);
1823 
1824 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1825 
1826 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1827 				       void *context, int looplimit);
1828 
1829 static int remote_newthread_step (threadref *ref, void *context);
1830 
1831 
1832 /* Write a PTID to BUF.  ENDBUF points to one-passed-the-end of the
1833    buffer we're allowed to write to.  Returns
1834    BUF+CHARACTERS_WRITTEN.  */
1835 
1836 static char *
1837 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1838 {
1839   int pid, tid;
1840   struct remote_state *rs = get_remote_state ();
1841 
1842   if (remote_multi_process_p (rs))
1843     {
1844       pid = ptid_get_pid (ptid);
1845       if (pid < 0)
1846 	buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1847       else
1848 	buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1849     }
1850   tid = ptid_get_tid (ptid);
1851   if (tid < 0)
1852     buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1853   else
1854     buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1855 
1856   return buf;
1857 }
1858 
1859 /* Extract a PTID from BUF.  If non-null, OBUF is set to the to one
1860    passed the last parsed char.  Returns null_ptid on error.  */
1861 
1862 static ptid_t
1863 read_ptid (char *buf, char **obuf)
1864 {
1865   char *p = buf;
1866   char *pp;
1867   ULONGEST pid = 0, tid = 0;
1868 
1869   if (*p == 'p')
1870     {
1871       /* Multi-process ptid.  */
1872       pp = unpack_varlen_hex (p + 1, &pid);
1873       if (*pp != '.')
1874 	error (_("invalid remote ptid: %s\n"), p);
1875 
1876       p = pp;
1877       pp = unpack_varlen_hex (p + 1, &tid);
1878       if (obuf)
1879 	*obuf = pp;
1880       return ptid_build (pid, 0, tid);
1881     }
1882 
1883   /* No multi-process.  Just a tid.  */
1884   pp = unpack_varlen_hex (p, &tid);
1885 
1886   /* Since the stub is not sending a process id, then default to
1887      what's in inferior_ptid, unless it's null at this point.  If so,
1888      then since there's no way to know the pid of the reported
1889      threads, use the magic number.  */
1890   if (ptid_equal (inferior_ptid, null_ptid))
1891     pid = ptid_get_pid (magic_null_ptid);
1892   else
1893     pid = ptid_get_pid (inferior_ptid);
1894 
1895   if (obuf)
1896     *obuf = pp;
1897   return ptid_build (pid, 0, tid);
1898 }
1899 
1900 /* Encode 64 bits in 16 chars of hex.  */
1901 
1902 static const char hexchars[] = "0123456789abcdef";
1903 
1904 static int
1905 ishex (int ch, int *val)
1906 {
1907   if ((ch >= 'a') && (ch <= 'f'))
1908     {
1909       *val = ch - 'a' + 10;
1910       return 1;
1911     }
1912   if ((ch >= 'A') && (ch <= 'F'))
1913     {
1914       *val = ch - 'A' + 10;
1915       return 1;
1916     }
1917   if ((ch >= '0') && (ch <= '9'))
1918     {
1919       *val = ch - '0';
1920       return 1;
1921     }
1922   return 0;
1923 }
1924 
1925 static int
1926 stubhex (int ch)
1927 {
1928   if (ch >= 'a' && ch <= 'f')
1929     return ch - 'a' + 10;
1930   if (ch >= '0' && ch <= '9')
1931     return ch - '0';
1932   if (ch >= 'A' && ch <= 'F')
1933     return ch - 'A' + 10;
1934   return -1;
1935 }
1936 
1937 static int
1938 stub_unpack_int (char *buff, int fieldlength)
1939 {
1940   int nibble;
1941   int retval = 0;
1942 
1943   while (fieldlength)
1944     {
1945       nibble = stubhex (*buff++);
1946       retval |= nibble;
1947       fieldlength--;
1948       if (fieldlength)
1949 	retval = retval << 4;
1950     }
1951   return retval;
1952 }
1953 
1954 char *
1955 unpack_varlen_hex (char *buff,	/* packet to parse */
1956 		   ULONGEST *result)
1957 {
1958   int nibble;
1959   ULONGEST retval = 0;
1960 
1961   while (ishex (*buff, &nibble))
1962     {
1963       buff++;
1964       retval = retval << 4;
1965       retval |= nibble & 0x0f;
1966     }
1967   *result = retval;
1968   return buff;
1969 }
1970 
1971 static char *
1972 unpack_nibble (char *buf, int *val)
1973 {
1974   *val = fromhex (*buf++);
1975   return buf;
1976 }
1977 
1978 static char *
1979 pack_nibble (char *buf, int nibble)
1980 {
1981   *buf++ = hexchars[(nibble & 0x0f)];
1982   return buf;
1983 }
1984 
1985 static char *
1986 pack_hex_byte (char *pkt, int byte)
1987 {
1988   *pkt++ = hexchars[(byte >> 4) & 0xf];
1989   *pkt++ = hexchars[(byte & 0xf)];
1990   return pkt;
1991 }
1992 
1993 static char *
1994 unpack_byte (char *buf, int *value)
1995 {
1996   *value = stub_unpack_int (buf, 2);
1997   return buf + 2;
1998 }
1999 
2000 static char *
2001 pack_int (char *buf, int value)
2002 {
2003   buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2004   buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2005   buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2006   buf = pack_hex_byte (buf, (value & 0xff));
2007   return buf;
2008 }
2009 
2010 static char *
2011 unpack_int (char *buf, int *value)
2012 {
2013   *value = stub_unpack_int (buf, 8);
2014   return buf + 8;
2015 }
2016 
2017 #if 0			/* Currently unused, uncomment when needed.  */
2018 static char *pack_string (char *pkt, char *string);
2019 
2020 static char *
2021 pack_string (char *pkt, char *string)
2022 {
2023   char ch;
2024   int len;
2025 
2026   len = strlen (string);
2027   if (len > 200)
2028     len = 200;		/* Bigger than most GDB packets, junk???  */
2029   pkt = pack_hex_byte (pkt, len);
2030   while (len-- > 0)
2031     {
2032       ch = *string++;
2033       if ((ch == '\0') || (ch == '#'))
2034 	ch = '*';		/* Protect encapsulation.  */
2035       *pkt++ = ch;
2036     }
2037   return pkt;
2038 }
2039 #endif /* 0 (unused) */
2040 
2041 static char *
2042 unpack_string (char *src, char *dest, int length)
2043 {
2044   while (length--)
2045     *dest++ = *src++;
2046   *dest = '\0';
2047   return src;
2048 }
2049 
2050 static char *
2051 pack_threadid (char *pkt, threadref *id)
2052 {
2053   char *limit;
2054   unsigned char *altid;
2055 
2056   altid = (unsigned char *) id;
2057   limit = pkt + BUF_THREAD_ID_SIZE;
2058   while (pkt < limit)
2059     pkt = pack_hex_byte (pkt, *altid++);
2060   return pkt;
2061 }
2062 
2063 
2064 static char *
2065 unpack_threadid (char *inbuf, threadref *id)
2066 {
2067   char *altref;
2068   char *limit = inbuf + BUF_THREAD_ID_SIZE;
2069   int x, y;
2070 
2071   altref = (char *) id;
2072 
2073   while (inbuf < limit)
2074     {
2075       x = stubhex (*inbuf++);
2076       y = stubhex (*inbuf++);
2077       *altref++ = (x << 4) | y;
2078     }
2079   return inbuf;
2080 }
2081 
2082 /* Externally, threadrefs are 64 bits but internally, they are still
2083    ints. This is due to a mismatch of specifications.  We would like
2084    to use 64bit thread references internally.  This is an adapter
2085    function.  */
2086 
2087 void
2088 int_to_threadref (threadref *id, int value)
2089 {
2090   unsigned char *scan;
2091 
2092   scan = (unsigned char *) id;
2093   {
2094     int i = 4;
2095     while (i--)
2096       *scan++ = 0;
2097   }
2098   *scan++ = (value >> 24) & 0xff;
2099   *scan++ = (value >> 16) & 0xff;
2100   *scan++ = (value >> 8) & 0xff;
2101   *scan++ = (value & 0xff);
2102 }
2103 
2104 static int
2105 threadref_to_int (threadref *ref)
2106 {
2107   int i, value = 0;
2108   unsigned char *scan;
2109 
2110   scan = *ref;
2111   scan += 4;
2112   i = 4;
2113   while (i-- > 0)
2114     value = (value << 8) | ((*scan++) & 0xff);
2115   return value;
2116 }
2117 
2118 static void
2119 copy_threadref (threadref *dest, threadref *src)
2120 {
2121   int i;
2122   unsigned char *csrc, *cdest;
2123 
2124   csrc = (unsigned char *) src;
2125   cdest = (unsigned char *) dest;
2126   i = 8;
2127   while (i--)
2128     *cdest++ = *csrc++;
2129 }
2130 
2131 static int
2132 threadmatch (threadref *dest, threadref *src)
2133 {
2134   /* Things are broken right now, so just assume we got a match.  */
2135 #if 0
2136   unsigned char *srcp, *destp;
2137   int i, result;
2138   srcp = (char *) src;
2139   destp = (char *) dest;
2140 
2141   result = 1;
2142   while (i-- > 0)
2143     result &= (*srcp++ == *destp++) ? 1 : 0;
2144   return result;
2145 #endif
2146   return 1;
2147 }
2148 
2149 /*
2150    threadid:1,        # always request threadid
2151    context_exists:2,
2152    display:4,
2153    unique_name:8,
2154    more_display:16
2155  */
2156 
2157 /* Encoding:  'Q':8,'P':8,mask:32,threadid:64 */
2158 
2159 static char *
2160 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2161 {
2162   *pkt++ = 'q';				/* Info Query */
2163   *pkt++ = 'P';				/* process or thread info */
2164   pkt = pack_int (pkt, mode);		/* mode */
2165   pkt = pack_threadid (pkt, id);	/* threadid */
2166   *pkt = '\0';				/* terminate */
2167   return pkt;
2168 }
2169 
2170 /* These values tag the fields in a thread info response packet.  */
2171 /* Tagging the fields allows us to request specific fields and to
2172    add more fields as time goes by.  */
2173 
2174 #define TAG_THREADID 1		/* Echo the thread identifier.  */
2175 #define TAG_EXISTS 2		/* Is this process defined enough to
2176 				   fetch registers and its stack?  */
2177 #define TAG_DISPLAY 4		/* A short thing maybe to put on a window */
2178 #define TAG_THREADNAME 8	/* string, maps 1-to-1 with a thread is.  */
2179 #define TAG_MOREDISPLAY 16	/* Whatever the kernel wants to say about
2180 				   the process.  */
2181 
2182 static int
2183 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2184 				    struct gdb_ext_thread_info *info)
2185 {
2186   struct remote_state *rs = get_remote_state ();
2187   int mask, length;
2188   int tag;
2189   threadref ref;
2190   char *limit = pkt + rs->buf_size; /* Plausible parsing limit.  */
2191   int retval = 1;
2192 
2193   /* info->threadid = 0; FIXME: implement zero_threadref.  */
2194   info->active = 0;
2195   info->display[0] = '\0';
2196   info->shortname[0] = '\0';
2197   info->more_display[0] = '\0';
2198 
2199   /* Assume the characters indicating the packet type have been
2200      stripped.  */
2201   pkt = unpack_int (pkt, &mask);	/* arg mask */
2202   pkt = unpack_threadid (pkt, &ref);
2203 
2204   if (mask == 0)
2205     warning (_("Incomplete response to threadinfo request."));
2206   if (!threadmatch (&ref, expectedref))
2207     {			/* This is an answer to a different request.  */
2208       warning (_("ERROR RMT Thread info mismatch."));
2209       return 0;
2210     }
2211   copy_threadref (&info->threadid, &ref);
2212 
2213   /* Loop on tagged fields , try to bail if somthing goes wrong.  */
2214 
2215   /* Packets are terminated with nulls.  */
2216   while ((pkt < limit) && mask && *pkt)
2217     {
2218       pkt = unpack_int (pkt, &tag);	/* tag */
2219       pkt = unpack_byte (pkt, &length);	/* length */
2220       if (!(tag & mask))		/* Tags out of synch with mask.  */
2221 	{
2222 	  warning (_("ERROR RMT: threadinfo tag mismatch."));
2223 	  retval = 0;
2224 	  break;
2225 	}
2226       if (tag == TAG_THREADID)
2227 	{
2228 	  if (length != 16)
2229 	    {
2230 	      warning (_("ERROR RMT: length of threadid is not 16."));
2231 	      retval = 0;
2232 	      break;
2233 	    }
2234 	  pkt = unpack_threadid (pkt, &ref);
2235 	  mask = mask & ~TAG_THREADID;
2236 	  continue;
2237 	}
2238       if (tag == TAG_EXISTS)
2239 	{
2240 	  info->active = stub_unpack_int (pkt, length);
2241 	  pkt += length;
2242 	  mask = mask & ~(TAG_EXISTS);
2243 	  if (length > 8)
2244 	    {
2245 	      warning (_("ERROR RMT: 'exists' length too long."));
2246 	      retval = 0;
2247 	      break;
2248 	    }
2249 	  continue;
2250 	}
2251       if (tag == TAG_THREADNAME)
2252 	{
2253 	  pkt = unpack_string (pkt, &info->shortname[0], length);
2254 	  mask = mask & ~TAG_THREADNAME;
2255 	  continue;
2256 	}
2257       if (tag == TAG_DISPLAY)
2258 	{
2259 	  pkt = unpack_string (pkt, &info->display[0], length);
2260 	  mask = mask & ~TAG_DISPLAY;
2261 	  continue;
2262 	}
2263       if (tag == TAG_MOREDISPLAY)
2264 	{
2265 	  pkt = unpack_string (pkt, &info->more_display[0], length);
2266 	  mask = mask & ~TAG_MOREDISPLAY;
2267 	  continue;
2268 	}
2269       warning (_("ERROR RMT: unknown thread info tag."));
2270       break;			/* Not a tag we know about.  */
2271     }
2272   return retval;
2273 }
2274 
2275 static int
2276 remote_get_threadinfo (threadref *threadid, int fieldset,	/* TAG mask */
2277 		       struct gdb_ext_thread_info *info)
2278 {
2279   struct remote_state *rs = get_remote_state ();
2280   int result;
2281 
2282   pack_threadinfo_request (rs->buf, fieldset, threadid);
2283   putpkt (rs->buf);
2284   getpkt (&rs->buf, &rs->buf_size, 0);
2285 
2286   if (rs->buf[0] == '\0')
2287     return 0;
2288 
2289   result = remote_unpack_thread_info_response (rs->buf + 2,
2290 					       threadid, info);
2291   return result;
2292 }
2293 
2294 /*    Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32   */
2295 
2296 static char *
2297 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2298 			 threadref *nextthread)
2299 {
2300   *pkt++ = 'q';			/* info query packet */
2301   *pkt++ = 'L';			/* Process LIST or threadLIST request */
2302   pkt = pack_nibble (pkt, startflag);		/* initflag 1 bytes */
2303   pkt = pack_hex_byte (pkt, threadcount);	/* threadcount 2 bytes */
2304   pkt = pack_threadid (pkt, nextthread);	/* 64 bit thread identifier */
2305   *pkt = '\0';
2306   return pkt;
2307 }
2308 
2309 /* Encoding:   'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2310 
2311 static int
2312 parse_threadlist_response (char *pkt, int result_limit,
2313 			   threadref *original_echo, threadref *resultlist,
2314 			   int *doneflag)
2315 {
2316   struct remote_state *rs = get_remote_state ();
2317   char *limit;
2318   int count, resultcount, done;
2319 
2320   resultcount = 0;
2321   /* Assume the 'q' and 'M chars have been stripped.  */
2322   limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2323   /* done parse past here */
2324   pkt = unpack_byte (pkt, &count);	/* count field */
2325   pkt = unpack_nibble (pkt, &done);
2326   /* The first threadid is the argument threadid.  */
2327   pkt = unpack_threadid (pkt, original_echo);	/* should match query packet */
2328   while ((count-- > 0) && (pkt < limit))
2329     {
2330       pkt = unpack_threadid (pkt, resultlist++);
2331       if (resultcount++ >= result_limit)
2332 	break;
2333     }
2334   if (doneflag)
2335     *doneflag = done;
2336   return resultcount;
2337 }
2338 
2339 static int
2340 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2341 		       int *done, int *result_count, threadref *threadlist)
2342 {
2343   struct remote_state *rs = get_remote_state ();
2344   static threadref echo_nextthread;
2345   int result = 1;
2346 
2347   /* Trancate result limit to be smaller than the packet size.  */
2348   if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2349     result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2350 
2351   pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2352   putpkt (rs->buf);
2353   getpkt (&rs->buf, &rs->buf_size, 0);
2354 
2355   if (*rs->buf == '\0')
2356     *result_count = 0;
2357   else
2358     *result_count =
2359       parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2360                                  threadlist, done);
2361 
2362   if (!threadmatch (&echo_nextthread, nextthread))
2363     {
2364       /* FIXME: This is a good reason to drop the packet.  */
2365       /* Possably, there is a duplicate response.  */
2366       /* Possabilities :
2367          retransmit immediatly - race conditions
2368          retransmit after timeout - yes
2369          exit
2370          wait for packet, then exit
2371        */
2372       warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2373       return 0;			/* I choose simply exiting.  */
2374     }
2375   if (*result_count <= 0)
2376     {
2377       if (*done != 1)
2378 	{
2379 	  warning (_("RMT ERROR : failed to get remote thread list."));
2380 	  result = 0;
2381 	}
2382       return result;		/* break; */
2383     }
2384   if (*result_count > result_limit)
2385     {
2386       *result_count = 0;
2387       warning (_("RMT ERROR: threadlist response longer than requested."));
2388       return 0;
2389     }
2390   return result;
2391 }
2392 
2393 /* This is the interface between remote and threads, remotes upper
2394    interface.  */
2395 
2396 /* remote_find_new_threads retrieves the thread list and for each
2397    thread in the list, looks up the thread in GDB's internal list,
2398    adding the thread if it does not already exist.  This involves
2399    getting partial thread lists from the remote target so, polling the
2400    quit_flag is required.  */
2401 
2402 
2403 /* About this many threadisds fit in a packet.  */
2404 
2405 #define MAXTHREADLISTRESULTS 32
2406 
2407 static int
2408 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2409 			    int looplimit)
2410 {
2411   int done, i, result_count;
2412   int startflag = 1;
2413   int result = 1;
2414   int loopcount = 0;
2415   static threadref nextthread;
2416   static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2417 
2418   done = 0;
2419   while (!done)
2420     {
2421       if (loopcount++ > looplimit)
2422 	{
2423 	  result = 0;
2424 	  warning (_("Remote fetch threadlist -infinite loop-."));
2425 	  break;
2426 	}
2427       if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2428 				  &done, &result_count, resultthreadlist))
2429 	{
2430 	  result = 0;
2431 	  break;
2432 	}
2433       /* Clear for later iterations.  */
2434       startflag = 0;
2435       /* Setup to resume next batch of thread references, set nextthread.  */
2436       if (result_count >= 1)
2437 	copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2438       i = 0;
2439       while (result_count--)
2440 	if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2441 	  break;
2442     }
2443   return result;
2444 }
2445 
2446 static int
2447 remote_newthread_step (threadref *ref, void *context)
2448 {
2449   int pid = ptid_get_pid (inferior_ptid);
2450   ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2451 
2452   if (!in_thread_list (ptid))
2453     add_thread (ptid);
2454   return 1;			/* continue iterator */
2455 }
2456 
2457 #define CRAZY_MAX_THREADS 1000
2458 
2459 static ptid_t
2460 remote_current_thread (ptid_t oldpid)
2461 {
2462   struct remote_state *rs = get_remote_state ();
2463 
2464   putpkt ("qC");
2465   getpkt (&rs->buf, &rs->buf_size, 0);
2466   if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2467     return read_ptid (&rs->buf[2], NULL);
2468   else
2469     return oldpid;
2470 }
2471 
2472 /* Find new threads for info threads command.
2473  * Original version, using John Metzler's thread protocol.
2474  */
2475 
2476 static void
2477 remote_find_new_threads (void)
2478 {
2479   remote_threadlist_iterator (remote_newthread_step, 0,
2480 			      CRAZY_MAX_THREADS);
2481 }
2482 
2483 #if defined(HAVE_LIBEXPAT)
2484 
2485 typedef struct thread_item
2486 {
2487   ptid_t ptid;
2488   char *extra;
2489   int core;
2490 } thread_item_t;
2491 DEF_VEC_O(thread_item_t);
2492 
2493 struct threads_parsing_context
2494 {
2495   VEC (thread_item_t) *items;
2496 };
2497 
2498 static void
2499 start_thread (struct gdb_xml_parser *parser,
2500 	      const struct gdb_xml_element *element,
2501 	      void *user_data, VEC(gdb_xml_value_s) *attributes)
2502 {
2503   struct threads_parsing_context *data = user_data;
2504 
2505   struct thread_item item;
2506   char *id;
2507 
2508   id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2509   item.ptid = read_ptid (id, NULL);
2510 
2511   if (VEC_length (gdb_xml_value_s, attributes) > 1)
2512     item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2513   else
2514     item.core = -1;
2515 
2516   item.extra = 0;
2517 
2518   VEC_safe_push (thread_item_t, data->items, &item);
2519 }
2520 
2521 static void
2522 end_thread (struct gdb_xml_parser *parser,
2523 	    const struct gdb_xml_element *element,
2524 	    void *user_data, const char *body_text)
2525 {
2526   struct threads_parsing_context *data = user_data;
2527 
2528   if (body_text && *body_text)
2529     VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2530 }
2531 
2532 const struct gdb_xml_attribute thread_attributes[] = {
2533   { "id", GDB_XML_AF_NONE, NULL, NULL },
2534   { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2535   { NULL, GDB_XML_AF_NONE, NULL, NULL }
2536 };
2537 
2538 const struct gdb_xml_element thread_children[] = {
2539   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2540 };
2541 
2542 const struct gdb_xml_element threads_children[] = {
2543   { "thread", thread_attributes, thread_children,
2544     GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2545     start_thread, end_thread },
2546   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2547 };
2548 
2549 const struct gdb_xml_element threads_elements[] = {
2550   { "threads", NULL, threads_children,
2551     GDB_XML_EF_NONE, NULL, NULL },
2552   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2553 };
2554 
2555 /* Discard the contents of the constructed thread info context.  */
2556 
2557 static void
2558 clear_threads_parsing_context (void *p)
2559 {
2560   struct threads_parsing_context *context = p;
2561   int i;
2562   struct thread_item *item;
2563 
2564   for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2565     xfree (item->extra);
2566 
2567   VEC_free (thread_item_t, context->items);
2568 }
2569 
2570 #endif
2571 
2572 /*
2573  * Find all threads for info threads command.
2574  * Uses new thread protocol contributed by Cisco.
2575  * Falls back and attempts to use the older method (above)
2576  * if the target doesn't respond to the new method.
2577  */
2578 
2579 static void
2580 remote_threads_info (struct target_ops *ops)
2581 {
2582   struct remote_state *rs = get_remote_state ();
2583   char *bufp;
2584   ptid_t new_thread;
2585 
2586   if (remote_desc == 0)		/* paranoia */
2587     error (_("Command can only be used when connected to the remote target."));
2588 
2589 #if defined(HAVE_LIBEXPAT)
2590   if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2591     {
2592       char *xml = target_read_stralloc (&current_target,
2593 					 TARGET_OBJECT_THREADS, NULL);
2594 
2595       struct cleanup *back_to = make_cleanup (xfree, xml);
2596       if (xml && *xml)
2597 	{
2598 	  struct gdb_xml_parser *parser;
2599 	  struct threads_parsing_context context;
2600 	  struct cleanup *clear_parsing_context;
2601 
2602 	  context.items = 0;
2603 	  /* Note: this parser cleanup is already guarded by BACK_TO
2604 	     above.  */
2605 	  parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2606 						      threads_elements,
2607 						      &context);
2608 
2609 	  gdb_xml_use_dtd (parser, "threads.dtd");
2610 
2611 	  clear_parsing_context
2612 	    = make_cleanup (clear_threads_parsing_context, &context);
2613 
2614 	  if (gdb_xml_parse (parser, xml) == 0)
2615 	    {
2616 	      int i;
2617 	      struct thread_item *item;
2618 
2619 	      for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2620 		{
2621 		  if (!ptid_equal (item->ptid, null_ptid))
2622 		    {
2623 		      struct private_thread_info *info;
2624 		      /* In non-stop mode, we assume new found threads
2625 			 are running until proven otherwise with a
2626 			 stop reply.  In all-stop, we can only get
2627 			 here if all threads are stopped.  */
2628 		      int running = non_stop ? 1 : 0;
2629 
2630 		      remote_notice_new_inferior (item->ptid, running);
2631 
2632 		      info = demand_private_info (item->ptid);
2633 		      info->core = item->core;
2634 		      info->extra = item->extra;
2635 		      item->extra = NULL;
2636 		    }
2637 		}
2638 	    }
2639 
2640 	  do_cleanups (clear_parsing_context);
2641 	}
2642 
2643       do_cleanups (back_to);
2644       return;
2645     }
2646 #endif
2647 
2648   if (use_threadinfo_query)
2649     {
2650       putpkt ("qfThreadInfo");
2651       getpkt (&rs->buf, &rs->buf_size, 0);
2652       bufp = rs->buf;
2653       if (bufp[0] != '\0')		/* q packet recognized */
2654 	{
2655 	  while (*bufp++ == 'm')	/* reply contains one or more TID */
2656 	    {
2657 	      do
2658 		{
2659 		  new_thread = read_ptid (bufp, &bufp);
2660 		  if (!ptid_equal (new_thread, null_ptid))
2661 		    {
2662 		      /* In non-stop mode, we assume new found threads
2663 			 are running until proven otherwise with a
2664 			 stop reply.  In all-stop, we can only get
2665 			 here if all threads are stopped.  */
2666 		      int running = non_stop ? 1 : 0;
2667 
2668 		      remote_notice_new_inferior (new_thread, running);
2669 		    }
2670 		}
2671 	      while (*bufp++ == ',');	/* comma-separated list */
2672 	      putpkt ("qsThreadInfo");
2673 	      getpkt (&rs->buf, &rs->buf_size, 0);
2674 	      bufp = rs->buf;
2675 	    }
2676 	  return;	/* done */
2677 	}
2678     }
2679 
2680   /* Only qfThreadInfo is supported in non-stop mode.  */
2681   if (non_stop)
2682     return;
2683 
2684   /* Else fall back to old method based on jmetzler protocol.  */
2685   use_threadinfo_query = 0;
2686   remote_find_new_threads ();
2687   return;
2688 }
2689 
2690 /*
2691  * Collect a descriptive string about the given thread.
2692  * The target may say anything it wants to about the thread
2693  * (typically info about its blocked / runnable state, name, etc.).
2694  * This string will appear in the info threads display.
2695  *
2696  * Optional: targets are not required to implement this function.
2697  */
2698 
2699 static char *
2700 remote_threads_extra_info (struct thread_info *tp)
2701 {
2702   struct remote_state *rs = get_remote_state ();
2703   int result;
2704   int set;
2705   threadref id;
2706   struct gdb_ext_thread_info threadinfo;
2707   static char display_buf[100];	/* arbitrary...  */
2708   int n = 0;                    /* position in display_buf */
2709 
2710   if (remote_desc == 0)		/* paranoia */
2711     internal_error (__FILE__, __LINE__,
2712 		    _("remote_threads_extra_info"));
2713 
2714   if (ptid_equal (tp->ptid, magic_null_ptid)
2715       || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2716     /* This is the main thread which was added by GDB.  The remote
2717        server doesn't know about it.  */
2718     return NULL;
2719 
2720   if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2721     {
2722       struct thread_info *info = find_thread_ptid (tp->ptid);
2723 
2724       if (info && info->private)
2725 	return info->private->extra;
2726       else
2727 	return NULL;
2728     }
2729 
2730   if (use_threadextra_query)
2731     {
2732       char *b = rs->buf;
2733       char *endb = rs->buf + get_remote_packet_size ();
2734 
2735       xsnprintf (b, endb - b, "qThreadExtraInfo,");
2736       b += strlen (b);
2737       write_ptid (b, endb, tp->ptid);
2738 
2739       putpkt (rs->buf);
2740       getpkt (&rs->buf, &rs->buf_size, 0);
2741       if (rs->buf[0] != 0)
2742 	{
2743 	  n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2744 	  result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2745 	  display_buf [result] = '\0';
2746 	  return display_buf;
2747 	}
2748     }
2749 
2750   /* If the above query fails, fall back to the old method.  */
2751   use_threadextra_query = 0;
2752   set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2753     | TAG_MOREDISPLAY | TAG_DISPLAY;
2754   int_to_threadref (&id, ptid_get_tid (tp->ptid));
2755   if (remote_get_threadinfo (&id, set, &threadinfo))
2756     if (threadinfo.active)
2757       {
2758 	if (*threadinfo.shortname)
2759 	  n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2760 			  " Name: %s,", threadinfo.shortname);
2761 	if (*threadinfo.display)
2762 	  n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2763 			  " State: %s,", threadinfo.display);
2764 	if (*threadinfo.more_display)
2765 	  n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2766 			  " Priority: %s", threadinfo.more_display);
2767 
2768 	if (n > 0)
2769 	  {
2770 	    /* For purely cosmetic reasons, clear up trailing commas.  */
2771 	    if (',' == display_buf[n-1])
2772 	      display_buf[n-1] = ' ';
2773 	    return display_buf;
2774 	  }
2775       }
2776   return NULL;
2777 }
2778 
2779 
2780 static int
2781 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2782 				    struct static_tracepoint_marker *marker)
2783 {
2784   struct remote_state *rs = get_remote_state ();
2785   char *p = rs->buf;
2786 
2787   sprintf (p, "qTSTMat:");
2788   p += strlen (p);
2789   p += hexnumstr (p, addr);
2790   putpkt (rs->buf);
2791   getpkt (&rs->buf, &rs->buf_size, 0);
2792   p = rs->buf;
2793 
2794   if (*p == 'E')
2795     error (_("Remote failure reply: %s"), p);
2796 
2797   if (*p++ == 'm')
2798     {
2799       parse_static_tracepoint_marker_definition (p, &p, marker);
2800       return 1;
2801     }
2802 
2803   return 0;
2804 }
2805 
2806 static void
2807 free_current_marker (void *arg)
2808 {
2809   struct static_tracepoint_marker **marker_p = arg;
2810 
2811   if (*marker_p != NULL)
2812     {
2813       release_static_tracepoint_marker (*marker_p);
2814       xfree (*marker_p);
2815     }
2816   else
2817     *marker_p = NULL;
2818 }
2819 
2820 static VEC(static_tracepoint_marker_p) *
2821 remote_static_tracepoint_markers_by_strid (const char *strid)
2822 {
2823   struct remote_state *rs = get_remote_state ();
2824   VEC(static_tracepoint_marker_p) *markers = NULL;
2825   struct static_tracepoint_marker *marker = NULL;
2826   struct cleanup *old_chain;
2827   char *p;
2828 
2829   /* Ask for a first packet of static tracepoint marker
2830      definition.  */
2831   putpkt ("qTfSTM");
2832   getpkt (&rs->buf, &rs->buf_size, 0);
2833   p = rs->buf;
2834   if (*p == 'E')
2835     error (_("Remote failure reply: %s"), p);
2836 
2837   old_chain = make_cleanup (free_current_marker, &marker);
2838 
2839   while (*p++ == 'm')
2840     {
2841       if (marker == NULL)
2842 	marker = XCNEW (struct static_tracepoint_marker);
2843 
2844       do
2845 	{
2846 	  parse_static_tracepoint_marker_definition (p, &p, marker);
2847 
2848 	  if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2849 	    {
2850 	      VEC_safe_push (static_tracepoint_marker_p,
2851 			     markers, marker);
2852 	      marker = NULL;
2853 	    }
2854 	  else
2855 	    {
2856 	      release_static_tracepoint_marker (marker);
2857 	      memset (marker, 0, sizeof (*marker));
2858 	    }
2859 	}
2860       while (*p++ == ',');	/* comma-separated list */
2861       /* Ask for another packet of static tracepoint definition.  */
2862       putpkt ("qTsSTM");
2863       getpkt (&rs->buf, &rs->buf_size, 0);
2864       p = rs->buf;
2865     }
2866 
2867   do_cleanups (old_chain);
2868   return markers;
2869 }
2870 
2871 
2872 /* Implement the to_get_ada_task_ptid function for the remote targets.  */
2873 
2874 static ptid_t
2875 remote_get_ada_task_ptid (long lwp, long thread)
2876 {
2877   return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2878 }
2879 
2880 
2881 /* Restart the remote side; this is an extended protocol operation.  */
2882 
2883 static void
2884 extended_remote_restart (void)
2885 {
2886   struct remote_state *rs = get_remote_state ();
2887 
2888   /* Send the restart command; for reasons I don't understand the
2889      remote side really expects a number after the "R".  */
2890   xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2891   putpkt (rs->buf);
2892 
2893   remote_fileio_reset ();
2894 }
2895 
2896 /* Clean up connection to a remote debugger.  */
2897 
2898 static void
2899 remote_close (int quitting)
2900 {
2901   if (remote_desc == NULL)
2902     return; /* already closed */
2903 
2904   /* Make sure we leave stdin registered in the event loop, and we
2905      don't leave the async SIGINT signal handler installed.  */
2906   remote_terminal_ours ();
2907 
2908   serial_close (remote_desc);
2909   remote_desc = NULL;
2910 
2911   /* We don't have a connection to the remote stub anymore.  Get rid
2912      of all the inferiors and their threads we were controlling.  */
2913   discard_all_inferiors ();
2914   inferior_ptid = null_ptid;
2915 
2916   /* We're no longer interested in any of these events.  */
2917   discard_pending_stop_replies (-1);
2918 
2919   if (remote_async_inferior_event_token)
2920     delete_async_event_handler (&remote_async_inferior_event_token);
2921   if (remote_async_get_pending_events_token)
2922     delete_async_event_handler (&remote_async_get_pending_events_token);
2923 }
2924 
2925 /* Query the remote side for the text, data and bss offsets.  */
2926 
2927 static void
2928 get_offsets (void)
2929 {
2930   struct remote_state *rs = get_remote_state ();
2931   char *buf;
2932   char *ptr;
2933   int lose, num_segments = 0, do_sections, do_segments;
2934   CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2935   struct section_offsets *offs;
2936   struct symfile_segment_data *data;
2937 
2938   if (symfile_objfile == NULL)
2939     return;
2940 
2941   putpkt ("qOffsets");
2942   getpkt (&rs->buf, &rs->buf_size, 0);
2943   buf = rs->buf;
2944 
2945   if (buf[0] == '\000')
2946     return;			/* Return silently.  Stub doesn't support
2947 				   this command.  */
2948   if (buf[0] == 'E')
2949     {
2950       warning (_("Remote failure reply: %s"), buf);
2951       return;
2952     }
2953 
2954   /* Pick up each field in turn.  This used to be done with scanf, but
2955      scanf will make trouble if CORE_ADDR size doesn't match
2956      conversion directives correctly.  The following code will work
2957      with any size of CORE_ADDR.  */
2958   text_addr = data_addr = bss_addr = 0;
2959   ptr = buf;
2960   lose = 0;
2961 
2962   if (strncmp (ptr, "Text=", 5) == 0)
2963     {
2964       ptr += 5;
2965       /* Don't use strtol, could lose on big values.  */
2966       while (*ptr && *ptr != ';')
2967 	text_addr = (text_addr << 4) + fromhex (*ptr++);
2968 
2969       if (strncmp (ptr, ";Data=", 6) == 0)
2970 	{
2971 	  ptr += 6;
2972 	  while (*ptr && *ptr != ';')
2973 	    data_addr = (data_addr << 4) + fromhex (*ptr++);
2974 	}
2975       else
2976 	lose = 1;
2977 
2978       if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2979 	{
2980 	  ptr += 5;
2981 	  while (*ptr && *ptr != ';')
2982 	    bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2983 
2984 	  if (bss_addr != data_addr)
2985 	    warning (_("Target reported unsupported offsets: %s"), buf);
2986 	}
2987       else
2988 	lose = 1;
2989     }
2990   else if (strncmp (ptr, "TextSeg=", 8) == 0)
2991     {
2992       ptr += 8;
2993       /* Don't use strtol, could lose on big values.  */
2994       while (*ptr && *ptr != ';')
2995 	text_addr = (text_addr << 4) + fromhex (*ptr++);
2996       num_segments = 1;
2997 
2998       if (strncmp (ptr, ";DataSeg=", 9) == 0)
2999 	{
3000 	  ptr += 9;
3001 	  while (*ptr && *ptr != ';')
3002 	    data_addr = (data_addr << 4) + fromhex (*ptr++);
3003 	  num_segments++;
3004 	}
3005     }
3006   else
3007     lose = 1;
3008 
3009   if (lose)
3010     error (_("Malformed response to offset query, %s"), buf);
3011   else if (*ptr != '\0')
3012     warning (_("Target reported unsupported offsets: %s"), buf);
3013 
3014   offs = ((struct section_offsets *)
3015 	  alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3016   memcpy (offs, symfile_objfile->section_offsets,
3017 	  SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3018 
3019   data = get_symfile_segment_data (symfile_objfile->obfd);
3020   do_segments = (data != NULL);
3021   do_sections = num_segments == 0;
3022 
3023   if (num_segments > 0)
3024     {
3025       segments[0] = text_addr;
3026       segments[1] = data_addr;
3027     }
3028   /* If we have two segments, we can still try to relocate everything
3029      by assuming that the .text and .data offsets apply to the whole
3030      text and data segments.  Convert the offsets given in the packet
3031      to base addresses for symfile_map_offsets_to_segments.  */
3032   else if (data && data->num_segments == 2)
3033     {
3034       segments[0] = data->segment_bases[0] + text_addr;
3035       segments[1] = data->segment_bases[1] + data_addr;
3036       num_segments = 2;
3037     }
3038   /* If the object file has only one segment, assume that it is text
3039      rather than data; main programs with no writable data are rare,
3040      but programs with no code are useless.  Of course the code might
3041      have ended up in the data segment... to detect that we would need
3042      the permissions here.  */
3043   else if (data && data->num_segments == 1)
3044     {
3045       segments[0] = data->segment_bases[0] + text_addr;
3046       num_segments = 1;
3047     }
3048   /* There's no way to relocate by segment.  */
3049   else
3050     do_segments = 0;
3051 
3052   if (do_segments)
3053     {
3054       int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3055 						 offs, num_segments, segments);
3056 
3057       if (ret == 0 && !do_sections)
3058 	error (_("Can not handle qOffsets TextSeg response with this symbol file"));
3059 
3060       if (ret > 0)
3061 	do_sections = 0;
3062     }
3063 
3064   if (data)
3065     free_symfile_segment_data (data);
3066 
3067   if (do_sections)
3068     {
3069       offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3070 
3071       /* This is a temporary kludge to force data and bss to use the same offsets
3072 	 because that's what nlmconv does now.  The real solution requires changes
3073 	 to the stub and remote.c that I don't have time to do right now.  */
3074 
3075       offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3076       offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3077     }
3078 
3079   objfile_relocate (symfile_objfile, offs);
3080 }
3081 
3082 /* Callback for iterate_over_threads.  Set the STOP_REQUESTED flags in
3083    threads we know are stopped already.  This is used during the
3084    initial remote connection in non-stop mode --- threads that are
3085    reported as already being stopped are left stopped.  */
3086 
3087 static int
3088 set_stop_requested_callback (struct thread_info *thread, void *data)
3089 {
3090   /* If we have a stop reply for this thread, it must be stopped.  */
3091   if (peek_stop_reply (thread->ptid))
3092     set_stop_requested (thread->ptid, 1);
3093 
3094   return 0;
3095 }
3096 
3097 /* Stub for catch_exception.  */
3098 
3099 struct start_remote_args
3100 {
3101   int from_tty;
3102 
3103   /* The current target.  */
3104   struct target_ops *target;
3105 
3106   /* Non-zero if this is an extended-remote target.  */
3107   int extended_p;
3108 };
3109 
3110 /* Send interrupt_sequence to remote target.  */
3111 static void
3112 send_interrupt_sequence ()
3113 {
3114   if (interrupt_sequence_mode == interrupt_sequence_control_c)
3115     serial_write (remote_desc, "\x03", 1);
3116   else if (interrupt_sequence_mode == interrupt_sequence_break)
3117     serial_send_break (remote_desc);
3118   else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3119     {
3120       serial_send_break (remote_desc);
3121       serial_write (remote_desc, "g", 1);
3122     }
3123   else
3124     internal_error (__FILE__, __LINE__,
3125 		    _("Invalid value for interrupt_sequence_mode: %s."),
3126 		    interrupt_sequence_mode);
3127 }
3128 
3129 static void
3130 remote_start_remote (struct ui_out *uiout, void *opaque)
3131 {
3132   struct start_remote_args *args = opaque;
3133   struct remote_state *rs = get_remote_state ();
3134   struct packet_config *noack_config;
3135   char *wait_status = NULL;
3136 
3137   immediate_quit++;		/* Allow user to interrupt it.  */
3138 
3139   /* Ack any packet which the remote side has already sent.  */
3140   serial_write (remote_desc, "+", 1);
3141 
3142   if (interrupt_on_connect)
3143     send_interrupt_sequence ();
3144 
3145   /* The first packet we send to the target is the optional "supported
3146      packets" request.  If the target can answer this, it will tell us
3147      which later probes to skip.  */
3148   remote_query_supported ();
3149 
3150   /* If the stub wants to get a QAllow, compose one and send it.  */
3151   if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3152     remote_set_permissions ();
3153 
3154   /* Next, we possibly activate noack mode.
3155 
3156      If the QStartNoAckMode packet configuration is set to AUTO,
3157      enable noack mode if the stub reported a wish for it with
3158      qSupported.
3159 
3160      If set to TRUE, then enable noack mode even if the stub didn't
3161      report it in qSupported.  If the stub doesn't reply OK, the
3162      session ends with an error.
3163 
3164      If FALSE, then don't activate noack mode, regardless of what the
3165      stub claimed should be the default with qSupported.  */
3166 
3167   noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3168 
3169   if (noack_config->detect == AUTO_BOOLEAN_TRUE
3170       || (noack_config->detect == AUTO_BOOLEAN_AUTO
3171 	  && noack_config->support == PACKET_ENABLE))
3172     {
3173       putpkt ("QStartNoAckMode");
3174       getpkt (&rs->buf, &rs->buf_size, 0);
3175       if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3176 	rs->noack_mode = 1;
3177     }
3178 
3179   if (args->extended_p)
3180     {
3181       /* Tell the remote that we are using the extended protocol.  */
3182       putpkt ("!");
3183       getpkt (&rs->buf, &rs->buf_size, 0);
3184     }
3185 
3186   /* Next, if the target can specify a description, read it.  We do
3187      this before anything involving memory or registers.  */
3188   target_find_description ();
3189 
3190   /* Next, now that we know something about the target, update the
3191      address spaces in the program spaces.  */
3192   update_address_spaces ();
3193 
3194   /* On OSs where the list of libraries is global to all
3195      processes, we fetch them early.  */
3196   if (gdbarch_has_global_solist (target_gdbarch))
3197     solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3198 
3199   if (non_stop)
3200     {
3201       if (!rs->non_stop_aware)
3202 	error (_("Non-stop mode requested, but remote does not support non-stop"));
3203 
3204       putpkt ("QNonStop:1");
3205       getpkt (&rs->buf, &rs->buf_size, 0);
3206 
3207       if (strcmp (rs->buf, "OK") != 0)
3208 	error ("Remote refused setting non-stop mode with: %s", rs->buf);
3209 
3210       /* Find about threads and processes the stub is already
3211 	 controlling.  We default to adding them in the running state.
3212 	 The '?' query below will then tell us about which threads are
3213 	 stopped.  */
3214       remote_threads_info (args->target);
3215     }
3216   else if (rs->non_stop_aware)
3217     {
3218       /* Don't assume that the stub can operate in all-stop mode.
3219 	 Request it explicitely.  */
3220       putpkt ("QNonStop:0");
3221       getpkt (&rs->buf, &rs->buf_size, 0);
3222 
3223       if (strcmp (rs->buf, "OK") != 0)
3224 	error ("Remote refused setting all-stop mode with: %s", rs->buf);
3225     }
3226 
3227   /* Check whether the target is running now.  */
3228   putpkt ("?");
3229   getpkt (&rs->buf, &rs->buf_size, 0);
3230 
3231   if (!non_stop)
3232     {
3233       if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3234 	{
3235 	  if (!args->extended_p)
3236 	    error (_("The target is not running (try extended-remote?)"));
3237 
3238 	  /* We're connected, but not running.  Drop out before we
3239 	     call start_remote.  */
3240 	  return;
3241 	}
3242       else
3243 	{
3244 	  /* Save the reply for later.  */
3245 	  wait_status = alloca (strlen (rs->buf) + 1);
3246 	  strcpy (wait_status, rs->buf);
3247 	}
3248 
3249       /* Let the stub know that we want it to return the thread.  */
3250       set_continue_thread (minus_one_ptid);
3251 
3252       /* Without this, some commands which require an active target
3253 	 (such as kill) won't work.  This variable serves (at least)
3254 	 double duty as both the pid of the target process (if it has
3255 	 such), and as a flag indicating that a target is active.
3256 	 These functions should be split out into seperate variables,
3257 	 especially since GDB will someday have a notion of debugging
3258 	 several processes.  */
3259       inferior_ptid = magic_null_ptid;
3260 
3261       /* Now, if we have thread information, update inferior_ptid.  */
3262       inferior_ptid = remote_current_thread (inferior_ptid);
3263 
3264       remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3265 
3266       /* Always add the main thread.  */
3267       add_thread_silent (inferior_ptid);
3268 
3269       get_offsets ();		/* Get text, data & bss offsets.  */
3270 
3271       /* If we could not find a description using qXfer, and we know
3272 	 how to do it some other way, try again.  This is not
3273 	 supported for non-stop; it could be, but it is tricky if
3274 	 there are no stopped threads when we connect.  */
3275       if (remote_read_description_p (args->target)
3276 	  && gdbarch_target_desc (target_gdbarch) == NULL)
3277 	{
3278 	  target_clear_description ();
3279 	  target_find_description ();
3280 	}
3281 
3282       /* Use the previously fetched status.  */
3283       gdb_assert (wait_status != NULL);
3284       strcpy (rs->buf, wait_status);
3285       rs->cached_wait_status = 1;
3286 
3287       immediate_quit--;
3288       start_remote (args->from_tty); /* Initialize gdb process mechanisms.  */
3289     }
3290   else
3291     {
3292       /* Clear WFI global state.  Do this before finding about new
3293 	 threads and inferiors, and setting the current inferior.
3294 	 Otherwise we would clear the proceed status of the current
3295 	 inferior when we want its stop_soon state to be preserved
3296 	 (see notice_new_inferior).  */
3297       init_wait_for_inferior ();
3298 
3299       /* In non-stop, we will either get an "OK", meaning that there
3300 	 are no stopped threads at this time; or, a regular stop
3301 	 reply.  In the latter case, there may be more than one thread
3302 	 stopped --- we pull them all out using the vStopped
3303 	 mechanism.  */
3304       if (strcmp (rs->buf, "OK") != 0)
3305 	{
3306 	  struct stop_reply *stop_reply;
3307 	  struct cleanup *old_chain;
3308 
3309 	  stop_reply = stop_reply_xmalloc ();
3310 	  old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3311 
3312 	  remote_parse_stop_reply (rs->buf, stop_reply);
3313 	  discard_cleanups (old_chain);
3314 
3315 	  /* get_pending_stop_replies acks this one, and gets the rest
3316 	     out.  */
3317 	  pending_stop_reply = stop_reply;
3318 	  remote_get_pending_stop_replies ();
3319 
3320 	  /* Make sure that threads that were stopped remain
3321 	     stopped.  */
3322 	  iterate_over_threads (set_stop_requested_callback, NULL);
3323 	}
3324 
3325       if (target_can_async_p ())
3326 	target_async (inferior_event_handler, 0);
3327 
3328       if (thread_count () == 0)
3329 	{
3330 	  if (!args->extended_p)
3331 	    error (_("The target is not running (try extended-remote?)"));
3332 
3333 	  /* We're connected, but not running.  Drop out before we
3334 	     call start_remote.  */
3335 	  return;
3336 	}
3337 
3338       /* Let the stub know that we want it to return the thread.  */
3339 
3340       /* Force the stub to choose a thread.  */
3341       set_general_thread (null_ptid);
3342 
3343       /* Query it.  */
3344       inferior_ptid = remote_current_thread (minus_one_ptid);
3345       if (ptid_equal (inferior_ptid, minus_one_ptid))
3346 	error (_("remote didn't report the current thread in non-stop mode"));
3347 
3348       get_offsets ();		/* Get text, data & bss offsets.  */
3349 
3350       /* In non-stop mode, any cached wait status will be stored in
3351 	 the stop reply queue.  */
3352       gdb_assert (wait_status == NULL);
3353 
3354       /* Update the remote on signals to silently pass, or more
3355 	 importantly, which to not ignore, in case a previous session
3356 	 had set some different set of signals to be ignored.  */
3357       remote_pass_signals ();
3358     }
3359 
3360   /* If we connected to a live target, do some additional setup.  */
3361   if (target_has_execution)
3362     {
3363       if (exec_bfd) 	/* No use without an exec file.  */
3364 	remote_check_symbols (symfile_objfile);
3365     }
3366 
3367   /* Possibly the target has been engaged in a trace run started
3368      previously; find out where things are at.  */
3369   if (remote_get_trace_status (current_trace_status ()) != -1)
3370     {
3371       struct uploaded_tp *uploaded_tps = NULL;
3372       struct uploaded_tsv *uploaded_tsvs = NULL;
3373 
3374       if (current_trace_status ()->running)
3375 	printf_filtered (_("Trace is already running on the target.\n"));
3376 
3377       /* Get trace state variables first, they may be checked when
3378 	 parsing uploaded commands.  */
3379 
3380       remote_upload_trace_state_variables (&uploaded_tsvs);
3381 
3382       merge_uploaded_trace_state_variables (&uploaded_tsvs);
3383 
3384       remote_upload_tracepoints (&uploaded_tps);
3385 
3386       merge_uploaded_tracepoints (&uploaded_tps);
3387     }
3388 
3389   /* If breakpoints are global, insert them now.  */
3390   if (gdbarch_has_global_breakpoints (target_gdbarch)
3391       && breakpoints_always_inserted_mode ())
3392     insert_breakpoints ();
3393 }
3394 
3395 /* Open a connection to a remote debugger.
3396    NAME is the filename used for communication.  */
3397 
3398 static void
3399 remote_open (char *name, int from_tty)
3400 {
3401   remote_open_1 (name, from_tty, &remote_ops, 0);
3402 }
3403 
3404 /* Open a connection to a remote debugger using the extended
3405    remote gdb protocol.  NAME is the filename used for communication.  */
3406 
3407 static void
3408 extended_remote_open (char *name, int from_tty)
3409 {
3410   remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3411 }
3412 
3413 /* Generic code for opening a connection to a remote target.  */
3414 
3415 static void
3416 init_all_packet_configs (void)
3417 {
3418   int i;
3419 
3420   for (i = 0; i < PACKET_MAX; i++)
3421     update_packet_config (&remote_protocol_packets[i]);
3422 }
3423 
3424 /* Symbol look-up.  */
3425 
3426 static void
3427 remote_check_symbols (struct objfile *objfile)
3428 {
3429   struct remote_state *rs = get_remote_state ();
3430   char *msg, *reply, *tmp;
3431   struct minimal_symbol *sym;
3432   int end;
3433 
3434   if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3435     return;
3436 
3437   /* Make sure the remote is pointing at the right process.  */
3438   set_general_process ();
3439 
3440   /* Allocate a message buffer.  We can't reuse the input buffer in RS,
3441      because we need both at the same time.  */
3442   msg = alloca (get_remote_packet_size ());
3443 
3444   /* Invite target to request symbol lookups.  */
3445 
3446   putpkt ("qSymbol::");
3447   getpkt (&rs->buf, &rs->buf_size, 0);
3448   packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3449   reply = rs->buf;
3450 
3451   while (strncmp (reply, "qSymbol:", 8) == 0)
3452     {
3453       tmp = &reply[8];
3454       end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3455       msg[end] = '\0';
3456       sym = lookup_minimal_symbol (msg, NULL, NULL);
3457       if (sym == NULL)
3458 	xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3459       else
3460 	{
3461 	  int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3462 	  CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3463 
3464 	  /* If this is a function address, return the start of code
3465 	     instead of any data function descriptor.  */
3466 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3467 							 sym_addr,
3468 							 &current_target);
3469 
3470 	  xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3471 		     phex_nz (sym_addr, addr_size), &reply[8]);
3472 	}
3473 
3474       putpkt (msg);
3475       getpkt (&rs->buf, &rs->buf_size, 0);
3476       reply = rs->buf;
3477     }
3478 }
3479 
3480 static struct serial *
3481 remote_serial_open (char *name)
3482 {
3483   static int udp_warning = 0;
3484 
3485   /* FIXME: Parsing NAME here is a hack.  But we want to warn here instead
3486      of in ser-tcp.c, because it is the remote protocol assuming that the
3487      serial connection is reliable and not the serial connection promising
3488      to be.  */
3489   if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3490     {
3491       warning (_("\
3492 The remote protocol may be unreliable over UDP.\n\
3493 Some events may be lost, rendering further debugging impossible."));
3494       udp_warning = 1;
3495     }
3496 
3497   return serial_open (name);
3498 }
3499 
3500 /* Inform the target of our permission settings.  The permission flags
3501    work without this, but if the target knows the settings, it can do
3502    a couple things.  First, it can add its own check, to catch cases
3503    that somehow manage to get by the permissions checks in target
3504    methods.  Second, if the target is wired to disallow particular
3505    settings (for instance, a system in the field that is not set up to
3506    be able to stop at a breakpoint), it can object to any unavailable
3507    permissions.  */
3508 
3509 void
3510 remote_set_permissions (void)
3511 {
3512   struct remote_state *rs = get_remote_state ();
3513 
3514   sprintf (rs->buf, "QAllow:"
3515 	   "WriteReg:%x;WriteMem:%x;"
3516 	   "InsertBreak:%x;InsertTrace:%x;"
3517 	   "InsertFastTrace:%x;Stop:%x",
3518 	   may_write_registers, may_write_memory,
3519 	   may_insert_breakpoints, may_insert_tracepoints,
3520 	   may_insert_fast_tracepoints, may_stop);
3521   putpkt (rs->buf);
3522   getpkt (&rs->buf, &rs->buf_size, 0);
3523 
3524   /* If the target didn't like the packet, warn the user.  Do not try
3525      to undo the user's settings, that would just be maddening.  */
3526   if (strcmp (rs->buf, "OK") != 0)
3527     warning ("Remote refused setting permissions with: %s", rs->buf);
3528 }
3529 
3530 /* This type describes each known response to the qSupported
3531    packet.  */
3532 struct protocol_feature
3533 {
3534   /* The name of this protocol feature.  */
3535   const char *name;
3536 
3537   /* The default for this protocol feature.  */
3538   enum packet_support default_support;
3539 
3540   /* The function to call when this feature is reported, or after
3541      qSupported processing if the feature is not supported.
3542      The first argument points to this structure.  The second
3543      argument indicates whether the packet requested support be
3544      enabled, disabled, or probed (or the default, if this function
3545      is being called at the end of processing and this feature was
3546      not reported).  The third argument may be NULL; if not NULL, it
3547      is a NUL-terminated string taken from the packet following
3548      this feature's name and an equals sign.  */
3549   void (*func) (const struct protocol_feature *, enum packet_support,
3550 		const char *);
3551 
3552   /* The corresponding packet for this feature.  Only used if
3553      FUNC is remote_supported_packet.  */
3554   int packet;
3555 };
3556 
3557 static void
3558 remote_supported_packet (const struct protocol_feature *feature,
3559 			 enum packet_support support,
3560 			 const char *argument)
3561 {
3562   if (argument)
3563     {
3564       warning (_("Remote qSupported response supplied an unexpected value for"
3565 		 " \"%s\"."), feature->name);
3566       return;
3567     }
3568 
3569   if (remote_protocol_packets[feature->packet].support
3570       == PACKET_SUPPORT_UNKNOWN)
3571     remote_protocol_packets[feature->packet].support = support;
3572 }
3573 
3574 static void
3575 remote_packet_size (const struct protocol_feature *feature,
3576 		    enum packet_support support, const char *value)
3577 {
3578   struct remote_state *rs = get_remote_state ();
3579 
3580   int packet_size;
3581   char *value_end;
3582 
3583   if (support != PACKET_ENABLE)
3584     return;
3585 
3586   if (value == NULL || *value == '\0')
3587     {
3588       warning (_("Remote target reported \"%s\" without a size."),
3589 	       feature->name);
3590       return;
3591     }
3592 
3593   errno = 0;
3594   packet_size = strtol (value, &value_end, 16);
3595   if (errno != 0 || *value_end != '\0' || packet_size < 0)
3596     {
3597       warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3598 	       feature->name, value);
3599       return;
3600     }
3601 
3602   if (packet_size > MAX_REMOTE_PACKET_SIZE)
3603     {
3604       warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3605 	       packet_size, MAX_REMOTE_PACKET_SIZE);
3606       packet_size = MAX_REMOTE_PACKET_SIZE;
3607     }
3608 
3609   /* Record the new maximum packet size.  */
3610   rs->explicit_packet_size = packet_size;
3611 }
3612 
3613 static void
3614 remote_multi_process_feature (const struct protocol_feature *feature,
3615 			      enum packet_support support, const char *value)
3616 {
3617   struct remote_state *rs = get_remote_state ();
3618 
3619   rs->multi_process_aware = (support == PACKET_ENABLE);
3620 }
3621 
3622 static void
3623 remote_non_stop_feature (const struct protocol_feature *feature,
3624 			      enum packet_support support, const char *value)
3625 {
3626   struct remote_state *rs = get_remote_state ();
3627 
3628   rs->non_stop_aware = (support == PACKET_ENABLE);
3629 }
3630 
3631 static void
3632 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3633 				       enum packet_support support,
3634 				       const char *value)
3635 {
3636   struct remote_state *rs = get_remote_state ();
3637 
3638   rs->cond_tracepoints = (support == PACKET_ENABLE);
3639 }
3640 
3641 static void
3642 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3643 				enum packet_support support,
3644 				const char *value)
3645 {
3646   struct remote_state *rs = get_remote_state ();
3647 
3648   rs->fast_tracepoints = (support == PACKET_ENABLE);
3649 }
3650 
3651 static void
3652 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3653 				  enum packet_support support,
3654 				  const char *value)
3655 {
3656   struct remote_state *rs = get_remote_state ();
3657 
3658   rs->static_tracepoints = (support == PACKET_ENABLE);
3659 }
3660 
3661 static void
3662 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3663 				     enum packet_support support,
3664 				     const char *value)
3665 {
3666   struct remote_state *rs = get_remote_state ();
3667 
3668   rs->disconnected_tracing = (support == PACKET_ENABLE);
3669 }
3670 
3671 static struct protocol_feature remote_protocol_features[] = {
3672   { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3673   { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3674     PACKET_qXfer_auxv },
3675   { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3676     PACKET_qXfer_features },
3677   { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3678     PACKET_qXfer_libraries },
3679   { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3680     PACKET_qXfer_memory_map },
3681   { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3682     PACKET_qXfer_spu_read },
3683   { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3684     PACKET_qXfer_spu_write },
3685   { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3686     PACKET_qXfer_osdata },
3687   { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3688     PACKET_qXfer_threads },
3689   { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3690     PACKET_QPassSignals },
3691   { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3692     PACKET_QStartNoAckMode },
3693   { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3694   { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3695   { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3696     PACKET_qXfer_siginfo_read },
3697   { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3698     PACKET_qXfer_siginfo_write },
3699   { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3700     PACKET_ConditionalTracepoints },
3701   { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3702     PACKET_FastTracepoints },
3703   { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3704     PACKET_StaticTracepoints },
3705   { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3706     -1 },
3707   { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3708     PACKET_bc },
3709   { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3710     PACKET_bs },
3711   { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3712     PACKET_TracepointSource },
3713   { "QAllow", PACKET_DISABLE, remote_supported_packet,
3714     PACKET_QAllow },
3715 };
3716 
3717 static char *remote_support_xml;
3718 
3719 /* Register string appended to "xmlRegisters=" in qSupported query.  */
3720 
3721 void
3722 register_remote_support_xml (const char *xml)
3723 {
3724 #if defined(HAVE_LIBEXPAT)
3725   if (remote_support_xml == NULL)
3726     remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3727   else
3728     {
3729       char *copy = xstrdup (remote_support_xml + 13);
3730       char *p = strtok (copy, ",");
3731 
3732       do
3733 	{
3734 	  if (strcmp (p, xml) == 0)
3735 	    {
3736 	      /* already there */
3737 	      xfree (copy);
3738 	      return;
3739 	    }
3740 	}
3741       while ((p = strtok (NULL, ",")) != NULL);
3742       xfree (copy);
3743 
3744       remote_support_xml = reconcat (remote_support_xml,
3745 				     remote_support_xml, ",", xml,
3746 				     (char *) NULL);
3747     }
3748 #endif
3749 }
3750 
3751 static char *
3752 remote_query_supported_append (char *msg, const char *append)
3753 {
3754   if (msg)
3755     return reconcat (msg, msg, ";", append, (char *) NULL);
3756   else
3757     return xstrdup (append);
3758 }
3759 
3760 static void
3761 remote_query_supported (void)
3762 {
3763   struct remote_state *rs = get_remote_state ();
3764   char *next;
3765   int i;
3766   unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3767 
3768   /* The packet support flags are handled differently for this packet
3769      than for most others.  We treat an error, a disabled packet, and
3770      an empty response identically: any features which must be reported
3771      to be used will be automatically disabled.  An empty buffer
3772      accomplishes this, since that is also the representation for a list
3773      containing no features.  */
3774 
3775   rs->buf[0] = 0;
3776   if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3777     {
3778       char *q = NULL;
3779       struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3780 
3781       if (rs->extended)
3782 	q = remote_query_supported_append (q, "multiprocess+");
3783 
3784       if (remote_support_xml)
3785 	q = remote_query_supported_append (q, remote_support_xml);
3786 
3787       q = remote_query_supported_append (q, "qRelocInsn+");
3788 
3789       q = reconcat (q, "qSupported:", q, (char *) NULL);
3790       putpkt (q);
3791 
3792       do_cleanups (old_chain);
3793 
3794       getpkt (&rs->buf, &rs->buf_size, 0);
3795 
3796       /* If an error occured, warn, but do not return - just reset the
3797 	 buffer to empty and go on to disable features.  */
3798       if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3799 	  == PACKET_ERROR)
3800 	{
3801 	  warning (_("Remote failure reply: %s"), rs->buf);
3802 	  rs->buf[0] = 0;
3803 	}
3804     }
3805 
3806   memset (seen, 0, sizeof (seen));
3807 
3808   next = rs->buf;
3809   while (*next)
3810     {
3811       enum packet_support is_supported;
3812       char *p, *end, *name_end, *value;
3813 
3814       /* First separate out this item from the rest of the packet.  If
3815 	 there's another item after this, we overwrite the separator
3816 	 (terminated strings are much easier to work with).  */
3817       p = next;
3818       end = strchr (p, ';');
3819       if (end == NULL)
3820 	{
3821 	  end = p + strlen (p);
3822 	  next = end;
3823 	}
3824       else
3825 	{
3826 	  *end = '\0';
3827 	  next = end + 1;
3828 
3829 	  if (end == p)
3830 	    {
3831 	      warning (_("empty item in \"qSupported\" response"));
3832 	      continue;
3833 	    }
3834 	}
3835 
3836       name_end = strchr (p, '=');
3837       if (name_end)
3838 	{
3839 	  /* This is a name=value entry.  */
3840 	  is_supported = PACKET_ENABLE;
3841 	  value = name_end + 1;
3842 	  *name_end = '\0';
3843 	}
3844       else
3845 	{
3846 	  value = NULL;
3847 	  switch (end[-1])
3848 	    {
3849 	    case '+':
3850 	      is_supported = PACKET_ENABLE;
3851 	      break;
3852 
3853 	    case '-':
3854 	      is_supported = PACKET_DISABLE;
3855 	      break;
3856 
3857 	    case '?':
3858 	      is_supported = PACKET_SUPPORT_UNKNOWN;
3859 	      break;
3860 
3861 	    default:
3862 	      warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3863 	      continue;
3864 	    }
3865 	  end[-1] = '\0';
3866 	}
3867 
3868       for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3869 	if (strcmp (remote_protocol_features[i].name, p) == 0)
3870 	  {
3871 	    const struct protocol_feature *feature;
3872 
3873 	    seen[i] = 1;
3874 	    feature = &remote_protocol_features[i];
3875 	    feature->func (feature, is_supported, value);
3876 	    break;
3877 	  }
3878     }
3879 
3880   /* If we increased the packet size, make sure to increase the global
3881      buffer size also.  We delay this until after parsing the entire
3882      qSupported packet, because this is the same buffer we were
3883      parsing.  */
3884   if (rs->buf_size < rs->explicit_packet_size)
3885     {
3886       rs->buf_size = rs->explicit_packet_size;
3887       rs->buf = xrealloc (rs->buf, rs->buf_size);
3888     }
3889 
3890   /* Handle the defaults for unmentioned features.  */
3891   for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3892     if (!seen[i])
3893       {
3894 	const struct protocol_feature *feature;
3895 
3896 	feature = &remote_protocol_features[i];
3897 	feature->func (feature, feature->default_support, NULL);
3898       }
3899 }
3900 
3901 
3902 static void
3903 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3904 {
3905   struct remote_state *rs = get_remote_state ();
3906 
3907   if (name == 0)
3908     error (_("To open a remote debug connection, you need to specify what\n"
3909 	   "serial device is attached to the remote system\n"
3910 	   "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3911 
3912   /* See FIXME above.  */
3913   if (!target_async_permitted)
3914     wait_forever_enabled_p = 1;
3915 
3916   /* If we're connected to a running target, target_preopen will kill it.
3917      But if we're connected to a target system with no running process,
3918      then we will still be connected when it returns.  Ask this question
3919      first, before target_preopen has a chance to kill anything.  */
3920   if (remote_desc != NULL && !have_inferiors ())
3921     {
3922       if (!from_tty
3923 	  || query (_("Already connected to a remote target.  Disconnect? ")))
3924 	pop_target ();
3925       else
3926 	error (_("Still connected."));
3927     }
3928 
3929   target_preopen (from_tty);
3930 
3931   unpush_target (target);
3932 
3933   /* This time without a query.  If we were connected to an
3934      extended-remote target and target_preopen killed the running
3935      process, we may still be connected.  If we are starting "target
3936      remote" now, the extended-remote target will not have been
3937      removed by unpush_target.  */
3938   if (remote_desc != NULL && !have_inferiors ())
3939     pop_target ();
3940 
3941   /* Make sure we send the passed signals list the next time we resume.  */
3942   xfree (last_pass_packet);
3943   last_pass_packet = NULL;
3944 
3945   remote_fileio_reset ();
3946   reopen_exec_file ();
3947   reread_symbols ();
3948 
3949   remote_desc = remote_serial_open (name);
3950   if (!remote_desc)
3951     perror_with_name (name);
3952 
3953   if (baud_rate != -1)
3954     {
3955       if (serial_setbaudrate (remote_desc, baud_rate))
3956 	{
3957 	  /* The requested speed could not be set.  Error out to
3958 	     top level after closing remote_desc.  Take care to
3959 	     set remote_desc to NULL to avoid closing remote_desc
3960 	     more than once.  */
3961 	  serial_close (remote_desc);
3962 	  remote_desc = NULL;
3963 	  perror_with_name (name);
3964 	}
3965     }
3966 
3967   serial_raw (remote_desc);
3968 
3969   /* If there is something sitting in the buffer we might take it as a
3970      response to a command, which would be bad.  */
3971   serial_flush_input (remote_desc);
3972 
3973   if (from_tty)
3974     {
3975       puts_filtered ("Remote debugging using ");
3976       puts_filtered (name);
3977       puts_filtered ("\n");
3978     }
3979   push_target (target);		/* Switch to using remote target now.  */
3980 
3981   /* Register extra event sources in the event loop.  */
3982   remote_async_inferior_event_token
3983     = create_async_event_handler (remote_async_inferior_event_handler,
3984 				  NULL);
3985   remote_async_get_pending_events_token
3986     = create_async_event_handler (remote_async_get_pending_events_handler,
3987 				  NULL);
3988 
3989   /* Reset the target state; these things will be queried either by
3990      remote_query_supported or as they are needed.  */
3991   init_all_packet_configs ();
3992   rs->cached_wait_status = 0;
3993   rs->explicit_packet_size = 0;
3994   rs->noack_mode = 0;
3995   rs->multi_process_aware = 0;
3996   rs->extended = extended_p;
3997   rs->non_stop_aware = 0;
3998   rs->waiting_for_stop_reply = 0;
3999   rs->ctrlc_pending_p = 0;
4000 
4001   general_thread = not_sent_ptid;
4002   continue_thread = not_sent_ptid;
4003 
4004   /* Probe for ability to use "ThreadInfo" query, as required.  */
4005   use_threadinfo_query = 1;
4006   use_threadextra_query = 1;
4007 
4008   if (target_async_permitted)
4009     {
4010       /* With this target we start out by owning the terminal.  */
4011       remote_async_terminal_ours_p = 1;
4012 
4013       /* FIXME: cagney/1999-09-23: During the initial connection it is
4014 	 assumed that the target is already ready and able to respond to
4015 	 requests. Unfortunately remote_start_remote() eventually calls
4016 	 wait_for_inferior() with no timeout.  wait_forever_enabled_p gets
4017 	 around this. Eventually a mechanism that allows
4018 	 wait_for_inferior() to expect/get timeouts will be
4019 	 implemented.  */
4020       wait_forever_enabled_p = 0;
4021     }
4022 
4023   /* First delete any symbols previously loaded from shared libraries.  */
4024   no_shared_libraries (NULL, 0);
4025 
4026   /* Start afresh.  */
4027   init_thread_list ();
4028 
4029   /* Start the remote connection.  If error() or QUIT, discard this
4030      target (we'd otherwise be in an inconsistent state) and then
4031      propogate the error on up the exception chain.  This ensures that
4032      the caller doesn't stumble along blindly assuming that the
4033      function succeeded.  The CLI doesn't have this problem but other
4034      UI's, such as MI do.
4035 
4036      FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4037      this function should return an error indication letting the
4038      caller restore the previous state.  Unfortunately the command
4039      ``target remote'' is directly wired to this function making that
4040      impossible.  On a positive note, the CLI side of this problem has
4041      been fixed - the function set_cmd_context() makes it possible for
4042      all the ``target ....'' commands to share a common callback
4043      function.  See cli-dump.c.  */
4044   {
4045     struct gdb_exception ex;
4046     struct start_remote_args args;
4047 
4048     args.from_tty = from_tty;
4049     args.target = target;
4050     args.extended_p = extended_p;
4051 
4052     ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
4053     if (ex.reason < 0)
4054       {
4055 	/* Pop the partially set up target - unless something else did
4056 	   already before throwing the exception.  */
4057 	if (remote_desc != NULL)
4058 	  pop_target ();
4059 	if (target_async_permitted)
4060 	  wait_forever_enabled_p = 1;
4061 	throw_exception (ex);
4062       }
4063   }
4064 
4065   if (target_async_permitted)
4066     wait_forever_enabled_p = 1;
4067 }
4068 
4069 /* This takes a program previously attached to and detaches it.  After
4070    this is done, GDB can be used to debug some other program.  We
4071    better not have left any breakpoints in the target program or it'll
4072    die when it hits one.  */
4073 
4074 static void
4075 remote_detach_1 (char *args, int from_tty, int extended)
4076 {
4077   int pid = ptid_get_pid (inferior_ptid);
4078   struct remote_state *rs = get_remote_state ();
4079 
4080   if (args)
4081     error (_("Argument given to \"detach\" when remotely debugging."));
4082 
4083   if (!target_has_execution)
4084     error (_("No process to detach from."));
4085 
4086   /* Tell the remote target to detach.  */
4087   if (remote_multi_process_p (rs))
4088     sprintf (rs->buf, "D;%x", pid);
4089   else
4090     strcpy (rs->buf, "D");
4091 
4092   putpkt (rs->buf);
4093   getpkt (&rs->buf, &rs->buf_size, 0);
4094 
4095   if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4096     ;
4097   else if (rs->buf[0] == '\0')
4098     error (_("Remote doesn't know how to detach"));
4099   else
4100     error (_("Can't detach process."));
4101 
4102   if (from_tty)
4103     {
4104       if (remote_multi_process_p (rs))
4105 	printf_filtered (_("Detached from remote %s.\n"),
4106 			 target_pid_to_str (pid_to_ptid (pid)));
4107       else
4108 	{
4109 	  if (extended)
4110 	    puts_filtered (_("Detached from remote process.\n"));
4111 	  else
4112 	    puts_filtered (_("Ending remote debugging.\n"));
4113 	}
4114     }
4115 
4116   discard_pending_stop_replies (pid);
4117   target_mourn_inferior ();
4118 }
4119 
4120 static void
4121 remote_detach (struct target_ops *ops, char *args, int from_tty)
4122 {
4123   remote_detach_1 (args, from_tty, 0);
4124 }
4125 
4126 static void
4127 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4128 {
4129   remote_detach_1 (args, from_tty, 1);
4130 }
4131 
4132 /* Same as remote_detach, but don't send the "D" packet; just disconnect.  */
4133 
4134 static void
4135 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4136 {
4137   if (args)
4138     error (_("Argument given to \"disconnect\" when remotely debugging."));
4139 
4140   /* Make sure we unpush even the extended remote targets; mourn
4141      won't do it.  So call remote_mourn_1 directly instead of
4142      target_mourn_inferior.  */
4143   remote_mourn_1 (target);
4144 
4145   if (from_tty)
4146     puts_filtered ("Ending remote debugging.\n");
4147 }
4148 
4149 /* Attach to the process specified by ARGS.  If FROM_TTY is non-zero,
4150    be chatty about it.  */
4151 
4152 static void
4153 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4154 {
4155   struct remote_state *rs = get_remote_state ();
4156   int pid;
4157   char *wait_status = NULL;
4158 
4159   pid = parse_pid_to_attach (args);
4160 
4161   /* Remote PID can be freely equal to getpid, do not check it here the same
4162      way as in other targets.  */
4163 
4164   if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4165     error (_("This target does not support attaching to a process"));
4166 
4167   sprintf (rs->buf, "vAttach;%x", pid);
4168   putpkt (rs->buf);
4169   getpkt (&rs->buf, &rs->buf_size, 0);
4170 
4171   if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4172     {
4173       if (from_tty)
4174 	printf_unfiltered (_("Attached to %s\n"),
4175 			   target_pid_to_str (pid_to_ptid (pid)));
4176 
4177       if (!non_stop)
4178 	{
4179 	  /* Save the reply for later.  */
4180 	  wait_status = alloca (strlen (rs->buf) + 1);
4181 	  strcpy (wait_status, rs->buf);
4182 	}
4183       else if (strcmp (rs->buf, "OK") != 0)
4184 	error (_("Attaching to %s failed with: %s"),
4185 	       target_pid_to_str (pid_to_ptid (pid)),
4186 	       rs->buf);
4187     }
4188   else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4189     error (_("This target does not support attaching to a process"));
4190   else
4191     error (_("Attaching to %s failed"),
4192 	   target_pid_to_str (pid_to_ptid (pid)));
4193 
4194   set_current_inferior (remote_add_inferior (pid, 1));
4195 
4196   inferior_ptid = pid_to_ptid (pid);
4197 
4198   if (non_stop)
4199     {
4200       struct thread_info *thread;
4201 
4202       /* Get list of threads.  */
4203       remote_threads_info (target);
4204 
4205       thread = first_thread_of_process (pid);
4206       if (thread)
4207 	inferior_ptid = thread->ptid;
4208       else
4209 	inferior_ptid = pid_to_ptid (pid);
4210 
4211       /* Invalidate our notion of the remote current thread.  */
4212       record_currthread (minus_one_ptid);
4213     }
4214   else
4215     {
4216       /* Now, if we have thread information, update inferior_ptid.  */
4217       inferior_ptid = remote_current_thread (inferior_ptid);
4218 
4219       /* Add the main thread to the thread list.  */
4220       add_thread_silent (inferior_ptid);
4221     }
4222 
4223   /* Next, if the target can specify a description, read it.  We do
4224      this before anything involving memory or registers.  */
4225   target_find_description ();
4226 
4227   if (!non_stop)
4228     {
4229       /* Use the previously fetched status.  */
4230       gdb_assert (wait_status != NULL);
4231 
4232       if (target_can_async_p ())
4233 	{
4234 	  struct stop_reply *stop_reply;
4235 	  struct cleanup *old_chain;
4236 
4237 	  stop_reply = stop_reply_xmalloc ();
4238 	  old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4239 	  remote_parse_stop_reply (wait_status, stop_reply);
4240 	  discard_cleanups (old_chain);
4241 	  push_stop_reply (stop_reply);
4242 
4243 	  target_async (inferior_event_handler, 0);
4244 	}
4245       else
4246 	{
4247 	  gdb_assert (wait_status != NULL);
4248 	  strcpy (rs->buf, wait_status);
4249 	  rs->cached_wait_status = 1;
4250 	}
4251     }
4252   else
4253     gdb_assert (wait_status == NULL);
4254 }
4255 
4256 static void
4257 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4258 {
4259   extended_remote_attach_1 (ops, args, from_tty);
4260 }
4261 
4262 /* Convert hex digit A to a number.  */
4263 
4264 static int
4265 fromhex (int a)
4266 {
4267   if (a >= '0' && a <= '9')
4268     return a - '0';
4269   else if (a >= 'a' && a <= 'f')
4270     return a - 'a' + 10;
4271   else if (a >= 'A' && a <= 'F')
4272     return a - 'A' + 10;
4273   else
4274     error (_("Reply contains invalid hex digit %d"), a);
4275 }
4276 
4277 int
4278 hex2bin (const char *hex, gdb_byte *bin, int count)
4279 {
4280   int i;
4281 
4282   for (i = 0; i < count; i++)
4283     {
4284       if (hex[0] == 0 || hex[1] == 0)
4285 	{
4286 	  /* Hex string is short, or of uneven length.
4287 	     Return the count that has been converted so far.  */
4288 	  return i;
4289 	}
4290       *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4291       hex += 2;
4292     }
4293   return i;
4294 }
4295 
4296 /* Convert number NIB to a hex digit.  */
4297 
4298 static int
4299 tohex (int nib)
4300 {
4301   if (nib < 10)
4302     return '0' + nib;
4303   else
4304     return 'a' + nib - 10;
4305 }
4306 
4307 int
4308 bin2hex (const gdb_byte *bin, char *hex, int count)
4309 {
4310   int i;
4311 
4312   /* May use a length, or a nul-terminated string as input.  */
4313   if (count == 0)
4314     count = strlen ((char *) bin);
4315 
4316   for (i = 0; i < count; i++)
4317     {
4318       *hex++ = tohex ((*bin >> 4) & 0xf);
4319       *hex++ = tohex (*bin++ & 0xf);
4320     }
4321   *hex = 0;
4322   return i;
4323 }
4324 
4325 /* Check for the availability of vCont.  This function should also check
4326    the response.  */
4327 
4328 static void
4329 remote_vcont_probe (struct remote_state *rs)
4330 {
4331   char *buf;
4332 
4333   strcpy (rs->buf, "vCont?");
4334   putpkt (rs->buf);
4335   getpkt (&rs->buf, &rs->buf_size, 0);
4336   buf = rs->buf;
4337 
4338   /* Make sure that the features we assume are supported.  */
4339   if (strncmp (buf, "vCont", 5) == 0)
4340     {
4341       char *p = &buf[5];
4342       int support_s, support_S, support_c, support_C;
4343 
4344       support_s = 0;
4345       support_S = 0;
4346       support_c = 0;
4347       support_C = 0;
4348       rs->support_vCont_t = 0;
4349       while (p && *p == ';')
4350 	{
4351 	  p++;
4352 	  if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4353 	    support_s = 1;
4354 	  else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4355 	    support_S = 1;
4356 	  else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4357 	    support_c = 1;
4358 	  else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4359 	    support_C = 1;
4360 	  else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4361 	    rs->support_vCont_t = 1;
4362 
4363 	  p = strchr (p, ';');
4364 	}
4365 
4366       /* If s, S, c, and C are not all supported, we can't use vCont.  Clearing
4367          BUF will make packet_ok disable the packet.  */
4368       if (!support_s || !support_S || !support_c || !support_C)
4369 	buf[0] = 0;
4370     }
4371 
4372   packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4373 }
4374 
4375 /* Helper function for building "vCont" resumptions.  Write a
4376    resumption to P.  ENDP points to one-passed-the-end of the buffer
4377    we're allowed to write to.  Returns BUF+CHARACTERS_WRITTEN.  The
4378    thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4379    resumed thread should be single-stepped and/or signalled.  If PTID
4380    equals minus_one_ptid, then all threads are resumed; if PTID
4381    represents a process, then all threads of the process are resumed;
4382    the thread to be stepped and/or signalled is given in the global
4383    INFERIOR_PTID.  */
4384 
4385 static char *
4386 append_resumption (char *p, char *endp,
4387 		   ptid_t ptid, int step, enum target_signal siggnal)
4388 {
4389   struct remote_state *rs = get_remote_state ();
4390 
4391   if (step && siggnal != TARGET_SIGNAL_0)
4392     p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4393   else if (step)
4394     p += xsnprintf (p, endp - p, ";s");
4395   else if (siggnal != TARGET_SIGNAL_0)
4396     p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4397   else
4398     p += xsnprintf (p, endp - p, ";c");
4399 
4400   if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4401     {
4402       ptid_t nptid;
4403 
4404       /* All (-1) threads of process.  */
4405       nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4406 
4407       p += xsnprintf (p, endp - p, ":");
4408       p = write_ptid (p, endp, nptid);
4409     }
4410   else if (!ptid_equal (ptid, minus_one_ptid))
4411     {
4412       p += xsnprintf (p, endp - p, ":");
4413       p = write_ptid (p, endp, ptid);
4414     }
4415 
4416   return p;
4417 }
4418 
4419 /* Resume the remote inferior by using a "vCont" packet.  The thread
4420    to be resumed is PTID; STEP and SIGGNAL indicate whether the
4421    resumed thread should be single-stepped and/or signalled.  If PTID
4422    equals minus_one_ptid, then all threads are resumed; the thread to
4423    be stepped and/or signalled is given in the global INFERIOR_PTID.
4424    This function returns non-zero iff it resumes the inferior.
4425 
4426    This function issues a strict subset of all possible vCont commands at the
4427    moment.  */
4428 
4429 static int
4430 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4431 {
4432   struct remote_state *rs = get_remote_state ();
4433   char *p;
4434   char *endp;
4435 
4436   if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4437     remote_vcont_probe (rs);
4438 
4439   if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4440     return 0;
4441 
4442   p = rs->buf;
4443   endp = rs->buf + get_remote_packet_size ();
4444 
4445   /* If we could generate a wider range of packets, we'd have to worry
4446      about overflowing BUF.  Should there be a generic
4447      "multi-part-packet" packet?  */
4448 
4449   p += xsnprintf (p, endp - p, "vCont");
4450 
4451   if (ptid_equal (ptid, magic_null_ptid))
4452     {
4453       /* MAGIC_NULL_PTID means that we don't have any active threads,
4454 	 so we don't have any TID numbers the inferior will
4455 	 understand.  Make sure to only send forms that do not specify
4456 	 a TID.  */
4457       p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4458     }
4459   else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4460     {
4461       /* Resume all threads (of all processes, or of a single
4462 	 process), with preference for INFERIOR_PTID.  This assumes
4463 	 inferior_ptid belongs to the set of all threads we are about
4464 	 to resume.  */
4465       if (step || siggnal != TARGET_SIGNAL_0)
4466 	{
4467 	  /* Step inferior_ptid, with or without signal.  */
4468 	  p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4469 	}
4470 
4471       /* And continue others without a signal.  */
4472       p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4473     }
4474   else
4475     {
4476       /* Scheduler locking; resume only PTID.  */
4477       p = append_resumption (p, endp, ptid, step, siggnal);
4478     }
4479 
4480   gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4481   putpkt (rs->buf);
4482 
4483   if (non_stop)
4484     {
4485       /* In non-stop, the stub replies to vCont with "OK".  The stop
4486 	 reply will be reported asynchronously by means of a `%Stop'
4487 	 notification.  */
4488       getpkt (&rs->buf, &rs->buf_size, 0);
4489       if (strcmp (rs->buf, "OK") != 0)
4490 	error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4491     }
4492 
4493   return 1;
4494 }
4495 
4496 /* Tell the remote machine to resume.  */
4497 
4498 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4499 
4500 static int last_sent_step;
4501 
4502 static void
4503 remote_resume (struct target_ops *ops,
4504 	       ptid_t ptid, int step, enum target_signal siggnal)
4505 {
4506   struct remote_state *rs = get_remote_state ();
4507   char *buf;
4508 
4509   last_sent_signal = siggnal;
4510   last_sent_step = step;
4511 
4512   /* Update the inferior on signals to silently pass, if they've changed.  */
4513   remote_pass_signals ();
4514 
4515   /* The vCont packet doesn't need to specify threads via Hc.  */
4516   /* No reverse support (yet) for vCont.  */
4517   if (execution_direction != EXEC_REVERSE)
4518     if (remote_vcont_resume (ptid, step, siggnal))
4519       goto done;
4520 
4521   /* All other supported resume packets do use Hc, so set the continue
4522      thread.  */
4523   if (ptid_equal (ptid, minus_one_ptid))
4524     set_continue_thread (any_thread_ptid);
4525   else
4526     set_continue_thread (ptid);
4527 
4528   buf = rs->buf;
4529   if (execution_direction == EXEC_REVERSE)
4530     {
4531       /* We don't pass signals to the target in reverse exec mode.  */
4532       if (info_verbose && siggnal != TARGET_SIGNAL_0)
4533 	warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4534 		 siggnal);
4535 
4536       if (step
4537 	  && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4538 	error (_("Remote reverse-step not supported."));
4539       if (!step
4540 	  && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4541 	error (_("Remote reverse-continue not supported."));
4542 
4543       strcpy (buf, step ? "bs" : "bc");
4544     }
4545   else if (siggnal != TARGET_SIGNAL_0)
4546     {
4547       buf[0] = step ? 'S' : 'C';
4548       buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4549       buf[2] = tohex (((int) siggnal) & 0xf);
4550       buf[3] = '\0';
4551     }
4552   else
4553     strcpy (buf, step ? "s" : "c");
4554 
4555   putpkt (buf);
4556 
4557  done:
4558   /* We are about to start executing the inferior, let's register it
4559      with the event loop. NOTE: this is the one place where all the
4560      execution commands end up. We could alternatively do this in each
4561      of the execution commands in infcmd.c.  */
4562   /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4563      into infcmd.c in order to allow inferior function calls to work
4564      NOT asynchronously.  */
4565   if (target_can_async_p ())
4566     target_async (inferior_event_handler, 0);
4567 
4568   /* We've just told the target to resume.  The remote server will
4569      wait for the inferior to stop, and then send a stop reply.  In
4570      the mean time, we can't start another command/query ourselves
4571      because the stub wouldn't be ready to process it.  This applies
4572      only to the base all-stop protocol, however.  In non-stop (which
4573      only supports vCont), the stub replies with an "OK", and is
4574      immediate able to process further serial input.  */
4575   if (!non_stop)
4576     rs->waiting_for_stop_reply = 1;
4577 }
4578 
4579 
4580 /* Set up the signal handler for SIGINT, while the target is
4581    executing, ovewriting the 'regular' SIGINT signal handler.  */
4582 static void
4583 initialize_sigint_signal_handler (void)
4584 {
4585   signal (SIGINT, handle_remote_sigint);
4586 }
4587 
4588 /* Signal handler for SIGINT, while the target is executing.  */
4589 static void
4590 handle_remote_sigint (int sig)
4591 {
4592   signal (sig, handle_remote_sigint_twice);
4593   mark_async_signal_handler_wrapper (sigint_remote_token);
4594 }
4595 
4596 /* Signal handler for SIGINT, installed after SIGINT has already been
4597    sent once.  It will take effect the second time that the user sends
4598    a ^C.  */
4599 static void
4600 handle_remote_sigint_twice (int sig)
4601 {
4602   signal (sig, handle_remote_sigint);
4603   mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4604 }
4605 
4606 /* Perform the real interruption of the target execution, in response
4607    to a ^C.  */
4608 static void
4609 async_remote_interrupt (gdb_client_data arg)
4610 {
4611   if (remote_debug)
4612     fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4613 
4614   target_stop (inferior_ptid);
4615 }
4616 
4617 /* Perform interrupt, if the first attempt did not succeed. Just give
4618    up on the target alltogether.  */
4619 void
4620 async_remote_interrupt_twice (gdb_client_data arg)
4621 {
4622   if (remote_debug)
4623     fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4624 
4625   interrupt_query ();
4626 }
4627 
4628 /* Reinstall the usual SIGINT handlers, after the target has
4629    stopped.  */
4630 static void
4631 cleanup_sigint_signal_handler (void *dummy)
4632 {
4633   signal (SIGINT, handle_sigint);
4634 }
4635 
4636 /* Send ^C to target to halt it.  Target will respond, and send us a
4637    packet.  */
4638 static void (*ofunc) (int);
4639 
4640 /* The command line interface's stop routine. This function is installed
4641    as a signal handler for SIGINT. The first time a user requests a
4642    stop, we call remote_stop to send a break or ^C. If there is no
4643    response from the target (it didn't stop when the user requested it),
4644    we ask the user if he'd like to detach from the target.  */
4645 static void
4646 remote_interrupt (int signo)
4647 {
4648   /* If this doesn't work, try more severe steps.  */
4649   signal (signo, remote_interrupt_twice);
4650 
4651   gdb_call_async_signal_handler (sigint_remote_token, 1);
4652 }
4653 
4654 /* The user typed ^C twice.  */
4655 
4656 static void
4657 remote_interrupt_twice (int signo)
4658 {
4659   signal (signo, ofunc);
4660   gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4661   signal (signo, remote_interrupt);
4662 }
4663 
4664 /* Non-stop version of target_stop.  Uses `vCont;t' to stop a remote
4665    thread, all threads of a remote process, or all threads of all
4666    processes.  */
4667 
4668 static void
4669 remote_stop_ns (ptid_t ptid)
4670 {
4671   struct remote_state *rs = get_remote_state ();
4672   char *p = rs->buf;
4673   char *endp = rs->buf + get_remote_packet_size ();
4674 
4675   if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4676     remote_vcont_probe (rs);
4677 
4678   if (!rs->support_vCont_t)
4679     error (_("Remote server does not support stopping threads"));
4680 
4681   if (ptid_equal (ptid, minus_one_ptid)
4682       || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4683     p += xsnprintf (p, endp - p, "vCont;t");
4684   else
4685     {
4686       ptid_t nptid;
4687 
4688       p += xsnprintf (p, endp - p, "vCont;t:");
4689 
4690       if (ptid_is_pid (ptid))
4691 	  /* All (-1) threads of process.  */
4692 	nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4693       else
4694 	{
4695 	  /* Small optimization: if we already have a stop reply for
4696 	     this thread, no use in telling the stub we want this
4697 	     stopped.  */
4698 	  if (peek_stop_reply (ptid))
4699 	    return;
4700 
4701 	  nptid = ptid;
4702 	}
4703 
4704       p = write_ptid (p, endp, nptid);
4705     }
4706 
4707   /* In non-stop, we get an immediate OK reply.  The stop reply will
4708      come in asynchronously by notification.  */
4709   putpkt (rs->buf);
4710   getpkt (&rs->buf, &rs->buf_size, 0);
4711   if (strcmp (rs->buf, "OK") != 0)
4712     error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4713 }
4714 
4715 /* All-stop version of target_stop.  Sends a break or a ^C to stop the
4716    remote target.  It is undefined which thread of which process
4717    reports the stop.  */
4718 
4719 static void
4720 remote_stop_as (ptid_t ptid)
4721 {
4722   struct remote_state *rs = get_remote_state ();
4723 
4724   rs->ctrlc_pending_p = 1;
4725 
4726   /* If the inferior is stopped already, but the core didn't know
4727      about it yet, just ignore the request.  The cached wait status
4728      will be collected in remote_wait.  */
4729   if (rs->cached_wait_status)
4730     return;
4731 
4732   /* Send interrupt_sequence to remote target.  */
4733   send_interrupt_sequence ();
4734 }
4735 
4736 /* This is the generic stop called via the target vector. When a target
4737    interrupt is requested, either by the command line or the GUI, we
4738    will eventually end up here.  */
4739 
4740 static void
4741 remote_stop (ptid_t ptid)
4742 {
4743   if (remote_debug)
4744     fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4745 
4746   if (non_stop)
4747     remote_stop_ns (ptid);
4748   else
4749     remote_stop_as (ptid);
4750 }
4751 
4752 /* Ask the user what to do when an interrupt is received.  */
4753 
4754 static void
4755 interrupt_query (void)
4756 {
4757   target_terminal_ours ();
4758 
4759   if (target_can_async_p ())
4760     {
4761       signal (SIGINT, handle_sigint);
4762       deprecated_throw_reason (RETURN_QUIT);
4763     }
4764   else
4765     {
4766       if (query (_("Interrupted while waiting for the program.\n\
4767 Give up (and stop debugging it)? ")))
4768 	{
4769 	  pop_target ();
4770 	  deprecated_throw_reason (RETURN_QUIT);
4771 	}
4772     }
4773 
4774   target_terminal_inferior ();
4775 }
4776 
4777 /* Enable/disable target terminal ownership.  Most targets can use
4778    terminal groups to control terminal ownership.  Remote targets are
4779    different in that explicit transfer of ownership to/from GDB/target
4780    is required.  */
4781 
4782 static void
4783 remote_terminal_inferior (void)
4784 {
4785   if (!target_async_permitted)
4786     /* Nothing to do.  */
4787     return;
4788 
4789   /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4790      idempotent.  The event-loop GDB talking to an asynchronous target
4791      with a synchronous command calls this function from both
4792      event-top.c and infrun.c/infcmd.c.  Once GDB stops trying to
4793      transfer the terminal to the target when it shouldn't this guard
4794      can go away.  */
4795   if (!remote_async_terminal_ours_p)
4796     return;
4797   delete_file_handler (input_fd);
4798   remote_async_terminal_ours_p = 0;
4799   initialize_sigint_signal_handler ();
4800   /* NOTE: At this point we could also register our selves as the
4801      recipient of all input.  Any characters typed could then be
4802      passed on down to the target.  */
4803 }
4804 
4805 static void
4806 remote_terminal_ours (void)
4807 {
4808   if (!target_async_permitted)
4809     /* Nothing to do.  */
4810     return;
4811 
4812   /* See FIXME in remote_terminal_inferior.  */
4813   if (remote_async_terminal_ours_p)
4814     return;
4815   cleanup_sigint_signal_handler (NULL);
4816   add_file_handler (input_fd, stdin_event_handler, 0);
4817   remote_async_terminal_ours_p = 1;
4818 }
4819 
4820 static void
4821 remote_console_output (char *msg)
4822 {
4823   char *p;
4824 
4825   for (p = msg; p[0] && p[1]; p += 2)
4826     {
4827       char tb[2];
4828       char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4829 
4830       tb[0] = c;
4831       tb[1] = 0;
4832       fputs_unfiltered (tb, gdb_stdtarg);
4833     }
4834     gdb_flush (gdb_stdtarg);
4835   }
4836 
4837 typedef struct cached_reg
4838 {
4839   int num;
4840   gdb_byte data[MAX_REGISTER_SIZE];
4841 } cached_reg_t;
4842 
4843 DEF_VEC_O(cached_reg_t);
4844 
4845 struct stop_reply
4846 {
4847   struct stop_reply *next;
4848 
4849   ptid_t ptid;
4850 
4851   struct target_waitstatus ws;
4852 
4853   VEC(cached_reg_t) *regcache;
4854 
4855   int stopped_by_watchpoint_p;
4856   CORE_ADDR watch_data_address;
4857 
4858   int solibs_changed;
4859   int replay_event;
4860 
4861   int core;
4862 };
4863 
4864 /* The list of already fetched and acknowledged stop events.  */
4865 static struct stop_reply *stop_reply_queue;
4866 
4867 static struct stop_reply *
4868 stop_reply_xmalloc (void)
4869 {
4870   struct stop_reply *r = XMALLOC (struct stop_reply);
4871 
4872   r->next = NULL;
4873   return r;
4874 }
4875 
4876 static void
4877 stop_reply_xfree (struct stop_reply *r)
4878 {
4879   if (r != NULL)
4880     {
4881       VEC_free (cached_reg_t, r->regcache);
4882       xfree (r);
4883     }
4884 }
4885 
4886 /* Discard all pending stop replies of inferior PID.  If PID is -1,
4887    discard everything.  */
4888 
4889 static void
4890 discard_pending_stop_replies (int pid)
4891 {
4892   struct stop_reply *prev = NULL, *reply, *next;
4893 
4894   /* Discard the in-flight notification.  */
4895   if (pending_stop_reply != NULL
4896       && (pid == -1
4897 	  || ptid_get_pid (pending_stop_reply->ptid) == pid))
4898     {
4899       stop_reply_xfree (pending_stop_reply);
4900       pending_stop_reply = NULL;
4901     }
4902 
4903   /* Discard the stop replies we have already pulled with
4904      vStopped.  */
4905   for (reply = stop_reply_queue; reply; reply = next)
4906     {
4907       next = reply->next;
4908       if (pid == -1
4909 	  || ptid_get_pid (reply->ptid) == pid)
4910 	{
4911 	  if (reply == stop_reply_queue)
4912 	    stop_reply_queue = reply->next;
4913 	  else
4914 	    prev->next = reply->next;
4915 
4916 	  stop_reply_xfree (reply);
4917 	}
4918       else
4919 	prev = reply;
4920     }
4921 }
4922 
4923 /* Cleanup wrapper.  */
4924 
4925 static void
4926 do_stop_reply_xfree (void *arg)
4927 {
4928   struct stop_reply *r = arg;
4929 
4930   stop_reply_xfree (r);
4931 }
4932 
4933 /* Look for a queued stop reply belonging to PTID.  If one is found,
4934    remove it from the queue, and return it.  Returns NULL if none is
4935    found.  If there are still queued events left to process, tell the
4936    event loop to get back to target_wait soon.  */
4937 
4938 static struct stop_reply *
4939 queued_stop_reply (ptid_t ptid)
4940 {
4941   struct stop_reply *it;
4942   struct stop_reply **it_link;
4943 
4944   it = stop_reply_queue;
4945   it_link = &stop_reply_queue;
4946   while (it)
4947     {
4948       if (ptid_match (it->ptid, ptid))
4949 	{
4950 	  *it_link = it->next;
4951 	  it->next = NULL;
4952 	  break;
4953 	}
4954 
4955       it_link = &it->next;
4956       it = *it_link;
4957     }
4958 
4959   if (stop_reply_queue)
4960     /* There's still at least an event left.  */
4961     mark_async_event_handler (remote_async_inferior_event_token);
4962 
4963   return it;
4964 }
4965 
4966 /* Push a fully parsed stop reply in the stop reply queue.  Since we
4967    know that we now have at least one queued event left to pass to the
4968    core side, tell the event loop to get back to target_wait soon.  */
4969 
4970 static void
4971 push_stop_reply (struct stop_reply *new_event)
4972 {
4973   struct stop_reply *event;
4974 
4975   if (stop_reply_queue)
4976     {
4977       for (event = stop_reply_queue;
4978 	   event && event->next;
4979 	   event = event->next)
4980 	;
4981 
4982       event->next = new_event;
4983     }
4984   else
4985     stop_reply_queue = new_event;
4986 
4987   mark_async_event_handler (remote_async_inferior_event_token);
4988 }
4989 
4990 /* Returns true if we have a stop reply for PTID.  */
4991 
4992 static int
4993 peek_stop_reply (ptid_t ptid)
4994 {
4995   struct stop_reply *it;
4996 
4997   for (it = stop_reply_queue; it; it = it->next)
4998     if (ptid_equal (ptid, it->ptid))
4999       {
5000 	if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5001 	  return 1;
5002       }
5003 
5004   return 0;
5005 }
5006 
5007 /* Parse the stop reply in BUF.  Either the function succeeds, and the
5008    result is stored in EVENT, or throws an error.  */
5009 
5010 static void
5011 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5012 {
5013   struct remote_arch_state *rsa = get_remote_arch_state ();
5014   ULONGEST addr;
5015   char *p;
5016 
5017   event->ptid = null_ptid;
5018   event->ws.kind = TARGET_WAITKIND_IGNORE;
5019   event->ws.value.integer = 0;
5020   event->solibs_changed = 0;
5021   event->replay_event = 0;
5022   event->stopped_by_watchpoint_p = 0;
5023   event->regcache = NULL;
5024   event->core = -1;
5025 
5026   switch (buf[0])
5027     {
5028     case 'T':		/* Status with PC, SP, FP, ...	*/
5029       /* Expedited reply, containing Signal, {regno, reg} repeat.  */
5030       /*  format is:  'Tssn...:r...;n...:r...;n...:r...;#cc', where
5031 	    ss = signal number
5032 	    n... = register number
5033 	    r... = register contents
5034       */
5035 
5036       p = &buf[3];	/* after Txx */
5037       while (*p)
5038 	{
5039 	  char *p1;
5040 	  char *p_temp;
5041 	  int fieldsize;
5042 	  LONGEST pnum = 0;
5043 
5044 	  /* If the packet contains a register number, save it in
5045 	     pnum and set p1 to point to the character following it.
5046 	     Otherwise p1 points to p.  */
5047 
5048 	  /* If this packet is an awatch packet, don't parse the 'a'
5049 	     as a register number.  */
5050 
5051 	  if (strncmp (p, "awatch", strlen("awatch")) != 0
5052 	      && strncmp (p, "core", strlen ("core") != 0))
5053 	    {
5054 	      /* Read the ``P'' register number.  */
5055 	      pnum = strtol (p, &p_temp, 16);
5056 	      p1 = p_temp;
5057 	    }
5058 	  else
5059 	    p1 = p;
5060 
5061 	  if (p1 == p)	/* No register number present here.  */
5062 	    {
5063 	      p1 = strchr (p, ':');
5064 	      if (p1 == NULL)
5065 		error (_("Malformed packet(a) (missing colon): %s\n\
5066 Packet: '%s'\n"),
5067 		       p, buf);
5068 	      if (strncmp (p, "thread", p1 - p) == 0)
5069 		event->ptid = read_ptid (++p1, &p);
5070 	      else if ((strncmp (p, "watch", p1 - p) == 0)
5071 		       || (strncmp (p, "rwatch", p1 - p) == 0)
5072 		       || (strncmp (p, "awatch", p1 - p) == 0))
5073 		{
5074 		  event->stopped_by_watchpoint_p = 1;
5075 		  p = unpack_varlen_hex (++p1, &addr);
5076 		  event->watch_data_address = (CORE_ADDR) addr;
5077 		}
5078 	      else if (strncmp (p, "library", p1 - p) == 0)
5079 		{
5080 		  p1++;
5081 		  p_temp = p1;
5082 		  while (*p_temp && *p_temp != ';')
5083 		    p_temp++;
5084 
5085 		  event->solibs_changed = 1;
5086 		  p = p_temp;
5087 		}
5088 	      else if (strncmp (p, "replaylog", p1 - p) == 0)
5089 		{
5090 		  /* NO_HISTORY event.
5091 		     p1 will indicate "begin" or "end", but
5092 		     it makes no difference for now, so ignore it.  */
5093 		  event->replay_event = 1;
5094 		  p_temp = strchr (p1 + 1, ';');
5095 		  if (p_temp)
5096 		    p = p_temp;
5097 		}
5098 	      else if (strncmp (p, "core", p1 - p) == 0)
5099 		{
5100 		  ULONGEST c;
5101 
5102 		  p = unpack_varlen_hex (++p1, &c);
5103 		  event->core = c;
5104 		}
5105 	      else
5106 		{
5107 		  /* Silently skip unknown optional info.  */
5108 		  p_temp = strchr (p1 + 1, ';');
5109 		  if (p_temp)
5110 		    p = p_temp;
5111 		}
5112 	    }
5113 	  else
5114 	    {
5115 	      struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5116 	      cached_reg_t cached_reg;
5117 
5118 	      p = p1;
5119 
5120 	      if (*p != ':')
5121 		error (_("Malformed packet(b) (missing colon): %s\n\
5122 Packet: '%s'\n"),
5123 		       p, buf);
5124 	      ++p;
5125 
5126 	      if (reg == NULL)
5127 		error (_("Remote sent bad register number %s: %s\n\
5128 Packet: '%s'\n"),
5129 		       hex_string (pnum), p, buf);
5130 
5131 	      cached_reg.num = reg->regnum;
5132 
5133 	      fieldsize = hex2bin (p, cached_reg.data,
5134 				   register_size (target_gdbarch,
5135 						  reg->regnum));
5136 	      p += 2 * fieldsize;
5137 	      if (fieldsize < register_size (target_gdbarch,
5138 					     reg->regnum))
5139 		warning (_("Remote reply is too short: %s"), buf);
5140 
5141 	      VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5142 	    }
5143 
5144 	  if (*p != ';')
5145 	    error (_("Remote register badly formatted: %s\nhere: %s"),
5146 		   buf, p);
5147 	  ++p;
5148 	}
5149       /* fall through */
5150     case 'S':		/* Old style status, just signal only.  */
5151       if (event->solibs_changed)
5152 	event->ws.kind = TARGET_WAITKIND_LOADED;
5153       else if (event->replay_event)
5154 	event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5155       else
5156 	{
5157 	  event->ws.kind = TARGET_WAITKIND_STOPPED;
5158 	  event->ws.value.sig = (enum target_signal)
5159 	    (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5160 	}
5161       break;
5162     case 'W':		/* Target exited.  */
5163     case 'X':
5164       {
5165 	char *p;
5166 	int pid;
5167 	ULONGEST value;
5168 
5169 	/* GDB used to accept only 2 hex chars here.  Stubs should
5170 	   only send more if they detect GDB supports multi-process
5171 	   support.  */
5172 	p = unpack_varlen_hex (&buf[1], &value);
5173 
5174 	if (buf[0] == 'W')
5175 	  {
5176 	    /* The remote process exited.  */
5177 	    event->ws.kind = TARGET_WAITKIND_EXITED;
5178 	    event->ws.value.integer = value;
5179 	  }
5180 	else
5181 	  {
5182 	    /* The remote process exited with a signal.  */
5183 	    event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5184 	    event->ws.value.sig = (enum target_signal) value;
5185 	  }
5186 
5187 	/* If no process is specified, assume inferior_ptid.  */
5188 	pid = ptid_get_pid (inferior_ptid);
5189 	if (*p == '\0')
5190 	  ;
5191 	else if (*p == ';')
5192 	  {
5193 	    p++;
5194 
5195 	    if (p == '\0')
5196 	      ;
5197 	    else if (strncmp (p,
5198 			      "process:", sizeof ("process:") - 1) == 0)
5199 	      {
5200 		ULONGEST upid;
5201 
5202 		p += sizeof ("process:") - 1;
5203 		unpack_varlen_hex (p, &upid);
5204 		pid = upid;
5205 	      }
5206 	    else
5207 	      error (_("unknown stop reply packet: %s"), buf);
5208 	  }
5209 	else
5210 	  error (_("unknown stop reply packet: %s"), buf);
5211 	event->ptid = pid_to_ptid (pid);
5212       }
5213       break;
5214     }
5215 
5216   if (non_stop && ptid_equal (event->ptid, null_ptid))
5217     error (_("No process or thread specified in stop reply: %s"), buf);
5218 }
5219 
5220 /* When the stub wants to tell GDB about a new stop reply, it sends a
5221    stop notification (%Stop).  Those can come it at any time, hence,
5222    we have to make sure that any pending putpkt/getpkt sequence we're
5223    making is finished, before querying the stub for more events with
5224    vStopped.  E.g., if we started a vStopped sequence immediatelly
5225    upon receiving the %Stop notification, something like this could
5226    happen:
5227 
5228     1.1) --> Hg 1
5229     1.2) <-- OK
5230     1.3) --> g
5231     1.4) <-- %Stop
5232     1.5) --> vStopped
5233     1.6) <-- (registers reply to step #1.3)
5234 
5235    Obviously, the reply in step #1.6 would be unexpected to a vStopped
5236    query.
5237 
5238    To solve this, whenever we parse a %Stop notification sucessfully,
5239    we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5240    doing whatever we were doing:
5241 
5242     2.1) --> Hg 1
5243     2.2) <-- OK
5244     2.3) --> g
5245     2.4) <-- %Stop
5246       <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5247     2.5) <-- (registers reply to step #2.3)
5248 
5249    Eventualy after step #2.5, we return to the event loop, which
5250    notices there's an event on the
5251    REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5252    associated callback --- the function below.  At this point, we're
5253    always safe to start a vStopped sequence. :
5254 
5255     2.6) --> vStopped
5256     2.7) <-- T05 thread:2
5257     2.8) --> vStopped
5258     2.9) --> OK
5259 */
5260 
5261 static void
5262 remote_get_pending_stop_replies (void)
5263 {
5264   struct remote_state *rs = get_remote_state ();
5265 
5266   if (pending_stop_reply)
5267     {
5268       /* acknowledge */
5269       putpkt ("vStopped");
5270 
5271       /* Now we can rely on it.	 */
5272       push_stop_reply (pending_stop_reply);
5273       pending_stop_reply = NULL;
5274 
5275       while (1)
5276 	{
5277 	  getpkt (&rs->buf, &rs->buf_size, 0);
5278 	  if (strcmp (rs->buf, "OK") == 0)
5279 	    break;
5280 	  else
5281 	    {
5282 	      struct cleanup *old_chain;
5283 	      struct stop_reply *stop_reply = stop_reply_xmalloc ();
5284 
5285 	      old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5286 	      remote_parse_stop_reply (rs->buf, stop_reply);
5287 
5288 	      /* acknowledge */
5289 	      putpkt ("vStopped");
5290 
5291 	      if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5292 		{
5293 		  /* Now we can rely on it.  */
5294 		  discard_cleanups (old_chain);
5295 		  push_stop_reply (stop_reply);
5296 		}
5297 	      else
5298 		/* We got an unknown stop reply.  */
5299 		do_cleanups (old_chain);
5300 	    }
5301 	}
5302     }
5303 }
5304 
5305 
5306 /* Called when it is decided that STOP_REPLY holds the info of the
5307    event that is to be returned to the core.  This function always
5308    destroys STOP_REPLY.  */
5309 
5310 static ptid_t
5311 process_stop_reply (struct stop_reply *stop_reply,
5312 		    struct target_waitstatus *status)
5313 {
5314   ptid_t ptid;
5315 
5316   *status = stop_reply->ws;
5317   ptid = stop_reply->ptid;
5318 
5319   /* If no thread/process was reported by the stub, assume the current
5320      inferior.  */
5321   if (ptid_equal (ptid, null_ptid))
5322     ptid = inferior_ptid;
5323 
5324   if (status->kind != TARGET_WAITKIND_EXITED
5325       && status->kind != TARGET_WAITKIND_SIGNALLED)
5326     {
5327       /* Expedited registers.  */
5328       if (stop_reply->regcache)
5329 	{
5330 	  struct regcache *regcache
5331 	    = get_thread_arch_regcache (ptid, target_gdbarch);
5332 	  cached_reg_t *reg;
5333 	  int ix;
5334 
5335 	  for (ix = 0;
5336 	       VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5337 	       ix++)
5338 	    regcache_raw_supply (regcache, reg->num, reg->data);
5339 	  VEC_free (cached_reg_t, stop_reply->regcache);
5340 	}
5341 
5342       remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5343       remote_watch_data_address = stop_reply->watch_data_address;
5344 
5345       remote_notice_new_inferior (ptid, 0);
5346       demand_private_info (ptid)->core = stop_reply->core;
5347     }
5348 
5349   stop_reply_xfree (stop_reply);
5350   return ptid;
5351 }
5352 
5353 /* The non-stop mode version of target_wait.  */
5354 
5355 static ptid_t
5356 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5357 {
5358   struct remote_state *rs = get_remote_state ();
5359   struct stop_reply *stop_reply;
5360   int ret;
5361 
5362   /* If in non-stop mode, get out of getpkt even if a
5363      notification is received.	*/
5364 
5365   ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5366 			      0 /* forever */);
5367   while (1)
5368     {
5369       if (ret != -1)
5370 	switch (rs->buf[0])
5371 	  {
5372 	  case 'E':		/* Error of some sort.	*/
5373 	    /* We're out of sync with the target now.  Did it continue
5374 	       or not?  We can't tell which thread it was in non-stop,
5375 	       so just ignore this.  */
5376 	    warning (_("Remote failure reply: %s"), rs->buf);
5377 	    break;
5378 	  case 'O':		/* Console output.  */
5379 	    remote_console_output (rs->buf + 1);
5380 	    break;
5381 	  default:
5382 	    warning (_("Invalid remote reply: %s"), rs->buf);
5383 	    break;
5384 	  }
5385 
5386       /* Acknowledge a pending stop reply that may have arrived in the
5387 	 mean time.  */
5388       if (pending_stop_reply != NULL)
5389 	remote_get_pending_stop_replies ();
5390 
5391       /* If indeed we noticed a stop reply, we're done.  */
5392       stop_reply = queued_stop_reply (ptid);
5393       if (stop_reply != NULL)
5394 	return process_stop_reply (stop_reply, status);
5395 
5396       /* Still no event.  If we're just polling for an event, then
5397 	 return to the event loop.  */
5398       if (options & TARGET_WNOHANG)
5399 	{
5400 	  status->kind = TARGET_WAITKIND_IGNORE;
5401 	  return minus_one_ptid;
5402 	}
5403 
5404       /* Otherwise do a blocking wait.  */
5405       ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5406 				  1 /* forever */);
5407     }
5408 }
5409 
5410 /* Wait until the remote machine stops, then return, storing status in
5411    STATUS just as `wait' would.  */
5412 
5413 static ptid_t
5414 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5415 {
5416   struct remote_state *rs = get_remote_state ();
5417   ptid_t event_ptid = null_ptid;
5418   char *buf;
5419   struct stop_reply *stop_reply;
5420 
5421  again:
5422 
5423   status->kind = TARGET_WAITKIND_IGNORE;
5424   status->value.integer = 0;
5425 
5426   stop_reply = queued_stop_reply (ptid);
5427   if (stop_reply != NULL)
5428     return process_stop_reply (stop_reply, status);
5429 
5430   if (rs->cached_wait_status)
5431     /* Use the cached wait status, but only once.  */
5432     rs->cached_wait_status = 0;
5433   else
5434     {
5435       int ret;
5436 
5437       if (!target_is_async_p ())
5438 	{
5439 	  ofunc = signal (SIGINT, remote_interrupt);
5440 	  /* If the user hit C-c before this packet, or between packets,
5441 	     pretend that it was hit right here.  */
5442 	  if (quit_flag)
5443 	    {
5444 	      quit_flag = 0;
5445 	      remote_interrupt (SIGINT);
5446 	    }
5447 	}
5448 
5449       /* FIXME: cagney/1999-09-27: If we're in async mode we should
5450 	 _never_ wait for ever -> test on target_is_async_p().
5451 	 However, before we do that we need to ensure that the caller
5452 	 knows how to take the target into/out of async mode.  */
5453       ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5454       if (!target_is_async_p ())
5455 	signal (SIGINT, ofunc);
5456     }
5457 
5458   buf = rs->buf;
5459 
5460   remote_stopped_by_watchpoint_p = 0;
5461 
5462   /* We got something.  */
5463   rs->waiting_for_stop_reply = 0;
5464 
5465   /* Assume that the target has acknowledged Ctrl-C unless we receive
5466      an 'F' or 'O' packet.  */
5467   if (buf[0] != 'F' && buf[0] != 'O')
5468     rs->ctrlc_pending_p = 0;
5469 
5470   switch (buf[0])
5471     {
5472     case 'E':		/* Error of some sort.	*/
5473       /* We're out of sync with the target now.  Did it continue or
5474 	 not?  Not is more likely, so report a stop.  */
5475       warning (_("Remote failure reply: %s"), buf);
5476       status->kind = TARGET_WAITKIND_STOPPED;
5477       status->value.sig = TARGET_SIGNAL_0;
5478       break;
5479     case 'F':		/* File-I/O request.  */
5480       remote_fileio_request (buf, rs->ctrlc_pending_p);
5481       rs->ctrlc_pending_p = 0;
5482       break;
5483     case 'T': case 'S': case 'X': case 'W':
5484       {
5485 	struct stop_reply *stop_reply;
5486 	struct cleanup *old_chain;
5487 
5488 	stop_reply = stop_reply_xmalloc ();
5489 	old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5490 	remote_parse_stop_reply (buf, stop_reply);
5491 	discard_cleanups (old_chain);
5492 	event_ptid = process_stop_reply (stop_reply, status);
5493 	break;
5494       }
5495     case 'O':		/* Console output.  */
5496       remote_console_output (buf + 1);
5497 
5498       /* The target didn't really stop; keep waiting.  */
5499       rs->waiting_for_stop_reply = 1;
5500 
5501       break;
5502     case '\0':
5503       if (last_sent_signal != TARGET_SIGNAL_0)
5504 	{
5505 	  /* Zero length reply means that we tried 'S' or 'C' and the
5506 	     remote system doesn't support it.  */
5507 	  target_terminal_ours_for_output ();
5508 	  printf_filtered
5509 	    ("Can't send signals to this remote system.  %s not sent.\n",
5510 	     target_signal_to_name (last_sent_signal));
5511 	  last_sent_signal = TARGET_SIGNAL_0;
5512 	  target_terminal_inferior ();
5513 
5514 	  strcpy ((char *) buf, last_sent_step ? "s" : "c");
5515 	  putpkt ((char *) buf);
5516 
5517 	  /* We just told the target to resume, so a stop reply is in
5518 	     order.  */
5519 	  rs->waiting_for_stop_reply = 1;
5520 	  break;
5521 	}
5522       /* else fallthrough */
5523     default:
5524       warning (_("Invalid remote reply: %s"), buf);
5525       /* Keep waiting.  */
5526       rs->waiting_for_stop_reply = 1;
5527       break;
5528     }
5529 
5530   if (status->kind == TARGET_WAITKIND_IGNORE)
5531     {
5532       /* Nothing interesting happened.  If we're doing a non-blocking
5533 	 poll, we're done.  Otherwise, go back to waiting.  */
5534       if (options & TARGET_WNOHANG)
5535 	return minus_one_ptid;
5536       else
5537 	goto again;
5538     }
5539   else if (status->kind != TARGET_WAITKIND_EXITED
5540 	   && status->kind != TARGET_WAITKIND_SIGNALLED)
5541     {
5542       if (!ptid_equal (event_ptid, null_ptid))
5543 	record_currthread (event_ptid);
5544       else
5545 	event_ptid = inferior_ptid;
5546     }
5547   else
5548     /* A process exit.  Invalidate our notion of current thread.  */
5549     record_currthread (minus_one_ptid);
5550 
5551   return event_ptid;
5552 }
5553 
5554 /* Wait until the remote machine stops, then return, storing status in
5555    STATUS just as `wait' would.  */
5556 
5557 static ptid_t
5558 remote_wait (struct target_ops *ops,
5559 	     ptid_t ptid, struct target_waitstatus *status, int options)
5560 {
5561   ptid_t event_ptid;
5562 
5563   if (non_stop)
5564     event_ptid = remote_wait_ns (ptid, status, options);
5565   else
5566     event_ptid = remote_wait_as (ptid, status, options);
5567 
5568   if (target_can_async_p ())
5569     {
5570       /* If there are are events left in the queue tell the event loop
5571 	 to return here.  */
5572       if (stop_reply_queue)
5573 	mark_async_event_handler (remote_async_inferior_event_token);
5574     }
5575 
5576   return event_ptid;
5577 }
5578 
5579 /* Fetch a single register using a 'p' packet.  */
5580 
5581 static int
5582 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5583 {
5584   struct remote_state *rs = get_remote_state ();
5585   char *buf, *p;
5586   char regp[MAX_REGISTER_SIZE];
5587   int i;
5588 
5589   if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5590     return 0;
5591 
5592   if (reg->pnum == -1)
5593     return 0;
5594 
5595   p = rs->buf;
5596   *p++ = 'p';
5597   p += hexnumstr (p, reg->pnum);
5598   *p++ = '\0';
5599   putpkt (rs->buf);
5600   getpkt (&rs->buf, &rs->buf_size, 0);
5601 
5602   buf = rs->buf;
5603 
5604   switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5605     {
5606     case PACKET_OK:
5607       break;
5608     case PACKET_UNKNOWN:
5609       return 0;
5610     case PACKET_ERROR:
5611       error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5612 	     gdbarch_register_name (get_regcache_arch (regcache),
5613 				    reg->regnum),
5614 	     buf);
5615     }
5616 
5617   /* If this register is unfetchable, tell the regcache.  */
5618   if (buf[0] == 'x')
5619     {
5620       regcache_raw_supply (regcache, reg->regnum, NULL);
5621       return 1;
5622     }
5623 
5624   /* Otherwise, parse and supply the value.  */
5625   p = buf;
5626   i = 0;
5627   while (p[0] != 0)
5628     {
5629       if (p[1] == 0)
5630 	error (_("fetch_register_using_p: early buf termination"));
5631 
5632       regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5633       p += 2;
5634     }
5635   regcache_raw_supply (regcache, reg->regnum, regp);
5636   return 1;
5637 }
5638 
5639 /* Fetch the registers included in the target's 'g' packet.  */
5640 
5641 static int
5642 send_g_packet (void)
5643 {
5644   struct remote_state *rs = get_remote_state ();
5645   int buf_len;
5646 
5647   sprintf (rs->buf, "g");
5648   remote_send (&rs->buf, &rs->buf_size);
5649 
5650   /* We can get out of synch in various cases.  If the first character
5651      in the buffer is not a hex character, assume that has happened
5652      and try to fetch another packet to read.  */
5653   while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5654 	 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5655 	 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5656 	 && rs->buf[0] != 'x')	/* New: unavailable register value.  */
5657     {
5658       if (remote_debug)
5659 	fprintf_unfiltered (gdb_stdlog,
5660 			    "Bad register packet; fetching a new packet\n");
5661       getpkt (&rs->buf, &rs->buf_size, 0);
5662     }
5663 
5664   buf_len = strlen (rs->buf);
5665 
5666   /* Sanity check the received packet.  */
5667   if (buf_len % 2 != 0)
5668     error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5669 
5670   return buf_len / 2;
5671 }
5672 
5673 static void
5674 process_g_packet (struct regcache *regcache)
5675 {
5676   struct gdbarch *gdbarch = get_regcache_arch (regcache);
5677   struct remote_state *rs = get_remote_state ();
5678   struct remote_arch_state *rsa = get_remote_arch_state ();
5679   int i, buf_len;
5680   char *p;
5681   char *regs;
5682 
5683   buf_len = strlen (rs->buf);
5684 
5685   /* Further sanity checks, with knowledge of the architecture.  */
5686   if (buf_len > 2 * rsa->sizeof_g_packet)
5687     error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5688 
5689   /* Save the size of the packet sent to us by the target.  It is used
5690      as a heuristic when determining the max size of packets that the
5691      target can safely receive.  */
5692   if (rsa->actual_register_packet_size == 0)
5693     rsa->actual_register_packet_size = buf_len;
5694 
5695   /* If this is smaller than we guessed the 'g' packet would be,
5696      update our records.  A 'g' reply that doesn't include a register's
5697      value implies either that the register is not available, or that
5698      the 'p' packet must be used.  */
5699   if (buf_len < 2 * rsa->sizeof_g_packet)
5700     {
5701       rsa->sizeof_g_packet = buf_len / 2;
5702 
5703       for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5704 	{
5705 	  if (rsa->regs[i].pnum == -1)
5706 	    continue;
5707 
5708 	  if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5709 	    rsa->regs[i].in_g_packet = 0;
5710 	  else
5711 	    rsa->regs[i].in_g_packet = 1;
5712 	}
5713     }
5714 
5715   regs = alloca (rsa->sizeof_g_packet);
5716 
5717   /* Unimplemented registers read as all bits zero.  */
5718   memset (regs, 0, rsa->sizeof_g_packet);
5719 
5720   /* Reply describes registers byte by byte, each byte encoded as two
5721      hex characters.  Suck them all up, then supply them to the
5722      register cacheing/storage mechanism.  */
5723 
5724   p = rs->buf;
5725   for (i = 0; i < rsa->sizeof_g_packet; i++)
5726     {
5727       if (p[0] == 0 || p[1] == 0)
5728 	/* This shouldn't happen - we adjusted sizeof_g_packet above.  */
5729 	internal_error (__FILE__, __LINE__,
5730 			"unexpected end of 'g' packet reply");
5731 
5732       if (p[0] == 'x' && p[1] == 'x')
5733 	regs[i] = 0;		/* 'x' */
5734       else
5735 	regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5736       p += 2;
5737     }
5738 
5739   for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5740     {
5741       struct packet_reg *r = &rsa->regs[i];
5742 
5743       if (r->in_g_packet)
5744 	{
5745 	  if (r->offset * 2 >= strlen (rs->buf))
5746 	    /* This shouldn't happen - we adjusted in_g_packet above.  */
5747 	    internal_error (__FILE__, __LINE__,
5748 			    "unexpected end of 'g' packet reply");
5749 	  else if (rs->buf[r->offset * 2] == 'x')
5750 	    {
5751 	      gdb_assert (r->offset * 2 < strlen (rs->buf));
5752 	      /* The register isn't available, mark it as such (at
5753 		 the same time setting the value to zero).  */
5754 	      regcache_raw_supply (regcache, r->regnum, NULL);
5755 	    }
5756 	  else
5757 	    regcache_raw_supply (regcache, r->regnum,
5758 				 regs + r->offset);
5759 	}
5760     }
5761 }
5762 
5763 static void
5764 fetch_registers_using_g (struct regcache *regcache)
5765 {
5766   send_g_packet ();
5767   process_g_packet (regcache);
5768 }
5769 
5770 static void
5771 remote_fetch_registers (struct target_ops *ops,
5772 			struct regcache *regcache, int regnum)
5773 {
5774   struct remote_arch_state *rsa = get_remote_arch_state ();
5775   int i;
5776 
5777   set_general_thread (inferior_ptid);
5778 
5779   if (regnum >= 0)
5780     {
5781       struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5782 
5783       gdb_assert (reg != NULL);
5784 
5785       /* If this register might be in the 'g' packet, try that first -
5786 	 we are likely to read more than one register.  If this is the
5787 	 first 'g' packet, we might be overly optimistic about its
5788 	 contents, so fall back to 'p'.  */
5789       if (reg->in_g_packet)
5790 	{
5791 	  fetch_registers_using_g (regcache);
5792 	  if (reg->in_g_packet)
5793 	    return;
5794 	}
5795 
5796       if (fetch_register_using_p (regcache, reg))
5797 	return;
5798 
5799       /* This register is not available.  */
5800       regcache_raw_supply (regcache, reg->regnum, NULL);
5801 
5802       return;
5803     }
5804 
5805   fetch_registers_using_g (regcache);
5806 
5807   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5808     if (!rsa->regs[i].in_g_packet)
5809       if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5810 	{
5811 	  /* This register is not available.  */
5812 	  regcache_raw_supply (regcache, i, NULL);
5813 	}
5814 }
5815 
5816 /* Prepare to store registers.  Since we may send them all (using a
5817    'G' request), we have to read out the ones we don't want to change
5818    first.  */
5819 
5820 static void
5821 remote_prepare_to_store (struct regcache *regcache)
5822 {
5823   struct remote_arch_state *rsa = get_remote_arch_state ();
5824   int i;
5825   gdb_byte buf[MAX_REGISTER_SIZE];
5826 
5827   /* Make sure the entire registers array is valid.  */
5828   switch (remote_protocol_packets[PACKET_P].support)
5829     {
5830     case PACKET_DISABLE:
5831     case PACKET_SUPPORT_UNKNOWN:
5832       /* Make sure all the necessary registers are cached.  */
5833       for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5834 	if (rsa->regs[i].in_g_packet)
5835 	  regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5836       break;
5837     case PACKET_ENABLE:
5838       break;
5839     }
5840 }
5841 
5842 /* Helper: Attempt to store REGNUM using the P packet.  Return fail IFF
5843    packet was not recognized.  */
5844 
5845 static int
5846 store_register_using_P (const struct regcache *regcache,
5847 			struct packet_reg *reg)
5848 {
5849   struct gdbarch *gdbarch = get_regcache_arch (regcache);
5850   struct remote_state *rs = get_remote_state ();
5851   /* Try storing a single register.  */
5852   char *buf = rs->buf;
5853   gdb_byte regp[MAX_REGISTER_SIZE];
5854   char *p;
5855 
5856   if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5857     return 0;
5858 
5859   if (reg->pnum == -1)
5860     return 0;
5861 
5862   xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5863   p = buf + strlen (buf);
5864   regcache_raw_collect (regcache, reg->regnum, regp);
5865   bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5866   putpkt (rs->buf);
5867   getpkt (&rs->buf, &rs->buf_size, 0);
5868 
5869   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5870     {
5871     case PACKET_OK:
5872       return 1;
5873     case PACKET_ERROR:
5874       error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5875 	     gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5876     case PACKET_UNKNOWN:
5877       return 0;
5878     default:
5879       internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5880     }
5881 }
5882 
5883 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5884    contents of the register cache buffer.  FIXME: ignores errors.  */
5885 
5886 static void
5887 store_registers_using_G (const struct regcache *regcache)
5888 {
5889   struct remote_state *rs = get_remote_state ();
5890   struct remote_arch_state *rsa = get_remote_arch_state ();
5891   gdb_byte *regs;
5892   char *p;
5893 
5894   /* Extract all the registers in the regcache copying them into a
5895      local buffer.  */
5896   {
5897     int i;
5898 
5899     regs = alloca (rsa->sizeof_g_packet);
5900     memset (regs, 0, rsa->sizeof_g_packet);
5901     for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5902       {
5903 	struct packet_reg *r = &rsa->regs[i];
5904 
5905 	if (r->in_g_packet)
5906 	  regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5907       }
5908   }
5909 
5910   /* Command describes registers byte by byte,
5911      each byte encoded as two hex characters.  */
5912   p = rs->buf;
5913   *p++ = 'G';
5914   /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5915      updated.  */
5916   bin2hex (regs, p, rsa->sizeof_g_packet);
5917   putpkt (rs->buf);
5918   getpkt (&rs->buf, &rs->buf_size, 0);
5919   if (packet_check_result (rs->buf) == PACKET_ERROR)
5920     error (_("Could not write registers; remote failure reply '%s'"),
5921 	   rs->buf);
5922 }
5923 
5924 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5925    of the register cache buffer.  FIXME: ignores errors.  */
5926 
5927 static void
5928 remote_store_registers (struct target_ops *ops,
5929 			struct regcache *regcache, int regnum)
5930 {
5931   struct remote_arch_state *rsa = get_remote_arch_state ();
5932   int i;
5933 
5934   set_general_thread (inferior_ptid);
5935 
5936   if (regnum >= 0)
5937     {
5938       struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5939 
5940       gdb_assert (reg != NULL);
5941 
5942       /* Always prefer to store registers using the 'P' packet if
5943 	 possible; we often change only a small number of registers.
5944 	 Sometimes we change a larger number; we'd need help from a
5945 	 higher layer to know to use 'G'.  */
5946       if (store_register_using_P (regcache, reg))
5947 	return;
5948 
5949       /* For now, don't complain if we have no way to write the
5950 	 register.  GDB loses track of unavailable registers too
5951 	 easily.  Some day, this may be an error.  We don't have
5952 	 any way to read the register, either... */
5953       if (!reg->in_g_packet)
5954 	return;
5955 
5956       store_registers_using_G (regcache);
5957       return;
5958     }
5959 
5960   store_registers_using_G (regcache);
5961 
5962   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5963     if (!rsa->regs[i].in_g_packet)
5964       if (!store_register_using_P (regcache, &rsa->regs[i]))
5965 	/* See above for why we do not issue an error here.  */
5966 	continue;
5967 }
5968 
5969 
5970 /* Return the number of hex digits in num.  */
5971 
5972 static int
5973 hexnumlen (ULONGEST num)
5974 {
5975   int i;
5976 
5977   for (i = 0; num != 0; i++)
5978     num >>= 4;
5979 
5980   return max (i, 1);
5981 }
5982 
5983 /* Set BUF to the minimum number of hex digits representing NUM.  */
5984 
5985 static int
5986 hexnumstr (char *buf, ULONGEST num)
5987 {
5988   int len = hexnumlen (num);
5989 
5990   return hexnumnstr (buf, num, len);
5991 }
5992 
5993 
5994 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters.  */
5995 
5996 static int
5997 hexnumnstr (char *buf, ULONGEST num, int width)
5998 {
5999   int i;
6000 
6001   buf[width] = '\0';
6002 
6003   for (i = width - 1; i >= 0; i--)
6004     {
6005       buf[i] = "0123456789abcdef"[(num & 0xf)];
6006       num >>= 4;
6007     }
6008 
6009   return width;
6010 }
6011 
6012 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits.  */
6013 
6014 static CORE_ADDR
6015 remote_address_masked (CORE_ADDR addr)
6016 {
6017   int address_size = remote_address_size;
6018 
6019   /* If "remoteaddresssize" was not set, default to target address size.  */
6020   if (!address_size)
6021     address_size = gdbarch_addr_bit (target_gdbarch);
6022 
6023   if (address_size > 0
6024       && address_size < (sizeof (ULONGEST) * 8))
6025     {
6026       /* Only create a mask when that mask can safely be constructed
6027          in a ULONGEST variable.  */
6028       ULONGEST mask = 1;
6029 
6030       mask = (mask << address_size) - 1;
6031       addr &= mask;
6032     }
6033   return addr;
6034 }
6035 
6036 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6037    binary data in OUT_BUF.  Set *OUT_LEN to the length of the data
6038    encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6039    (which may be more than *OUT_LEN due to escape characters).  The
6040    total number of bytes in the output buffer will be at most
6041    OUT_MAXLEN.  */
6042 
6043 static int
6044 remote_escape_output (const gdb_byte *buffer, int len,
6045 		      gdb_byte *out_buf, int *out_len,
6046 		      int out_maxlen)
6047 {
6048   int input_index, output_index;
6049 
6050   output_index = 0;
6051   for (input_index = 0; input_index < len; input_index++)
6052     {
6053       gdb_byte b = buffer[input_index];
6054 
6055       if (b == '$' || b == '#' || b == '}')
6056 	{
6057 	  /* These must be escaped.  */
6058 	  if (output_index + 2 > out_maxlen)
6059 	    break;
6060 	  out_buf[output_index++] = '}';
6061 	  out_buf[output_index++] = b ^ 0x20;
6062 	}
6063       else
6064 	{
6065 	  if (output_index + 1 > out_maxlen)
6066 	    break;
6067 	  out_buf[output_index++] = b;
6068 	}
6069     }
6070 
6071   *out_len = input_index;
6072   return output_index;
6073 }
6074 
6075 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6076    in OUT_BUF.  Return the number of bytes written to OUT_BUF.
6077    Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6078 
6079    This function reverses remote_escape_output.  It allows more
6080    escaped characters than that function does, in particular because
6081    '*' must be escaped to avoid the run-length encoding processing
6082    in reading packets.  */
6083 
6084 static int
6085 remote_unescape_input (const gdb_byte *buffer, int len,
6086 		       gdb_byte *out_buf, int out_maxlen)
6087 {
6088   int input_index, output_index;
6089   int escaped;
6090 
6091   output_index = 0;
6092   escaped = 0;
6093   for (input_index = 0; input_index < len; input_index++)
6094     {
6095       gdb_byte b = buffer[input_index];
6096 
6097       if (output_index + 1 > out_maxlen)
6098 	{
6099 	  warning (_("Received too much data from remote target;"
6100 		     " ignoring overflow."));
6101 	  return output_index;
6102 	}
6103 
6104       if (escaped)
6105 	{
6106 	  out_buf[output_index++] = b ^ 0x20;
6107 	  escaped = 0;
6108 	}
6109       else if (b == '}')
6110 	escaped = 1;
6111       else
6112 	out_buf[output_index++] = b;
6113     }
6114 
6115   if (escaped)
6116     error (_("Unmatched escape character in target response."));
6117 
6118   return output_index;
6119 }
6120 
6121 /* Determine whether the remote target supports binary downloading.
6122    This is accomplished by sending a no-op memory write of zero length
6123    to the target at the specified address. It does not suffice to send
6124    the whole packet, since many stubs strip the eighth bit and
6125    subsequently compute a wrong checksum, which causes real havoc with
6126    remote_write_bytes.
6127 
6128    NOTE: This can still lose if the serial line is not eight-bit
6129    clean. In cases like this, the user should clear "remote
6130    X-packet".  */
6131 
6132 static void
6133 check_binary_download (CORE_ADDR addr)
6134 {
6135   struct remote_state *rs = get_remote_state ();
6136 
6137   switch (remote_protocol_packets[PACKET_X].support)
6138     {
6139     case PACKET_DISABLE:
6140       break;
6141     case PACKET_ENABLE:
6142       break;
6143     case PACKET_SUPPORT_UNKNOWN:
6144       {
6145 	char *p;
6146 
6147 	p = rs->buf;
6148 	*p++ = 'X';
6149 	p += hexnumstr (p, (ULONGEST) addr);
6150 	*p++ = ',';
6151 	p += hexnumstr (p, (ULONGEST) 0);
6152 	*p++ = ':';
6153 	*p = '\0';
6154 
6155 	putpkt_binary (rs->buf, (int) (p - rs->buf));
6156 	getpkt (&rs->buf, &rs->buf_size, 0);
6157 
6158 	if (rs->buf[0] == '\0')
6159 	  {
6160 	    if (remote_debug)
6161 	      fprintf_unfiltered (gdb_stdlog,
6162 				  "binary downloading NOT suppported by target\n");
6163 	    remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6164 	  }
6165 	else
6166 	  {
6167 	    if (remote_debug)
6168 	      fprintf_unfiltered (gdb_stdlog,
6169 				  "binary downloading suppported by target\n");
6170 	    remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6171 	  }
6172 	break;
6173       }
6174     }
6175 }
6176 
6177 /* Write memory data directly to the remote machine.
6178    This does not inform the data cache; the data cache uses this.
6179    HEADER is the starting part of the packet.
6180    MEMADDR is the address in the remote memory space.
6181    MYADDR is the address of the buffer in our space.
6182    LEN is the number of bytes.
6183    PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6184    should send data as binary ('X'), or hex-encoded ('M').
6185 
6186    The function creates packet of the form
6187        <HEADER><ADDRESS>,<LENGTH>:<DATA>
6188 
6189    where encoding of <DATA> is termined by PACKET_FORMAT.
6190 
6191    If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6192    are omitted.
6193 
6194    Returns the number of bytes transferred, or 0 (setting errno) for
6195    error.  Only transfer a single packet.  */
6196 
6197 static int
6198 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6199 			const gdb_byte *myaddr, int len,
6200 			char packet_format, int use_length)
6201 {
6202   struct remote_state *rs = get_remote_state ();
6203   char *p;
6204   char *plen = NULL;
6205   int plenlen = 0;
6206   int todo;
6207   int nr_bytes;
6208   int payload_size;
6209   int payload_length;
6210   int header_length;
6211 
6212   if (packet_format != 'X' && packet_format != 'M')
6213     internal_error (__FILE__, __LINE__,
6214 		    "remote_write_bytes_aux: bad packet format");
6215 
6216   if (len <= 0)
6217     return 0;
6218 
6219   payload_size = get_memory_write_packet_size ();
6220 
6221   /* The packet buffer will be large enough for the payload;
6222      get_memory_packet_size ensures this.  */
6223   rs->buf[0] = '\0';
6224 
6225   /* Compute the size of the actual payload by subtracting out the
6226      packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
6227      */
6228   payload_size -= strlen ("$,:#NN");
6229   if (!use_length)
6230     /* The comma won't be used. */
6231     payload_size += 1;
6232   header_length = strlen (header);
6233   payload_size -= header_length;
6234   payload_size -= hexnumlen (memaddr);
6235 
6236   /* Construct the packet excluding the data: "<header><memaddr>,<len>:".  */
6237 
6238   strcat (rs->buf, header);
6239   p = rs->buf + strlen (header);
6240 
6241   /* Compute a best guess of the number of bytes actually transfered.  */
6242   if (packet_format == 'X')
6243     {
6244       /* Best guess at number of bytes that will fit.  */
6245       todo = min (len, payload_size);
6246       if (use_length)
6247 	payload_size -= hexnumlen (todo);
6248       todo = min (todo, payload_size);
6249     }
6250   else
6251     {
6252       /* Num bytes that will fit.  */
6253       todo = min (len, payload_size / 2);
6254       if (use_length)
6255 	payload_size -= hexnumlen (todo);
6256       todo = min (todo, payload_size / 2);
6257     }
6258 
6259   if (todo <= 0)
6260     internal_error (__FILE__, __LINE__,
6261 		    _("minumum packet size too small to write data"));
6262 
6263   /* If we already need another packet, then try to align the end
6264      of this packet to a useful boundary.  */
6265   if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6266     todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6267 
6268   /* Append "<memaddr>".  */
6269   memaddr = remote_address_masked (memaddr);
6270   p += hexnumstr (p, (ULONGEST) memaddr);
6271 
6272   if (use_length)
6273     {
6274       /* Append ",".  */
6275       *p++ = ',';
6276 
6277       /* Append <len>.  Retain the location/size of <len>.  It may need to
6278 	 be adjusted once the packet body has been created.  */
6279       plen = p;
6280       plenlen = hexnumstr (p, (ULONGEST) todo);
6281       p += plenlen;
6282     }
6283 
6284   /* Append ":".  */
6285   *p++ = ':';
6286   *p = '\0';
6287 
6288   /* Append the packet body.  */
6289   if (packet_format == 'X')
6290     {
6291       /* Binary mode.  Send target system values byte by byte, in
6292 	 increasing byte addresses.  Only escape certain critical
6293 	 characters.  */
6294       payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6295 					     payload_size);
6296 
6297       /* If not all TODO bytes fit, then we'll need another packet.  Make
6298 	 a second try to keep the end of the packet aligned.  Don't do
6299 	 this if the packet is tiny.  */
6300       if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6301 	{
6302 	  int new_nr_bytes;
6303 
6304 	  new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6305 			  - memaddr);
6306 	  if (new_nr_bytes != nr_bytes)
6307 	    payload_length = remote_escape_output (myaddr, new_nr_bytes,
6308 						   p, &nr_bytes,
6309 						   payload_size);
6310 	}
6311 
6312       p += payload_length;
6313       if (use_length && nr_bytes < todo)
6314 	{
6315 	  /* Escape chars have filled up the buffer prematurely,
6316 	     and we have actually sent fewer bytes than planned.
6317 	     Fix-up the length field of the packet.  Use the same
6318 	     number of characters as before.  */
6319 	  plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6320 	  *plen = ':';  /* overwrite \0 from hexnumnstr() */
6321 	}
6322     }
6323   else
6324     {
6325       /* Normal mode: Send target system values byte by byte, in
6326 	 increasing byte addresses.  Each byte is encoded as a two hex
6327 	 value.  */
6328       nr_bytes = bin2hex (myaddr, p, todo);
6329       p += 2 * nr_bytes;
6330     }
6331 
6332   putpkt_binary (rs->buf, (int) (p - rs->buf));
6333   getpkt (&rs->buf, &rs->buf_size, 0);
6334 
6335   if (rs->buf[0] == 'E')
6336     {
6337       /* There is no correspondance between what the remote protocol
6338 	 uses for errors and errno codes.  We would like a cleaner way
6339 	 of representing errors (big enough to include errno codes,
6340 	 bfd_error codes, and others).  But for now just return EIO.  */
6341       errno = EIO;
6342       return 0;
6343     }
6344 
6345   /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6346      fewer bytes than we'd planned.  */
6347   return nr_bytes;
6348 }
6349 
6350 /* Write memory data directly to the remote machine.
6351    This does not inform the data cache; the data cache uses this.
6352    MEMADDR is the address in the remote memory space.
6353    MYADDR is the address of the buffer in our space.
6354    LEN is the number of bytes.
6355 
6356    Returns number of bytes transferred, or 0 (setting errno) for
6357    error.  Only transfer a single packet.  */
6358 
6359 int
6360 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6361 {
6362   char *packet_format = 0;
6363 
6364   /* Check whether the target supports binary download.  */
6365   check_binary_download (memaddr);
6366 
6367   switch (remote_protocol_packets[PACKET_X].support)
6368     {
6369     case PACKET_ENABLE:
6370       packet_format = "X";
6371       break;
6372     case PACKET_DISABLE:
6373       packet_format = "M";
6374       break;
6375     case PACKET_SUPPORT_UNKNOWN:
6376       internal_error (__FILE__, __LINE__,
6377 		      _("remote_write_bytes: bad internal state"));
6378     default:
6379       internal_error (__FILE__, __LINE__, _("bad switch"));
6380     }
6381 
6382   return remote_write_bytes_aux (packet_format,
6383 				 memaddr, myaddr, len, packet_format[0], 1);
6384 }
6385 
6386 /* Read memory data directly from the remote machine.
6387    This does not use the data cache; the data cache uses this.
6388    MEMADDR is the address in the remote memory space.
6389    MYADDR is the address of the buffer in our space.
6390    LEN is the number of bytes.
6391 
6392    Returns number of bytes transferred, or 0 for error.  */
6393 
6394 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6395    remote targets) shouldn't attempt to read the entire buffer.
6396    Instead it should read a single packet worth of data and then
6397    return the byte size of that packet to the caller.  The caller (its
6398    caller and its callers caller ;-) already contains code for
6399    handling partial reads.  */
6400 
6401 int
6402 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6403 {
6404   struct remote_state *rs = get_remote_state ();
6405   int max_buf_size;		/* Max size of packet output buffer.  */
6406   int origlen;
6407 
6408   if (len <= 0)
6409     return 0;
6410 
6411   max_buf_size = get_memory_read_packet_size ();
6412   /* The packet buffer will be large enough for the payload;
6413      get_memory_packet_size ensures this.  */
6414 
6415   origlen = len;
6416   while (len > 0)
6417     {
6418       char *p;
6419       int todo;
6420       int i;
6421 
6422       todo = min (len, max_buf_size / 2);	/* num bytes that will fit */
6423 
6424       /* construct "m"<memaddr>","<len>" */
6425       /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6426       memaddr = remote_address_masked (memaddr);
6427       p = rs->buf;
6428       *p++ = 'm';
6429       p += hexnumstr (p, (ULONGEST) memaddr);
6430       *p++ = ',';
6431       p += hexnumstr (p, (ULONGEST) todo);
6432       *p = '\0';
6433 
6434       putpkt (rs->buf);
6435       getpkt (&rs->buf, &rs->buf_size, 0);
6436 
6437       if (rs->buf[0] == 'E'
6438 	  && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6439 	  && rs->buf[3] == '\0')
6440 	{
6441 	  /* There is no correspondance between what the remote
6442 	     protocol uses for errors and errno codes.  We would like
6443 	     a cleaner way of representing errors (big enough to
6444 	     include errno codes, bfd_error codes, and others).  But
6445 	     for now just return EIO.  */
6446 	  errno = EIO;
6447 	  return 0;
6448 	}
6449 
6450       /* Reply describes memory byte by byte,
6451          each byte encoded as two hex characters.  */
6452 
6453       p = rs->buf;
6454       if ((i = hex2bin (p, myaddr, todo)) < todo)
6455 	{
6456 	  /* Reply is short.  This means that we were able to read
6457 	     only part of what we wanted to.  */
6458 	  return i + (origlen - len);
6459 	}
6460       myaddr += todo;
6461       memaddr += todo;
6462       len -= todo;
6463     }
6464   return origlen;
6465 }
6466 
6467 
6468 /* Remote notification handler.  */
6469 
6470 static void
6471 handle_notification (char *buf, size_t length)
6472 {
6473   if (strncmp (buf, "Stop:", 5) == 0)
6474     {
6475       if (pending_stop_reply)
6476 	{
6477 	  /* We've already parsed the in-flight stop-reply, but the
6478 	     stub for some reason thought we didn't, possibly due to
6479 	     timeout on its side.  Just ignore it.  */
6480 	  if (remote_debug)
6481 	    fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6482 	}
6483       else
6484 	{
6485 	  struct cleanup *old_chain;
6486 	  struct stop_reply *reply = stop_reply_xmalloc ();
6487 
6488 	  old_chain = make_cleanup (do_stop_reply_xfree, reply);
6489 
6490 	  remote_parse_stop_reply (buf + 5, reply);
6491 
6492 	  discard_cleanups (old_chain);
6493 
6494 	  /* Be careful to only set it after parsing, since an error
6495 	     may be thrown then.  */
6496 	  pending_stop_reply = reply;
6497 
6498 	  /* Notify the event loop there's a stop reply to acknowledge
6499 	     and that there may be more events to fetch.  */
6500 	  mark_async_event_handler (remote_async_get_pending_events_token);
6501 
6502 	  if (remote_debug)
6503 	    fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6504 	}
6505     }
6506   else
6507     /* We ignore notifications we don't recognize, for compatibility
6508        with newer stubs.  */
6509     ;
6510 }
6511 
6512 
6513 /* Read or write LEN bytes from inferior memory at MEMADDR,
6514    transferring to or from debugger address BUFFER.  Write to inferior
6515    if SHOULD_WRITE is nonzero.  Returns length of data written or
6516    read; 0 for error.  TARGET is unused.  */
6517 
6518 static int
6519 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6520 		    int should_write, struct mem_attrib *attrib,
6521 		    struct target_ops *target)
6522 {
6523   int res;
6524 
6525   set_general_thread (inferior_ptid);
6526 
6527   if (should_write)
6528     res = remote_write_bytes (mem_addr, buffer, mem_len);
6529   else
6530     res = remote_read_bytes (mem_addr, buffer, mem_len);
6531 
6532   return res;
6533 }
6534 
6535 /* Sends a packet with content determined by the printf format string
6536    FORMAT and the remaining arguments, then gets the reply.  Returns
6537    whether the packet was a success, a failure, or unknown.  */
6538 
6539 static enum packet_result
6540 remote_send_printf (const char *format, ...)
6541 {
6542   struct remote_state *rs = get_remote_state ();
6543   int max_size = get_remote_packet_size ();
6544   va_list ap;
6545 
6546   va_start (ap, format);
6547 
6548   rs->buf[0] = '\0';
6549   if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6550     internal_error (__FILE__, __LINE__, "Too long remote packet.");
6551 
6552   if (putpkt (rs->buf) < 0)
6553     error (_("Communication problem with target."));
6554 
6555   rs->buf[0] = '\0';
6556   getpkt (&rs->buf, &rs->buf_size, 0);
6557 
6558   return packet_check_result (rs->buf);
6559 }
6560 
6561 static void
6562 restore_remote_timeout (void *p)
6563 {
6564   int value = *(int *)p;
6565 
6566   remote_timeout = value;
6567 }
6568 
6569 /* Flash writing can take quite some time.  We'll set
6570    effectively infinite timeout for flash operations.
6571    In future, we'll need to decide on a better approach.  */
6572 static const int remote_flash_timeout = 1000;
6573 
6574 static void
6575 remote_flash_erase (struct target_ops *ops,
6576                     ULONGEST address, LONGEST length)
6577 {
6578   int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6579   int saved_remote_timeout = remote_timeout;
6580   enum packet_result ret;
6581   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6582                                           &saved_remote_timeout);
6583 
6584   remote_timeout = remote_flash_timeout;
6585 
6586   ret = remote_send_printf ("vFlashErase:%s,%s",
6587 			    phex (address, addr_size),
6588 			    phex (length, 4));
6589   switch (ret)
6590     {
6591     case PACKET_UNKNOWN:
6592       error (_("Remote target does not support flash erase"));
6593     case PACKET_ERROR:
6594       error (_("Error erasing flash with vFlashErase packet"));
6595     default:
6596       break;
6597     }
6598 
6599   do_cleanups (back_to);
6600 }
6601 
6602 static LONGEST
6603 remote_flash_write (struct target_ops *ops,
6604                     ULONGEST address, LONGEST length,
6605                     const gdb_byte *data)
6606 {
6607   int saved_remote_timeout = remote_timeout;
6608   int ret;
6609   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6610                                           &saved_remote_timeout);
6611 
6612   remote_timeout = remote_flash_timeout;
6613   ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6614   do_cleanups (back_to);
6615 
6616   return ret;
6617 }
6618 
6619 static void
6620 remote_flash_done (struct target_ops *ops)
6621 {
6622   int saved_remote_timeout = remote_timeout;
6623   int ret;
6624   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6625                                           &saved_remote_timeout);
6626 
6627   remote_timeout = remote_flash_timeout;
6628   ret = remote_send_printf ("vFlashDone");
6629   do_cleanups (back_to);
6630 
6631   switch (ret)
6632     {
6633     case PACKET_UNKNOWN:
6634       error (_("Remote target does not support vFlashDone"));
6635     case PACKET_ERROR:
6636       error (_("Error finishing flash operation"));
6637     default:
6638       break;
6639     }
6640 }
6641 
6642 static void
6643 remote_files_info (struct target_ops *ignore)
6644 {
6645   puts_filtered ("Debugging a target over a serial line.\n");
6646 }
6647 
6648 /* Stuff for dealing with the packets which are part of this protocol.
6649    See comment at top of file for details.  */
6650 
6651 /* Read a single character from the remote end.  */
6652 
6653 static int
6654 readchar (int timeout)
6655 {
6656   int ch;
6657 
6658   ch = serial_readchar (remote_desc, timeout);
6659 
6660   if (ch >= 0)
6661     return ch;
6662 
6663   switch ((enum serial_rc) ch)
6664     {
6665     case SERIAL_EOF:
6666       pop_target ();
6667       error (_("Remote connection closed"));
6668       /* no return */
6669     case SERIAL_ERROR:
6670       pop_target ();
6671       perror_with_name (_("Remote communication error.  Target disconnected."));
6672       /* no return */
6673     case SERIAL_TIMEOUT:
6674       break;
6675     }
6676   return ch;
6677 }
6678 
6679 /* Send the command in *BUF to the remote machine, and read the reply
6680    into *BUF.  Report an error if we get an error reply.  Resize
6681    *BUF using xrealloc if necessary to hold the result, and update
6682    *SIZEOF_BUF.  */
6683 
6684 static void
6685 remote_send (char **buf,
6686 	     long *sizeof_buf)
6687 {
6688   putpkt (*buf);
6689   getpkt (buf, sizeof_buf, 0);
6690 
6691   if ((*buf)[0] == 'E')
6692     error (_("Remote failure reply: %s"), *buf);
6693 }
6694 
6695 /* Return a pointer to an xmalloc'ed string representing an escaped
6696    version of BUF, of len N.  E.g. \n is converted to \\n, \t to \\t,
6697    etc.  The caller is responsible for releasing the returned
6698    memory.  */
6699 
6700 static char *
6701 escape_buffer (const char *buf, int n)
6702 {
6703   struct cleanup *old_chain;
6704   struct ui_file *stb;
6705   char *str;
6706 
6707   stb = mem_fileopen ();
6708   old_chain = make_cleanup_ui_file_delete (stb);
6709 
6710   fputstrn_unfiltered (buf, n, 0, stb);
6711   str = ui_file_xstrdup (stb, NULL);
6712   do_cleanups (old_chain);
6713   return str;
6714 }
6715 
6716 /* Display a null-terminated packet on stdout, for debugging, using C
6717    string notation.  */
6718 
6719 static void
6720 print_packet (char *buf)
6721 {
6722   puts_filtered ("\"");
6723   fputstr_filtered (buf, '"', gdb_stdout);
6724   puts_filtered ("\"");
6725 }
6726 
6727 int
6728 putpkt (char *buf)
6729 {
6730   return putpkt_binary (buf, strlen (buf));
6731 }
6732 
6733 /* Send a packet to the remote machine, with error checking.  The data
6734    of the packet is in BUF.  The string in BUF can be at most
6735    get_remote_packet_size () - 5 to account for the $, # and checksum,
6736    and for a possible /0 if we are debugging (remote_debug) and want
6737    to print the sent packet as a string.  */
6738 
6739 static int
6740 putpkt_binary (char *buf, int cnt)
6741 {
6742   struct remote_state *rs = get_remote_state ();
6743   int i;
6744   unsigned char csum = 0;
6745   char *buf2 = alloca (cnt + 6);
6746 
6747   int ch;
6748   int tcount = 0;
6749   char *p;
6750 
6751   /* Catch cases like trying to read memory or listing threads while
6752      we're waiting for a stop reply.  The remote server wouldn't be
6753      ready to handle this request, so we'd hang and timeout.  We don't
6754      have to worry about this in synchronous mode, because in that
6755      case it's not possible to issue a command while the target is
6756      running.  This is not a problem in non-stop mode, because in that
6757      case, the stub is always ready to process serial input.  */
6758   if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6759     error (_("Cannot execute this command while the target is running."));
6760 
6761   /* We're sending out a new packet.  Make sure we don't look at a
6762      stale cached response.  */
6763   rs->cached_wait_status = 0;
6764 
6765   /* Copy the packet into buffer BUF2, encapsulating it
6766      and giving it a checksum.  */
6767 
6768   p = buf2;
6769   *p++ = '$';
6770 
6771   for (i = 0; i < cnt; i++)
6772     {
6773       csum += buf[i];
6774       *p++ = buf[i];
6775     }
6776   *p++ = '#';
6777   *p++ = tohex ((csum >> 4) & 0xf);
6778   *p++ = tohex (csum & 0xf);
6779 
6780   /* Send it over and over until we get a positive ack.  */
6781 
6782   while (1)
6783     {
6784       int started_error_output = 0;
6785 
6786       if (remote_debug)
6787 	{
6788 	  struct cleanup *old_chain;
6789 	  char *str;
6790 
6791 	  *p = '\0';
6792 	  str = escape_buffer (buf2, p - buf2);
6793 	  old_chain = make_cleanup (xfree, str);
6794 	  fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6795 	  gdb_flush (gdb_stdlog);
6796 	  do_cleanups (old_chain);
6797 	}
6798       if (serial_write (remote_desc, buf2, p - buf2))
6799 	perror_with_name (_("putpkt: write failed"));
6800 
6801       /* If this is a no acks version of the remote protocol, send the
6802 	 packet and move on.  */
6803       if (rs->noack_mode)
6804         break;
6805 
6806       /* Read until either a timeout occurs (-2) or '+' is read.
6807 	 Handle any notification that arrives in the mean time.  */
6808       while (1)
6809 	{
6810 	  ch = readchar (remote_timeout);
6811 
6812 	  if (remote_debug)
6813 	    {
6814 	      switch (ch)
6815 		{
6816 		case '+':
6817 		case '-':
6818 		case SERIAL_TIMEOUT:
6819 		case '$':
6820 		case '%':
6821 		  if (started_error_output)
6822 		    {
6823 		      putchar_unfiltered ('\n');
6824 		      started_error_output = 0;
6825 		    }
6826 		}
6827 	    }
6828 
6829 	  switch (ch)
6830 	    {
6831 	    case '+':
6832 	      if (remote_debug)
6833 		fprintf_unfiltered (gdb_stdlog, "Ack\n");
6834 	      return 1;
6835 	    case '-':
6836 	      if (remote_debug)
6837 		fprintf_unfiltered (gdb_stdlog, "Nak\n");
6838 	    case SERIAL_TIMEOUT:
6839 	      tcount++;
6840 	      if (tcount > 3)
6841 		return 0;
6842 	      break;		/* Retransmit buffer.  */
6843 	    case '$':
6844 	      {
6845 	        if (remote_debug)
6846 		  fprintf_unfiltered (gdb_stdlog,
6847 				      "Packet instead of Ack, ignoring it\n");
6848 		/* It's probably an old response sent because an ACK
6849 		   was lost.  Gobble up the packet and ack it so it
6850 		   doesn't get retransmitted when we resend this
6851 		   packet.  */
6852 		skip_frame ();
6853 		serial_write (remote_desc, "+", 1);
6854 		continue;	/* Now, go look for +.  */
6855 	      }
6856 
6857 	    case '%':
6858 	      {
6859 		int val;
6860 
6861 		/* If we got a notification, handle it, and go back to looking
6862 		   for an ack.  */
6863 		/* We've found the start of a notification.  Now
6864 		   collect the data.  */
6865 		val = read_frame (&rs->buf, &rs->buf_size);
6866 		if (val >= 0)
6867 		  {
6868 		    if (remote_debug)
6869 		      {
6870 			struct cleanup *old_chain;
6871 			char *str;
6872 
6873 			str = escape_buffer (rs->buf, val);
6874 			old_chain = make_cleanup (xfree, str);
6875 			fprintf_unfiltered (gdb_stdlog,
6876 					    "  Notification received: %s\n",
6877 					    str);
6878 			do_cleanups (old_chain);
6879 		      }
6880 		    handle_notification (rs->buf, val);
6881 		    /* We're in sync now, rewait for the ack.  */
6882 		    tcount = 0;
6883 		  }
6884 		else
6885 		  {
6886 		    if (remote_debug)
6887 		      {
6888 			if (!started_error_output)
6889 			  {
6890 			    started_error_output = 1;
6891 			    fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6892 			  }
6893 			fputc_unfiltered (ch & 0177, gdb_stdlog);
6894 			fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6895 		      }
6896 		  }
6897 		continue;
6898 	      }
6899 	      /* fall-through */
6900 	    default:
6901 	      if (remote_debug)
6902 		{
6903 		  if (!started_error_output)
6904 		    {
6905 		      started_error_output = 1;
6906 		      fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6907 		    }
6908 		  fputc_unfiltered (ch & 0177, gdb_stdlog);
6909 		}
6910 	      continue;
6911 	    }
6912 	  break;		/* Here to retransmit.  */
6913 	}
6914 
6915 #if 0
6916       /* This is wrong.  If doing a long backtrace, the user should be
6917          able to get out next time we call QUIT, without anything as
6918          violent as interrupt_query.  If we want to provide a way out of
6919          here without getting to the next QUIT, it should be based on
6920          hitting ^C twice as in remote_wait.  */
6921       if (quit_flag)
6922 	{
6923 	  quit_flag = 0;
6924 	  interrupt_query ();
6925 	}
6926 #endif
6927     }
6928   return 0;
6929 }
6930 
6931 /* Come here after finding the start of a frame when we expected an
6932    ack.  Do our best to discard the rest of this packet.  */
6933 
6934 static void
6935 skip_frame (void)
6936 {
6937   int c;
6938 
6939   while (1)
6940     {
6941       c = readchar (remote_timeout);
6942       switch (c)
6943 	{
6944 	case SERIAL_TIMEOUT:
6945 	  /* Nothing we can do.  */
6946 	  return;
6947 	case '#':
6948 	  /* Discard the two bytes of checksum and stop.  */
6949 	  c = readchar (remote_timeout);
6950 	  if (c >= 0)
6951 	    c = readchar (remote_timeout);
6952 
6953 	  return;
6954 	case '*':		/* Run length encoding.  */
6955 	  /* Discard the repeat count.  */
6956 	  c = readchar (remote_timeout);
6957 	  if (c < 0)
6958 	    return;
6959 	  break;
6960 	default:
6961 	  /* A regular character.  */
6962 	  break;
6963 	}
6964     }
6965 }
6966 
6967 /* Come here after finding the start of the frame.  Collect the rest
6968    into *BUF, verifying the checksum, length, and handling run-length
6969    compression.  NUL terminate the buffer.  If there is not enough room,
6970    expand *BUF using xrealloc.
6971 
6972    Returns -1 on error, number of characters in buffer (ignoring the
6973    trailing NULL) on success. (could be extended to return one of the
6974    SERIAL status indications).  */
6975 
6976 static long
6977 read_frame (char **buf_p,
6978 	    long *sizeof_buf)
6979 {
6980   unsigned char csum;
6981   long bc;
6982   int c;
6983   char *buf = *buf_p;
6984   struct remote_state *rs = get_remote_state ();
6985 
6986   csum = 0;
6987   bc = 0;
6988 
6989   while (1)
6990     {
6991       c = readchar (remote_timeout);
6992       switch (c)
6993 	{
6994 	case SERIAL_TIMEOUT:
6995 	  if (remote_debug)
6996 	    fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6997 	  return -1;
6998 	case '$':
6999 	  if (remote_debug)
7000 	    fputs_filtered ("Saw new packet start in middle of old one\n",
7001 			    gdb_stdlog);
7002 	  return -1;		/* Start a new packet, count retries.  */
7003 	case '#':
7004 	  {
7005 	    unsigned char pktcsum;
7006 	    int check_0 = 0;
7007 	    int check_1 = 0;
7008 
7009 	    buf[bc] = '\0';
7010 
7011 	    check_0 = readchar (remote_timeout);
7012 	    if (check_0 >= 0)
7013 	      check_1 = readchar (remote_timeout);
7014 
7015 	    if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7016 	      {
7017 		if (remote_debug)
7018 		  fputs_filtered ("Timeout in checksum, retrying\n",
7019 				  gdb_stdlog);
7020 		return -1;
7021 	      }
7022 	    else if (check_0 < 0 || check_1 < 0)
7023 	      {
7024 		if (remote_debug)
7025 		  fputs_filtered ("Communication error in checksum\n",
7026 				  gdb_stdlog);
7027 		return -1;
7028 	      }
7029 
7030 	    /* Don't recompute the checksum; with no ack packets we
7031 	       don't have any way to indicate a packet retransmission
7032 	       is necessary.  */
7033 	    if (rs->noack_mode)
7034 	      return bc;
7035 
7036 	    pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7037 	    if (csum == pktcsum)
7038               return bc;
7039 
7040 	    if (remote_debug)
7041 	      {
7042 		struct cleanup *old_chain;
7043 		char *str;
7044 
7045 		str = escape_buffer (buf, bc);
7046 		old_chain = make_cleanup (xfree, str);
7047 		fprintf_unfiltered (gdb_stdlog,
7048 				    "\
7049 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
7050 				    pktcsum, csum, str);
7051 		do_cleanups (old_chain);
7052 	      }
7053 	    /* Number of characters in buffer ignoring trailing
7054                NULL.  */
7055 	    return -1;
7056 	  }
7057 	case '*':		/* Run length encoding.  */
7058           {
7059 	    int repeat;
7060 
7061  	    csum += c;
7062 	    c = readchar (remote_timeout);
7063 	    csum += c;
7064 	    repeat = c - ' ' + 3;	/* Compute repeat count.  */
7065 
7066 	    /* The character before ``*'' is repeated.  */
7067 
7068 	    if (repeat > 0 && repeat <= 255 && bc > 0)
7069 	      {
7070 		if (bc + repeat - 1 >= *sizeof_buf - 1)
7071 		  {
7072 		    /* Make some more room in the buffer.  */
7073 		    *sizeof_buf += repeat;
7074 		    *buf_p = xrealloc (*buf_p, *sizeof_buf);
7075 		    buf = *buf_p;
7076 		  }
7077 
7078 		memset (&buf[bc], buf[bc - 1], repeat);
7079 		bc += repeat;
7080 		continue;
7081 	      }
7082 
7083 	    buf[bc] = '\0';
7084 	    printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7085 	    return -1;
7086 	  }
7087 	default:
7088 	  if (bc >= *sizeof_buf - 1)
7089 	    {
7090 	      /* Make some more room in the buffer.  */
7091 	      *sizeof_buf *= 2;
7092 	      *buf_p = xrealloc (*buf_p, *sizeof_buf);
7093 	      buf = *buf_p;
7094 	    }
7095 
7096 	  buf[bc++] = c;
7097 	  csum += c;
7098 	  continue;
7099 	}
7100     }
7101 }
7102 
7103 /* Read a packet from the remote machine, with error checking, and
7104    store it in *BUF.  Resize *BUF using xrealloc if necessary to hold
7105    the result, and update *SIZEOF_BUF.  If FOREVER, wait forever
7106    rather than timing out; this is used (in synchronous mode) to wait
7107    for a target that is is executing user code to stop.  */
7108 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7109    don't have to change all the calls to getpkt to deal with the
7110    return value, because at the moment I don't know what the right
7111    thing to do it for those.  */
7112 void
7113 getpkt (char **buf,
7114 	long *sizeof_buf,
7115 	int forever)
7116 {
7117   int timed_out;
7118 
7119   timed_out = getpkt_sane (buf, sizeof_buf, forever);
7120 }
7121 
7122 
7123 /* Read a packet from the remote machine, with error checking, and
7124    store it in *BUF.  Resize *BUF using xrealloc if necessary to hold
7125    the result, and update *SIZEOF_BUF.  If FOREVER, wait forever
7126    rather than timing out; this is used (in synchronous mode) to wait
7127    for a target that is is executing user code to stop.  If FOREVER ==
7128    0, this function is allowed to time out gracefully and return an
7129    indication of this to the caller.  Otherwise return the number of
7130    bytes read.  If EXPECTING_NOTIF, consider receiving a notification
7131    enough reason to return to the caller.  */
7132 
7133 static int
7134 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7135 			int expecting_notif)
7136 {
7137   struct remote_state *rs = get_remote_state ();
7138   int c;
7139   int tries;
7140   int timeout;
7141   int val = -1;
7142 
7143   /* We're reading a new response.  Make sure we don't look at a
7144      previously cached response.  */
7145   rs->cached_wait_status = 0;
7146 
7147   strcpy (*buf, "timeout");
7148 
7149   if (forever)
7150     timeout = watchdog > 0 ? watchdog : -1;
7151   else if (expecting_notif)
7152     timeout = 0; /* There should already be a char in the buffer.  If
7153 		    not, bail out.  */
7154   else
7155     timeout = remote_timeout;
7156 
7157 #define MAX_TRIES 3
7158 
7159   /* Process any number of notifications, and then return when
7160      we get a packet.  */
7161   for (;;)
7162     {
7163       /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7164 	 times.  */
7165       for (tries = 1; tries <= MAX_TRIES; tries++)
7166 	{
7167 	  /* This can loop forever if the remote side sends us
7168 	     characters continuously, but if it pauses, we'll get
7169 	     SERIAL_TIMEOUT from readchar because of timeout.  Then
7170 	     we'll count that as a retry.
7171 
7172 	     Note that even when forever is set, we will only wait
7173 	     forever prior to the start of a packet.  After that, we
7174 	     expect characters to arrive at a brisk pace.  They should
7175 	     show up within remote_timeout intervals.  */
7176 	  do
7177 	    c = readchar (timeout);
7178 	  while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7179 
7180 	  if (c == SERIAL_TIMEOUT)
7181 	    {
7182 	      if (expecting_notif)
7183 		return -1; /* Don't complain, it's normal to not get
7184 			      anything in this case.  */
7185 
7186 	      if (forever)	/* Watchdog went off?  Kill the target.  */
7187 		{
7188 		  QUIT;
7189 		  pop_target ();
7190 		  error (_("Watchdog timeout has expired.  Target detached."));
7191 		}
7192 	      if (remote_debug)
7193 		fputs_filtered ("Timed out.\n", gdb_stdlog);
7194 	    }
7195 	  else
7196 	    {
7197 	      /* We've found the start of a packet or notification.
7198 		 Now collect the data.  */
7199 	      val = read_frame (buf, sizeof_buf);
7200 	      if (val >= 0)
7201 		break;
7202 	    }
7203 
7204 	  serial_write (remote_desc, "-", 1);
7205 	}
7206 
7207       if (tries > MAX_TRIES)
7208 	{
7209 	  /* We have tried hard enough, and just can't receive the
7210 	     packet/notification.  Give up.  */
7211 	  printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7212 
7213 	  /* Skip the ack char if we're in no-ack mode.  */
7214 	  if (!rs->noack_mode)
7215 	    serial_write (remote_desc, "+", 1);
7216 	  return -1;
7217 	}
7218 
7219       /* If we got an ordinary packet, return that to our caller.  */
7220       if (c == '$')
7221 	{
7222 	  if (remote_debug)
7223 	    {
7224 	     struct cleanup *old_chain;
7225 	     char *str;
7226 
7227 	     str = escape_buffer (*buf, val);
7228 	     old_chain = make_cleanup (xfree, str);
7229 	     fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7230 	     do_cleanups (old_chain);
7231 	    }
7232 
7233 	  /* Skip the ack char if we're in no-ack mode.  */
7234 	  if (!rs->noack_mode)
7235 	    serial_write (remote_desc, "+", 1);
7236 	  return val;
7237 	}
7238 
7239        /* If we got a notification, handle it, and go back to looking
7240 	 for a packet.  */
7241       else
7242 	{
7243 	  gdb_assert (c == '%');
7244 
7245 	  if (remote_debug)
7246 	    {
7247 	      struct cleanup *old_chain;
7248 	      char *str;
7249 
7250 	      str = escape_buffer (*buf, val);
7251 	      old_chain = make_cleanup (xfree, str);
7252 	      fprintf_unfiltered (gdb_stdlog,
7253 				  "  Notification received: %s\n",
7254 				  str);
7255 	      do_cleanups (old_chain);
7256 	    }
7257 
7258 	  handle_notification (*buf, val);
7259 
7260 	  /* Notifications require no acknowledgement.  */
7261 
7262 	  if (expecting_notif)
7263 	    return -1;
7264 	}
7265     }
7266 }
7267 
7268 static int
7269 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7270 {
7271   return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7272 }
7273 
7274 static int
7275 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7276 {
7277   return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7278 }
7279 
7280 
7281 static void
7282 remote_kill (struct target_ops *ops)
7283 {
7284   /* Use catch_errors so the user can quit from gdb even when we
7285      aren't on speaking terms with the remote system.  */
7286   catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7287 
7288   /* Don't wait for it to die.  I'm not really sure it matters whether
7289      we do or not.  For the existing stubs, kill is a noop.  */
7290   target_mourn_inferior ();
7291 }
7292 
7293 static int
7294 remote_vkill (int pid, struct remote_state *rs)
7295 {
7296   if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7297     return -1;
7298 
7299   /* Tell the remote target to detach.  */
7300   sprintf (rs->buf, "vKill;%x", pid);
7301   putpkt (rs->buf);
7302   getpkt (&rs->buf, &rs->buf_size, 0);
7303 
7304   if (packet_ok (rs->buf,
7305 		 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7306     return 0;
7307   else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7308     return -1;
7309   else
7310     return 1;
7311 }
7312 
7313 static void
7314 extended_remote_kill (struct target_ops *ops)
7315 {
7316   int res;
7317   int pid = ptid_get_pid (inferior_ptid);
7318   struct remote_state *rs = get_remote_state ();
7319 
7320   res = remote_vkill (pid, rs);
7321   if (res == -1 && !remote_multi_process_p (rs))
7322     {
7323       /* Don't try 'k' on a multi-process aware stub -- it has no way
7324 	 to specify the pid.  */
7325 
7326       putpkt ("k");
7327 #if 0
7328       getpkt (&rs->buf, &rs->buf_size, 0);
7329       if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7330 	res = 1;
7331 #else
7332       /* Don't wait for it to die.  I'm not really sure it matters whether
7333 	 we do or not.  For the existing stubs, kill is a noop.  */
7334       res = 0;
7335 #endif
7336     }
7337 
7338   if (res != 0)
7339     error (_("Can't kill process"));
7340 
7341   target_mourn_inferior ();
7342 }
7343 
7344 static void
7345 remote_mourn (struct target_ops *ops)
7346 {
7347   remote_mourn_1 (ops);
7348 }
7349 
7350 /* Worker function for remote_mourn.  */
7351 static void
7352 remote_mourn_1 (struct target_ops *target)
7353 {
7354   unpush_target (target);
7355 
7356   /* remote_close takes care of doing most of the clean up.  */
7357   generic_mourn_inferior ();
7358 }
7359 
7360 static void
7361 extended_remote_mourn_1 (struct target_ops *target)
7362 {
7363   struct remote_state *rs = get_remote_state ();
7364 
7365   /* In case we got here due to an error, but we're going to stay
7366      connected.  */
7367   rs->waiting_for_stop_reply = 0;
7368 
7369   /* We're no longer interested in these events.  */
7370   discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7371 
7372   /* If the current general thread belonged to the process we just
7373      detached from or has exited, the remote side current general
7374      thread becomes undefined.  Considering a case like this:
7375 
7376      - We just got here due to a detach.
7377      - The process that we're detaching from happens to immediately
7378        report a global breakpoint being hit in non-stop mode, in the
7379        same thread we had selected before.
7380      - GDB attaches to this process again.
7381      - This event happens to be the next event we handle.
7382 
7383      GDB would consider that the current general thread didn't need to
7384      be set on the stub side (with Hg), since for all it knew,
7385      GENERAL_THREAD hadn't changed.
7386 
7387      Notice that although in all-stop mode, the remote server always
7388      sets the current thread to the thread reporting the stop event,
7389      that doesn't happen in non-stop mode; in non-stop, the stub *must
7390      not* change the current thread when reporting a breakpoint hit,
7391      due to the decoupling of event reporting and event handling.
7392 
7393      To keep things simple, we always invalidate our notion of the
7394      current thread.  */
7395   record_currthread (minus_one_ptid);
7396 
7397   /* Unlike "target remote", we do not want to unpush the target; then
7398      the next time the user says "run", we won't be connected.  */
7399 
7400   /* Call common code to mark the inferior as not running.	*/
7401   generic_mourn_inferior ();
7402 
7403   if (!have_inferiors ())
7404     {
7405       if (!remote_multi_process_p (rs))
7406 	{
7407 	  /* Check whether the target is running now - some remote stubs
7408 	     automatically restart after kill.	*/
7409 	  putpkt ("?");
7410 	  getpkt (&rs->buf, &rs->buf_size, 0);
7411 
7412 	  if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7413 	    {
7414 	      /* Assume that the target has been restarted.  Set inferior_ptid
7415 		 so that bits of core GDB realizes there's something here, e.g.,
7416 		 so that the user can say "kill" again.	 */
7417 	      inferior_ptid = magic_null_ptid;
7418 	    }
7419 	}
7420     }
7421 }
7422 
7423 static void
7424 extended_remote_mourn (struct target_ops *ops)
7425 {
7426   extended_remote_mourn_1 (ops);
7427 }
7428 
7429 static int
7430 extended_remote_run (char *args)
7431 {
7432   struct remote_state *rs = get_remote_state ();
7433   int len;
7434 
7435   /* If the user has disabled vRun support, or we have detected that
7436      support is not available, do not try it.  */
7437   if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7438     return -1;
7439 
7440   strcpy (rs->buf, "vRun;");
7441   len = strlen (rs->buf);
7442 
7443   if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7444     error (_("Remote file name too long for run packet"));
7445   len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7446 
7447   gdb_assert (args != NULL);
7448   if (*args)
7449     {
7450       struct cleanup *back_to;
7451       int i;
7452       char **argv;
7453 
7454       argv = gdb_buildargv (args);
7455       back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7456       for (i = 0; argv[i] != NULL; i++)
7457 	{
7458 	  if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7459 	    error (_("Argument list too long for run packet"));
7460 	  rs->buf[len++] = ';';
7461 	  len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7462 	}
7463       do_cleanups (back_to);
7464     }
7465 
7466   rs->buf[len++] = '\0';
7467 
7468   putpkt (rs->buf);
7469   getpkt (&rs->buf, &rs->buf_size, 0);
7470 
7471   if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7472     {
7473       /* We have a wait response; we don't need it, though.  All is well.  */
7474       return 0;
7475     }
7476   else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7477     /* It wasn't disabled before, but it is now.  */
7478     return -1;
7479   else
7480     {
7481       if (remote_exec_file[0] == '\0')
7482 	error (_("Running the default executable on the remote target failed; "
7483 		 "try \"set remote exec-file\"?"));
7484       else
7485 	error (_("Running \"%s\" on the remote target failed"),
7486 	       remote_exec_file);
7487     }
7488 }
7489 
7490 /* In the extended protocol we want to be able to do things like
7491    "run" and have them basically work as expected.  So we need
7492    a special create_inferior function.  We support changing the
7493    executable file and the command line arguments, but not the
7494    environment.  */
7495 
7496 static void
7497 extended_remote_create_inferior_1 (char *exec_file, char *args,
7498 				   char **env, int from_tty)
7499 {
7500   /* If running asynchronously, register the target file descriptor
7501      with the event loop.  */
7502   if (target_can_async_p ())
7503     target_async (inferior_event_handler, 0);
7504 
7505   /* Now restart the remote server.  */
7506   if (extended_remote_run (args) == -1)
7507     {
7508       /* vRun was not supported.  Fail if we need it to do what the
7509 	 user requested.  */
7510       if (remote_exec_file[0])
7511 	error (_("Remote target does not support \"set remote exec-file\""));
7512       if (args[0])
7513 	error (_("Remote target does not support \"set args\" or run <ARGS>"));
7514 
7515       /* Fall back to "R".  */
7516       extended_remote_restart ();
7517     }
7518 
7519   if (!have_inferiors ())
7520     {
7521       /* Clean up from the last time we ran, before we mark the target
7522 	 running again.  This will mark breakpoints uninserted, and
7523 	 get_offsets may insert breakpoints.  */
7524       init_thread_list ();
7525       init_wait_for_inferior ();
7526     }
7527 
7528   /* Now mark the inferior as running before we do anything else.  */
7529   inferior_ptid = magic_null_ptid;
7530 
7531   /* Now, if we have thread information, update inferior_ptid.  */
7532   inferior_ptid = remote_current_thread (inferior_ptid);
7533 
7534   remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7535   add_thread_silent (inferior_ptid);
7536 
7537   /* Get updated offsets, if the stub uses qOffsets.  */
7538   get_offsets ();
7539 }
7540 
7541 static void
7542 extended_remote_create_inferior (struct target_ops *ops,
7543 				 char *exec_file, char *args,
7544 				 char **env, int from_tty)
7545 {
7546   extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7547 }
7548 
7549 
7550 /* Insert a breakpoint.  On targets that have software breakpoint
7551    support, we ask the remote target to do the work; on targets
7552    which don't, we insert a traditional memory breakpoint.  */
7553 
7554 static int
7555 remote_insert_breakpoint (struct gdbarch *gdbarch,
7556 			  struct bp_target_info *bp_tgt)
7557 {
7558   /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7559      If it succeeds, then set the support to PACKET_ENABLE.  If it
7560      fails, and the user has explicitly requested the Z support then
7561      report an error, otherwise, mark it disabled and go on.  */
7562 
7563   if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7564     {
7565       CORE_ADDR addr = bp_tgt->placed_address;
7566       struct remote_state *rs;
7567       char *p;
7568       int bpsize;
7569 
7570       gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7571 
7572       rs = get_remote_state ();
7573       p = rs->buf;
7574 
7575       *(p++) = 'Z';
7576       *(p++) = '0';
7577       *(p++) = ',';
7578       addr = (ULONGEST) remote_address_masked (addr);
7579       p += hexnumstr (p, addr);
7580       sprintf (p, ",%d", bpsize);
7581 
7582       putpkt (rs->buf);
7583       getpkt (&rs->buf, &rs->buf_size, 0);
7584 
7585       switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7586 	{
7587 	case PACKET_ERROR:
7588 	  return -1;
7589 	case PACKET_OK:
7590 	  bp_tgt->placed_address = addr;
7591 	  bp_tgt->placed_size = bpsize;
7592 	  return 0;
7593 	case PACKET_UNKNOWN:
7594 	  break;
7595 	}
7596     }
7597 
7598   return memory_insert_breakpoint (gdbarch, bp_tgt);
7599 }
7600 
7601 static int
7602 remote_remove_breakpoint (struct gdbarch *gdbarch,
7603 			  struct bp_target_info *bp_tgt)
7604 {
7605   CORE_ADDR addr = bp_tgt->placed_address;
7606   struct remote_state *rs = get_remote_state ();
7607 
7608   if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7609     {
7610       char *p = rs->buf;
7611 
7612       *(p++) = 'z';
7613       *(p++) = '0';
7614       *(p++) = ',';
7615 
7616       addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7617       p += hexnumstr (p, addr);
7618       sprintf (p, ",%d", bp_tgt->placed_size);
7619 
7620       putpkt (rs->buf);
7621       getpkt (&rs->buf, &rs->buf_size, 0);
7622 
7623       return (rs->buf[0] == 'E');
7624     }
7625 
7626   return memory_remove_breakpoint (gdbarch, bp_tgt);
7627 }
7628 
7629 static int
7630 watchpoint_to_Z_packet (int type)
7631 {
7632   switch (type)
7633     {
7634     case hw_write:
7635       return Z_PACKET_WRITE_WP;
7636       break;
7637     case hw_read:
7638       return Z_PACKET_READ_WP;
7639       break;
7640     case hw_access:
7641       return Z_PACKET_ACCESS_WP;
7642       break;
7643     default:
7644       internal_error (__FILE__, __LINE__,
7645 		      _("hw_bp_to_z: bad watchpoint type %d"), type);
7646     }
7647 }
7648 
7649 static int
7650 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7651 			  struct expression *cond)
7652 {
7653   struct remote_state *rs = get_remote_state ();
7654   char *p;
7655   enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7656 
7657   if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7658     return 1;
7659 
7660   sprintf (rs->buf, "Z%x,", packet);
7661   p = strchr (rs->buf, '\0');
7662   addr = remote_address_masked (addr);
7663   p += hexnumstr (p, (ULONGEST) addr);
7664   sprintf (p, ",%x", len);
7665 
7666   putpkt (rs->buf);
7667   getpkt (&rs->buf, &rs->buf_size, 0);
7668 
7669   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7670     {
7671     case PACKET_ERROR:
7672       return -1;
7673     case PACKET_UNKNOWN:
7674       return 1;
7675     case PACKET_OK:
7676       return 0;
7677     }
7678   internal_error (__FILE__, __LINE__,
7679 		  _("remote_insert_watchpoint: reached end of function"));
7680 }
7681 
7682 
7683 static int
7684 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7685 			  struct expression *cond)
7686 {
7687   struct remote_state *rs = get_remote_state ();
7688   char *p;
7689   enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7690 
7691   if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7692     return -1;
7693 
7694   sprintf (rs->buf, "z%x,", packet);
7695   p = strchr (rs->buf, '\0');
7696   addr = remote_address_masked (addr);
7697   p += hexnumstr (p, (ULONGEST) addr);
7698   sprintf (p, ",%x", len);
7699   putpkt (rs->buf);
7700   getpkt (&rs->buf, &rs->buf_size, 0);
7701 
7702   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7703     {
7704     case PACKET_ERROR:
7705     case PACKET_UNKNOWN:
7706       return -1;
7707     case PACKET_OK:
7708       return 0;
7709     }
7710   internal_error (__FILE__, __LINE__,
7711 		  _("remote_remove_watchpoint: reached end of function"));
7712 }
7713 
7714 
7715 int remote_hw_watchpoint_limit = -1;
7716 int remote_hw_breakpoint_limit = -1;
7717 
7718 static int
7719 remote_check_watch_resources (int type, int cnt, int ot)
7720 {
7721   if (type == bp_hardware_breakpoint)
7722     {
7723       if (remote_hw_breakpoint_limit == 0)
7724 	return 0;
7725       else if (remote_hw_breakpoint_limit < 0)
7726 	return 1;
7727       else if (cnt <= remote_hw_breakpoint_limit)
7728 	return 1;
7729     }
7730   else
7731     {
7732       if (remote_hw_watchpoint_limit == 0)
7733 	return 0;
7734       else if (remote_hw_watchpoint_limit < 0)
7735 	return 1;
7736       else if (ot)
7737 	return -1;
7738       else if (cnt <= remote_hw_watchpoint_limit)
7739 	return 1;
7740     }
7741   return -1;
7742 }
7743 
7744 static int
7745 remote_stopped_by_watchpoint (void)
7746 {
7747   return remote_stopped_by_watchpoint_p;
7748 }
7749 
7750 static int
7751 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7752 {
7753   int rc = 0;
7754 
7755   if (remote_stopped_by_watchpoint ())
7756     {
7757       *addr_p = remote_watch_data_address;
7758       rc = 1;
7759     }
7760 
7761   return rc;
7762 }
7763 
7764 
7765 static int
7766 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7767 			     struct bp_target_info *bp_tgt)
7768 {
7769   CORE_ADDR addr;
7770   struct remote_state *rs;
7771   char *p;
7772 
7773   /* The length field should be set to the size of a breakpoint
7774      instruction, even though we aren't inserting one ourselves.  */
7775 
7776   gdbarch_remote_breakpoint_from_pc
7777     (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7778 
7779   if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7780     return -1;
7781 
7782   rs = get_remote_state ();
7783   p = rs->buf;
7784 
7785   *(p++) = 'Z';
7786   *(p++) = '1';
7787   *(p++) = ',';
7788 
7789   addr = remote_address_masked (bp_tgt->placed_address);
7790   p += hexnumstr (p, (ULONGEST) addr);
7791   sprintf (p, ",%x", bp_tgt->placed_size);
7792 
7793   putpkt (rs->buf);
7794   getpkt (&rs->buf, &rs->buf_size, 0);
7795 
7796   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7797     {
7798     case PACKET_ERROR:
7799     case PACKET_UNKNOWN:
7800       return -1;
7801     case PACKET_OK:
7802       return 0;
7803     }
7804   internal_error (__FILE__, __LINE__,
7805 		  _("remote_insert_hw_breakpoint: reached end of function"));
7806 }
7807 
7808 
7809 static int
7810 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7811 			     struct bp_target_info *bp_tgt)
7812 {
7813   CORE_ADDR addr;
7814   struct remote_state *rs = get_remote_state ();
7815   char *p = rs->buf;
7816 
7817   if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7818     return -1;
7819 
7820   *(p++) = 'z';
7821   *(p++) = '1';
7822   *(p++) = ',';
7823 
7824   addr = remote_address_masked (bp_tgt->placed_address);
7825   p += hexnumstr (p, (ULONGEST) addr);
7826   sprintf (p, ",%x", bp_tgt->placed_size);
7827 
7828   putpkt (rs->buf);
7829   getpkt (&rs->buf, &rs->buf_size, 0);
7830 
7831   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7832     {
7833     case PACKET_ERROR:
7834     case PACKET_UNKNOWN:
7835       return -1;
7836     case PACKET_OK:
7837       return 0;
7838     }
7839   internal_error (__FILE__, __LINE__,
7840 		  _("remote_remove_hw_breakpoint: reached end of function"));
7841 }
7842 
7843 /* Table used by the crc32 function to calcuate the checksum.  */
7844 
7845 static unsigned long crc32_table[256] =
7846 {0, 0};
7847 
7848 static unsigned long
7849 crc32 (const unsigned char *buf, int len, unsigned int crc)
7850 {
7851   if (!crc32_table[1])
7852     {
7853       /* Initialize the CRC table and the decoding table.  */
7854       int i, j;
7855       unsigned int c;
7856 
7857       for (i = 0; i < 256; i++)
7858 	{
7859 	  for (c = i << 24, j = 8; j > 0; --j)
7860 	    c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7861 	  crc32_table[i] = c;
7862 	}
7863     }
7864 
7865   while (len--)
7866     {
7867       crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7868       buf++;
7869     }
7870   return crc;
7871 }
7872 
7873 /* Verify memory using the "qCRC:" request.  */
7874 
7875 static int
7876 remote_verify_memory (struct target_ops *ops,
7877 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7878 {
7879   struct remote_state *rs = get_remote_state ();
7880   unsigned long host_crc, target_crc;
7881   char *tmp;
7882 
7883   /* FIXME: assumes lma can fit into long.  */
7884   xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7885 	     (long) lma, (long) size);
7886   putpkt (rs->buf);
7887 
7888   /* Be clever; compute the host_crc before waiting for target
7889      reply.  */
7890   host_crc = crc32 (data, size, 0xffffffff);
7891 
7892   getpkt (&rs->buf, &rs->buf_size, 0);
7893   if (rs->buf[0] == 'E')
7894     return -1;
7895 
7896   if (rs->buf[0] != 'C')
7897     error (_("remote target does not support this operation"));
7898 
7899   for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7900     target_crc = target_crc * 16 + fromhex (*tmp);
7901 
7902   return (host_crc == target_crc);
7903 }
7904 
7905 /* compare-sections command
7906 
7907    With no arguments, compares each loadable section in the exec bfd
7908    with the same memory range on the target, and reports mismatches.
7909    Useful for verifying the image on the target against the exec file.  */
7910 
7911 static void
7912 compare_sections_command (char *args, int from_tty)
7913 {
7914   asection *s;
7915   struct cleanup *old_chain;
7916   char *sectdata;
7917   const char *sectname;
7918   bfd_size_type size;
7919   bfd_vma lma;
7920   int matched = 0;
7921   int mismatched = 0;
7922   int res;
7923 
7924   if (!exec_bfd)
7925     error (_("command cannot be used without an exec file"));
7926 
7927   for (s = exec_bfd->sections; s; s = s->next)
7928     {
7929       if (!(s->flags & SEC_LOAD))
7930 	continue;		/* skip non-loadable section */
7931 
7932       size = bfd_get_section_size (s);
7933       if (size == 0)
7934 	continue;		/* skip zero-length section */
7935 
7936       sectname = bfd_get_section_name (exec_bfd, s);
7937       if (args && strcmp (args, sectname) != 0)
7938 	continue;		/* not the section selected by user */
7939 
7940       matched = 1;		/* do this section */
7941       lma = s->lma;
7942 
7943       sectdata = xmalloc (size);
7944       old_chain = make_cleanup (xfree, sectdata);
7945       bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7946 
7947       res = target_verify_memory (sectdata, lma, size);
7948 
7949       if (res == -1)
7950 	error (_("target memory fault, section %s, range %s -- %s"), sectname,
7951 	       paddress (target_gdbarch, lma),
7952 	       paddress (target_gdbarch, lma + size));
7953 
7954       printf_filtered ("Section %s, range %s -- %s: ", sectname,
7955 		       paddress (target_gdbarch, lma),
7956 		       paddress (target_gdbarch, lma + size));
7957       if (res)
7958 	printf_filtered ("matched.\n");
7959       else
7960 	{
7961 	  printf_filtered ("MIS-MATCHED!\n");
7962 	  mismatched++;
7963 	}
7964 
7965       do_cleanups (old_chain);
7966     }
7967   if (mismatched > 0)
7968     warning (_("One or more sections of the remote executable does not match\n\
7969 the loaded file\n"));
7970   if (args && !matched)
7971     printf_filtered (_("No loaded section named '%s'.\n"), args);
7972 }
7973 
7974 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7975    into remote target.  The number of bytes written to the remote
7976    target is returned, or -1 for error.  */
7977 
7978 static LONGEST
7979 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7980                     const char *annex, const gdb_byte *writebuf,
7981                     ULONGEST offset, LONGEST len,
7982                     struct packet_config *packet)
7983 {
7984   int i, buf_len;
7985   ULONGEST n;
7986   struct remote_state *rs = get_remote_state ();
7987   int max_size = get_memory_write_packet_size ();
7988 
7989   if (packet->support == PACKET_DISABLE)
7990     return -1;
7991 
7992   /* Insert header.  */
7993   i = snprintf (rs->buf, max_size,
7994 		"qXfer:%s:write:%s:%s:",
7995 		object_name, annex ? annex : "",
7996 		phex_nz (offset, sizeof offset));
7997   max_size -= (i + 1);
7998 
7999   /* Escape as much data as fits into rs->buf.  */
8000   buf_len = remote_escape_output
8001     (writebuf, len, (rs->buf + i), &max_size, max_size);
8002 
8003   if (putpkt_binary (rs->buf, i + buf_len) < 0
8004       || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8005       || packet_ok (rs->buf, packet) != PACKET_OK)
8006     return -1;
8007 
8008   unpack_varlen_hex (rs->buf, &n);
8009   return n;
8010 }
8011 
8012 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8013    Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8014    number of bytes read is returned, or 0 for EOF, or -1 for error.
8015    The number of bytes read may be less than LEN without indicating an
8016    EOF.  PACKET is checked and updated to indicate whether the remote
8017    target supports this object.  */
8018 
8019 static LONGEST
8020 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8021 		   const char *annex,
8022 		   gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8023 		   struct packet_config *packet)
8024 {
8025   static char *finished_object;
8026   static char *finished_annex;
8027   static ULONGEST finished_offset;
8028 
8029   struct remote_state *rs = get_remote_state ();
8030   LONGEST i, n, packet_len;
8031 
8032   if (packet->support == PACKET_DISABLE)
8033     return -1;
8034 
8035   /* Check whether we've cached an end-of-object packet that matches
8036      this request.  */
8037   if (finished_object)
8038     {
8039       if (strcmp (object_name, finished_object) == 0
8040 	  && strcmp (annex ? annex : "", finished_annex) == 0
8041 	  && offset == finished_offset)
8042 	return 0;
8043 
8044       /* Otherwise, we're now reading something different.  Discard
8045 	 the cache.  */
8046       xfree (finished_object);
8047       xfree (finished_annex);
8048       finished_object = NULL;
8049       finished_annex = NULL;
8050     }
8051 
8052   /* Request only enough to fit in a single packet.  The actual data
8053      may not, since we don't know how much of it will need to be escaped;
8054      the target is free to respond with slightly less data.  We subtract
8055      five to account for the response type and the protocol frame.  */
8056   n = min (get_remote_packet_size () - 5, len);
8057   snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8058 	    object_name, annex ? annex : "",
8059 	    phex_nz (offset, sizeof offset),
8060 	    phex_nz (n, sizeof n));
8061   i = putpkt (rs->buf);
8062   if (i < 0)
8063     return -1;
8064 
8065   rs->buf[0] = '\0';
8066   packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8067   if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8068     return -1;
8069 
8070   if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8071     error (_("Unknown remote qXfer reply: %s"), rs->buf);
8072 
8073   /* 'm' means there is (or at least might be) more data after this
8074      batch.  That does not make sense unless there's at least one byte
8075      of data in this reply.  */
8076   if (rs->buf[0] == 'm' && packet_len == 1)
8077     error (_("Remote qXfer reply contained no data."));
8078 
8079   /* Got some data.  */
8080   i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8081 
8082   /* 'l' is an EOF marker, possibly including a final block of data,
8083      or possibly empty.  If we have the final block of a non-empty
8084      object, record this fact to bypass a subsequent partial read.  */
8085   if (rs->buf[0] == 'l' && offset + i > 0)
8086     {
8087       finished_object = xstrdup (object_name);
8088       finished_annex = xstrdup (annex ? annex : "");
8089       finished_offset = offset + i;
8090     }
8091 
8092   return i;
8093 }
8094 
8095 static LONGEST
8096 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8097 		     const char *annex, gdb_byte *readbuf,
8098 		     const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8099 {
8100   struct remote_state *rs;
8101   int i;
8102   char *p2;
8103   char query_type;
8104 
8105   set_general_thread (inferior_ptid);
8106 
8107   rs = get_remote_state ();
8108 
8109   /* Handle memory using the standard memory routines.  */
8110   if (object == TARGET_OBJECT_MEMORY)
8111     {
8112       int xfered;
8113 
8114       errno = 0;
8115 
8116       /* If the remote target is connected but not running, we should
8117 	 pass this request down to a lower stratum (e.g. the executable
8118 	 file).  */
8119       if (!target_has_execution)
8120 	return 0;
8121 
8122       if (writebuf != NULL)
8123 	xfered = remote_write_bytes (offset, writebuf, len);
8124       else
8125 	xfered = remote_read_bytes (offset, readbuf, len);
8126 
8127       if (xfered > 0)
8128 	return xfered;
8129       else if (xfered == 0 && errno == 0)
8130 	return 0;
8131       else
8132 	return -1;
8133     }
8134 
8135   /* Handle SPU memory using qxfer packets. */
8136   if (object == TARGET_OBJECT_SPU)
8137     {
8138       if (readbuf)
8139 	return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8140 				  &remote_protocol_packets
8141 				    [PACKET_qXfer_spu_read]);
8142       else
8143 	return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8144 				   &remote_protocol_packets
8145 				     [PACKET_qXfer_spu_write]);
8146     }
8147 
8148   /* Handle extra signal info using qxfer packets.  */
8149   if (object == TARGET_OBJECT_SIGNAL_INFO)
8150     {
8151       if (readbuf)
8152 	return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8153 				  &remote_protocol_packets
8154 				  [PACKET_qXfer_siginfo_read]);
8155       else
8156 	return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
8157 				   &remote_protocol_packets
8158 				   [PACKET_qXfer_siginfo_write]);
8159     }
8160 
8161   if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8162     {
8163       if (readbuf)
8164 	return remote_read_qxfer (ops, "statictrace", annex, readbuf, offset, len,
8165 				  &remote_protocol_packets
8166 				  [PACKET_qXfer_statictrace_read]);
8167       else
8168 	return -1;
8169     }
8170 
8171   /* Only handle flash writes.  */
8172   if (writebuf != NULL)
8173     {
8174       LONGEST xfered;
8175 
8176       switch (object)
8177 	{
8178 	case TARGET_OBJECT_FLASH:
8179 	  xfered = remote_flash_write (ops, offset, len, writebuf);
8180 
8181 	  if (xfered > 0)
8182 	    return xfered;
8183 	  else if (xfered == 0 && errno == 0)
8184 	    return 0;
8185 	  else
8186 	    return -1;
8187 
8188 	default:
8189 	  return -1;
8190 	}
8191     }
8192 
8193   /* Map pre-existing objects onto letters.  DO NOT do this for new
8194      objects!!!  Instead specify new query packets.  */
8195   switch (object)
8196     {
8197     case TARGET_OBJECT_AVR:
8198       query_type = 'R';
8199       break;
8200 
8201     case TARGET_OBJECT_AUXV:
8202       gdb_assert (annex == NULL);
8203       return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8204 				&remote_protocol_packets[PACKET_qXfer_auxv]);
8205 
8206     case TARGET_OBJECT_AVAILABLE_FEATURES:
8207       return remote_read_qxfer
8208 	(ops, "features", annex, readbuf, offset, len,
8209 	 &remote_protocol_packets[PACKET_qXfer_features]);
8210 
8211     case TARGET_OBJECT_LIBRARIES:
8212       return remote_read_qxfer
8213 	(ops, "libraries", annex, readbuf, offset, len,
8214 	 &remote_protocol_packets[PACKET_qXfer_libraries]);
8215 
8216     case TARGET_OBJECT_MEMORY_MAP:
8217       gdb_assert (annex == NULL);
8218       return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8219 				&remote_protocol_packets[PACKET_qXfer_memory_map]);
8220 
8221     case TARGET_OBJECT_OSDATA:
8222       /* Should only get here if we're connected.  */
8223       gdb_assert (remote_desc);
8224       return remote_read_qxfer
8225        (ops, "osdata", annex, readbuf, offset, len,
8226         &remote_protocol_packets[PACKET_qXfer_osdata]);
8227 
8228     case TARGET_OBJECT_THREADS:
8229       gdb_assert (annex == NULL);
8230       return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8231 				&remote_protocol_packets[PACKET_qXfer_threads]);
8232 
8233     default:
8234       return -1;
8235     }
8236 
8237   /* Note: a zero OFFSET and LEN can be used to query the minimum
8238      buffer size.  */
8239   if (offset == 0 && len == 0)
8240     return (get_remote_packet_size ());
8241   /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8242      large enough let the caller deal with it.  */
8243   if (len < get_remote_packet_size ())
8244     return -1;
8245   len = get_remote_packet_size ();
8246 
8247   /* Except for querying the minimum buffer size, target must be open.  */
8248   if (!remote_desc)
8249     error (_("remote query is only available after target open"));
8250 
8251   gdb_assert (annex != NULL);
8252   gdb_assert (readbuf != NULL);
8253 
8254   p2 = rs->buf;
8255   *p2++ = 'q';
8256   *p2++ = query_type;
8257 
8258   /* We used one buffer char for the remote protocol q command and
8259      another for the query type.  As the remote protocol encapsulation
8260      uses 4 chars plus one extra in case we are debugging
8261      (remote_debug), we have PBUFZIZ - 7 left to pack the query
8262      string.  */
8263   i = 0;
8264   while (annex[i] && (i < (get_remote_packet_size () - 8)))
8265     {
8266       /* Bad caller may have sent forbidden characters.  */
8267       gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8268       *p2++ = annex[i];
8269       i++;
8270     }
8271   *p2 = '\0';
8272   gdb_assert (annex[i] == '\0');
8273 
8274   i = putpkt (rs->buf);
8275   if (i < 0)
8276     return i;
8277 
8278   getpkt (&rs->buf, &rs->buf_size, 0);
8279   strcpy ((char *) readbuf, rs->buf);
8280 
8281   return strlen ((char *) readbuf);
8282 }
8283 
8284 static int
8285 remote_search_memory (struct target_ops* ops,
8286 		      CORE_ADDR start_addr, ULONGEST search_space_len,
8287 		      const gdb_byte *pattern, ULONGEST pattern_len,
8288 		      CORE_ADDR *found_addrp)
8289 {
8290   int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8291   struct remote_state *rs = get_remote_state ();
8292   int max_size = get_memory_write_packet_size ();
8293   struct packet_config *packet =
8294     &remote_protocol_packets[PACKET_qSearch_memory];
8295   /* number of packet bytes used to encode the pattern,
8296      this could be more than PATTERN_LEN due to escape characters */
8297   int escaped_pattern_len;
8298   /* amount of pattern that was encodable in the packet */
8299   int used_pattern_len;
8300   int i;
8301   int found;
8302   ULONGEST found_addr;
8303 
8304   /* Don't go to the target if we don't have to.
8305      This is done before checking packet->support to avoid the possibility that
8306      a success for this edge case means the facility works in general.  */
8307   if (pattern_len > search_space_len)
8308     return 0;
8309   if (pattern_len == 0)
8310     {
8311       *found_addrp = start_addr;
8312       return 1;
8313     }
8314 
8315   /* If we already know the packet isn't supported, fall back to the simple
8316      way of searching memory.  */
8317 
8318   if (packet->support == PACKET_DISABLE)
8319     {
8320       /* Target doesn't provided special support, fall back and use the
8321 	 standard support (copy memory and do the search here).  */
8322       return simple_search_memory (ops, start_addr, search_space_len,
8323 				   pattern, pattern_len, found_addrp);
8324     }
8325 
8326   /* Insert header.  */
8327   i = snprintf (rs->buf, max_size,
8328 		"qSearch:memory:%s;%s;",
8329 		phex_nz (start_addr, addr_size),
8330 		phex_nz (search_space_len, sizeof (search_space_len)));
8331   max_size -= (i + 1);
8332 
8333   /* Escape as much data as fits into rs->buf.  */
8334   escaped_pattern_len =
8335     remote_escape_output (pattern, pattern_len, (rs->buf + i),
8336 			  &used_pattern_len, max_size);
8337 
8338   /* Bail if the pattern is too large.  */
8339   if (used_pattern_len != pattern_len)
8340     error ("Pattern is too large to transmit to remote target.");
8341 
8342   if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8343       || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8344       || packet_ok (rs->buf, packet) != PACKET_OK)
8345     {
8346       /* The request may not have worked because the command is not
8347 	 supported.  If so, fall back to the simple way.  */
8348       if (packet->support == PACKET_DISABLE)
8349 	{
8350 	  return simple_search_memory (ops, start_addr, search_space_len,
8351 				       pattern, pattern_len, found_addrp);
8352 	}
8353       return -1;
8354     }
8355 
8356   if (rs->buf[0] == '0')
8357     found = 0;
8358   else if (rs->buf[0] == '1')
8359     {
8360       found = 1;
8361       if (rs->buf[1] != ',')
8362 	error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8363       unpack_varlen_hex (rs->buf + 2, &found_addr);
8364       *found_addrp = found_addr;
8365     }
8366   else
8367     error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8368 
8369   return found;
8370 }
8371 
8372 static void
8373 remote_rcmd (char *command,
8374 	     struct ui_file *outbuf)
8375 {
8376   struct remote_state *rs = get_remote_state ();
8377   char *p = rs->buf;
8378 
8379   if (!remote_desc)
8380     error (_("remote rcmd is only available after target open"));
8381 
8382   /* Send a NULL command across as an empty command.  */
8383   if (command == NULL)
8384     command = "";
8385 
8386   /* The query prefix.  */
8387   strcpy (rs->buf, "qRcmd,");
8388   p = strchr (rs->buf, '\0');
8389 
8390   if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8391     error (_("\"monitor\" command ``%s'' is too long."), command);
8392 
8393   /* Encode the actual command.  */
8394   bin2hex ((gdb_byte *) command, p, 0);
8395 
8396   if (putpkt (rs->buf) < 0)
8397     error (_("Communication problem with target."));
8398 
8399   /* get/display the response */
8400   while (1)
8401     {
8402       char *buf;
8403 
8404       /* XXX - see also remote_get_noisy_reply().  */
8405       rs->buf[0] = '\0';
8406       getpkt (&rs->buf, &rs->buf_size, 0);
8407       buf = rs->buf;
8408       if (buf[0] == '\0')
8409 	error (_("Target does not support this command."));
8410       if (buf[0] == 'O' && buf[1] != 'K')
8411 	{
8412 	  remote_console_output (buf + 1); /* 'O' message from stub.  */
8413 	  continue;
8414 	}
8415       if (strcmp (buf, "OK") == 0)
8416 	break;
8417       if (strlen (buf) == 3 && buf[0] == 'E'
8418 	  && isdigit (buf[1]) && isdigit (buf[2]))
8419 	{
8420 	  error (_("Protocol error with Rcmd"));
8421 	}
8422       for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8423 	{
8424 	  char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8425 
8426 	  fputc_unfiltered (c, outbuf);
8427 	}
8428       break;
8429     }
8430 }
8431 
8432 static VEC(mem_region_s) *
8433 remote_memory_map (struct target_ops *ops)
8434 {
8435   VEC(mem_region_s) *result = NULL;
8436   char *text = target_read_stralloc (&current_target,
8437 				     TARGET_OBJECT_MEMORY_MAP, NULL);
8438 
8439   if (text)
8440     {
8441       struct cleanup *back_to = make_cleanup (xfree, text);
8442 
8443       result = parse_memory_map (text);
8444       do_cleanups (back_to);
8445     }
8446 
8447   return result;
8448 }
8449 
8450 static void
8451 packet_command (char *args, int from_tty)
8452 {
8453   struct remote_state *rs = get_remote_state ();
8454 
8455   if (!remote_desc)
8456     error (_("command can only be used with remote target"));
8457 
8458   if (!args)
8459     error (_("remote-packet command requires packet text as argument"));
8460 
8461   puts_filtered ("sending: ");
8462   print_packet (args);
8463   puts_filtered ("\n");
8464   putpkt (args);
8465 
8466   getpkt (&rs->buf, &rs->buf_size, 0);
8467   puts_filtered ("received: ");
8468   print_packet (rs->buf);
8469   puts_filtered ("\n");
8470 }
8471 
8472 #if 0
8473 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8474 
8475 static void display_thread_info (struct gdb_ext_thread_info *info);
8476 
8477 static void threadset_test_cmd (char *cmd, int tty);
8478 
8479 static void threadalive_test (char *cmd, int tty);
8480 
8481 static void threadlist_test_cmd (char *cmd, int tty);
8482 
8483 int get_and_display_threadinfo (threadref *ref);
8484 
8485 static void threadinfo_test_cmd (char *cmd, int tty);
8486 
8487 static int thread_display_step (threadref *ref, void *context);
8488 
8489 static void threadlist_update_test_cmd (char *cmd, int tty);
8490 
8491 static void init_remote_threadtests (void);
8492 
8493 #define SAMPLE_THREAD  0x05060708	/* Truncated 64 bit threadid.  */
8494 
8495 static void
8496 threadset_test_cmd (char *cmd, int tty)
8497 {
8498   int sample_thread = SAMPLE_THREAD;
8499 
8500   printf_filtered (_("Remote threadset test\n"));
8501   set_general_thread (sample_thread);
8502 }
8503 
8504 
8505 static void
8506 threadalive_test (char *cmd, int tty)
8507 {
8508   int sample_thread = SAMPLE_THREAD;
8509   int pid = ptid_get_pid (inferior_ptid);
8510   ptid_t ptid = ptid_build (pid, 0, sample_thread);
8511 
8512   if (remote_thread_alive (ptid))
8513     printf_filtered ("PASS: Thread alive test\n");
8514   else
8515     printf_filtered ("FAIL: Thread alive test\n");
8516 }
8517 
8518 void output_threadid (char *title, threadref *ref);
8519 
8520 void
8521 output_threadid (char *title, threadref *ref)
8522 {
8523   char hexid[20];
8524 
8525   pack_threadid (&hexid[0], ref);	/* Convert threead id into hex.  */
8526   hexid[16] = 0;
8527   printf_filtered ("%s  %s\n", title, (&hexid[0]));
8528 }
8529 
8530 static void
8531 threadlist_test_cmd (char *cmd, int tty)
8532 {
8533   int startflag = 1;
8534   threadref nextthread;
8535   int done, result_count;
8536   threadref threadlist[3];
8537 
8538   printf_filtered ("Remote Threadlist test\n");
8539   if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8540 			      &result_count, &threadlist[0]))
8541     printf_filtered ("FAIL: threadlist test\n");
8542   else
8543     {
8544       threadref *scan = threadlist;
8545       threadref *limit = scan + result_count;
8546 
8547       while (scan < limit)
8548 	output_threadid (" thread ", scan++);
8549     }
8550 }
8551 
8552 void
8553 display_thread_info (struct gdb_ext_thread_info *info)
8554 {
8555   output_threadid ("Threadid: ", &info->threadid);
8556   printf_filtered ("Name: %s\n ", info->shortname);
8557   printf_filtered ("State: %s\n", info->display);
8558   printf_filtered ("other: %s\n\n", info->more_display);
8559 }
8560 
8561 int
8562 get_and_display_threadinfo (threadref *ref)
8563 {
8564   int result;
8565   int set;
8566   struct gdb_ext_thread_info threadinfo;
8567 
8568   set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8569     | TAG_MOREDISPLAY | TAG_DISPLAY;
8570   if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8571     display_thread_info (&threadinfo);
8572   return result;
8573 }
8574 
8575 static void
8576 threadinfo_test_cmd (char *cmd, int tty)
8577 {
8578   int athread = SAMPLE_THREAD;
8579   threadref thread;
8580   int set;
8581 
8582   int_to_threadref (&thread, athread);
8583   printf_filtered ("Remote Threadinfo test\n");
8584   if (!get_and_display_threadinfo (&thread))
8585     printf_filtered ("FAIL cannot get thread info\n");
8586 }
8587 
8588 static int
8589 thread_display_step (threadref *ref, void *context)
8590 {
8591   /* output_threadid(" threadstep ",ref); *//* simple test */
8592   return get_and_display_threadinfo (ref);
8593 }
8594 
8595 static void
8596 threadlist_update_test_cmd (char *cmd, int tty)
8597 {
8598   printf_filtered ("Remote Threadlist update test\n");
8599   remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8600 }
8601 
8602 static void
8603 init_remote_threadtests (void)
8604 {
8605   add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8606 Fetch and print the remote list of thread identifiers, one pkt only"));
8607   add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8608 	   _("Fetch and display info about one thread"));
8609   add_com ("tset", class_obscure, threadset_test_cmd,
8610 	   _("Test setting to a different thread"));
8611   add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8612 	   _("Iterate through updating all remote thread info"));
8613   add_com ("talive", class_obscure, threadalive_test,
8614 	   _(" Remote thread alive test "));
8615 }
8616 
8617 #endif /* 0 */
8618 
8619 /* Convert a thread ID to a string.  Returns the string in a static
8620    buffer.  */
8621 
8622 static char *
8623 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8624 {
8625   static char buf[64];
8626   struct remote_state *rs = get_remote_state ();
8627 
8628   if (ptid_is_pid (ptid))
8629     {
8630       /* Printing an inferior target id.  */
8631 
8632       /* When multi-process extensions are off, there's no way in the
8633 	 remote protocol to know the remote process id, if there's any
8634 	 at all.  There's one exception --- when we're connected with
8635 	 target extended-remote, and we manually attached to a process
8636 	 with "attach PID".  We don't record anywhere a flag that
8637 	 allows us to distinguish that case from the case of
8638 	 connecting with extended-remote and the stub already being
8639 	 attached to a process, and reporting yes to qAttached, hence
8640 	 no smart special casing here.  */
8641       if (!remote_multi_process_p (rs))
8642 	{
8643 	  xsnprintf (buf, sizeof buf, "Remote target");
8644 	  return buf;
8645 	}
8646 
8647       return normal_pid_to_str (ptid);
8648     }
8649   else
8650     {
8651       if (ptid_equal (magic_null_ptid, ptid))
8652 	xsnprintf (buf, sizeof buf, "Thread <main>");
8653       else if (remote_multi_process_p (rs))
8654 	xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8655 		   ptid_get_pid (ptid), ptid_get_tid (ptid));
8656       else
8657 	xsnprintf (buf, sizeof buf, "Thread %ld",
8658 		   ptid_get_tid (ptid));
8659       return buf;
8660     }
8661 }
8662 
8663 /* Get the address of the thread local variable in OBJFILE which is
8664    stored at OFFSET within the thread local storage for thread PTID.  */
8665 
8666 static CORE_ADDR
8667 remote_get_thread_local_address (struct target_ops *ops,
8668 				 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8669 {
8670   if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8671     {
8672       struct remote_state *rs = get_remote_state ();
8673       char *p = rs->buf;
8674       char *endp = rs->buf + get_remote_packet_size ();
8675       enum packet_result result;
8676 
8677       strcpy (p, "qGetTLSAddr:");
8678       p += strlen (p);
8679       p = write_ptid (p, endp, ptid);
8680       *p++ = ',';
8681       p += hexnumstr (p, offset);
8682       *p++ = ',';
8683       p += hexnumstr (p, lm);
8684       *p++ = '\0';
8685 
8686       putpkt (rs->buf);
8687       getpkt (&rs->buf, &rs->buf_size, 0);
8688       result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8689       if (result == PACKET_OK)
8690 	{
8691 	  ULONGEST result;
8692 
8693 	  unpack_varlen_hex (rs->buf, &result);
8694 	  return result;
8695 	}
8696       else if (result == PACKET_UNKNOWN)
8697 	throw_error (TLS_GENERIC_ERROR,
8698 		     _("Remote target doesn't support qGetTLSAddr packet"));
8699       else
8700 	throw_error (TLS_GENERIC_ERROR,
8701 		     _("Remote target failed to process qGetTLSAddr request"));
8702     }
8703   else
8704     throw_error (TLS_GENERIC_ERROR,
8705 		 _("TLS not supported or disabled on this target"));
8706   /* Not reached.  */
8707   return 0;
8708 }
8709 
8710 /* Provide thread local base, i.e. Thread Information Block address.
8711    Returns 1 if ptid is found and thread_local_base is non zero.  */
8712 
8713 int
8714 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8715 {
8716   if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8717     {
8718       struct remote_state *rs = get_remote_state ();
8719       char *p = rs->buf;
8720       char *endp = rs->buf + get_remote_packet_size ();
8721       enum packet_result result;
8722 
8723       strcpy (p, "qGetTIBAddr:");
8724       p += strlen (p);
8725       p = write_ptid (p, endp, ptid);
8726       *p++ = '\0';
8727 
8728       putpkt (rs->buf);
8729       getpkt (&rs->buf, &rs->buf_size, 0);
8730       result = packet_ok (rs->buf,
8731 			  &remote_protocol_packets[PACKET_qGetTIBAddr]);
8732       if (result == PACKET_OK)
8733 	{
8734 	  ULONGEST result;
8735 
8736 	  unpack_varlen_hex (rs->buf, &result);
8737 	  if (addr)
8738 	    *addr = (CORE_ADDR) result;
8739 	  return 1;
8740 	}
8741       else if (result == PACKET_UNKNOWN)
8742 	error (_("Remote target doesn't support qGetTIBAddr packet"));
8743       else
8744 	error (_("Remote target failed to process qGetTIBAddr request"));
8745     }
8746   else
8747     error (_("qGetTIBAddr not supported or disabled on this target"));
8748   /* Not reached.  */
8749   return 0;
8750 }
8751 
8752 /* Support for inferring a target description based on the current
8753    architecture and the size of a 'g' packet.  While the 'g' packet
8754    can have any size (since optional registers can be left off the
8755    end), some sizes are easily recognizable given knowledge of the
8756    approximate architecture.  */
8757 
8758 struct remote_g_packet_guess
8759 {
8760   int bytes;
8761   const struct target_desc *tdesc;
8762 };
8763 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8764 DEF_VEC_O(remote_g_packet_guess_s);
8765 
8766 struct remote_g_packet_data
8767 {
8768   VEC(remote_g_packet_guess_s) *guesses;
8769 };
8770 
8771 static struct gdbarch_data *remote_g_packet_data_handle;
8772 
8773 static void *
8774 remote_g_packet_data_init (struct obstack *obstack)
8775 {
8776   return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8777 }
8778 
8779 void
8780 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8781 				const struct target_desc *tdesc)
8782 {
8783   struct remote_g_packet_data *data
8784     = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8785   struct remote_g_packet_guess new_guess, *guess;
8786   int ix;
8787 
8788   gdb_assert (tdesc != NULL);
8789 
8790   for (ix = 0;
8791        VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8792        ix++)
8793     if (guess->bytes == bytes)
8794       internal_error (__FILE__, __LINE__,
8795 		      "Duplicate g packet description added for size %d",
8796 		      bytes);
8797 
8798   new_guess.bytes = bytes;
8799   new_guess.tdesc = tdesc;
8800   VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8801 }
8802 
8803 /* Return 1 if remote_read_description would do anything on this target
8804    and architecture, 0 otherwise.  */
8805 
8806 static int
8807 remote_read_description_p (struct target_ops *target)
8808 {
8809   struct remote_g_packet_data *data
8810     = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8811 
8812   if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8813     return 1;
8814 
8815   return 0;
8816 }
8817 
8818 static const struct target_desc *
8819 remote_read_description (struct target_ops *target)
8820 {
8821   struct remote_g_packet_data *data
8822     = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8823 
8824   /* Do not try this during initial connection, when we do not know
8825      whether there is a running but stopped thread.  */
8826   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8827     return NULL;
8828 
8829   if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8830     {
8831       struct remote_g_packet_guess *guess;
8832       int ix;
8833       int bytes = send_g_packet ();
8834 
8835       for (ix = 0;
8836 	   VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8837 	   ix++)
8838 	if (guess->bytes == bytes)
8839 	  return guess->tdesc;
8840 
8841       /* We discard the g packet.  A minor optimization would be to
8842 	 hold on to it, and fill the register cache once we have selected
8843 	 an architecture, but it's too tricky to do safely.  */
8844     }
8845 
8846   return NULL;
8847 }
8848 
8849 /* Remote file transfer support.  This is host-initiated I/O, not
8850    target-initiated; for target-initiated, see remote-fileio.c.  */
8851 
8852 /* If *LEFT is at least the length of STRING, copy STRING to
8853    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8854    decrease *LEFT.  Otherwise raise an error.  */
8855 
8856 static void
8857 remote_buffer_add_string (char **buffer, int *left, char *string)
8858 {
8859   int len = strlen (string);
8860 
8861   if (len > *left)
8862     error (_("Packet too long for target."));
8863 
8864   memcpy (*buffer, string, len);
8865   *buffer += len;
8866   *left -= len;
8867 
8868   /* NUL-terminate the buffer as a convenience, if there is
8869      room.  */
8870   if (*left)
8871     **buffer = '\0';
8872 }
8873 
8874 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8875    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8876    decrease *LEFT.  Otherwise raise an error.  */
8877 
8878 static void
8879 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8880 			 int len)
8881 {
8882   if (2 * len > *left)
8883     error (_("Packet too long for target."));
8884 
8885   bin2hex (bytes, *buffer, len);
8886   *buffer += 2 * len;
8887   *left -= 2 * len;
8888 
8889   /* NUL-terminate the buffer as a convenience, if there is
8890      room.  */
8891   if (*left)
8892     **buffer = '\0';
8893 }
8894 
8895 /* If *LEFT is large enough, convert VALUE to hex and add it to
8896    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8897    decrease *LEFT.  Otherwise raise an error.  */
8898 
8899 static void
8900 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8901 {
8902   int len = hexnumlen (value);
8903 
8904   if (len > *left)
8905     error (_("Packet too long for target."));
8906 
8907   hexnumstr (*buffer, value);
8908   *buffer += len;
8909   *left -= len;
8910 
8911   /* NUL-terminate the buffer as a convenience, if there is
8912      room.  */
8913   if (*left)
8914     **buffer = '\0';
8915 }
8916 
8917 /* Parse an I/O result packet from BUFFER.  Set RETCODE to the return
8918    value, *REMOTE_ERRNO to the remote error number or zero if none
8919    was included, and *ATTACHMENT to point to the start of the annex
8920    if any.  The length of the packet isn't needed here; there may
8921    be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8922 
8923    Return 0 if the packet could be parsed, -1 if it could not.  If
8924    -1 is returned, the other variables may not be initialized.  */
8925 
8926 static int
8927 remote_hostio_parse_result (char *buffer, int *retcode,
8928 			    int *remote_errno, char **attachment)
8929 {
8930   char *p, *p2;
8931 
8932   *remote_errno = 0;
8933   *attachment = NULL;
8934 
8935   if (buffer[0] != 'F')
8936     return -1;
8937 
8938   errno = 0;
8939   *retcode = strtol (&buffer[1], &p, 16);
8940   if (errno != 0 || p == &buffer[1])
8941     return -1;
8942 
8943   /* Check for ",errno".  */
8944   if (*p == ',')
8945     {
8946       errno = 0;
8947       *remote_errno = strtol (p + 1, &p2, 16);
8948       if (errno != 0 || p + 1 == p2)
8949 	return -1;
8950       p = p2;
8951     }
8952 
8953   /* Check for ";attachment".  If there is no attachment, the
8954      packet should end here.  */
8955   if (*p == ';')
8956     {
8957       *attachment = p + 1;
8958       return 0;
8959     }
8960   else if (*p == '\0')
8961     return 0;
8962   else
8963     return -1;
8964 }
8965 
8966 /* Send a prepared I/O packet to the target and read its response.
8967    The prepared packet is in the global RS->BUF before this function
8968    is called, and the answer is there when we return.
8969 
8970    COMMAND_BYTES is the length of the request to send, which may include
8971    binary data.  WHICH_PACKET is the packet configuration to check
8972    before attempting a packet.  If an error occurs, *REMOTE_ERRNO
8973    is set to the error number and -1 is returned.  Otherwise the value
8974    returned by the function is returned.
8975 
8976    ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8977    attachment is expected; an error will be reported if there's a
8978    mismatch.  If one is found, *ATTACHMENT will be set to point into
8979    the packet buffer and *ATTACHMENT_LEN will be set to the
8980    attachment's length.  */
8981 
8982 static int
8983 remote_hostio_send_command (int command_bytes, int which_packet,
8984 			    int *remote_errno, char **attachment,
8985 			    int *attachment_len)
8986 {
8987   struct remote_state *rs = get_remote_state ();
8988   int ret, bytes_read;
8989   char *attachment_tmp;
8990 
8991   if (!remote_desc
8992       || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8993     {
8994       *remote_errno = FILEIO_ENOSYS;
8995       return -1;
8996     }
8997 
8998   putpkt_binary (rs->buf, command_bytes);
8999   bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9000 
9001   /* If it timed out, something is wrong.  Don't try to parse the
9002      buffer.  */
9003   if (bytes_read < 0)
9004     {
9005       *remote_errno = FILEIO_EINVAL;
9006       return -1;
9007     }
9008 
9009   switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9010     {
9011     case PACKET_ERROR:
9012       *remote_errno = FILEIO_EINVAL;
9013       return -1;
9014     case PACKET_UNKNOWN:
9015       *remote_errno = FILEIO_ENOSYS;
9016       return -1;
9017     case PACKET_OK:
9018       break;
9019     }
9020 
9021   if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9022 				  &attachment_tmp))
9023     {
9024       *remote_errno = FILEIO_EINVAL;
9025       return -1;
9026     }
9027 
9028   /* Make sure we saw an attachment if and only if we expected one.  */
9029   if ((attachment_tmp == NULL && attachment != NULL)
9030       || (attachment_tmp != NULL && attachment == NULL))
9031     {
9032       *remote_errno = FILEIO_EINVAL;
9033       return -1;
9034     }
9035 
9036   /* If an attachment was found, it must point into the packet buffer;
9037      work out how many bytes there were.  */
9038   if (attachment_tmp != NULL)
9039     {
9040       *attachment = attachment_tmp;
9041       *attachment_len = bytes_read - (*attachment - rs->buf);
9042     }
9043 
9044   return ret;
9045 }
9046 
9047 /* Open FILENAME on the remote target, using FLAGS and MODE.  Return a
9048    remote file descriptor, or -1 if an error occurs (and set
9049    *REMOTE_ERRNO).  */
9050 
9051 static int
9052 remote_hostio_open (const char *filename, int flags, int mode,
9053 		    int *remote_errno)
9054 {
9055   struct remote_state *rs = get_remote_state ();
9056   char *p = rs->buf;
9057   int left = get_remote_packet_size () - 1;
9058 
9059   remote_buffer_add_string (&p, &left, "vFile:open:");
9060 
9061   remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9062 			   strlen (filename));
9063   remote_buffer_add_string (&p, &left, ",");
9064 
9065   remote_buffer_add_int (&p, &left, flags);
9066   remote_buffer_add_string (&p, &left, ",");
9067 
9068   remote_buffer_add_int (&p, &left, mode);
9069 
9070   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9071 				     remote_errno, NULL, NULL);
9072 }
9073 
9074 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9075    Return the number of bytes written, or -1 if an error occurs (and
9076    set *REMOTE_ERRNO).  */
9077 
9078 static int
9079 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9080 		      ULONGEST offset, int *remote_errno)
9081 {
9082   struct remote_state *rs = get_remote_state ();
9083   char *p = rs->buf;
9084   int left = get_remote_packet_size ();
9085   int out_len;
9086 
9087   remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9088 
9089   remote_buffer_add_int (&p, &left, fd);
9090   remote_buffer_add_string (&p, &left, ",");
9091 
9092   remote_buffer_add_int (&p, &left, offset);
9093   remote_buffer_add_string (&p, &left, ",");
9094 
9095   p += remote_escape_output (write_buf, len, p, &out_len,
9096 			     get_remote_packet_size () - (p - rs->buf));
9097 
9098   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9099 				     remote_errno, NULL, NULL);
9100 }
9101 
9102 /* Read up to LEN bytes FD on the remote target into READ_BUF
9103    Return the number of bytes read, or -1 if an error occurs (and
9104    set *REMOTE_ERRNO).  */
9105 
9106 static int
9107 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9108 		     ULONGEST offset, int *remote_errno)
9109 {
9110   struct remote_state *rs = get_remote_state ();
9111   char *p = rs->buf;
9112   char *attachment;
9113   int left = get_remote_packet_size ();
9114   int ret, attachment_len;
9115   int read_len;
9116 
9117   remote_buffer_add_string (&p, &left, "vFile:pread:");
9118 
9119   remote_buffer_add_int (&p, &left, fd);
9120   remote_buffer_add_string (&p, &left, ",");
9121 
9122   remote_buffer_add_int (&p, &left, len);
9123   remote_buffer_add_string (&p, &left, ",");
9124 
9125   remote_buffer_add_int (&p, &left, offset);
9126 
9127   ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9128 				    remote_errno, &attachment,
9129 				    &attachment_len);
9130 
9131   if (ret < 0)
9132     return ret;
9133 
9134   read_len = remote_unescape_input (attachment, attachment_len,
9135 				    read_buf, len);
9136   if (read_len != ret)
9137     error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9138 
9139   return ret;
9140 }
9141 
9142 /* Close FD on the remote target.  Return 0, or -1 if an error occurs
9143    (and set *REMOTE_ERRNO).  */
9144 
9145 static int
9146 remote_hostio_close (int fd, int *remote_errno)
9147 {
9148   struct remote_state *rs = get_remote_state ();
9149   char *p = rs->buf;
9150   int left = get_remote_packet_size () - 1;
9151 
9152   remote_buffer_add_string (&p, &left, "vFile:close:");
9153 
9154   remote_buffer_add_int (&p, &left, fd);
9155 
9156   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9157 				     remote_errno, NULL, NULL);
9158 }
9159 
9160 /* Unlink FILENAME on the remote target.  Return 0, or -1 if an error
9161    occurs (and set *REMOTE_ERRNO).  */
9162 
9163 static int
9164 remote_hostio_unlink (const char *filename, int *remote_errno)
9165 {
9166   struct remote_state *rs = get_remote_state ();
9167   char *p = rs->buf;
9168   int left = get_remote_packet_size () - 1;
9169 
9170   remote_buffer_add_string (&p, &left, "vFile:unlink:");
9171 
9172   remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9173 			   strlen (filename));
9174 
9175   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9176 				     remote_errno, NULL, NULL);
9177 }
9178 
9179 static int
9180 remote_fileio_errno_to_host (int errnum)
9181 {
9182   switch (errnum)
9183     {
9184       case FILEIO_EPERM:
9185         return EPERM;
9186       case FILEIO_ENOENT:
9187         return ENOENT;
9188       case FILEIO_EINTR:
9189         return EINTR;
9190       case FILEIO_EIO:
9191         return EIO;
9192       case FILEIO_EBADF:
9193         return EBADF;
9194       case FILEIO_EACCES:
9195         return EACCES;
9196       case FILEIO_EFAULT:
9197         return EFAULT;
9198       case FILEIO_EBUSY:
9199         return EBUSY;
9200       case FILEIO_EEXIST:
9201         return EEXIST;
9202       case FILEIO_ENODEV:
9203         return ENODEV;
9204       case FILEIO_ENOTDIR:
9205         return ENOTDIR;
9206       case FILEIO_EISDIR:
9207         return EISDIR;
9208       case FILEIO_EINVAL:
9209         return EINVAL;
9210       case FILEIO_ENFILE:
9211         return ENFILE;
9212       case FILEIO_EMFILE:
9213         return EMFILE;
9214       case FILEIO_EFBIG:
9215         return EFBIG;
9216       case FILEIO_ENOSPC:
9217         return ENOSPC;
9218       case FILEIO_ESPIPE:
9219         return ESPIPE;
9220       case FILEIO_EROFS:
9221         return EROFS;
9222       case FILEIO_ENOSYS:
9223         return ENOSYS;
9224       case FILEIO_ENAMETOOLONG:
9225         return ENAMETOOLONG;
9226     }
9227   return -1;
9228 }
9229 
9230 static char *
9231 remote_hostio_error (int errnum)
9232 {
9233   int host_error = remote_fileio_errno_to_host (errnum);
9234 
9235   if (host_error == -1)
9236     error (_("Unknown remote I/O error %d"), errnum);
9237   else
9238     error (_("Remote I/O error: %s"), safe_strerror (host_error));
9239 }
9240 
9241 static void
9242 remote_hostio_close_cleanup (void *opaque)
9243 {
9244   int fd = *(int *) opaque;
9245   int remote_errno;
9246 
9247   remote_hostio_close (fd, &remote_errno);
9248 }
9249 
9250 
9251 static void *
9252 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9253 {
9254   const char *filename = bfd_get_filename (abfd);
9255   int fd, remote_errno;
9256   int *stream;
9257 
9258   gdb_assert (remote_filename_p (filename));
9259 
9260   fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9261   if (fd == -1)
9262     {
9263       errno = remote_fileio_errno_to_host (remote_errno);
9264       bfd_set_error (bfd_error_system_call);
9265       return NULL;
9266     }
9267 
9268   stream = xmalloc (sizeof (int));
9269   *stream = fd;
9270   return stream;
9271 }
9272 
9273 static int
9274 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9275 {
9276   int fd = *(int *)stream;
9277   int remote_errno;
9278 
9279   xfree (stream);
9280 
9281   /* Ignore errors on close; these may happen if the remote
9282      connection was already torn down.  */
9283   remote_hostio_close (fd, &remote_errno);
9284 
9285   return 1;
9286 }
9287 
9288 static file_ptr
9289 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9290 			file_ptr nbytes, file_ptr offset)
9291 {
9292   int fd = *(int *)stream;
9293   int remote_errno;
9294   file_ptr pos, bytes;
9295 
9296   pos = 0;
9297   while (nbytes > pos)
9298     {
9299       bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9300 				   offset + pos, &remote_errno);
9301       if (bytes == 0)
9302         /* Success, but no bytes, means end-of-file.  */
9303         break;
9304       if (bytes == -1)
9305 	{
9306 	  errno = remote_fileio_errno_to_host (remote_errno);
9307 	  bfd_set_error (bfd_error_system_call);
9308 	  return -1;
9309 	}
9310 
9311       pos += bytes;
9312     }
9313 
9314   return pos;
9315 }
9316 
9317 static int
9318 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9319 {
9320   /* FIXME: We should probably implement remote_hostio_stat.  */
9321   sb->st_size = INT_MAX;
9322   return 0;
9323 }
9324 
9325 int
9326 remote_filename_p (const char *filename)
9327 {
9328   return strncmp (filename, "remote:", 7) == 0;
9329 }
9330 
9331 bfd *
9332 remote_bfd_open (const char *remote_file, const char *target)
9333 {
9334   return bfd_openr_iovec (remote_file, target,
9335 			  remote_bfd_iovec_open, NULL,
9336 			  remote_bfd_iovec_pread,
9337 			  remote_bfd_iovec_close,
9338 			  remote_bfd_iovec_stat);
9339 }
9340 
9341 void
9342 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9343 {
9344   struct cleanup *back_to, *close_cleanup;
9345   int retcode, fd, remote_errno, bytes, io_size;
9346   FILE *file;
9347   gdb_byte *buffer;
9348   int bytes_in_buffer;
9349   int saw_eof;
9350   ULONGEST offset;
9351 
9352   if (!remote_desc)
9353     error (_("command can only be used with remote target"));
9354 
9355   file = fopen (local_file, "rb");
9356   if (file == NULL)
9357     perror_with_name (local_file);
9358   back_to = make_cleanup_fclose (file);
9359 
9360   fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9361 					 | FILEIO_O_TRUNC),
9362 			   0700, &remote_errno);
9363   if (fd == -1)
9364     remote_hostio_error (remote_errno);
9365 
9366   /* Send up to this many bytes at once.  They won't all fit in the
9367      remote packet limit, so we'll transfer slightly fewer.  */
9368   io_size = get_remote_packet_size ();
9369   buffer = xmalloc (io_size);
9370   make_cleanup (xfree, buffer);
9371 
9372   close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9373 
9374   bytes_in_buffer = 0;
9375   saw_eof = 0;
9376   offset = 0;
9377   while (bytes_in_buffer || !saw_eof)
9378     {
9379       if (!saw_eof)
9380 	{
9381 	  bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9382 			 file);
9383 	  if (bytes == 0)
9384 	    {
9385 	      if (ferror (file))
9386 		error (_("Error reading %s."), local_file);
9387 	      else
9388 		{
9389 		  /* EOF.  Unless there is something still in the
9390 		     buffer from the last iteration, we are done.  */
9391 		  saw_eof = 1;
9392 		  if (bytes_in_buffer == 0)
9393 		    break;
9394 		}
9395 	    }
9396 	}
9397       else
9398 	bytes = 0;
9399 
9400       bytes += bytes_in_buffer;
9401       bytes_in_buffer = 0;
9402 
9403       retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9404 
9405       if (retcode < 0)
9406 	remote_hostio_error (remote_errno);
9407       else if (retcode == 0)
9408 	error (_("Remote write of %d bytes returned 0!"), bytes);
9409       else if (retcode < bytes)
9410 	{
9411 	  /* Short write.  Save the rest of the read data for the next
9412 	     write.  */
9413 	  bytes_in_buffer = bytes - retcode;
9414 	  memmove (buffer, buffer + retcode, bytes_in_buffer);
9415 	}
9416 
9417       offset += retcode;
9418     }
9419 
9420   discard_cleanups (close_cleanup);
9421   if (remote_hostio_close (fd, &remote_errno))
9422     remote_hostio_error (remote_errno);
9423 
9424   if (from_tty)
9425     printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9426   do_cleanups (back_to);
9427 }
9428 
9429 void
9430 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9431 {
9432   struct cleanup *back_to, *close_cleanup;
9433   int fd, remote_errno, bytes, io_size;
9434   FILE *file;
9435   gdb_byte *buffer;
9436   ULONGEST offset;
9437 
9438   if (!remote_desc)
9439     error (_("command can only be used with remote target"));
9440 
9441   fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9442   if (fd == -1)
9443     remote_hostio_error (remote_errno);
9444 
9445   file = fopen (local_file, "wb");
9446   if (file == NULL)
9447     perror_with_name (local_file);
9448   back_to = make_cleanup_fclose (file);
9449 
9450   /* Send up to this many bytes at once.  They won't all fit in the
9451      remote packet limit, so we'll transfer slightly fewer.  */
9452   io_size = get_remote_packet_size ();
9453   buffer = xmalloc (io_size);
9454   make_cleanup (xfree, buffer);
9455 
9456   close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9457 
9458   offset = 0;
9459   while (1)
9460     {
9461       bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9462       if (bytes == 0)
9463 	/* Success, but no bytes, means end-of-file.  */
9464 	break;
9465       if (bytes == -1)
9466 	remote_hostio_error (remote_errno);
9467 
9468       offset += bytes;
9469 
9470       bytes = fwrite (buffer, 1, bytes, file);
9471       if (bytes == 0)
9472 	perror_with_name (local_file);
9473     }
9474 
9475   discard_cleanups (close_cleanup);
9476   if (remote_hostio_close (fd, &remote_errno))
9477     remote_hostio_error (remote_errno);
9478 
9479   if (from_tty)
9480     printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9481   do_cleanups (back_to);
9482 }
9483 
9484 void
9485 remote_file_delete (const char *remote_file, int from_tty)
9486 {
9487   int retcode, remote_errno;
9488 
9489   if (!remote_desc)
9490     error (_("command can only be used with remote target"));
9491 
9492   retcode = remote_hostio_unlink (remote_file, &remote_errno);
9493   if (retcode == -1)
9494     remote_hostio_error (remote_errno);
9495 
9496   if (from_tty)
9497     printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9498 }
9499 
9500 static void
9501 remote_put_command (char *args, int from_tty)
9502 {
9503   struct cleanup *back_to;
9504   char **argv;
9505 
9506   if (args == NULL)
9507     error_no_arg (_("file to put"));
9508 
9509   argv = gdb_buildargv (args);
9510   back_to = make_cleanup_freeargv (argv);
9511   if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9512     error (_("Invalid parameters to remote put"));
9513 
9514   remote_file_put (argv[0], argv[1], from_tty);
9515 
9516   do_cleanups (back_to);
9517 }
9518 
9519 static void
9520 remote_get_command (char *args, int from_tty)
9521 {
9522   struct cleanup *back_to;
9523   char **argv;
9524 
9525   if (args == NULL)
9526     error_no_arg (_("file to get"));
9527 
9528   argv = gdb_buildargv (args);
9529   back_to = make_cleanup_freeargv (argv);
9530   if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9531     error (_("Invalid parameters to remote get"));
9532 
9533   remote_file_get (argv[0], argv[1], from_tty);
9534 
9535   do_cleanups (back_to);
9536 }
9537 
9538 static void
9539 remote_delete_command (char *args, int from_tty)
9540 {
9541   struct cleanup *back_to;
9542   char **argv;
9543 
9544   if (args == NULL)
9545     error_no_arg (_("file to delete"));
9546 
9547   argv = gdb_buildargv (args);
9548   back_to = make_cleanup_freeargv (argv);
9549   if (argv[0] == NULL || argv[1] != NULL)
9550     error (_("Invalid parameters to remote delete"));
9551 
9552   remote_file_delete (argv[0], from_tty);
9553 
9554   do_cleanups (back_to);
9555 }
9556 
9557 static void
9558 remote_command (char *args, int from_tty)
9559 {
9560   help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9561 }
9562 
9563 static int
9564 remote_can_execute_reverse (void)
9565 {
9566   if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9567       || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9568     return 1;
9569   else
9570     return 0;
9571 }
9572 
9573 static int
9574 remote_supports_non_stop (void)
9575 {
9576   return 1;
9577 }
9578 
9579 static int
9580 remote_supports_multi_process (void)
9581 {
9582   struct remote_state *rs = get_remote_state ();
9583 
9584   return remote_multi_process_p (rs);
9585 }
9586 
9587 int
9588 remote_supports_cond_tracepoints (void)
9589 {
9590   struct remote_state *rs = get_remote_state ();
9591 
9592   return rs->cond_tracepoints;
9593 }
9594 
9595 int
9596 remote_supports_fast_tracepoints (void)
9597 {
9598   struct remote_state *rs = get_remote_state ();
9599 
9600   return rs->fast_tracepoints;
9601 }
9602 
9603 static int
9604 remote_supports_static_tracepoints (void)
9605 {
9606   struct remote_state *rs = get_remote_state ();
9607 
9608   return rs->static_tracepoints;
9609 }
9610 
9611 static void
9612 remote_trace_init (void)
9613 {
9614   putpkt ("QTinit");
9615   remote_get_noisy_reply (&target_buf, &target_buf_size);
9616   if (strcmp (target_buf, "OK") != 0)
9617     error (_("Target does not support this command."));
9618 }
9619 
9620 static void free_actions_list (char **actions_list);
9621 static void free_actions_list_cleanup_wrapper (void *);
9622 static void
9623 free_actions_list_cleanup_wrapper (void *al)
9624 {
9625   free_actions_list (al);
9626 }
9627 
9628 static void
9629 free_actions_list (char **actions_list)
9630 {
9631   int ndx;
9632 
9633   if (actions_list == 0)
9634     return;
9635 
9636   for (ndx = 0; actions_list[ndx]; ndx++)
9637     xfree (actions_list[ndx]);
9638 
9639   xfree (actions_list);
9640 }
9641 
9642 /* Recursive routine to walk through command list including loops, and
9643    download packets for each command.  */
9644 
9645 static void
9646 remote_download_command_source (int num, ULONGEST addr,
9647 				struct command_line *cmds)
9648 {
9649   struct remote_state *rs = get_remote_state ();
9650   struct command_line *cmd;
9651 
9652   for (cmd = cmds; cmd; cmd = cmd->next)
9653     {
9654       QUIT;	/* allow user to bail out with ^C */
9655       strcpy (rs->buf, "QTDPsrc:");
9656       encode_source_string (num, addr, "cmd", cmd->line,
9657 			    rs->buf + strlen (rs->buf),
9658 			    rs->buf_size - strlen (rs->buf));
9659       putpkt (rs->buf);
9660       remote_get_noisy_reply (&target_buf, &target_buf_size);
9661       if (strcmp (target_buf, "OK"))
9662 	warning (_("Target does not support source download."));
9663 
9664       if (cmd->control_type == while_control
9665 	  || cmd->control_type == while_stepping_control)
9666 	{
9667 	  remote_download_command_source (num, addr, *cmd->body_list);
9668 
9669 	  QUIT;	/* allow user to bail out with ^C */
9670 	  strcpy (rs->buf, "QTDPsrc:");
9671 	  encode_source_string (num, addr, "cmd", "end",
9672 				rs->buf + strlen (rs->buf),
9673 				rs->buf_size - strlen (rs->buf));
9674 	  putpkt (rs->buf);
9675 	  remote_get_noisy_reply (&target_buf, &target_buf_size);
9676 	  if (strcmp (target_buf, "OK"))
9677 	    warning (_("Target does not support source download."));
9678 	}
9679     }
9680 }
9681 
9682 static void
9683 remote_download_tracepoint (struct breakpoint *t)
9684 {
9685   struct bp_location *loc;
9686   CORE_ADDR tpaddr;
9687   char addrbuf[40];
9688   char buf[2048];
9689   char **tdp_actions;
9690   char **stepping_actions;
9691   int ndx;
9692   struct cleanup *old_chain = NULL;
9693   struct agent_expr *aexpr;
9694   struct cleanup *aexpr_chain = NULL;
9695   char *pkt;
9696 
9697   /* Iterate over all the tracepoint locations.  It's up to the target to
9698      notice multiple tracepoint packets with the same number but different
9699      addresses, and treat them as multiple locations.  */
9700   for (loc = t->loc; loc; loc = loc->next)
9701     {
9702       encode_actions (t, loc, &tdp_actions, &stepping_actions);
9703       old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9704 				tdp_actions);
9705       (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9706 
9707       tpaddr = loc->address;
9708       sprintf_vma (addrbuf, tpaddr);
9709       sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9710 	       addrbuf, /* address */
9711 	       (t->enable_state == bp_enabled ? 'E' : 'D'),
9712 	       t->step_count, t->pass_count);
9713       /* Fast tracepoints are mostly handled by the target, but we can
9714 	 tell the target how big of an instruction block should be moved
9715 	 around.  */
9716       if (t->type == bp_fast_tracepoint)
9717 	{
9718 	  /* Only test for support at download time; we may not know
9719 	     target capabilities at definition time.  */
9720 	  if (remote_supports_fast_tracepoints ())
9721 	    {
9722 	      int isize;
9723 
9724 	      if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9725 						    tpaddr, &isize, NULL))
9726 		sprintf (buf + strlen (buf), ":F%x", isize);
9727 	      else
9728 		/* If it passed validation at definition but fails now,
9729 		   something is very wrong.  */
9730 		internal_error (__FILE__, __LINE__,
9731 				"Fast tracepoint not valid during download");
9732 	    }
9733 	  else
9734 	    /* Fast tracepoints are functionally identical to regular
9735 	       tracepoints, so don't take lack of support as a reason to
9736 	       give up on the trace run.  */
9737 	    warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9738 	}
9739       else if (t->type == bp_static_tracepoint)
9740 	{
9741 	  /* Only test for support at download time; we may not know
9742 	     target capabilities at definition time.  */
9743 	  if (remote_supports_static_tracepoints ())
9744 	    {
9745 	      struct static_tracepoint_marker marker;
9746 
9747 	      if (target_static_tracepoint_marker_at (tpaddr, &marker))
9748 		strcat (buf, ":S");
9749 	      else
9750 		error ("Static tracepoint not valid during download");
9751 	    }
9752 	  else
9753 	    /* Fast tracepoints are functionally identical to regular
9754 	       tracepoints, so don't take lack of support as a reason
9755 	       to give up on the trace run.  */
9756 	    error (_("Target does not support static tracepoints"));
9757 	}
9758       /* If the tracepoint has a conditional, make it into an agent
9759 	 expression and append to the definition.  */
9760       if (loc->cond)
9761 	{
9762 	  /* Only test support at download time, we may not know target
9763 	     capabilities at definition time.  */
9764 	  if (remote_supports_cond_tracepoints ())
9765 	    {
9766 	      aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9767 	      aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9768 	      sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9769 	      pkt = buf + strlen (buf);
9770 	      for (ndx = 0; ndx < aexpr->len; ++ndx)
9771 		pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9772 	      *pkt = '\0';
9773 	      do_cleanups (aexpr_chain);
9774 	    }
9775 	  else
9776 	    warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9777 	}
9778 
9779   if (t->commands || *default_collect)
9780 	strcat (buf, "-");
9781       putpkt (buf);
9782       remote_get_noisy_reply (&target_buf, &target_buf_size);
9783       if (strcmp (target_buf, "OK"))
9784 	error (_("Target does not support tracepoints."));
9785 
9786       /* do_single_steps (t); */
9787       if (tdp_actions)
9788 	{
9789 	  for (ndx = 0; tdp_actions[ndx]; ndx++)
9790 	    {
9791 	      QUIT;	/* allow user to bail out with ^C */
9792 	      sprintf (buf, "QTDP:-%x:%s:%s%c",
9793 		       t->number, addrbuf, /* address */
9794 		       tdp_actions[ndx],
9795 		       ((tdp_actions[ndx + 1] || stepping_actions)
9796 			? '-' : 0));
9797 	      putpkt (buf);
9798 	      remote_get_noisy_reply (&target_buf,
9799 				      &target_buf_size);
9800 	      if (strcmp (target_buf, "OK"))
9801 		error (_("Error on target while setting tracepoints."));
9802 	    }
9803 	}
9804       if (stepping_actions)
9805 	{
9806 	  for (ndx = 0; stepping_actions[ndx]; ndx++)
9807 	    {
9808 	      QUIT;	/* allow user to bail out with ^C */
9809 	      sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9810 		       t->number, addrbuf, /* address */
9811 		       ((ndx == 0) ? "S" : ""),
9812 		       stepping_actions[ndx],
9813 		       (stepping_actions[ndx + 1] ? "-" : ""));
9814 	      putpkt (buf);
9815 	      remote_get_noisy_reply (&target_buf,
9816 				      &target_buf_size);
9817 	      if (strcmp (target_buf, "OK"))
9818 		error (_("Error on target while setting tracepoints."));
9819 	    }
9820 	}
9821 
9822       if (remote_protocol_packets[PACKET_TracepointSource].support == PACKET_ENABLE)
9823 	{
9824 	  if (t->addr_string)
9825 	    {
9826 	      strcpy (buf, "QTDPsrc:");
9827 	      encode_source_string (t->number, loc->address,
9828 				    "at", t->addr_string, buf + strlen (buf),
9829 				    2048 - strlen (buf));
9830 
9831 	      putpkt (buf);
9832 	      remote_get_noisy_reply (&target_buf, &target_buf_size);
9833 	      if (strcmp (target_buf, "OK"))
9834 		warning (_("Target does not support source download."));
9835 	    }
9836 	  if (t->cond_string)
9837 	    {
9838 	      strcpy (buf, "QTDPsrc:");
9839 	      encode_source_string (t->number, loc->address,
9840 				    "cond", t->cond_string, buf + strlen (buf),
9841 				    2048 - strlen (buf));
9842 	      putpkt (buf);
9843 	      remote_get_noisy_reply (&target_buf, &target_buf_size);
9844 	      if (strcmp (target_buf, "OK"))
9845 		warning (_("Target does not support source download."));
9846 	    }
9847 	  remote_download_command_source (t->number, loc->address,
9848 					  breakpoint_commands (t));
9849 	}
9850 
9851       do_cleanups (old_chain);
9852     }
9853 }
9854 
9855 static void
9856 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9857 {
9858   struct remote_state *rs = get_remote_state ();
9859   char *p;
9860 
9861   sprintf (rs->buf, "QTDV:%x:%s:%x:",
9862 	   tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9863   p = rs->buf + strlen (rs->buf);
9864   if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9865     error (_("Trace state variable name too long for tsv definition packet"));
9866   p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9867   *p++ = '\0';
9868   putpkt (rs->buf);
9869   remote_get_noisy_reply (&target_buf, &target_buf_size);
9870   if (*target_buf == '\0')
9871     error (_("Target does not support this command."));
9872   if (strcmp (target_buf, "OK") != 0)
9873     error (_("Error on target while downloading trace state variable."));
9874 }
9875 
9876 static void
9877 remote_trace_set_readonly_regions (void)
9878 {
9879   asection *s;
9880   bfd_size_type size;
9881   bfd_vma lma;
9882   int anysecs = 0;
9883 
9884   if (!exec_bfd)
9885     return;			/* No information to give.  */
9886 
9887   strcpy (target_buf, "QTro");
9888   for (s = exec_bfd->sections; s; s = s->next)
9889     {
9890       char tmp1[40], tmp2[40];
9891 
9892       if ((s->flags & SEC_LOAD) == 0 ||
9893       /* (s->flags & SEC_CODE)     == 0 || */
9894 	  (s->flags & SEC_READONLY) == 0)
9895 	continue;
9896 
9897       anysecs = 1;
9898       lma = s->lma;
9899       size = bfd_get_section_size (s);
9900       sprintf_vma (tmp1, lma);
9901       sprintf_vma (tmp2, lma + size);
9902       sprintf (target_buf + strlen (target_buf),
9903 	       ":%s,%s", tmp1, tmp2);
9904     }
9905   if (anysecs)
9906     {
9907       putpkt (target_buf);
9908       getpkt (&target_buf, &target_buf_size, 0);
9909     }
9910 }
9911 
9912 static void
9913 remote_trace_start (void)
9914 {
9915   putpkt ("QTStart");
9916   remote_get_noisy_reply (&target_buf, &target_buf_size);
9917   if (*target_buf == '\0')
9918     error (_("Target does not support this command."));
9919   if (strcmp (target_buf, "OK") != 0)
9920     error (_("Bogus reply from target: %s"), target_buf);
9921 }
9922 
9923 static int
9924 remote_get_trace_status (struct trace_status *ts)
9925 {
9926   char *p;
9927   /* FIXME we need to get register block size some other way */
9928   extern int trace_regblock_size;
9929 
9930   trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9931 
9932   putpkt ("qTStatus");
9933   p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9934 
9935   /* If the remote target doesn't do tracing, flag it.  */
9936   if (*p == '\0')
9937     return -1;
9938 
9939   /* We're working with a live target.  */
9940   ts->from_file = 0;
9941 
9942   /* Set some defaults.  */
9943   ts->running_known = 0;
9944   ts->stop_reason = trace_stop_reason_unknown;
9945   ts->traceframe_count = -1;
9946   ts->buffer_free = 0;
9947 
9948   if (*p++ != 'T')
9949     error (_("Bogus trace status reply from target: %s"), target_buf);
9950 
9951   parse_trace_status (p, ts);
9952 
9953   return ts->running;
9954 }
9955 
9956 static void
9957 remote_trace_stop (void)
9958 {
9959   putpkt ("QTStop");
9960   remote_get_noisy_reply (&target_buf, &target_buf_size);
9961   if (*target_buf == '\0')
9962     error (_("Target does not support this command."));
9963   if (strcmp (target_buf, "OK") != 0)
9964     error (_("Bogus reply from target: %s"), target_buf);
9965 }
9966 
9967 static int
9968 remote_trace_find (enum trace_find_type type, int num,
9969 		   ULONGEST addr1, ULONGEST addr2,
9970 		   int *tpp)
9971 {
9972   struct remote_state *rs = get_remote_state ();
9973   char *p, *reply;
9974   int target_frameno = -1, target_tracept = -1;
9975 
9976   p = rs->buf;
9977   strcpy (p, "QTFrame:");
9978   p = strchr (p, '\0');
9979   switch (type)
9980     {
9981     case tfind_number:
9982       sprintf (p, "%x", num);
9983       break;
9984     case tfind_pc:
9985       sprintf (p, "pc:%s", phex_nz (addr1, 0));
9986       break;
9987     case tfind_tp:
9988       sprintf (p, "tdp:%x", num);
9989       break;
9990     case tfind_range:
9991       sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9992       break;
9993     case tfind_outside:
9994       sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9995       break;
9996     default:
9997       error ("Unknown trace find type %d", type);
9998     }
9999 
10000   putpkt (rs->buf);
10001   reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10002   if (*reply == '\0')
10003     error (_("Target does not support this command."));
10004 
10005   while (reply && *reply)
10006     switch (*reply)
10007       {
10008       case 'F':
10009 	p = ++reply;
10010 	target_frameno = (int) strtol (p, &reply, 16);
10011 	if (reply == p)
10012 	  error (_("Unable to parse trace frame number"));
10013 	if (target_frameno == -1)
10014 	  return -1;
10015 	break;
10016       case 'T':
10017 	p = ++reply;
10018 	target_tracept = (int) strtol (p, &reply, 16);
10019 	if (reply == p)
10020 	  error (_("Unable to parse tracepoint number"));
10021 	break;
10022       case 'O':		/* "OK"? */
10023 	if (reply[1] == 'K' && reply[2] == '\0')
10024 	  reply += 2;
10025 	else
10026 	  error (_("Bogus reply from target: %s"), reply);
10027 	break;
10028       default:
10029 	error (_("Bogus reply from target: %s"), reply);
10030       }
10031   if (tpp)
10032     *tpp = target_tracept;
10033   return target_frameno;
10034 }
10035 
10036 static int
10037 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10038 {
10039   struct remote_state *rs = get_remote_state ();
10040   char *reply;
10041   ULONGEST uval;
10042 
10043   sprintf (rs->buf, "qTV:%x", tsvnum);
10044   putpkt (rs->buf);
10045   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10046   if (reply && *reply)
10047     {
10048       if (*reply == 'V')
10049 	{
10050 	  unpack_varlen_hex (reply + 1, &uval);
10051 	  *val = (LONGEST) uval;
10052 	  return 1;
10053 	}
10054     }
10055   return 0;
10056 }
10057 
10058 static int
10059 remote_save_trace_data (const char *filename)
10060 {
10061   struct remote_state *rs = get_remote_state ();
10062   char *p, *reply;
10063 
10064   p = rs->buf;
10065   strcpy (p, "QTSave:");
10066   p += strlen (p);
10067   if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10068     error (_("Remote file name too long for trace save packet"));
10069   p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10070   *p++ = '\0';
10071   putpkt (rs->buf);
10072   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10073   if (*reply != '\0')
10074     error (_("Target does not support this command."));
10075   if (strcmp (reply, "OK") != 0)
10076     error (_("Bogus reply from target: %s"), reply);
10077   return 0;
10078 }
10079 
10080 /* This is basically a memory transfer, but needs to be its own packet
10081    because we don't know how the target actually organizes its trace
10082    memory, plus we want to be able to ask for as much as possible, but
10083    not be unhappy if we don't get as much as we ask for.  */
10084 
10085 static LONGEST
10086 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10087 {
10088   struct remote_state *rs = get_remote_state ();
10089   char *reply;
10090   char *p;
10091   int rslt;
10092 
10093   p = rs->buf;
10094   strcpy (p, "qTBuffer:");
10095   p += strlen (p);
10096   p += hexnumstr (p, offset);
10097   *p++ = ',';
10098   p += hexnumstr (p, len);
10099   *p++ = '\0';
10100 
10101   putpkt (rs->buf);
10102   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10103   if (reply && *reply)
10104     {
10105       /* 'l' by itself means we're at the end of the buffer and
10106 	 there is nothing more to get.  */
10107       if (*reply == 'l')
10108 	return 0;
10109 
10110       /* Convert the reply into binary.  Limit the number of bytes to
10111 	 convert according to our passed-in buffer size, rather than
10112 	 what was returned in the packet; if the target is
10113 	 unexpectedly generous and gives us a bigger reply than we
10114 	 asked for, we don't want to crash.  */
10115       rslt = hex2bin (target_buf, buf, len);
10116       return rslt;
10117     }
10118 
10119   /* Something went wrong, flag as an error.  */
10120   return -1;
10121 }
10122 
10123 static void
10124 remote_set_disconnected_tracing (int val)
10125 {
10126   struct remote_state *rs = get_remote_state ();
10127 
10128   if (rs->disconnected_tracing)
10129     {
10130       char *reply;
10131 
10132       sprintf (rs->buf, "QTDisconnected:%x", val);
10133       putpkt (rs->buf);
10134       reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10135       if (*reply == '\0')
10136 	error (_("Target does not support this command."));
10137       if (strcmp (reply, "OK") != 0)
10138         error (_("Bogus reply from target: %s"), reply);
10139     }
10140   else if (val)
10141     warning (_("Target does not support disconnected tracing."));
10142 }
10143 
10144 static int
10145 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10146 {
10147   struct thread_info *info = find_thread_ptid (ptid);
10148 
10149   if (info && info->private)
10150     return info->private->core;
10151   return -1;
10152 }
10153 
10154 static void
10155 remote_set_circular_trace_buffer (int val)
10156 {
10157   struct remote_state *rs = get_remote_state ();
10158   char *reply;
10159 
10160   sprintf (rs->buf, "QTBuffer:circular:%x", val);
10161   putpkt (rs->buf);
10162   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10163   if (*reply == '\0')
10164     error (_("Target does not support this command."));
10165   if (strcmp (reply, "OK") != 0)
10166     error (_("Bogus reply from target: %s"), reply);
10167 }
10168 
10169 static void
10170 init_remote_ops (void)
10171 {
10172   remote_ops.to_shortname = "remote";
10173   remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10174   remote_ops.to_doc =
10175     "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10176 Specify the serial device it is connected to\n\
10177 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10178   remote_ops.to_open = remote_open;
10179   remote_ops.to_close = remote_close;
10180   remote_ops.to_detach = remote_detach;
10181   remote_ops.to_disconnect = remote_disconnect;
10182   remote_ops.to_resume = remote_resume;
10183   remote_ops.to_wait = remote_wait;
10184   remote_ops.to_fetch_registers = remote_fetch_registers;
10185   remote_ops.to_store_registers = remote_store_registers;
10186   remote_ops.to_prepare_to_store = remote_prepare_to_store;
10187   remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10188   remote_ops.to_files_info = remote_files_info;
10189   remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10190   remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10191   remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10192   remote_ops.to_stopped_data_address = remote_stopped_data_address;
10193   remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10194   remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10195   remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10196   remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10197   remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10198   remote_ops.to_kill = remote_kill;
10199   remote_ops.to_load = generic_load;
10200   remote_ops.to_mourn_inferior = remote_mourn;
10201   remote_ops.to_notice_signals = remote_notice_signals;
10202   remote_ops.to_thread_alive = remote_thread_alive;
10203   remote_ops.to_find_new_threads = remote_threads_info;
10204   remote_ops.to_pid_to_str = remote_pid_to_str;
10205   remote_ops.to_extra_thread_info = remote_threads_extra_info;
10206   remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10207   remote_ops.to_stop = remote_stop;
10208   remote_ops.to_xfer_partial = remote_xfer_partial;
10209   remote_ops.to_rcmd = remote_rcmd;
10210   remote_ops.to_log_command = serial_log_command;
10211   remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10212   remote_ops.to_stratum = process_stratum;
10213   remote_ops.to_has_all_memory = default_child_has_all_memory;
10214   remote_ops.to_has_memory = default_child_has_memory;
10215   remote_ops.to_has_stack = default_child_has_stack;
10216   remote_ops.to_has_registers = default_child_has_registers;
10217   remote_ops.to_has_execution = default_child_has_execution;
10218   remote_ops.to_has_thread_control = tc_schedlock;	/* can lock scheduler */
10219   remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10220   remote_ops.to_magic = OPS_MAGIC;
10221   remote_ops.to_memory_map = remote_memory_map;
10222   remote_ops.to_flash_erase = remote_flash_erase;
10223   remote_ops.to_flash_done = remote_flash_done;
10224   remote_ops.to_read_description = remote_read_description;
10225   remote_ops.to_search_memory = remote_search_memory;
10226   remote_ops.to_can_async_p = remote_can_async_p;
10227   remote_ops.to_is_async_p = remote_is_async_p;
10228   remote_ops.to_async = remote_async;
10229   remote_ops.to_async_mask = remote_async_mask;
10230   remote_ops.to_terminal_inferior = remote_terminal_inferior;
10231   remote_ops.to_terminal_ours = remote_terminal_ours;
10232   remote_ops.to_supports_non_stop = remote_supports_non_stop;
10233   remote_ops.to_supports_multi_process = remote_supports_multi_process;
10234   remote_ops.to_trace_init = remote_trace_init;
10235   remote_ops.to_download_tracepoint = remote_download_tracepoint;
10236   remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
10237   remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10238   remote_ops.to_trace_start = remote_trace_start;
10239   remote_ops.to_get_trace_status = remote_get_trace_status;
10240   remote_ops.to_trace_stop = remote_trace_stop;
10241   remote_ops.to_trace_find = remote_trace_find;
10242   remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
10243   remote_ops.to_save_trace_data = remote_save_trace_data;
10244   remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10245   remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
10246   remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10247   remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10248   remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10249   remote_ops.to_core_of_thread = remote_core_of_thread;
10250   remote_ops.to_verify_memory = remote_verify_memory;
10251   remote_ops.to_get_tib_address = remote_get_tib_address;
10252   remote_ops.to_set_permissions = remote_set_permissions;
10253   remote_ops.to_static_tracepoint_marker_at
10254     = remote_static_tracepoint_marker_at;
10255   remote_ops.to_static_tracepoint_markers_by_strid
10256     = remote_static_tracepoint_markers_by_strid;
10257 }
10258 
10259 /* Set up the extended remote vector by making a copy of the standard
10260    remote vector and adding to it.  */
10261 
10262 static void
10263 init_extended_remote_ops (void)
10264 {
10265   extended_remote_ops = remote_ops;
10266 
10267   extended_remote_ops.to_shortname = "extended-remote";
10268   extended_remote_ops.to_longname =
10269     "Extended remote serial target in gdb-specific protocol";
10270   extended_remote_ops.to_doc =
10271     "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10272 Specify the serial device it is connected to (e.g. /dev/ttya).";
10273   extended_remote_ops.to_open = extended_remote_open;
10274   extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10275   extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10276   extended_remote_ops.to_detach = extended_remote_detach;
10277   extended_remote_ops.to_attach = extended_remote_attach;
10278   extended_remote_ops.to_kill = extended_remote_kill;
10279 }
10280 
10281 static int
10282 remote_can_async_p (void)
10283 {
10284   if (!target_async_permitted)
10285     /* We only enable async when the user specifically asks for it.  */
10286     return 0;
10287 
10288   /* We're async whenever the serial device is.  */
10289   return remote_async_mask_value && serial_can_async_p (remote_desc);
10290 }
10291 
10292 static int
10293 remote_is_async_p (void)
10294 {
10295   if (!target_async_permitted)
10296     /* We only enable async when the user specifically asks for it.  */
10297     return 0;
10298 
10299   /* We're async whenever the serial device is.  */
10300   return remote_async_mask_value && serial_is_async_p (remote_desc);
10301 }
10302 
10303 /* Pass the SERIAL event on and up to the client.  One day this code
10304    will be able to delay notifying the client of an event until the
10305    point where an entire packet has been received.  */
10306 
10307 static void (*async_client_callback) (enum inferior_event_type event_type,
10308 				      void *context);
10309 static void *async_client_context;
10310 static serial_event_ftype remote_async_serial_handler;
10311 
10312 static void
10313 remote_async_serial_handler (struct serial *scb, void *context)
10314 {
10315   /* Don't propogate error information up to the client.  Instead let
10316      the client find out about the error by querying the target.  */
10317   async_client_callback (INF_REG_EVENT, async_client_context);
10318 }
10319 
10320 static void
10321 remote_async_inferior_event_handler (gdb_client_data data)
10322 {
10323   inferior_event_handler (INF_REG_EVENT, NULL);
10324 }
10325 
10326 static void
10327 remote_async_get_pending_events_handler (gdb_client_data data)
10328 {
10329   remote_get_pending_stop_replies ();
10330 }
10331 
10332 static void
10333 remote_async (void (*callback) (enum inferior_event_type event_type,
10334 				void *context), void *context)
10335 {
10336   if (remote_async_mask_value == 0)
10337     internal_error (__FILE__, __LINE__,
10338 		    _("Calling remote_async when async is masked"));
10339 
10340   if (callback != NULL)
10341     {
10342       serial_async (remote_desc, remote_async_serial_handler, NULL);
10343       async_client_callback = callback;
10344       async_client_context = context;
10345     }
10346   else
10347     serial_async (remote_desc, NULL, NULL);
10348 }
10349 
10350 static int
10351 remote_async_mask (int new_mask)
10352 {
10353   int curr_mask = remote_async_mask_value;
10354 
10355   remote_async_mask_value = new_mask;
10356   return curr_mask;
10357 }
10358 
10359 static void
10360 set_remote_cmd (char *args, int from_tty)
10361 {
10362   help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10363 }
10364 
10365 static void
10366 show_remote_cmd (char *args, int from_tty)
10367 {
10368   /* We can't just use cmd_show_list here, because we want to skip
10369      the redundant "show remote Z-packet" and the legacy aliases.  */
10370   struct cleanup *showlist_chain;
10371   struct cmd_list_element *list = remote_show_cmdlist;
10372 
10373   showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10374   for (; list != NULL; list = list->next)
10375     if (strcmp (list->name, "Z-packet") == 0)
10376       continue;
10377     else if (list->type == not_set_cmd)
10378       /* Alias commands are exactly like the original, except they
10379 	 don't have the normal type.  */
10380       continue;
10381     else
10382       {
10383 	struct cleanup *option_chain
10384 	  = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10385 
10386 	ui_out_field_string (uiout, "name", list->name);
10387 	ui_out_text (uiout, ":  ");
10388 	if (list->type == show_cmd)
10389 	  do_setshow_command ((char *) NULL, from_tty, list);
10390 	else
10391 	  cmd_func (list, NULL, from_tty);
10392 	/* Close the tuple.  */
10393 	do_cleanups (option_chain);
10394       }
10395 
10396   /* Close the tuple.  */
10397   do_cleanups (showlist_chain);
10398 }
10399 
10400 
10401 /* Function to be called whenever a new objfile (shlib) is detected.  */
10402 static void
10403 remote_new_objfile (struct objfile *objfile)
10404 {
10405   if (remote_desc != 0)		/* Have a remote connection.  */
10406     remote_check_symbols (objfile);
10407 }
10408 
10409 /* Pull all the tracepoints defined on the target and create local
10410    data structures representing them.  We don't want to create real
10411    tracepoints yet, we don't want to mess up the user's existing
10412    collection.  */
10413 
10414 static int
10415 remote_upload_tracepoints (struct uploaded_tp **utpp)
10416 {
10417   struct remote_state *rs = get_remote_state ();
10418   char *p;
10419 
10420   /* Ask for a first packet of tracepoint definition.  */
10421   putpkt ("qTfP");
10422   getpkt (&rs->buf, &rs->buf_size, 0);
10423   p = rs->buf;
10424   while (*p && *p != 'l')
10425     {
10426       parse_tracepoint_definition (p, utpp);
10427       /* Ask for another packet of tracepoint definition.  */
10428       putpkt ("qTsP");
10429       getpkt (&rs->buf, &rs->buf_size, 0);
10430       p = rs->buf;
10431     }
10432   return 0;
10433 }
10434 
10435 static int
10436 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10437 {
10438   struct remote_state *rs = get_remote_state ();
10439   char *p;
10440 
10441   /* Ask for a first packet of variable definition.  */
10442   putpkt ("qTfV");
10443   getpkt (&rs->buf, &rs->buf_size, 0);
10444   p = rs->buf;
10445   while (*p && *p != 'l')
10446     {
10447       parse_tsv_definition (p, utsvp);
10448       /* Ask for another packet of variable definition.  */
10449       putpkt ("qTsV");
10450       getpkt (&rs->buf, &rs->buf_size, 0);
10451       p = rs->buf;
10452     }
10453   return 0;
10454 }
10455 
10456 void
10457 _initialize_remote (void)
10458 {
10459   struct remote_state *rs;
10460   struct cmd_list_element *cmd;
10461   char *cmd_name;
10462 
10463   /* architecture specific data */
10464   remote_gdbarch_data_handle =
10465     gdbarch_data_register_post_init (init_remote_state);
10466   remote_g_packet_data_handle =
10467     gdbarch_data_register_pre_init (remote_g_packet_data_init);
10468 
10469   /* Initialize the per-target state.  At the moment there is only one
10470      of these, not one per target.  Only one target is active at a
10471      time.  The default buffer size is unimportant; it will be expanded
10472      whenever a larger buffer is needed.  */
10473   rs = get_remote_state_raw ();
10474   rs->buf_size = 400;
10475   rs->buf = xmalloc (rs->buf_size);
10476 
10477   init_remote_ops ();
10478   add_target (&remote_ops);
10479 
10480   init_extended_remote_ops ();
10481   add_target (&extended_remote_ops);
10482 
10483   /* Hook into new objfile notification.  */
10484   observer_attach_new_objfile (remote_new_objfile);
10485 
10486   /* Set up signal handlers.  */
10487   sigint_remote_token =
10488     create_async_signal_handler (async_remote_interrupt, NULL);
10489   sigint_remote_twice_token =
10490     create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10491 
10492 #if 0
10493   init_remote_threadtests ();
10494 #endif
10495 
10496   /* set/show remote ...  */
10497 
10498   add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10499 Remote protocol specific variables\n\
10500 Configure various remote-protocol specific variables such as\n\
10501 the packets being used"),
10502 		  &remote_set_cmdlist, "set remote ",
10503 		  0 /* allow-unknown */, &setlist);
10504   add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10505 Remote protocol specific variables\n\
10506 Configure various remote-protocol specific variables such as\n\
10507 the packets being used"),
10508 		  &remote_show_cmdlist, "show remote ",
10509 		  0 /* allow-unknown */, &showlist);
10510 
10511   add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10512 Compare section data on target to the exec file.\n\
10513 Argument is a single section name (default: all loaded sections)."),
10514 	   &cmdlist);
10515 
10516   add_cmd ("packet", class_maintenance, packet_command, _("\
10517 Send an arbitrary packet to a remote target.\n\
10518    maintenance packet TEXT\n\
10519 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10520 this command sends the string TEXT to the inferior, and displays the\n\
10521 response packet.  GDB supplies the initial `$' character, and the\n\
10522 terminating `#' character and checksum."),
10523 	   &maintenancelist);
10524 
10525   add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10526 Set whether to send break if interrupted."), _("\
10527 Show whether to send break if interrupted."), _("\
10528 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10529 			   set_remotebreak, show_remotebreak,
10530 			   &setlist, &showlist);
10531   cmd_name = "remotebreak";
10532   cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10533   deprecate_cmd (cmd, "set remote interrupt-sequence");
10534   cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10535   cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10536   deprecate_cmd (cmd, "show remote interrupt-sequence");
10537 
10538   add_setshow_enum_cmd ("interrupt-sequence", class_support,
10539 			interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10540 Set interrupt sequence to remote target."), _("\
10541 Show interrupt sequence to remote target."), _("\
10542 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10543 			NULL, show_interrupt_sequence,
10544 			&remote_set_cmdlist,
10545 			&remote_show_cmdlist);
10546 
10547   add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10548 			   &interrupt_on_connect, _("\
10549 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
10550 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
10551 If set, interrupt sequence is sent to remote target."),
10552 			   NULL, NULL,
10553 			   &remote_set_cmdlist, &remote_show_cmdlist);
10554 
10555   /* Install commands for configuring memory read/write packets.  */
10556 
10557   add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10558 Set the maximum number of bytes per memory write packet (deprecated)."),
10559 	   &setlist);
10560   add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10561 Show the maximum number of bytes per memory write packet (deprecated)."),
10562 	   &showlist);
10563   add_cmd ("memory-write-packet-size", no_class,
10564 	   set_memory_write_packet_size, _("\
10565 Set the maximum number of bytes per memory-write packet.\n\
10566 Specify the number of bytes in a packet or 0 (zero) for the\n\
10567 default packet size.  The actual limit is further reduced\n\
10568 dependent on the target.  Specify ``fixed'' to disable the\n\
10569 further restriction and ``limit'' to enable that restriction."),
10570 	   &remote_set_cmdlist);
10571   add_cmd ("memory-read-packet-size", no_class,
10572 	   set_memory_read_packet_size, _("\
10573 Set the maximum number of bytes per memory-read packet.\n\
10574 Specify the number of bytes in a packet or 0 (zero) for the\n\
10575 default packet size.  The actual limit is further reduced\n\
10576 dependent on the target.  Specify ``fixed'' to disable the\n\
10577 further restriction and ``limit'' to enable that restriction."),
10578 	   &remote_set_cmdlist);
10579   add_cmd ("memory-write-packet-size", no_class,
10580 	   show_memory_write_packet_size,
10581 	   _("Show the maximum number of bytes per memory-write packet."),
10582 	   &remote_show_cmdlist);
10583   add_cmd ("memory-read-packet-size", no_class,
10584 	   show_memory_read_packet_size,
10585 	   _("Show the maximum number of bytes per memory-read packet."),
10586 	   &remote_show_cmdlist);
10587 
10588   add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10589 			    &remote_hw_watchpoint_limit, _("\
10590 Set the maximum number of target hardware watchpoints."), _("\
10591 Show the maximum number of target hardware watchpoints."), _("\
10592 Specify a negative limit for unlimited."),
10593 			    NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s.  */
10594 			    &remote_set_cmdlist, &remote_show_cmdlist);
10595   add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10596 			    &remote_hw_breakpoint_limit, _("\
10597 Set the maximum number of target hardware breakpoints."), _("\
10598 Show the maximum number of target hardware breakpoints."), _("\
10599 Specify a negative limit for unlimited."),
10600 			    NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s.  */
10601 			    &remote_set_cmdlist, &remote_show_cmdlist);
10602 
10603   add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10604 			   &remote_address_size, _("\
10605 Set the maximum size of the address (in bits) in a memory packet."), _("\
10606 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10607 			   NULL,
10608 			   NULL, /* FIXME: i18n: */
10609 			   &setlist, &showlist);
10610 
10611   add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10612 			 "X", "binary-download", 1);
10613 
10614   add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10615 			 "vCont", "verbose-resume", 0);
10616 
10617   add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10618 			 "QPassSignals", "pass-signals", 0);
10619 
10620   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10621 			 "qSymbol", "symbol-lookup", 0);
10622 
10623   add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10624 			 "P", "set-register", 1);
10625 
10626   add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10627 			 "p", "fetch-register", 1);
10628 
10629   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10630 			 "Z0", "software-breakpoint", 0);
10631 
10632   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10633 			 "Z1", "hardware-breakpoint", 0);
10634 
10635   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10636 			 "Z2", "write-watchpoint", 0);
10637 
10638   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10639 			 "Z3", "read-watchpoint", 0);
10640 
10641   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10642 			 "Z4", "access-watchpoint", 0);
10643 
10644   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10645 			 "qXfer:auxv:read", "read-aux-vector", 0);
10646 
10647   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10648 			 "qXfer:features:read", "target-features", 0);
10649 
10650   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10651 			 "qXfer:libraries:read", "library-info", 0);
10652 
10653   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10654 			 "qXfer:memory-map:read", "memory-map", 0);
10655 
10656   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10657                          "qXfer:spu:read", "read-spu-object", 0);
10658 
10659   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10660                          "qXfer:spu:write", "write-spu-object", 0);
10661 
10662   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10663                         "qXfer:osdata:read", "osdata", 0);
10664 
10665   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10666 			 "qXfer:threads:read", "threads", 0);
10667 
10668   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10669                          "qXfer:siginfo:read", "read-siginfo-object", 0);
10670 
10671   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10672                          "qXfer:siginfo:write", "write-siginfo-object", 0);
10673 
10674   add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10675 			 "qGetTLSAddr", "get-thread-local-storage-address",
10676 			 0);
10677 
10678   add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10679 			 "qGetTIBAddr", "get-thread-information-block-address",
10680 			 0);
10681 
10682   add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10683 			 "bc", "reverse-continue", 0);
10684 
10685   add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10686 			 "bs", "reverse-step", 0);
10687 
10688   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10689 			 "qSupported", "supported-packets", 0);
10690 
10691   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10692 			 "qSearch:memory", "search-memory", 0);
10693 
10694   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10695 			 "vFile:open", "hostio-open", 0);
10696 
10697   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10698 			 "vFile:pread", "hostio-pread", 0);
10699 
10700   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10701 			 "vFile:pwrite", "hostio-pwrite", 0);
10702 
10703   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10704 			 "vFile:close", "hostio-close", 0);
10705 
10706   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10707 			 "vFile:unlink", "hostio-unlink", 0);
10708 
10709   add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10710 			 "vAttach", "attach", 0);
10711 
10712   add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10713 			 "vRun", "run", 0);
10714 
10715   add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10716 			 "QStartNoAckMode", "noack", 0);
10717 
10718   add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10719 			 "vKill", "kill", 0);
10720 
10721   add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10722 			 "qAttached", "query-attached", 0);
10723 
10724   add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10725 			 "ConditionalTracepoints", "conditional-tracepoints", 0);
10726   add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10727 			 "FastTracepoints", "fast-tracepoints", 0);
10728 
10729   add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10730 			 "TracepointSource", "TracepointSource", 0);
10731 
10732   add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10733 			 "QAllow", "allow", 0);
10734 
10735   add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10736 			 "StaticTracepoints", "static-tracepoints", 0);
10737 
10738   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10739                          "qXfer:statictrace:read", "read-sdata-object", 0);
10740 
10741   /* Keep the old ``set remote Z-packet ...'' working.  Each individual
10742      Z sub-packet has its own set and show commands, but users may
10743      have sets to this variable in their .gdbinit files (or in their
10744      documentation).  */
10745   add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10746 				&remote_Z_packet_detect, _("\
10747 Set use of remote protocol `Z' packets"), _("\
10748 Show use of remote protocol `Z' packets "), _("\
10749 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10750 packets."),
10751 				set_remote_protocol_Z_packet_cmd,
10752 				show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s.  */
10753 				&remote_set_cmdlist, &remote_show_cmdlist);
10754 
10755   add_prefix_cmd ("remote", class_files, remote_command, _("\
10756 Manipulate files on the remote system\n\
10757 Transfer files to and from the remote target system."),
10758 		  &remote_cmdlist, "remote ",
10759 		  0 /* allow-unknown */, &cmdlist);
10760 
10761   add_cmd ("put", class_files, remote_put_command,
10762 	   _("Copy a local file to the remote system."),
10763 	   &remote_cmdlist);
10764 
10765   add_cmd ("get", class_files, remote_get_command,
10766 	   _("Copy a remote file to the local system."),
10767 	   &remote_cmdlist);
10768 
10769   add_cmd ("delete", class_files, remote_delete_command,
10770 	   _("Delete a remote file."),
10771 	   &remote_cmdlist);
10772 
10773   remote_exec_file = xstrdup ("");
10774   add_setshow_string_noescape_cmd ("exec-file", class_files,
10775 				   &remote_exec_file, _("\
10776 Set the remote pathname for \"run\""), _("\
10777 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10778 				   &remote_set_cmdlist, &remote_show_cmdlist);
10779 
10780   /* Eventually initialize fileio.  See fileio.c */
10781   initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10782 
10783   /* Take advantage of the fact that the LWP field is not used, to tag
10784      special ptids with it set to != 0.  */
10785   magic_null_ptid = ptid_build (42000, 1, -1);
10786   not_sent_ptid = ptid_build (42000, 1, -2);
10787   any_thread_ptid = ptid_build (42000, 1, 0);
10788 
10789   target_buf_size = 2048;
10790   target_buf = xmalloc (target_buf_size);
10791 }
10792 
10793