xref: /dragonfly/contrib/gdb-7/gdb/stabsread.c (revision 73610d44)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Support routines for reading and decoding debugging information in
21    the "stabs" format.  This format is used with many systems that use
22    the a.out object file format, as well as some systems that use
23    COFF or ELF where the stabs data is placed in a special section.
24    Avoid placing any object file format specific code in this file.  */
25 
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native.  */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48 
49 #include <ctype.h>
50 
51 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
52 #define	EXTERN
53 /**/
54 #include "stabsread.h"		/* Our own declarations */
55 #undef	EXTERN
56 
57 extern void _initialize_stabsread (void);
58 
59 /* The routines that read and process a complete stabs for a C struct or
60    C++ class pass lists of data member fields and lists of member function
61    fields in an instance of a field_info structure, as defined below.
62    This is part of some reorganization of low level C++ support and is
63    expected to eventually go away...  (FIXME) */
64 
65 struct field_info
66   {
67     struct nextfield
68       {
69 	struct nextfield *next;
70 
71 	/* This is the raw visibility from the stab.  It is not checked
72 	   for being one of the visibilities we recognize, so code which
73 	   examines this field better be able to deal.  */
74 	int visibility;
75 
76 	struct field field;
77       }
78      *list;
79     struct next_fnfieldlist
80       {
81 	struct next_fnfieldlist *next;
82 	struct fn_fieldlist fn_fieldlist;
83       }
84      *fnlist;
85   };
86 
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 		       struct type *, struct objfile *);
90 
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92 
93 static long read_huge_number (char **, int, int *, int);
94 
95 static struct type *error_type (char **, struct objfile *);
96 
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 		   struct objfile *);
100 
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102 
103 static int read_type_number (char **, int *);
104 
105 static struct type *read_type (char **, struct objfile *);
106 
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108 
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110 
111 static struct type *read_sun_floating_type (char **, int[2],
112 					    struct objfile *);
113 
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115 
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117 
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 		       struct objfile *);
121 
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 		    struct objfile *);
125 
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 		  struct objfile *);
129 
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 		   struct objfile *);
133 
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135 
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 				  struct objfile *);
138 
139 static struct type *read_struct_type (char **, struct type *,
140                                       enum type_code,
141 				      struct objfile *);
142 
143 static struct type *read_array_type (char **, struct type *,
144 				     struct objfile *);
145 
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147 
148 static void add_undefined_type (struct type *, int[2]);
149 
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 		 struct objfile *);
153 
154 static char *find_name_end (char *name);
155 
156 static int process_reference (char **string);
157 
158 void stabsread_clear_cache (void);
159 
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162 
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166   complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168 
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172   complaint (&symfile_complaints,
173 	     _("register number %d too large (max %d) in symbol %s"),
174              regnum, num_regs - 1, sym);
175 }
176 
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180   complaint (&symfile_complaints, "%s", arg1);
181 }
182 
183 /* Make a list of forward references which haven't been defined.  */
184 
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189 
190 /* Make a list of nameless types that are undefined.
191    This happens when another type is referenced by its number
192    before this type is actually defined.  For instance "t(0,1)=k(0,2)"
193    and type (0,2) is defined only later.  */
194 
195 struct nat
196 {
197   int typenums[2];
198   struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203 
204 /* Check for and handle cretinous stabs symbol name continuation!  */
205 #define STABS_CONTINUE(pp,objfile)				\
206   do {							\
207     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208       *(pp) = next_symbol_text (objfile);	\
209   } while (0)
210 
211 
212 /* Look up a dbx type-number pair.  Return the address of the slot
213    where the type for that number-pair is stored.
214    The number-pair is in TYPENUMS.
215 
216    This can be used for finding the type associated with that pair
217    or for associating a new type with the pair.  */
218 
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222   int filenum = typenums[0];
223   int index = typenums[1];
224   unsigned old_len;
225   int real_filenum;
226   struct header_file *f;
227   int f_orig_length;
228 
229   if (filenum == -1)		/* -1,-1 is for temporary types.  */
230     return 0;
231 
232   if (filenum < 0 || filenum >= n_this_object_header_files)
233     {
234       complaint (&symfile_complaints,
235 		 _("Invalid symbol data: type number "
236 		   "(%d,%d) out of range at symtab pos %d."),
237 		 filenum, index, symnum);
238       goto error_return;
239     }
240 
241   if (filenum == 0)
242     {
243       if (index < 0)
244 	{
245 	  /* Caller wants address of address of type.  We think
246 	     that negative (rs6k builtin) types will never appear as
247 	     "lvalues", (nor should they), so we stuff the real type
248 	     pointer into a temp, and return its address.  If referenced,
249 	     this will do the right thing.  */
250 	  static struct type *temp_type;
251 
252 	  temp_type = rs6000_builtin_type (index, objfile);
253 	  return &temp_type;
254 	}
255 
256       /* Type is defined outside of header files.
257          Find it in this object file's type vector.  */
258       if (index >= type_vector_length)
259 	{
260 	  old_len = type_vector_length;
261 	  if (old_len == 0)
262 	    {
263 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 	      type_vector = (struct type **)
265 		xmalloc (type_vector_length * sizeof (struct type *));
266 	    }
267 	  while (index >= type_vector_length)
268 	    {
269 	      type_vector_length *= 2;
270 	    }
271 	  type_vector = (struct type **)
272 	    xrealloc ((char *) type_vector,
273 		      (type_vector_length * sizeof (struct type *)));
274 	  memset (&type_vector[old_len], 0,
275 		  (type_vector_length - old_len) * sizeof (struct type *));
276 	}
277       return (&type_vector[index]);
278     }
279   else
280     {
281       real_filenum = this_object_header_files[filenum];
282 
283       if (real_filenum >= N_HEADER_FILES (objfile))
284 	{
285 	  static struct type *temp_type;
286 
287 	  warning (_("GDB internal error: bad real_filenum"));
288 
289 	error_return:
290 	  temp_type = objfile_type (objfile)->builtin_error;
291 	  return &temp_type;
292 	}
293 
294       f = HEADER_FILES (objfile) + real_filenum;
295 
296       f_orig_length = f->length;
297       if (index >= f_orig_length)
298 	{
299 	  while (index >= f->length)
300 	    {
301 	      f->length *= 2;
302 	    }
303 	  f->vector = (struct type **)
304 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 	  memset (&f->vector[f_orig_length], 0,
306 		  (f->length - f_orig_length) * sizeof (struct type *));
307 	}
308       return (&f->vector[index]);
309     }
310 }
311 
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313    and return the type object.
314    This can create an empty (zeroed) type object.
315    TYPENUMS may be (-1, -1) to return a new type object that is not
316    put into the type vector, and so may not be referred to by number.  */
317 
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321   struct type **type_addr;
322 
323   if (typenums[0] == -1)
324     {
325       return (alloc_type (objfile));
326     }
327 
328   type_addr = dbx_lookup_type (typenums, objfile);
329 
330   /* If we are referring to a type not known at all yet,
331      allocate an empty type for it.
332      We will fill it in later if we find out how.  */
333   if (*type_addr == 0)
334     {
335       *type_addr = alloc_type (objfile);
336     }
337 
338   return (*type_addr);
339 }
340 
341 /* for all the stabs in a given stab vector, build appropriate types
342    and fix their symbols in given symbol vector.  */
343 
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 		   struct objfile *objfile)
347 {
348   int ii;
349   char *name;
350   char *pp;
351   struct symbol *sym;
352 
353   if (stabs)
354     {
355       /* for all the stab entries, find their corresponding symbols and
356          patch their types!  */
357 
358       for (ii = 0; ii < stabs->count; ++ii)
359 	{
360 	  name = stabs->stab[ii];
361 	  pp = (char *) strchr (name, ':');
362 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
363 	  while (pp[1] == ':')
364 	    {
365 	      pp += 2;
366 	      pp = (char *) strchr (pp, ':');
367 	    }
368 	  sym = find_symbol_in_list (symbols, name, pp - name);
369 	  if (!sym)
370 	    {
371 	      /* FIXME-maybe: it would be nice if we noticed whether
372 	         the variable was defined *anywhere*, not just whether
373 	         it is defined in this compilation unit.  But neither
374 	         xlc or GCC seem to need such a definition, and until
375 	         we do psymtabs (so that the minimal symbols from all
376 	         compilation units are available now), I'm not sure
377 	         how to get the information.  */
378 
379 	      /* On xcoff, if a global is defined and never referenced,
380 	         ld will remove it from the executable.  There is then
381 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
382 	      sym = (struct symbol *)
383 		obstack_alloc (&objfile->objfile_obstack,
384 			       sizeof (struct symbol));
385 
386 	      memset (sym, 0, sizeof (struct symbol));
387 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 	      SYMBOL_SET_LINKAGE_NAME
390 		(sym, obstack_copy0 (&objfile->objfile_obstack,
391 				     name, pp - name));
392 	      pp += 2;
393 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 		{
395 		  /* I don't think the linker does this with functions,
396 		     so as far as I know this is never executed.
397 		     But it doesn't hurt to check.  */
398 		  SYMBOL_TYPE (sym) =
399 		    lookup_function_type (read_type (&pp, objfile));
400 		}
401 	      else
402 		{
403 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 		}
405 	      add_symbol_to_list (sym, &global_symbols);
406 	    }
407 	  else
408 	    {
409 	      pp += 2;
410 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 		{
412 		  SYMBOL_TYPE (sym) =
413 		    lookup_function_type (read_type (&pp, objfile));
414 		}
415 	      else
416 		{
417 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 		}
419 	    }
420 	}
421     }
422 }
423 
424 
425 /* Read a number by which a type is referred to in dbx data,
426    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427    Just a single number N is equivalent to (0,N).
428    Return the two numbers by storing them in the vector TYPENUMS.
429    TYPENUMS will then be used as an argument to dbx_lookup_type.
430 
431    Returns 0 for success, -1 for error.  */
432 
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436   int nbits;
437 
438   if (**pp == '(')
439     {
440       (*pp)++;
441       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442       if (nbits != 0)
443 	return -1;
444       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445       if (nbits != 0)
446 	return -1;
447     }
448   else
449     {
450       typenums[0] = 0;
451       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452       if (nbits != 0)
453 	return -1;
454     }
455   return 0;
456 }
457 
458 
459 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
460 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
462 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
463 
464 /* Structure for storing pointers to reference definitions for fast lookup
465    during "process_later".  */
466 
467 struct ref_map
468 {
469   char *stabs;
470   CORE_ADDR value;
471   struct symbol *sym;
472 };
473 
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477 
478 static struct ref_map *ref_map;
479 
480 /* Ptr to free cell in chunk's linked list.  */
481 static int ref_count = 0;
482 
483 /* Number of chunks malloced.  */
484 static int ref_chunk = 0;
485 
486 /* This file maintains a cache of stabs aliases found in the symbol
487    table.  If the symbol table changes, this cache must be cleared
488    or we are left holding onto data in invalid obstacks.  */
489 void
490 stabsread_clear_cache (void)
491 {
492   ref_count = 0;
493   ref_chunk = 0;
494 }
495 
496 /* Create array of pointers mapping refids to symbols and stab strings.
497    Add pointers to reference definition symbols and/or their values as we
498    find them, using their reference numbers as our index.
499    These will be used later when we resolve references.  */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503   if (ref_count == 0)
504     ref_chunk = 0;
505   if (refnum >= ref_count)
506     ref_count = refnum + 1;
507   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508     {
509       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 
512       ref_map = (struct ref_map *)
513 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 	      new_chunks * REF_CHUNK_SIZE);
516       ref_chunk += new_chunks;
517     }
518   ref_map[refnum].stabs = stabs;
519   ref_map[refnum].sym = sym;
520   ref_map[refnum].value = value;
521 }
522 
523 /* Return defined sym for the reference REFNUM.  */
524 struct symbol *
525 ref_search (int refnum)
526 {
527   if (refnum < 0 || refnum > ref_count)
528     return 0;
529   return ref_map[refnum].sym;
530 }
531 
532 /* Parse a reference id in STRING and return the resulting
533    reference number.  Move STRING beyond the reference id.  */
534 
535 static int
536 process_reference (char **string)
537 {
538   char *p;
539   int refnum = 0;
540 
541   if (**string != '#')
542     return 0;
543 
544   /* Advance beyond the initial '#'.  */
545   p = *string + 1;
546 
547   /* Read number as reference id.  */
548   while (*p && isdigit (*p))
549     {
550       refnum = refnum * 10 + *p - '0';
551       p++;
552     }
553   *string = p;
554   return refnum;
555 }
556 
557 /* If STRING defines a reference, store away a pointer to the reference
558    definition for later use.  Return the reference number.  */
559 
560 int
561 symbol_reference_defined (char **string)
562 {
563   char *p = *string;
564   int refnum = 0;
565 
566   refnum = process_reference (&p);
567 
568   /* Defining symbols end in '='.  */
569   if (*p == '=')
570     {
571       /* Symbol is being defined here.  */
572       *string = p + 1;
573       return refnum;
574     }
575   else
576     {
577       /* Must be a reference.  Either the symbol has already been defined,
578          or this is a forward reference to it.  */
579       *string = p;
580       return -1;
581     }
582 }
583 
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587   int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588 
589   if (regno >= gdbarch_num_regs (gdbarch)
590 		+ gdbarch_num_pseudo_regs (gdbarch))
591     {
592       reg_value_complaint (regno,
593 			   gdbarch_num_regs (gdbarch)
594 			     + gdbarch_num_pseudo_regs (gdbarch),
595 			   SYMBOL_PRINT_NAME (sym));
596 
597       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless.  */
598     }
599 
600   return regno;
601 }
602 
603 static const struct symbol_register_ops stab_register_funcs = {
604   stab_reg_to_regnum
605 };
606 
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 	       struct objfile *objfile)
610 {
611   struct gdbarch *gdbarch = get_objfile_arch (objfile);
612   struct symbol *sym;
613   char *p = (char *) find_name_end (string);
614   int deftype;
615   int synonym = 0;
616   int i;
617   char *new_name = NULL;
618 
619   /* We would like to eliminate nameless symbols, but keep their types.
620      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621      to type 2, but, should not create a symbol to address that type.  Since
622      the symbol will be nameless, there is no way any user can refer to it.  */
623 
624   int nameless;
625 
626   /* Ignore syms with empty names.  */
627   if (string[0] == 0)
628     return 0;
629 
630   /* Ignore old-style symbols from cc -go.  */
631   if (p == 0)
632     return 0;
633 
634   while (p[1] == ':')
635     {
636       p += 2;
637       p = strchr (p, ':');
638       if (p == NULL)
639 	{
640 	  complaint (&symfile_complaints,
641 		     _("Bad stabs string '%s'"), string);
642 	  return NULL;
643 	}
644     }
645 
646   /* If a nameless stab entry, all we need is the type, not the symbol.
647      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
648   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
649 
650   current_symbol = sym = (struct symbol *)
651     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
652   memset (sym, 0, sizeof (struct symbol));
653 
654   switch (type & N_TYPE)
655     {
656     case N_TEXT:
657       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
658       break;
659     case N_DATA:
660       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
661       break;
662     case N_BSS:
663       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
664       break;
665     }
666 
667   if (processing_gcc_compilation)
668     {
669       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
670          number of bytes occupied by a type or object, which we ignore.  */
671       SYMBOL_LINE (sym) = desc;
672     }
673   else
674     {
675       SYMBOL_LINE (sym) = 0;	/* unknown */
676     }
677 
678   if (is_cplus_marker (string[0]))
679     {
680       /* Special GNU C++ names.  */
681       switch (string[1])
682 	{
683 	case 't':
684 	  SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 	  break;
686 
687 	case 'v':		/* $vtbl_ptr_type */
688 	  goto normal;
689 
690 	case 'e':
691 	  SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 	  break;
693 
694 	case '_':
695 	  /* This was an anonymous type that was never fixed up.  */
696 	  goto normal;
697 
698 	case 'X':
699 	  /* SunPRO (3.0 at least) static variable encoding.  */
700 	  if (gdbarch_static_transform_name_p (gdbarch))
701 	    goto normal;
702 	  /* ... fall through ...  */
703 
704 	default:
705 	  complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 		     string);
707 	  goto normal;		/* Do *something* with it.  */
708 	}
709     }
710   else
711     {
712     normal:
713       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
714       if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 	{
716 	  char *name = alloca (p - string + 1);
717 
718 	  memcpy (name, string, p - string);
719 	  name[p - string] = '\0';
720 	  new_name = cp_canonicalize_string (name);
721 	}
722       if (new_name != NULL)
723 	{
724 	  SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 	  xfree (new_name);
726 	}
727       else
728 	SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729 
730       if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 	cp_scan_for_anonymous_namespaces (sym, objfile);
732 
733     }
734   p++;
735 
736   /* Determine the type of name being defined.  */
737 #if 0
738   /* Getting GDB to correctly skip the symbol on an undefined symbol
739      descriptor and not ever dump core is a very dodgy proposition if
740      we do things this way.  I say the acorn RISC machine can just
741      fix their compiler.  */
742   /* The Acorn RISC machine's compiler can put out locals that don't
743      start with "234=" or "(3,4)=", so assume anything other than the
744      deftypes we know how to handle is a local.  */
745   if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747   if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749     deftype = 'l';
750   else
751     deftype = *p++;
752 
753   switch (deftype)
754     {
755     case 'c':
756       /* c is a special case, not followed by a type-number.
757          SYMBOL:c=iVALUE for an integer constant symbol.
758          SYMBOL:c=rVALUE for a floating constant symbol.
759          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760          e.g. "b:c=e6,0" for "const b = blob1"
761          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
762       if (*p != '=')
763 	{
764 	  SYMBOL_CLASS (sym) = LOC_CONST;
765 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 	  add_symbol_to_list (sym, &file_symbols);
768 	  return sym;
769 	}
770       ++p;
771       switch (*p++)
772 	{
773 	case 'r':
774 	  {
775 	    double d = atof (p);
776 	    gdb_byte *dbl_valu;
777 	    struct type *dbl_type;
778 
779 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
780 	       target arithmetic to get the value.  real.c in GCC
781 	       probably has the necessary code.  */
782 
783 	    dbl_type = objfile_type (objfile)->builtin_double;
784 	    dbl_valu =
785 	      obstack_alloc (&objfile->objfile_obstack,
786 			     TYPE_LENGTH (dbl_type));
787 	    store_typed_floating (dbl_valu, dbl_type, d);
788 
789 	    SYMBOL_TYPE (sym) = dbl_type;
790 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
792 	  }
793 	  break;
794 	case 'i':
795 	  {
796 	    /* Defining integer constants this way is kind of silly,
797 	       since 'e' constants allows the compiler to give not
798 	       only the value, but the type as well.  C has at least
799 	       int, long, unsigned int, and long long as constant
800 	       types; other languages probably should have at least
801 	       unsigned as well as signed constants.  */
802 
803 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 	    SYMBOL_VALUE (sym) = atoi (p);
805 	    SYMBOL_CLASS (sym) = LOC_CONST;
806 	  }
807 	  break;
808 
809 	case 'c':
810 	  {
811 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 	    SYMBOL_VALUE (sym) = atoi (p);
813 	    SYMBOL_CLASS (sym) = LOC_CONST;
814 	  }
815 	  break;
816 
817 	case 's':
818 	  {
819 	    struct type *range_type;
820 	    int ind = 0;
821 	    char quote = *p++;
822 	    gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 	    gdb_byte *string_value;
824 
825 	    if (quote != '\'' && quote != '"')
826 	      {
827 		SYMBOL_CLASS (sym) = LOC_CONST;
828 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 		add_symbol_to_list (sym, &file_symbols);
831 		return sym;
832 	      }
833 
834 	    /* Find matching quote, rejecting escaped quotes.  */
835 	    while (*p && *p != quote)
836 	      {
837 		if (*p == '\\' && p[1] == quote)
838 		  {
839 		    string_local[ind] = (gdb_byte) quote;
840 		    ind++;
841 		    p += 2;
842 		  }
843 		else if (*p)
844 		  {
845 		    string_local[ind] = (gdb_byte) (*p);
846 		    ind++;
847 		    p++;
848 		  }
849 	      }
850 	    if (*p != quote)
851 	      {
852 		SYMBOL_CLASS (sym) = LOC_CONST;
853 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 		add_symbol_to_list (sym, &file_symbols);
856 		return sym;
857 	      }
858 
859 	    /* NULL terminate the string.  */
860 	    string_local[ind] = 0;
861 	    range_type
862 	      = create_range_type (NULL,
863 				   objfile_type (objfile)->builtin_int,
864 				   0, ind);
865 	    SYMBOL_TYPE (sym) = create_array_type (NULL,
866 				  objfile_type (objfile)->builtin_char,
867 				  range_type);
868 	    string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 	    memcpy (string_value, string_local, ind + 1);
870 	    p++;
871 
872 	    SYMBOL_VALUE_BYTES (sym) = string_value;
873 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
874 	  }
875 	  break;
876 
877 	case 'e':
878 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 	     can be represented as integral.
880 	     e.g. "b:c=e6,0" for "const b = blob1"
881 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
882 	  {
883 	    SYMBOL_CLASS (sym) = LOC_CONST;
884 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
885 
886 	    if (*p != ',')
887 	      {
888 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 		break;
890 	      }
891 	    ++p;
892 
893 	    /* If the value is too big to fit in an int (perhaps because
894 	       it is unsigned), or something like that, we silently get
895 	       a bogus value.  The type and everything else about it is
896 	       correct.  Ideally, we should be using whatever we have
897 	       available for parsing unsigned and long long values,
898 	       however.  */
899 	    SYMBOL_VALUE (sym) = atoi (p);
900 	  }
901 	  break;
902 	default:
903 	  {
904 	    SYMBOL_CLASS (sym) = LOC_CONST;
905 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 	  }
907 	}
908       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909       add_symbol_to_list (sym, &file_symbols);
910       return sym;
911 
912     case 'C':
913       /* The name of a caught exception.  */
914       SYMBOL_TYPE (sym) = read_type (&p, objfile);
915       SYMBOL_CLASS (sym) = LOC_LABEL;
916       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917       SYMBOL_VALUE_ADDRESS (sym) = valu;
918       add_symbol_to_list (sym, &local_symbols);
919       break;
920 
921     case 'f':
922       /* A static function definition.  */
923       SYMBOL_TYPE (sym) = read_type (&p, objfile);
924       SYMBOL_CLASS (sym) = LOC_BLOCK;
925       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926       add_symbol_to_list (sym, &file_symbols);
927       /* fall into process_function_types.  */
928 
929     process_function_types:
930       /* Function result types are described as the result type in stabs.
931          We need to convert this to the function-returning-type-X type
932          in GDB.  E.g. "int" is converted to "function returning int".  */
933       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935 
936       /* All functions in C++ have prototypes.  Stabs does not offer an
937          explicit way to identify prototyped or unprototyped functions,
938          but both GCC and Sun CC emit stabs for the "call-as" type rather
939          than the "declared-as" type for unprototyped functions, so
940          we treat all functions as if they were prototyped.  This is used
941          primarily for promotion when calling the function from GDB.  */
942       TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943 
944       /* fall into process_prototype_types.  */
945 
946     process_prototype_types:
947       /* Sun acc puts declared types of arguments here.  */
948       if (*p == ';')
949 	{
950 	  struct type *ftype = SYMBOL_TYPE (sym);
951 	  int nsemi = 0;
952 	  int nparams = 0;
953 	  char *p1 = p;
954 
955 	  /* Obtain a worst case guess for the number of arguments
956 	     by counting the semicolons.  */
957 	  while (*p1)
958 	    {
959 	      if (*p1++ == ';')
960 		nsemi++;
961 	    }
962 
963 	  /* Allocate parameter information fields and fill them in.  */
964 	  TYPE_FIELDS (ftype) = (struct field *)
965 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 	  while (*p++ == ';')
967 	    {
968 	      struct type *ptype;
969 
970 	      /* A type number of zero indicates the start of varargs.
971 	         FIXME: GDB currently ignores vararg functions.  */
972 	      if (p[0] == '0' && p[1] == '\0')
973 		break;
974 	      ptype = read_type (&p, objfile);
975 
976 	      /* The Sun compilers mark integer arguments, which should
977 	         be promoted to the width of the calling conventions, with
978 	         a type which references itself.  This type is turned into
979 	         a TYPE_CODE_VOID type by read_type, and we have to turn
980 	         it back into builtin_int here.
981 	         FIXME: Do we need a new builtin_promoted_int_arg ?  */
982 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 		ptype = objfile_type (objfile)->builtin_int;
984 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 	    }
987 	  TYPE_NFIELDS (ftype) = nparams;
988 	  TYPE_PROTOTYPED (ftype) = 1;
989 	}
990       break;
991 
992     case 'F':
993       /* A global function definition.  */
994       SYMBOL_TYPE (sym) = read_type (&p, objfile);
995       SYMBOL_CLASS (sym) = LOC_BLOCK;
996       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997       add_symbol_to_list (sym, &global_symbols);
998       goto process_function_types;
999 
1000     case 'G':
1001       /* For a class G (global) symbol, it appears that the
1002          value is not correct.  It is necessary to search for the
1003          corresponding linker definition to find the value.
1004          These definitions appear at the end of the namelist.  */
1005       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006       SYMBOL_CLASS (sym) = LOC_STATIC;
1007       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008       /* Don't add symbol references to global_sym_chain.
1009          Symbol references don't have valid names and wont't match up with
1010          minimal symbols when the global_sym_chain is relocated.
1011          We'll fixup symbol references when we fixup the defining symbol.  */
1012       if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 	{
1014 	  i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 	  global_sym_chain[i] = sym;
1017 	}
1018       add_symbol_to_list (sym, &global_symbols);
1019       break;
1020 
1021       /* This case is faked by a conditional above,
1022          when there is no code letter in the dbx data.
1023          Dbx data never actually contains 'l'.  */
1024     case 's':
1025     case 'l':
1026       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027       SYMBOL_CLASS (sym) = LOC_LOCAL;
1028       SYMBOL_VALUE (sym) = valu;
1029       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030       add_symbol_to_list (sym, &local_symbols);
1031       break;
1032 
1033     case 'p':
1034       if (*p == 'F')
1035 	/* pF is a two-letter code that means a function parameter in Fortran.
1036 	   The type-number specifies the type of the return value.
1037 	   Translate it into a pointer-to-function type.  */
1038 	{
1039 	  p++;
1040 	  SYMBOL_TYPE (sym)
1041 	    = lookup_pointer_type
1042 	    (lookup_function_type (read_type (&p, objfile)));
1043 	}
1044       else
1045 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046 
1047       SYMBOL_CLASS (sym) = LOC_ARG;
1048       SYMBOL_VALUE (sym) = valu;
1049       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050       SYMBOL_IS_ARGUMENT (sym) = 1;
1051       add_symbol_to_list (sym, &local_symbols);
1052 
1053       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 	{
1055 	  /* On little-endian machines, this crud is never necessary,
1056 	     and, if the extra bytes contain garbage, is harmful.  */
1057 	  break;
1058 	}
1059 
1060       /* If it's gcc-compiled, if it says `short', believe it.  */
1061       if (processing_gcc_compilation
1062 	  || gdbarch_believe_pcc_promotion (gdbarch))
1063 	break;
1064 
1065       if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 	{
1067 	  /* If PCC says a parameter is a short or a char, it is
1068 	     really an int.  */
1069 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 	    {
1073 	      SYMBOL_TYPE (sym) =
1074 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 		? objfile_type (objfile)->builtin_unsigned_int
1076 		: objfile_type (objfile)->builtin_int;
1077 	    }
1078 	  break;
1079 	}
1080 
1081     case 'P':
1082       /* acc seems to use P to declare the prototypes of functions that
1083          are referenced by this file.  gdb is not prepared to deal
1084          with this extra information.  FIXME, it ought to.  */
1085       if (type == N_FUN)
1086 	{
1087 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 	  goto process_prototype_types;
1089 	}
1090       /*FALLTHROUGH */
1091 
1092     case 'R':
1093       /* Parameter which is in a register.  */
1094       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095       SYMBOL_CLASS (sym) = LOC_REGISTER;
1096       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1097       SYMBOL_IS_ARGUMENT (sym) = 1;
1098       SYMBOL_VALUE (sym) = valu;
1099       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100       add_symbol_to_list (sym, &local_symbols);
1101       break;
1102 
1103     case 'r':
1104       /* Register variable (either global or local).  */
1105       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106       SYMBOL_CLASS (sym) = LOC_REGISTER;
1107       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1108       SYMBOL_VALUE (sym) = valu;
1109       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110       if (within_function)
1111 	{
1112 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 	     the same name to represent an argument passed in a
1114 	     register.  GCC uses 'P' for the same case.  So if we find
1115 	     such a symbol pair we combine it into one 'P' symbol.
1116 	     For Sun cc we need to do this regardless of
1117 	     stabs_argument_has_addr, because the compiler puts out
1118 	     the 'p' symbol even if it never saves the argument onto
1119 	     the stack.
1120 
1121 	     On most machines, we want to preserve both symbols, so
1122 	     that we can still get information about what is going on
1123 	     with the stack (VAX for computing args_printed, using
1124 	     stack slots instead of saved registers in backtraces,
1125 	     etc.).
1126 
1127 	     Note that this code illegally combines
1128 	     main(argc) struct foo argc; { register struct foo argc; }
1129 	     but this case is considered pathological and causes a warning
1130 	     from a decent compiler.  */
1131 
1132 	  if (local_symbols
1133 	      && local_symbols->nsyms > 0
1134 	      && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 	    {
1136 	      struct symbol *prev_sym;
1137 
1138 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 		  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 			     SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 		{
1144 		  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1145 		  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1146 		  /* Use the type from the LOC_REGISTER; that is the type
1147 		     that is actually in that register.  */
1148 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1149 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1150 		  sym = prev_sym;
1151 		  break;
1152 		}
1153 	    }
1154 	  add_symbol_to_list (sym, &local_symbols);
1155 	}
1156       else
1157 	add_symbol_to_list (sym, &file_symbols);
1158       break;
1159 
1160     case 'S':
1161       /* Static symbol at top level of file.  */
1162       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1163       SYMBOL_CLASS (sym) = LOC_STATIC;
1164       SYMBOL_VALUE_ADDRESS (sym) = valu;
1165       if (gdbarch_static_transform_name_p (gdbarch)
1166 	  && gdbarch_static_transform_name (gdbarch,
1167 					    SYMBOL_LINKAGE_NAME (sym))
1168 	     != SYMBOL_LINKAGE_NAME (sym))
1169 	{
1170 	  struct minimal_symbol *msym;
1171 
1172 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1173 					NULL, objfile);
1174 	  if (msym != NULL)
1175 	    {
1176 	      const char *new_name = gdbarch_static_transform_name
1177 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1178 
1179 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1180 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1181 	    }
1182 	}
1183       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184       add_symbol_to_list (sym, &file_symbols);
1185       break;
1186 
1187     case 't':
1188       /* In Ada, there is no distinction between typedef and non-typedef;
1189          any type declaration implicitly has the equivalent of a typedef,
1190          and thus 't' is in fact equivalent to 'Tt'.
1191 
1192          Therefore, for Ada units, we check the character immediately
1193          before the 't', and if we do not find a 'T', then make sure to
1194          create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195          will be stored in the VAR_DOMAIN).  If the symbol was indeed
1196          defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197          elsewhere, so we don't need to take care of that.
1198 
1199          This is important to do, because of forward references:
1200          The cleanup of undefined types stored in undef_types only uses
1201          STRUCT_DOMAIN symbols to perform the replacement.  */
1202       synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1203 
1204       /* Typedef */
1205       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206 
1207       /* For a nameless type, we don't want a create a symbol, thus we
1208          did not use `sym'.  Return without further processing.  */
1209       if (nameless)
1210 	return NULL;
1211 
1212       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1213       SYMBOL_VALUE (sym) = valu;
1214       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215       /* C++ vagaries: we may have a type which is derived from
1216          a base type which did not have its name defined when the
1217          derived class was output.  We fill in the derived class's
1218          base part member's name here in that case.  */
1219       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1220 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1221 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1222 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 	  {
1224 	    int j;
1225 
1226 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1230 	  }
1231 
1232       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1233 	{
1234 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1235 	     emits a unique named type for a vtable entry.
1236 	     Some gdb code depends on that specific name.  */
1237 	  extern const char vtbl_ptr_name[];
1238 
1239 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1240 	       && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1241 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1242 	    {
1243 	      /* If we are giving a name to a type such as "pointer to
1244 	         foo" or "function returning foo", we better not set
1245 	         the TYPE_NAME.  If the program contains "typedef char
1246 	         *caddr_t;", we don't want all variables of type char
1247 	         * to print as caddr_t.  This is not just a
1248 	         consequence of GDB's type management; PCC and GCC (at
1249 	         least through version 2.4) both output variables of
1250 	         either type char * or caddr_t with the type number
1251 	         defined in the 't' symbol for caddr_t.  If a future
1252 	         compiler cleans this up it GDB is not ready for it
1253 	         yet, but if it becomes ready we somehow need to
1254 	         disable this check (without breaking the PCC/GCC2.4
1255 	         case).
1256 
1257 	         Sigh.
1258 
1259 	         Fortunately, this check seems not to be necessary
1260 	         for anything except pointers or functions.  */
1261               /* ezannoni: 2000-10-26.  This seems to apply for
1262 		 versions of gcc older than 2.8.  This was the original
1263 		 problem: with the following code gdb would tell that
1264 		 the type for name1 is caddr_t, and func is char().
1265 
1266 	         typedef char *caddr_t;
1267 		 char *name2;
1268 		 struct x
1269 		 {
1270 		   char *name1;
1271 		 } xx;
1272 		 char *func()
1273 		 {
1274 		 }
1275 		 main () {}
1276 		 */
1277 
1278 	      /* Pascal accepts names for pointer types.  */
1279 	      if (current_subfile->language == language_pascal)
1280 		{
1281 		  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282           	}
1283 	    }
1284 	  else
1285 	    TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1286 	}
1287 
1288       add_symbol_to_list (sym, &file_symbols);
1289 
1290       if (synonym)
1291         {
1292           /* Create the STRUCT_DOMAIN clone.  */
1293           struct symbol *struct_sym = (struct symbol *)
1294             obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1295 
1296           *struct_sym = *sym;
1297           SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1298           SYMBOL_VALUE (struct_sym) = valu;
1299           SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300           if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301             TYPE_NAME (SYMBOL_TYPE (sym))
1302 	      = obconcat (&objfile->objfile_obstack,
1303 			  SYMBOL_LINKAGE_NAME (sym),
1304 			  (char *) NULL);
1305           add_symbol_to_list (struct_sym, &file_symbols);
1306         }
1307 
1308       break;
1309 
1310     case 'T':
1311       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1312          by 't' which means we are typedef'ing it as well.  */
1313       synonym = *p == 't';
1314 
1315       if (synonym)
1316 	p++;
1317 
1318       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319 
1320       /* For a nameless type, we don't want a create a symbol, thus we
1321          did not use `sym'.  Return without further processing.  */
1322       if (nameless)
1323 	return NULL;
1324 
1325       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1326       SYMBOL_VALUE (sym) = valu;
1327       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 	TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 	  = obconcat (&objfile->objfile_obstack,
1331 		      SYMBOL_LINKAGE_NAME (sym),
1332 		      (char *) NULL);
1333       add_symbol_to_list (sym, &file_symbols);
1334 
1335       if (synonym)
1336 	{
1337 	  /* Clone the sym and then modify it.  */
1338 	  struct symbol *typedef_sym = (struct symbol *)
1339 	    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1340 
1341 	  *typedef_sym = *sym;
1342 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1343 	  SYMBOL_VALUE (typedef_sym) = valu;
1344 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 	    TYPE_NAME (SYMBOL_TYPE (sym))
1347 	      = obconcat (&objfile->objfile_obstack,
1348 			  SYMBOL_LINKAGE_NAME (sym),
1349 			  (char *) NULL);
1350 	  add_symbol_to_list (typedef_sym, &file_symbols);
1351 	}
1352       break;
1353 
1354     case 'V':
1355       /* Static symbol of local scope.  */
1356       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357       SYMBOL_CLASS (sym) = LOC_STATIC;
1358       SYMBOL_VALUE_ADDRESS (sym) = valu;
1359       if (gdbarch_static_transform_name_p (gdbarch)
1360 	  && gdbarch_static_transform_name (gdbarch,
1361 					    SYMBOL_LINKAGE_NAME (sym))
1362 	     != SYMBOL_LINKAGE_NAME (sym))
1363 	{
1364 	  struct minimal_symbol *msym;
1365 
1366 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 					NULL, objfile);
1368 	  if (msym != NULL)
1369 	    {
1370 	      const char *new_name = gdbarch_static_transform_name
1371 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372 
1373 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1375 	    }
1376 	}
1377       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 	add_symbol_to_list (sym, &local_symbols);
1379       break;
1380 
1381     case 'v':
1382       /* Reference parameter */
1383       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1385       SYMBOL_IS_ARGUMENT (sym) = 1;
1386       SYMBOL_VALUE (sym) = valu;
1387       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388       add_symbol_to_list (sym, &local_symbols);
1389       break;
1390 
1391     case 'a':
1392       /* Reference parameter which is in a register.  */
1393       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1395       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1396       SYMBOL_IS_ARGUMENT (sym) = 1;
1397       SYMBOL_VALUE (sym) = valu;
1398       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399       add_symbol_to_list (sym, &local_symbols);
1400       break;
1401 
1402     case 'X':
1403       /* This is used by Sun FORTRAN for "function result value".
1404          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1405          that Pascal uses it too, but when I tried it Pascal used
1406          "x:3" (local symbol) instead.  */
1407       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408       SYMBOL_CLASS (sym) = LOC_LOCAL;
1409       SYMBOL_VALUE (sym) = valu;
1410       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411       add_symbol_to_list (sym, &local_symbols);
1412       break;
1413 
1414     default:
1415       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1416       SYMBOL_CLASS (sym) = LOC_CONST;
1417       SYMBOL_VALUE (sym) = 0;
1418       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419       add_symbol_to_list (sym, &file_symbols);
1420       break;
1421     }
1422 
1423   /* Some systems pass variables of certain types by reference instead
1424      of by value, i.e. they will pass the address of a structure (in a
1425      register or on the stack) instead of the structure itself.  */
1426 
1427   if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1428       && SYMBOL_IS_ARGUMENT (sym))
1429     {
1430       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1431          variables passed in a register).  */
1432       if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1433 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1434       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1435 	 and subsequent arguments on SPARC, for example).  */
1436       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1437 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1438     }
1439 
1440   return sym;
1441 }
1442 
1443 /* Skip rest of this symbol and return an error type.
1444 
1445    General notes on error recovery:  error_type always skips to the
1446    end of the symbol (modulo cretinous dbx symbol name continuation).
1447    Thus code like this:
1448 
1449    if (*(*pp)++ != ';')
1450    return error_type (pp, objfile);
1451 
1452    is wrong because if *pp starts out pointing at '\0' (typically as the
1453    result of an earlier error), it will be incremented to point to the
1454    start of the next symbol, which might produce strange results, at least
1455    if you run off the end of the string table.  Instead use
1456 
1457    if (**pp != ';')
1458    return error_type (pp, objfile);
1459    ++*pp;
1460 
1461    or
1462 
1463    if (**pp != ';')
1464    foo = error_type (pp, objfile);
1465    else
1466    ++*pp;
1467 
1468    And in case it isn't obvious, the point of all this hair is so the compiler
1469    can define new types and new syntaxes, and old versions of the
1470    debugger will be able to read the new symbol tables.  */
1471 
1472 static struct type *
1473 error_type (char **pp, struct objfile *objfile)
1474 {
1475   complaint (&symfile_complaints,
1476 	     _("couldn't parse type; debugger out of date?"));
1477   while (1)
1478     {
1479       /* Skip to end of symbol.  */
1480       while (**pp != '\0')
1481 	{
1482 	  (*pp)++;
1483 	}
1484 
1485       /* Check for and handle cretinous dbx symbol name continuation!  */
1486       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 	{
1488 	  *pp = next_symbol_text (objfile);
1489 	}
1490       else
1491 	{
1492 	  break;
1493 	}
1494     }
1495   return objfile_type (objfile)->builtin_error;
1496 }
1497 
1498 
1499 /* Read type information or a type definition; return the type.  Even
1500    though this routine accepts either type information or a type
1501    definition, the distinction is relevant--some parts of stabsread.c
1502    assume that type information starts with a digit, '-', or '(' in
1503    deciding whether to call read_type.  */
1504 
1505 static struct type *
1506 read_type (char **pp, struct objfile *objfile)
1507 {
1508   struct type *type = 0;
1509   struct type *type1;
1510   int typenums[2];
1511   char type_descriptor;
1512 
1513   /* Size in bits of type if specified by a type attribute, or -1 if
1514      there is no size attribute.  */
1515   int type_size = -1;
1516 
1517   /* Used to distinguish string and bitstring from char-array and set.  */
1518   int is_string = 0;
1519 
1520   /* Used to distinguish vector from array.  */
1521   int is_vector = 0;
1522 
1523   /* Read type number if present.  The type number may be omitted.
1524      for instance in a two-dimensional array declared with type
1525      "ar1;1;10;ar1;1;10;4".  */
1526   if ((**pp >= '0' && **pp <= '9')
1527       || **pp == '('
1528       || **pp == '-')
1529     {
1530       if (read_type_number (pp, typenums) != 0)
1531 	return error_type (pp, objfile);
1532 
1533       if (**pp != '=')
1534         {
1535           /* Type is not being defined here.  Either it already
1536              exists, or this is a forward reference to it.
1537              dbx_alloc_type handles both cases.  */
1538           type = dbx_alloc_type (typenums, objfile);
1539 
1540           /* If this is a forward reference, arrange to complain if it
1541              doesn't get patched up by the time we're done
1542              reading.  */
1543           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1544             add_undefined_type (type, typenums);
1545 
1546           return type;
1547         }
1548 
1549       /* Type is being defined here.  */
1550       /* Skip the '='.
1551          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1552       (*pp) += 2;
1553     }
1554   else
1555     {
1556       /* 'typenums=' not present, type is anonymous.  Read and return
1557          the definition, but don't put it in the type vector.  */
1558       typenums[0] = typenums[1] = -1;
1559       (*pp)++;
1560     }
1561 
1562 again:
1563   type_descriptor = (*pp)[-1];
1564   switch (type_descriptor)
1565     {
1566     case 'x':
1567       {
1568 	enum type_code code;
1569 
1570 	/* Used to index through file_symbols.  */
1571 	struct pending *ppt;
1572 	int i;
1573 
1574 	/* Name including "struct", etc.  */
1575 	char *type_name;
1576 
1577 	{
1578 	  char *from, *to, *p, *q1, *q2;
1579 
1580 	  /* Set the type code according to the following letter.  */
1581 	  switch ((*pp)[0])
1582 	    {
1583 	    case 's':
1584 	      code = TYPE_CODE_STRUCT;
1585 	      break;
1586 	    case 'u':
1587 	      code = TYPE_CODE_UNION;
1588 	      break;
1589 	    case 'e':
1590 	      code = TYPE_CODE_ENUM;
1591 	      break;
1592 	    default:
1593 	      {
1594 		/* Complain and keep going, so compilers can invent new
1595 		   cross-reference types.  */
1596 		complaint (&symfile_complaints,
1597 			   _("Unrecognized cross-reference type `%c'"),
1598 			   (*pp)[0]);
1599 		code = TYPE_CODE_STRUCT;
1600 		break;
1601 	      }
1602 	    }
1603 
1604 	  q1 = strchr (*pp, '<');
1605 	  p = strchr (*pp, ':');
1606 	  if (p == NULL)
1607 	    return error_type (pp, objfile);
1608 	  if (q1 && p > q1 && p[1] == ':')
1609 	    {
1610 	      int nesting_level = 0;
1611 
1612 	      for (q2 = q1; *q2; q2++)
1613 		{
1614 		  if (*q2 == '<')
1615 		    nesting_level++;
1616 		  else if (*q2 == '>')
1617 		    nesting_level--;
1618 		  else if (*q2 == ':' && nesting_level == 0)
1619 		    break;
1620 		}
1621 	      p = q2;
1622 	      if (*p != ':')
1623 		return error_type (pp, objfile);
1624 	    }
1625 	  type_name = NULL;
1626 	  if (current_subfile->language == language_cplus)
1627 	    {
1628 	      char *new_name, *name = alloca (p - *pp + 1);
1629 
1630 	      memcpy (name, *pp, p - *pp);
1631 	      name[p - *pp] = '\0';
1632 	      new_name = cp_canonicalize_string (name);
1633 	      if (new_name != NULL)
1634 		{
1635 		  type_name = obstack_copy0 (&objfile->objfile_obstack,
1636 					     new_name, strlen (new_name));
1637 		  xfree (new_name);
1638 		}
1639 	    }
1640 	  if (type_name == NULL)
1641 	    {
1642 	      to = type_name = (char *)
1643 		obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644 
1645 	      /* Copy the name.  */
1646 	      from = *pp + 1;
1647 	      while (from < p)
1648 		*to++ = *from++;
1649 	      *to = '\0';
1650 	    }
1651 
1652 	  /* Set the pointer ahead of the name which we just read, and
1653 	     the colon.  */
1654 	  *pp = p + 1;
1655 	}
1656 
1657         /* If this type has already been declared, then reuse the same
1658            type, rather than allocating a new one.  This saves some
1659            memory.  */
1660 
1661 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 	  for (i = 0; i < ppt->nsyms; i++)
1663 	    {
1664 	      struct symbol *sym = ppt->symbol[i];
1665 
1666 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 		  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 		{
1671 		  obstack_free (&objfile->objfile_obstack, type_name);
1672 		  type = SYMBOL_TYPE (sym);
1673 	          if (typenums[0] != -1)
1674 	            *dbx_lookup_type (typenums, objfile) = type;
1675 		  return type;
1676 		}
1677 	    }
1678 
1679 	/* Didn't find the type to which this refers, so we must
1680 	   be dealing with a forward reference.  Allocate a type
1681 	   structure for it, and keep track of it so we can
1682 	   fill in the rest of the fields when we get the full
1683 	   type.  */
1684 	type = dbx_alloc_type (typenums, objfile);
1685 	TYPE_CODE (type) = code;
1686 	TYPE_TAG_NAME (type) = type_name;
1687 	INIT_CPLUS_SPECIFIC (type);
1688 	TYPE_STUB (type) = 1;
1689 
1690 	add_undefined_type (type, typenums);
1691 	return type;
1692       }
1693 
1694     case '-':			/* RS/6000 built-in type */
1695     case '0':
1696     case '1':
1697     case '2':
1698     case '3':
1699     case '4':
1700     case '5':
1701     case '6':
1702     case '7':
1703     case '8':
1704     case '9':
1705     case '(':
1706       (*pp)--;
1707 
1708       /* We deal with something like t(1,2)=(3,4)=... which
1709          the Lucid compiler and recent gcc versions (post 2.7.3) use.  */
1710 
1711       /* Allocate and enter the typedef type first.
1712          This handles recursive types.  */
1713       type = dbx_alloc_type (typenums, objfile);
1714       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715       {
1716 	struct type *xtype = read_type (pp, objfile);
1717 
1718 	if (type == xtype)
1719 	  {
1720 	    /* It's being defined as itself.  That means it is "void".  */
1721 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1722 	    TYPE_LENGTH (type) = 1;
1723 	  }
1724 	else if (type_size >= 0 || is_string)
1725 	  {
1726 	    /* This is the absolute wrong way to construct types.  Every
1727 	       other debug format has found a way around this problem and
1728 	       the related problems with unnecessarily stubbed types;
1729 	       someone motivated should attempt to clean up the issue
1730 	       here as well.  Once a type pointed to has been created it
1731 	       should not be modified.
1732 
1733                Well, it's not *absolutely* wrong.  Constructing recursive
1734                types (trees, linked lists) necessarily entails modifying
1735                types after creating them.  Constructing any loop structure
1736                entails side effects.  The Dwarf 2 reader does handle this
1737                more gracefully (it never constructs more than once
1738                instance of a type object, so it doesn't have to copy type
1739                objects wholesale), but it still mutates type objects after
1740                other folks have references to them.
1741 
1742                Keep in mind that this circularity/mutation issue shows up
1743                at the source language level, too: C's "incomplete types",
1744                for example.  So the proper cleanup, I think, would be to
1745                limit GDB's type smashing to match exactly those required
1746                by the source language.  So GDB could have a
1747                "complete_this_type" function, but never create unnecessary
1748                copies of a type otherwise.  */
1749 	    replace_type (type, xtype);
1750 	    TYPE_NAME (type) = NULL;
1751 	    TYPE_TAG_NAME (type) = NULL;
1752 	  }
1753 	else
1754 	  {
1755 	    TYPE_TARGET_STUB (type) = 1;
1756 	    TYPE_TARGET_TYPE (type) = xtype;
1757 	  }
1758       }
1759       break;
1760 
1761       /* In the following types, we must be sure to overwrite any existing
1762          type that the typenums refer to, rather than allocating a new one
1763          and making the typenums point to the new one.  This is because there
1764          may already be pointers to the existing type (if it had been
1765          forward-referenced), and we must change it to a pointer, function,
1766          reference, or whatever, *in-place*.  */
1767 
1768     case '*':			/* Pointer to another type */
1769       type1 = read_type (pp, objfile);
1770       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771       break;
1772 
1773     case '&':			/* Reference to another type */
1774       type1 = read_type (pp, objfile);
1775       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776       break;
1777 
1778     case 'f':			/* Function returning another type */
1779       type1 = read_type (pp, objfile);
1780       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781       break;
1782 
1783     case 'g':                   /* Prototyped function.  (Sun)  */
1784       {
1785         /* Unresolved questions:
1786 
1787            - According to Sun's ``STABS Interface Manual'', for 'f'
1788            and 'F' symbol descriptors, a `0' in the argument type list
1789            indicates a varargs function.  But it doesn't say how 'g'
1790            type descriptors represent that info.  Someone with access
1791            to Sun's toolchain should try it out.
1792 
1793            - According to the comment in define_symbol (search for
1794            `process_prototype_types:'), Sun emits integer arguments as
1795            types which ref themselves --- like `void' types.  Do we
1796            have to deal with that here, too?  Again, someone with
1797            access to Sun's toolchain should try it out and let us
1798            know.  */
1799 
1800         const char *type_start = (*pp) - 1;
1801         struct type *return_type = read_type (pp, objfile);
1802         struct type *func_type
1803           = make_function_type (return_type,
1804 				dbx_lookup_type (typenums, objfile));
1805         struct type_list {
1806           struct type *type;
1807           struct type_list *next;
1808         } *arg_types = 0;
1809         int num_args = 0;
1810 
1811         while (**pp && **pp != '#')
1812           {
1813             struct type *arg_type = read_type (pp, objfile);
1814             struct type_list *new = alloca (sizeof (*new));
1815             new->type = arg_type;
1816             new->next = arg_types;
1817             arg_types = new;
1818             num_args++;
1819           }
1820         if (**pp == '#')
1821           ++*pp;
1822         else
1823           {
1824 	    complaint (&symfile_complaints,
1825 		       _("Prototyped function type didn't "
1826 			 "end arguments with `#':\n%s"),
1827 		       type_start);
1828           }
1829 
1830         /* If there is just one argument whose type is `void', then
1831            that's just an empty argument list.  */
1832         if (arg_types
1833             && ! arg_types->next
1834             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835           num_args = 0;
1836 
1837         TYPE_FIELDS (func_type)
1838           = (struct field *) TYPE_ALLOC (func_type,
1839                                          num_args * sizeof (struct field));
1840         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841         {
1842           int i;
1843           struct type_list *t;
1844 
1845           /* We stuck each argument type onto the front of the list
1846              when we read it, so the list is reversed.  Build the
1847              fields array right-to-left.  */
1848           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849             TYPE_FIELD_TYPE (func_type, i) = t->type;
1850         }
1851         TYPE_NFIELDS (func_type) = num_args;
1852         TYPE_PROTOTYPED (func_type) = 1;
1853 
1854         type = func_type;
1855         break;
1856       }
1857 
1858     case 'k':			/* Const qualifier on some type (Sun) */
1859       type = read_type (pp, objfile);
1860       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 			   dbx_lookup_type (typenums, objfile));
1862       break;
1863 
1864     case 'B':			/* Volatile qual on some type (Sun) */
1865       type = read_type (pp, objfile);
1866       type = make_cv_type (TYPE_CONST (type), 1, type,
1867 			   dbx_lookup_type (typenums, objfile));
1868       break;
1869 
1870     case '@':
1871       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 	{			/* Member (class & variable) type */
1873 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1874 
1875 	  struct type *domain = read_type (pp, objfile);
1876 	  struct type *memtype;
1877 
1878 	  if (**pp != ',')
1879 	    /* Invalid member type data format.  */
1880 	    return error_type (pp, objfile);
1881 	  ++*pp;
1882 
1883 	  memtype = read_type (pp, objfile);
1884 	  type = dbx_alloc_type (typenums, objfile);
1885 	  smash_to_memberptr_type (type, domain, memtype);
1886 	}
1887       else
1888 	/* type attribute */
1889 	{
1890 	  char *attr = *pp;
1891 
1892 	  /* Skip to the semicolon.  */
1893 	  while (**pp != ';' && **pp != '\0')
1894 	    ++(*pp);
1895 	  if (**pp == '\0')
1896 	    return error_type (pp, objfile);
1897 	  else
1898 	    ++ * pp;		/* Skip the semicolon.  */
1899 
1900 	  switch (*attr)
1901 	    {
1902 	    case 's':		/* Size attribute */
1903 	      type_size = atoi (attr + 1);
1904 	      if (type_size <= 0)
1905 		type_size = -1;
1906 	      break;
1907 
1908 	    case 'S':		/* String attribute */
1909 	      /* FIXME: check to see if following type is array?  */
1910 	      is_string = 1;
1911 	      break;
1912 
1913 	    case 'V':		/* Vector attribute */
1914 	      /* FIXME: check to see if following type is array?  */
1915 	      is_vector = 1;
1916 	      break;
1917 
1918 	    default:
1919 	      /* Ignore unrecognized type attributes, so future compilers
1920 	         can invent new ones.  */
1921 	      break;
1922 	    }
1923 	  ++*pp;
1924 	  goto again;
1925 	}
1926       break;
1927 
1928     case '#':			/* Method (class & fn) type */
1929       if ((*pp)[0] == '#')
1930 	{
1931 	  /* We'll get the parameter types from the name.  */
1932 	  struct type *return_type;
1933 
1934 	  (*pp)++;
1935 	  return_type = read_type (pp, objfile);
1936 	  if (*(*pp)++ != ';')
1937 	    complaint (&symfile_complaints,
1938 		       _("invalid (minimal) member type "
1939 			 "data format at symtab pos %d."),
1940 		       symnum);
1941 	  type = allocate_stub_method (return_type);
1942 	  if (typenums[0] != -1)
1943 	    *dbx_lookup_type (typenums, objfile) = type;
1944 	}
1945       else
1946 	{
1947 	  struct type *domain = read_type (pp, objfile);
1948 	  struct type *return_type;
1949 	  struct field *args;
1950 	  int nargs, varargs;
1951 
1952 	  if (**pp != ',')
1953 	    /* Invalid member type data format.  */
1954 	    return error_type (pp, objfile);
1955 	  else
1956 	    ++(*pp);
1957 
1958 	  return_type = read_type (pp, objfile);
1959 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 	  if (args == NULL)
1961 	    return error_type (pp, objfile);
1962 	  type = dbx_alloc_type (typenums, objfile);
1963 	  smash_to_method_type (type, domain, return_type, args,
1964 				nargs, varargs);
1965 	}
1966       break;
1967 
1968     case 'r':			/* Range type */
1969       type = read_range_type (pp, typenums, type_size, objfile);
1970       if (typenums[0] != -1)
1971 	*dbx_lookup_type (typenums, objfile) = type;
1972       break;
1973 
1974     case 'b':
1975 	{
1976 	  /* Sun ACC builtin int type */
1977 	  type = read_sun_builtin_type (pp, typenums, objfile);
1978 	  if (typenums[0] != -1)
1979 	    *dbx_lookup_type (typenums, objfile) = type;
1980 	}
1981       break;
1982 
1983     case 'R':			/* Sun ACC builtin float type */
1984       type = read_sun_floating_type (pp, typenums, objfile);
1985       if (typenums[0] != -1)
1986 	*dbx_lookup_type (typenums, objfile) = type;
1987       break;
1988 
1989     case 'e':			/* Enumeration type */
1990       type = dbx_alloc_type (typenums, objfile);
1991       type = read_enum_type (pp, type, objfile);
1992       if (typenums[0] != -1)
1993 	*dbx_lookup_type (typenums, objfile) = type;
1994       break;
1995 
1996     case 's':			/* Struct type */
1997     case 'u':			/* Union type */
1998       {
1999         enum type_code type_code = TYPE_CODE_UNDEF;
2000         type = dbx_alloc_type (typenums, objfile);
2001         switch (type_descriptor)
2002           {
2003           case 's':
2004             type_code = TYPE_CODE_STRUCT;
2005             break;
2006           case 'u':
2007             type_code = TYPE_CODE_UNION;
2008             break;
2009           }
2010         type = read_struct_type (pp, type, type_code, objfile);
2011         break;
2012       }
2013 
2014     case 'a':			/* Array type */
2015       if (**pp != 'r')
2016 	return error_type (pp, objfile);
2017       ++*pp;
2018 
2019       type = dbx_alloc_type (typenums, objfile);
2020       type = read_array_type (pp, type, objfile);
2021       if (is_string)
2022 	TYPE_CODE (type) = TYPE_CODE_STRING;
2023       if (is_vector)
2024 	make_vector_type (type);
2025       break;
2026 
2027     case 'S':			/* Set type */
2028       type1 = read_type (pp, objfile);
2029       type = create_set_type ((struct type *) NULL, type1);
2030       if (typenums[0] != -1)
2031 	*dbx_lookup_type (typenums, objfile) = type;
2032       break;
2033 
2034     default:
2035       --*pp;			/* Go back to the symbol in error.  */
2036       /* Particularly important if it was \0!  */
2037       return error_type (pp, objfile);
2038     }
2039 
2040   if (type == 0)
2041     {
2042       warning (_("GDB internal error, type is NULL in stabsread.c."));
2043       return error_type (pp, objfile);
2044     }
2045 
2046   /* Size specified in a type attribute overrides any other size.  */
2047   if (type_size != -1)
2048     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049 
2050   return type;
2051 }
2052 
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054    Return the proper type node for a given builtin type number.  */
2055 
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057 
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061   struct type **negative_types = objfile_data (objfile,
2062 					       rs6000_builtin_type_data);
2063 
2064   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
2065 #define NUMBER_RECOGNIZED 34
2066   struct type *rettype = NULL;
2067 
2068   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069     {
2070       complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071       return objfile_type (objfile)->builtin_error;
2072     }
2073 
2074   if (!negative_types)
2075     {
2076       /* This includes an empty slot for type number -0.  */
2077       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 				       NUMBER_RECOGNIZED + 1, struct type *);
2079       set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080     }
2081 
2082   if (negative_types[-typenum] != NULL)
2083     return negative_types[-typenum];
2084 
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
2088      that if that ever becomes not true, the correct fix will be to
2089      make the size in the struct type to be in bits, not in units of
2090      TARGET_CHAR_BIT.  */
2091 #endif
2092 
2093   switch (-typenum)
2094     {
2095     case 1:
2096       /* The size of this and all the other types are fixed, defined
2097          by the debugging format.  If there is a type called "int" which
2098          is other than 32 bits, then it should use a new negative type
2099          number (or avoid negative type numbers for that case).
2100          See stabs.texinfo.  */
2101       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2102       break;
2103     case 2:
2104       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2105       break;
2106     case 3:
2107       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2108       break;
2109     case 4:
2110       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2111       break;
2112     case 5:
2113       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2114 			   "unsigned char", objfile);
2115       break;
2116     case 6:
2117       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2118       break;
2119     case 7:
2120       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2121 			   "unsigned short", objfile);
2122       break;
2123     case 8:
2124       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 			   "unsigned int", objfile);
2126       break;
2127     case 9:
2128       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 			   "unsigned", objfile);
2130       break;
2131     case 10:
2132       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2133 			   "unsigned long", objfile);
2134       break;
2135     case 11:
2136       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2137       break;
2138     case 12:
2139       /* IEEE single precision (32 bit).  */
2140       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2141       break;
2142     case 13:
2143       /* IEEE double precision (64 bit).  */
2144       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2145       break;
2146     case 14:
2147       /* This is an IEEE double on the RS/6000, and different machines with
2148          different sizes for "long double" should use different negative
2149          type numbers.  See stabs.texinfo.  */
2150       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2151       break;
2152     case 15:
2153       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2154       break;
2155     case 16:
2156       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2157 			   "boolean", objfile);
2158       break;
2159     case 17:
2160       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2161       break;
2162     case 18:
2163       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2164       break;
2165     case 19:
2166       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2167       break;
2168     case 20:
2169       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2170 			   "character", objfile);
2171       break;
2172     case 21:
2173       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2174 			   "logical*1", objfile);
2175       break;
2176     case 22:
2177       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2178 			   "logical*2", objfile);
2179       break;
2180     case 23:
2181       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 			   "logical*4", objfile);
2183       break;
2184     case 24:
2185       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2186 			   "logical", objfile);
2187       break;
2188     case 25:
2189       /* Complex type consisting of two IEEE single precision values.  */
2190       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2191       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2192 					      objfile);
2193       break;
2194     case 26:
2195       /* Complex type consisting of two IEEE double precision values.  */
2196       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2197       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2198 					      objfile);
2199       break;
2200     case 27:
2201       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2202       break;
2203     case 28:
2204       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2205       break;
2206     case 29:
2207       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2208       break;
2209     case 30:
2210       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2211       break;
2212     case 31:
2213       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2214       break;
2215     case 32:
2216       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 			   "unsigned long long", objfile);
2218       break;
2219     case 33:
2220       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2221 			   "logical*8", objfile);
2222       break;
2223     case 34:
2224       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2225       break;
2226     }
2227   negative_types[-typenum] = rettype;
2228   return rettype;
2229 }
2230 
2231 /* This page contains subroutines of read_type.  */
2232 
2233 /* Wrapper around method_name_from_physname to flag a complaint
2234    if there is an error.  */
2235 
2236 static char *
2237 stabs_method_name_from_physname (const char *physname)
2238 {
2239   char *method_name;
2240 
2241   method_name = method_name_from_physname (physname);
2242 
2243   if (method_name == NULL)
2244     {
2245       complaint (&symfile_complaints,
2246 		 _("Method has bad physname %s\n"), physname);
2247       return NULL;
2248     }
2249 
2250   return method_name;
2251 }
2252 
2253 /* Read member function stabs info for C++ classes.  The form of each member
2254    function data is:
2255 
2256    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2257 
2258    An example with two member functions is:
2259 
2260    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2261 
2262    For the case of overloaded operators, the format is op$::*.funcs, where
2263    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264    name (such as `+=') and `.' marks the end of the operator name.
2265 
2266    Returns 1 for success, 0 for failure.  */
2267 
2268 static int
2269 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 		       struct objfile *objfile)
2271 {
2272   int nfn_fields = 0;
2273   int length = 0;
2274   int i;
2275   struct next_fnfield
2276     {
2277       struct next_fnfield *next;
2278       struct fn_field fn_field;
2279     }
2280    *sublist;
2281   struct type *look_ahead_type;
2282   struct next_fnfieldlist *new_fnlist;
2283   struct next_fnfield *new_sublist;
2284   char *main_fn_name;
2285   char *p;
2286 
2287   /* Process each list until we find something that is not a member function
2288      or find the end of the functions.  */
2289 
2290   while (**pp != ';')
2291     {
2292       /* We should be positioned at the start of the function name.
2293          Scan forward to find the first ':' and if it is not the
2294          first of a "::" delimiter, then this is not a member function.  */
2295       p = *pp;
2296       while (*p != ':')
2297 	{
2298 	  p++;
2299 	}
2300       if (p[1] != ':')
2301 	{
2302 	  break;
2303 	}
2304 
2305       sublist = NULL;
2306       look_ahead_type = NULL;
2307       length = 0;
2308 
2309       new_fnlist = (struct next_fnfieldlist *)
2310 	xmalloc (sizeof (struct next_fnfieldlist));
2311       make_cleanup (xfree, new_fnlist);
2312       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2313 
2314       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2315 	{
2316 	  /* This is a completely wierd case.  In order to stuff in the
2317 	     names that might contain colons (the usual name delimiter),
2318 	     Mike Tiemann defined a different name format which is
2319 	     signalled if the identifier is "op$".  In that case, the
2320 	     format is "op$::XXXX." where XXXX is the name.  This is
2321 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2322 	  /* This lets the user type "break operator+".
2323 	     We could just put in "+" as the name, but that wouldn't
2324 	     work for "*".  */
2325 	  static char opname[32] = "op$";
2326 	  char *o = opname + 3;
2327 
2328 	  /* Skip past '::'.  */
2329 	  *pp = p + 2;
2330 
2331 	  STABS_CONTINUE (pp, objfile);
2332 	  p = *pp;
2333 	  while (*p != '.')
2334 	    {
2335 	      *o++ = *p++;
2336 	    }
2337 	  main_fn_name = savestring (opname, o - opname);
2338 	  /* Skip past '.'  */
2339 	  *pp = p + 1;
2340 	}
2341       else
2342 	{
2343 	  main_fn_name = savestring (*pp, p - *pp);
2344 	  /* Skip past '::'.  */
2345 	  *pp = p + 2;
2346 	}
2347       new_fnlist->fn_fieldlist.name = main_fn_name;
2348 
2349       do
2350 	{
2351 	  new_sublist =
2352 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2353 	  make_cleanup (xfree, new_sublist);
2354 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2355 
2356 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2357 	  if (look_ahead_type == NULL)
2358 	    {
2359 	      /* Normal case.  */
2360 	      STABS_CONTINUE (pp, objfile);
2361 
2362 	      new_sublist->fn_field.type = read_type (pp, objfile);
2363 	      if (**pp != ':')
2364 		{
2365 		  /* Invalid symtab info for member function.  */
2366 		  return 0;
2367 		}
2368 	    }
2369 	  else
2370 	    {
2371 	      /* g++ version 1 kludge */
2372 	      new_sublist->fn_field.type = look_ahead_type;
2373 	      look_ahead_type = NULL;
2374 	    }
2375 
2376 	  (*pp)++;
2377 	  p = *pp;
2378 	  while (*p != ';')
2379 	    {
2380 	      p++;
2381 	    }
2382 
2383 	  /* If this is just a stub, then we don't have the real name here.  */
2384 
2385 	  if (TYPE_STUB (new_sublist->fn_field.type))
2386 	    {
2387 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2388 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2389 	      new_sublist->fn_field.is_stub = 1;
2390 	    }
2391 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2392 	  *pp = p + 1;
2393 
2394 	  /* Set this member function's visibility fields.  */
2395 	  switch (*(*pp)++)
2396 	    {
2397 	    case VISIBILITY_PRIVATE:
2398 	      new_sublist->fn_field.is_private = 1;
2399 	      break;
2400 	    case VISIBILITY_PROTECTED:
2401 	      new_sublist->fn_field.is_protected = 1;
2402 	      break;
2403 	    }
2404 
2405 	  STABS_CONTINUE (pp, objfile);
2406 	  switch (**pp)
2407 	    {
2408 	    case 'A':		/* Normal functions.  */
2409 	      new_sublist->fn_field.is_const = 0;
2410 	      new_sublist->fn_field.is_volatile = 0;
2411 	      (*pp)++;
2412 	      break;
2413 	    case 'B':		/* `const' member functions.  */
2414 	      new_sublist->fn_field.is_const = 1;
2415 	      new_sublist->fn_field.is_volatile = 0;
2416 	      (*pp)++;
2417 	      break;
2418 	    case 'C':		/* `volatile' member function.  */
2419 	      new_sublist->fn_field.is_const = 0;
2420 	      new_sublist->fn_field.is_volatile = 1;
2421 	      (*pp)++;
2422 	      break;
2423 	    case 'D':		/* `const volatile' member function.  */
2424 	      new_sublist->fn_field.is_const = 1;
2425 	      new_sublist->fn_field.is_volatile = 1;
2426 	      (*pp)++;
2427 	      break;
2428 	    case '*':		/* File compiled with g++ version 1 --
2429 				   no info.  */
2430 	    case '?':
2431 	    case '.':
2432 	      break;
2433 	    default:
2434 	      complaint (&symfile_complaints,
2435 			 _("const/volatile indicator missing, got '%c'"),
2436 			 **pp);
2437 	      break;
2438 	    }
2439 
2440 	  switch (*(*pp)++)
2441 	    {
2442 	    case '*':
2443 	      {
2444 		int nbits;
2445 		/* virtual member function, followed by index.
2446 		   The sign bit is set to distinguish pointers-to-methods
2447 		   from virtual function indicies.  Since the array is
2448 		   in words, the quantity must be shifted left by 1
2449 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2450 		   the sign bit out, and usable as a valid index into
2451 		   the array.  Remove the sign bit here.  */
2452 		new_sublist->fn_field.voffset =
2453 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2454 		if (nbits != 0)
2455 		  return 0;
2456 
2457 		STABS_CONTINUE (pp, objfile);
2458 		if (**pp == ';' || **pp == '\0')
2459 		  {
2460 		    /* Must be g++ version 1.  */
2461 		    new_sublist->fn_field.fcontext = 0;
2462 		  }
2463 		else
2464 		  {
2465 		    /* Figure out from whence this virtual function came.
2466 		       It may belong to virtual function table of
2467 		       one of its baseclasses.  */
2468 		    look_ahead_type = read_type (pp, objfile);
2469 		    if (**pp == ':')
2470 		      {
2471 			/* g++ version 1 overloaded methods.  */
2472 		      }
2473 		    else
2474 		      {
2475 			new_sublist->fn_field.fcontext = look_ahead_type;
2476 			if (**pp != ';')
2477 			  {
2478 			    return 0;
2479 			  }
2480 			else
2481 			  {
2482 			    ++*pp;
2483 			  }
2484 			look_ahead_type = NULL;
2485 		      }
2486 		  }
2487 		break;
2488 	      }
2489 	    case '?':
2490 	      /* static member function.  */
2491 	      {
2492 		int slen = strlen (main_fn_name);
2493 
2494 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2495 
2496 		/* For static member functions, we can't tell if they
2497 		   are stubbed, as they are put out as functions, and not as
2498 		   methods.
2499 		   GCC v2 emits the fully mangled name if
2500 		   dbxout.c:flag_minimal_debug is not set, so we have to
2501 		   detect a fully mangled physname here and set is_stub
2502 		   accordingly.  Fully mangled physnames in v2 start with
2503 		   the member function name, followed by two underscores.
2504 		   GCC v3 currently always emits stubbed member functions,
2505 		   but with fully mangled physnames, which start with _Z.  */
2506 		if (!(strncmp (new_sublist->fn_field.physname,
2507 			       main_fn_name, slen) == 0
2508 		      && new_sublist->fn_field.physname[slen] == '_'
2509 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2510 		  {
2511 		    new_sublist->fn_field.is_stub = 1;
2512 		  }
2513 		break;
2514 	      }
2515 
2516 	    default:
2517 	      /* error */
2518 	      complaint (&symfile_complaints,
2519 			 _("member function type missing, got '%c'"),
2520 			 (*pp)[-1]);
2521 	      /* Fall through into normal member function.  */
2522 
2523 	    case '.':
2524 	      /* normal member function.  */
2525 	      new_sublist->fn_field.voffset = 0;
2526 	      new_sublist->fn_field.fcontext = 0;
2527 	      break;
2528 	    }
2529 
2530 	  new_sublist->next = sublist;
2531 	  sublist = new_sublist;
2532 	  length++;
2533 	  STABS_CONTINUE (pp, objfile);
2534 	}
2535       while (**pp != ';' && **pp != '\0');
2536 
2537       (*pp)++;
2538       STABS_CONTINUE (pp, objfile);
2539 
2540       /* Skip GCC 3.X member functions which are duplicates of the callable
2541 	 constructor/destructor.  */
2542       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2543 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2544 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2545 	{
2546 	  xfree (main_fn_name);
2547 	}
2548       else
2549 	{
2550 	  int has_stub = 0;
2551 	  int has_destructor = 0, has_other = 0;
2552 	  int is_v3 = 0;
2553 	  struct next_fnfield *tmp_sublist;
2554 
2555 	  /* Various versions of GCC emit various mostly-useless
2556 	     strings in the name field for special member functions.
2557 
2558 	     For stub methods, we need to defer correcting the name
2559 	     until we are ready to unstub the method, because the current
2560 	     name string is used by gdb_mangle_name.  The only stub methods
2561 	     of concern here are GNU v2 operators; other methods have their
2562 	     names correct (see caveat below).
2563 
2564 	     For non-stub methods, in GNU v3, we have a complete physname.
2565 	     Therefore we can safely correct the name now.  This primarily
2566 	     affects constructors and destructors, whose name will be
2567 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2568 	     operators will also have incorrect names; for instance,
2569 	     "operator int" will be named "operator i" (i.e. the type is
2570 	     mangled).
2571 
2572 	     For non-stub methods in GNU v2, we have no easy way to
2573 	     know if we have a complete physname or not.  For most
2574 	     methods the result depends on the platform (if CPLUS_MARKER
2575 	     can be `$' or `.', it will use minimal debug information, or
2576 	     otherwise the full physname will be included).
2577 
2578 	     Rather than dealing with this, we take a different approach.
2579 	     For v3 mangled names, we can use the full physname; for v2,
2580 	     we use cplus_demangle_opname (which is actually v2 specific),
2581 	     because the only interesting names are all operators - once again
2582 	     barring the caveat below.  Skip this process if any method in the
2583 	     group is a stub, to prevent our fouling up the workings of
2584 	     gdb_mangle_name.
2585 
2586 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2587 	     destructors in the same method group.  We need to split this
2588 	     into two groups, because they should have different names.
2589 	     So for each method group we check whether it contains both
2590 	     routines whose physname appears to be a destructor (the physnames
2591 	     for and destructors are always provided, due to quirks in v2
2592 	     mangling) and routines whose physname does not appear to be a
2593 	     destructor.  If so then we break up the list into two halves.
2594 	     Even if the constructors and destructors aren't in the same group
2595 	     the destructor will still lack the leading tilde, so that also
2596 	     needs to be fixed.
2597 
2598 	     So, to summarize what we expect and handle here:
2599 
2600 	        Given         Given          Real         Real       Action
2601 	     method name     physname      physname   method name
2602 
2603 	     __opi            [none]     __opi__3Foo  operator int    opname
2604 	                                                         [now or later]
2605 	     Foo              _._3Foo       _._3Foo      ~Foo      separate and
2606 	                                                               rename
2607 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2608 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2609 	  */
2610 
2611 	  tmp_sublist = sublist;
2612 	  while (tmp_sublist != NULL)
2613 	    {
2614 	      if (tmp_sublist->fn_field.is_stub)
2615 		has_stub = 1;
2616 	      if (tmp_sublist->fn_field.physname[0] == '_'
2617 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2618 		is_v3 = 1;
2619 
2620 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2621 		has_destructor++;
2622 	      else
2623 		has_other++;
2624 
2625 	      tmp_sublist = tmp_sublist->next;
2626 	    }
2627 
2628 	  if (has_destructor && has_other)
2629 	    {
2630 	      struct next_fnfieldlist *destr_fnlist;
2631 	      struct next_fnfield *last_sublist;
2632 
2633 	      /* Create a new fn_fieldlist for the destructors.  */
2634 
2635 	      destr_fnlist = (struct next_fnfieldlist *)
2636 		xmalloc (sizeof (struct next_fnfieldlist));
2637 	      make_cleanup (xfree, destr_fnlist);
2638 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2639 	      destr_fnlist->fn_fieldlist.name
2640 		= obconcat (&objfile->objfile_obstack, "~",
2641 			    new_fnlist->fn_fieldlist.name, (char *) NULL);
2642 
2643 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2644 		obstack_alloc (&objfile->objfile_obstack,
2645 			       sizeof (struct fn_field) * has_destructor);
2646 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2647 		  sizeof (struct fn_field) * has_destructor);
2648 	      tmp_sublist = sublist;
2649 	      last_sublist = NULL;
2650 	      i = 0;
2651 	      while (tmp_sublist != NULL)
2652 		{
2653 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2654 		    {
2655 		      tmp_sublist = tmp_sublist->next;
2656 		      continue;
2657 		    }
2658 
2659 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2660 		    = tmp_sublist->fn_field;
2661 		  if (last_sublist)
2662 		    last_sublist->next = tmp_sublist->next;
2663 		  else
2664 		    sublist = tmp_sublist->next;
2665 		  last_sublist = tmp_sublist;
2666 		  tmp_sublist = tmp_sublist->next;
2667 		}
2668 
2669 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2670 	      destr_fnlist->next = fip->fnlist;
2671 	      fip->fnlist = destr_fnlist;
2672 	      nfn_fields++;
2673 	      length -= has_destructor;
2674 	    }
2675 	  else if (is_v3)
2676 	    {
2677 	      /* v3 mangling prevents the use of abbreviated physnames,
2678 		 so we can do this here.  There are stubbed methods in v3
2679 		 only:
2680 		 - in -gstabs instead of -gstabs+
2681 		 - or for static methods, which are output as a function type
2682 		   instead of a method type.  */
2683 	      char *new_method_name =
2684 		stabs_method_name_from_physname (sublist->fn_field.physname);
2685 
2686 	      if (new_method_name != NULL
2687 		  && strcmp (new_method_name,
2688 			     new_fnlist->fn_fieldlist.name) != 0)
2689 		{
2690 		  new_fnlist->fn_fieldlist.name = new_method_name;
2691 		  xfree (main_fn_name);
2692 		}
2693 	      else
2694 		xfree (new_method_name);
2695 	    }
2696 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2697 	    {
2698 	      new_fnlist->fn_fieldlist.name =
2699 		obconcat (&objfile->objfile_obstack,
2700 			  "~", main_fn_name, (char *)NULL);
2701 	      xfree (main_fn_name);
2702 	    }
2703 	  else if (!has_stub)
2704 	    {
2705 	      char dem_opname[256];
2706 	      int ret;
2707 
2708 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2709 					      dem_opname, DMGL_ANSI);
2710 	      if (!ret)
2711 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2712 					     dem_opname, 0);
2713 	      if (ret)
2714 		new_fnlist->fn_fieldlist.name
2715 		  = obstack_copy0 (&objfile->objfile_obstack,
2716 				   dem_opname, strlen (dem_opname));
2717 	      xfree (main_fn_name);
2718 	    }
2719 
2720 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2721 	    obstack_alloc (&objfile->objfile_obstack,
2722 			   sizeof (struct fn_field) * length);
2723 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2724 		  sizeof (struct fn_field) * length);
2725 	  for (i = length; (i--, sublist); sublist = sublist->next)
2726 	    {
2727 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2728 	    }
2729 
2730 	  new_fnlist->fn_fieldlist.length = length;
2731 	  new_fnlist->next = fip->fnlist;
2732 	  fip->fnlist = new_fnlist;
2733 	  nfn_fields++;
2734 	}
2735     }
2736 
2737   if (nfn_fields)
2738     {
2739       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2740       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2741 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2742       memset (TYPE_FN_FIELDLISTS (type), 0,
2743 	      sizeof (struct fn_fieldlist) * nfn_fields);
2744       TYPE_NFN_FIELDS (type) = nfn_fields;
2745     }
2746 
2747   return 1;
2748 }
2749 
2750 /* Special GNU C++ name.
2751 
2752    Returns 1 for success, 0 for failure.  "failure" means that we can't
2753    keep parsing and it's time for error_type().  */
2754 
2755 static int
2756 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2757 		 struct objfile *objfile)
2758 {
2759   char *p;
2760   const char *name;
2761   char cpp_abbrev;
2762   struct type *context;
2763 
2764   p = *pp;
2765   if (*++p == 'v')
2766     {
2767       name = NULL;
2768       cpp_abbrev = *++p;
2769 
2770       *pp = p + 1;
2771 
2772       /* At this point, *pp points to something like "22:23=*22...",
2773          where the type number before the ':' is the "context" and
2774          everything after is a regular type definition.  Lookup the
2775          type, find it's name, and construct the field name.  */
2776 
2777       context = read_type (pp, objfile);
2778 
2779       switch (cpp_abbrev)
2780 	{
2781 	case 'f':		/* $vf -- a virtual function table pointer */
2782 	  name = type_name_no_tag (context);
2783 	  if (name == NULL)
2784 	    {
2785 	      name = "";
2786 	    }
2787 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2788 					    vptr_name, name, (char *) NULL);
2789 	  break;
2790 
2791 	case 'b':		/* $vb -- a virtual bsomethingorother */
2792 	  name = type_name_no_tag (context);
2793 	  if (name == NULL)
2794 	    {
2795 	      complaint (&symfile_complaints,
2796 			 _("C++ abbreviated type name "
2797 			   "unknown at symtab pos %d"),
2798 			 symnum);
2799 	      name = "FOO";
2800 	    }
2801 	  fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2802 					    name, (char *) NULL);
2803 	  break;
2804 
2805 	default:
2806 	  invalid_cpp_abbrev_complaint (*pp);
2807 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2808 					    "INVALID_CPLUSPLUS_ABBREV",
2809 					    (char *) NULL);
2810 	  break;
2811 	}
2812 
2813       /* At this point, *pp points to the ':'.  Skip it and read the
2814          field type.  */
2815 
2816       p = ++(*pp);
2817       if (p[-1] != ':')
2818 	{
2819 	  invalid_cpp_abbrev_complaint (*pp);
2820 	  return 0;
2821 	}
2822       fip->list->field.type = read_type (pp, objfile);
2823       if (**pp == ',')
2824 	(*pp)++;		/* Skip the comma.  */
2825       else
2826 	return 0;
2827 
2828       {
2829 	int nbits;
2830 
2831 	SET_FIELD_BITPOS (fip->list->field,
2832 			  read_huge_number (pp, ';', &nbits, 0));
2833 	if (nbits != 0)
2834 	  return 0;
2835       }
2836       /* This field is unpacked.  */
2837       FIELD_BITSIZE (fip->list->field) = 0;
2838       fip->list->visibility = VISIBILITY_PRIVATE;
2839     }
2840   else
2841     {
2842       invalid_cpp_abbrev_complaint (*pp);
2843       /* We have no idea what syntax an unrecognized abbrev would have, so
2844          better return 0.  If we returned 1, we would need to at least advance
2845          *pp to avoid an infinite loop.  */
2846       return 0;
2847     }
2848   return 1;
2849 }
2850 
2851 static void
2852 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2853 		       struct type *type, struct objfile *objfile)
2854 {
2855   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2856 
2857   fip->list->field.name =
2858     obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2859   *pp = p + 1;
2860 
2861   /* This means we have a visibility for a field coming.  */
2862   if (**pp == '/')
2863     {
2864       (*pp)++;
2865       fip->list->visibility = *(*pp)++;
2866     }
2867   else
2868     {
2869       /* normal dbx-style format, no explicit visibility */
2870       fip->list->visibility = VISIBILITY_PUBLIC;
2871     }
2872 
2873   fip->list->field.type = read_type (pp, objfile);
2874   if (**pp == ':')
2875     {
2876       p = ++(*pp);
2877 #if 0
2878       /* Possible future hook for nested types.  */
2879       if (**pp == '!')
2880 	{
2881 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2882 	  p = ++(*pp);
2883 	}
2884       else
2885 	...;
2886 #endif
2887       while (*p != ';')
2888 	{
2889 	  p++;
2890 	}
2891       /* Static class member.  */
2892       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2893       *pp = p + 1;
2894       return;
2895     }
2896   else if (**pp != ',')
2897     {
2898       /* Bad structure-type format.  */
2899       stabs_general_complaint ("bad structure-type format");
2900       return;
2901     }
2902 
2903   (*pp)++;			/* Skip the comma.  */
2904 
2905   {
2906     int nbits;
2907 
2908     SET_FIELD_BITPOS (fip->list->field,
2909 		      read_huge_number (pp, ',', &nbits, 0));
2910     if (nbits != 0)
2911       {
2912 	stabs_general_complaint ("bad structure-type format");
2913 	return;
2914       }
2915     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2916     if (nbits != 0)
2917       {
2918 	stabs_general_complaint ("bad structure-type format");
2919 	return;
2920       }
2921   }
2922 
2923   if (FIELD_BITPOS (fip->list->field) == 0
2924       && FIELD_BITSIZE (fip->list->field) == 0)
2925     {
2926       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2927          it is a field which has been optimized out.  The correct stab for
2928          this case is to use VISIBILITY_IGNORE, but that is a recent
2929          invention.  (2) It is a 0-size array.  For example
2930          union { int num; char str[0]; } foo.  Printing _("<no value>" for
2931          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2932          will continue to work, and a 0-size array as a whole doesn't
2933          have any contents to print.
2934 
2935          I suspect this probably could also happen with gcc -gstabs (not
2936          -gstabs+) for static fields, and perhaps other C++ extensions.
2937          Hopefully few people use -gstabs with gdb, since it is intended
2938          for dbx compatibility.  */
2939 
2940       /* Ignore this field.  */
2941       fip->list->visibility = VISIBILITY_IGNORE;
2942     }
2943   else
2944     {
2945       /* Detect an unpacked field and mark it as such.
2946          dbx gives a bit size for all fields.
2947          Note that forward refs cannot be packed,
2948          and treat enums as if they had the width of ints.  */
2949 
2950       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2951 
2952       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2953 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2954 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2955 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2956 	{
2957 	  FIELD_BITSIZE (fip->list->field) = 0;
2958 	}
2959       if ((FIELD_BITSIZE (fip->list->field)
2960 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2961 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2962 	       && FIELD_BITSIZE (fip->list->field)
2963 		  == gdbarch_int_bit (gdbarch))
2964 	  )
2965 	  &&
2966 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2967 	{
2968 	  FIELD_BITSIZE (fip->list->field) = 0;
2969 	}
2970     }
2971 }
2972 
2973 
2974 /* Read struct or class data fields.  They have the form:
2975 
2976    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2977 
2978    At the end, we see a semicolon instead of a field.
2979 
2980    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2981    a static field.
2982 
2983    The optional VISIBILITY is one of:
2984 
2985    '/0' (VISIBILITY_PRIVATE)
2986    '/1' (VISIBILITY_PROTECTED)
2987    '/2' (VISIBILITY_PUBLIC)
2988    '/9' (VISIBILITY_IGNORE)
2989 
2990    or nothing, for C style fields with public visibility.
2991 
2992    Returns 1 for success, 0 for failure.  */
2993 
2994 static int
2995 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2996 		    struct objfile *objfile)
2997 {
2998   char *p;
2999   struct nextfield *new;
3000 
3001   /* We better set p right now, in case there are no fields at all...    */
3002 
3003   p = *pp;
3004 
3005   /* Read each data member type until we find the terminating ';' at the end of
3006      the data member list, or break for some other reason such as finding the
3007      start of the member function list.  */
3008   /* Stab string for structure/union does not end with two ';' in
3009      SUN C compiler 5.3 i.e. F6U2, hence check for end of string.  */
3010 
3011   while (**pp != ';' && **pp != '\0')
3012     {
3013       STABS_CONTINUE (pp, objfile);
3014       /* Get space to record the next field's data.  */
3015       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3016       make_cleanup (xfree, new);
3017       memset (new, 0, sizeof (struct nextfield));
3018       new->next = fip->list;
3019       fip->list = new;
3020 
3021       /* Get the field name.  */
3022       p = *pp;
3023 
3024       /* If is starts with CPLUS_MARKER it is a special abbreviation,
3025          unless the CPLUS_MARKER is followed by an underscore, in
3026          which case it is just the name of an anonymous type, which we
3027          should handle like any other type name.  */
3028 
3029       if (is_cplus_marker (p[0]) && p[1] != '_')
3030 	{
3031 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
3032 	    return 0;
3033 	  continue;
3034 	}
3035 
3036       /* Look for the ':' that separates the field name from the field
3037          values.  Data members are delimited by a single ':', while member
3038          functions are delimited by a pair of ':'s.  When we hit the member
3039          functions (if any), terminate scan loop and return.  */
3040 
3041       while (*p != ':' && *p != '\0')
3042 	{
3043 	  p++;
3044 	}
3045       if (*p == '\0')
3046 	return 0;
3047 
3048       /* Check to see if we have hit the member functions yet.  */
3049       if (p[1] == ':')
3050 	{
3051 	  break;
3052 	}
3053       read_one_struct_field (fip, pp, p, type, objfile);
3054     }
3055   if (p[0] == ':' && p[1] == ':')
3056     {
3057       /* (the deleted) chill the list of fields: the last entry (at
3058          the head) is a partially constructed entry which we now
3059          scrub.  */
3060       fip->list = fip->list->next;
3061     }
3062   return 1;
3063 }
3064 /* *INDENT-OFF* */
3065 /* The stabs for C++ derived classes contain baseclass information which
3066    is marked by a '!' character after the total size.  This function is
3067    called when we encounter the baseclass marker, and slurps up all the
3068    baseclass information.
3069 
3070    Immediately following the '!' marker is the number of base classes that
3071    the class is derived from, followed by information for each base class.
3072    For each base class, there are two visibility specifiers, a bit offset
3073    to the base class information within the derived class, a reference to
3074    the type for the base class, and a terminating semicolon.
3075 
3076    A typical example, with two base classes, would be "!2,020,19;0264,21;".
3077    						       ^^ ^ ^ ^  ^ ^  ^
3078 	Baseclass information marker __________________|| | | |  | |  |
3079 	Number of baseclasses __________________________| | | |  | |  |
3080 	Visibility specifiers (2) ________________________| | |  | |  |
3081 	Offset in bits from start of class _________________| |  | |  |
3082 	Type number for base class ___________________________|  | |  |
3083 	Visibility specifiers (2) _______________________________| |  |
3084 	Offset in bits from start of class ________________________|  |
3085 	Type number of base class ____________________________________|
3086 
3087   Return 1 for success, 0 for (error-type-inducing) failure.  */
3088 /* *INDENT-ON* */
3089 
3090 
3091 
3092 static int
3093 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3094 		  struct objfile *objfile)
3095 {
3096   int i;
3097   struct nextfield *new;
3098 
3099   if (**pp != '!')
3100     {
3101       return 1;
3102     }
3103   else
3104     {
3105       /* Skip the '!' baseclass information marker.  */
3106       (*pp)++;
3107     }
3108 
3109   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3110   {
3111     int nbits;
3112 
3113     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3114     if (nbits != 0)
3115       return 0;
3116   }
3117 
3118 #if 0
3119   /* Some stupid compilers have trouble with the following, so break
3120      it up into simpler expressions.  */
3121   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3122     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3123 #else
3124   {
3125     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3126     char *pointer;
3127 
3128     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3129     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3130   }
3131 #endif /* 0 */
3132 
3133   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3134 
3135   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3136     {
3137       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3138       make_cleanup (xfree, new);
3139       memset (new, 0, sizeof (struct nextfield));
3140       new->next = fip->list;
3141       fip->list = new;
3142       FIELD_BITSIZE (new->field) = 0;	/* This should be an unpacked
3143 					   field!  */
3144 
3145       STABS_CONTINUE (pp, objfile);
3146       switch (**pp)
3147 	{
3148 	case '0':
3149 	  /* Nothing to do.  */
3150 	  break;
3151 	case '1':
3152 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3153 	  break;
3154 	default:
3155 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3156 	  {
3157 	    complaint (&symfile_complaints,
3158 		       _("Unknown virtual character `%c' for baseclass"),
3159 		       **pp);
3160 	  }
3161 	}
3162       ++(*pp);
3163 
3164       new->visibility = *(*pp)++;
3165       switch (new->visibility)
3166 	{
3167 	case VISIBILITY_PRIVATE:
3168 	case VISIBILITY_PROTECTED:
3169 	case VISIBILITY_PUBLIC:
3170 	  break;
3171 	default:
3172 	  /* Bad visibility format.  Complain and treat it as
3173 	     public.  */
3174 	  {
3175 	    complaint (&symfile_complaints,
3176 		       _("Unknown visibility `%c' for baseclass"),
3177 		       new->visibility);
3178 	    new->visibility = VISIBILITY_PUBLIC;
3179 	  }
3180 	}
3181 
3182       {
3183 	int nbits;
3184 
3185 	/* The remaining value is the bit offset of the portion of the object
3186 	   corresponding to this baseclass.  Always zero in the absence of
3187 	   multiple inheritance.  */
3188 
3189 	SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3190 	if (nbits != 0)
3191 	  return 0;
3192       }
3193 
3194       /* The last piece of baseclass information is the type of the
3195          base class.  Read it, and remember it's type name as this
3196          field's name.  */
3197 
3198       new->field.type = read_type (pp, objfile);
3199       new->field.name = type_name_no_tag (new->field.type);
3200 
3201       /* Skip trailing ';' and bump count of number of fields seen.  */
3202       if (**pp == ';')
3203 	(*pp)++;
3204       else
3205 	return 0;
3206     }
3207   return 1;
3208 }
3209 
3210 /* The tail end of stabs for C++ classes that contain a virtual function
3211    pointer contains a tilde, a %, and a type number.
3212    The type number refers to the base class (possibly this class itself) which
3213    contains the vtable pointer for the current class.
3214 
3215    This function is called when we have parsed all the method declarations,
3216    so we can look for the vptr base class info.  */
3217 
3218 static int
3219 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3220 		   struct objfile *objfile)
3221 {
3222   char *p;
3223 
3224   STABS_CONTINUE (pp, objfile);
3225 
3226   /* If we are positioned at a ';', then skip it.  */
3227   if (**pp == ';')
3228     {
3229       (*pp)++;
3230     }
3231 
3232   if (**pp == '~')
3233     {
3234       (*pp)++;
3235 
3236       if (**pp == '=' || **pp == '+' || **pp == '-')
3237 	{
3238 	  /* Obsolete flags that used to indicate the presence
3239 	     of constructors and/or destructors.  */
3240 	  (*pp)++;
3241 	}
3242 
3243       /* Read either a '%' or the final ';'.  */
3244       if (*(*pp)++ == '%')
3245 	{
3246 	  /* The next number is the type number of the base class
3247 	     (possibly our own class) which supplies the vtable for
3248 	     this class.  Parse it out, and search that class to find
3249 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3250 	     and TYPE_VPTR_FIELDNO.  */
3251 
3252 	  struct type *t;
3253 	  int i;
3254 
3255 	  t = read_type (pp, objfile);
3256 	  p = (*pp)++;
3257 	  while (*p != '\0' && *p != ';')
3258 	    {
3259 	      p++;
3260 	    }
3261 	  if (*p == '\0')
3262 	    {
3263 	      /* Premature end of symbol.  */
3264 	      return 0;
3265 	    }
3266 
3267 	  TYPE_VPTR_BASETYPE (type) = t;
3268 	  if (type == t)	/* Our own class provides vtbl ptr.  */
3269 	    {
3270 	      for (i = TYPE_NFIELDS (t) - 1;
3271 		   i >= TYPE_N_BASECLASSES (t);
3272 		   --i)
3273 		{
3274 		  const char *name = TYPE_FIELD_NAME (t, i);
3275 
3276 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3277 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3278 		    {
3279 		      TYPE_VPTR_FIELDNO (type) = i;
3280 		      goto gotit;
3281 		    }
3282 		}
3283 	      /* Virtual function table field not found.  */
3284 	      complaint (&symfile_complaints,
3285 			 _("virtual function table pointer "
3286 			   "not found when defining class `%s'"),
3287 			 TYPE_NAME (type));
3288 	      return 0;
3289 	    }
3290 	  else
3291 	    {
3292 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3293 	    }
3294 
3295 	gotit:
3296 	  *pp = p + 1;
3297 	}
3298     }
3299   return 1;
3300 }
3301 
3302 static int
3303 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3304 {
3305   int n;
3306 
3307   for (n = TYPE_NFN_FIELDS (type);
3308        fip->fnlist != NULL;
3309        fip->fnlist = fip->fnlist->next)
3310     {
3311       --n;			/* Circumvent Sun3 compiler bug.  */
3312       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3313     }
3314   return 1;
3315 }
3316 
3317 /* Create the vector of fields, and record how big it is.
3318    We need this info to record proper virtual function table information
3319    for this class's virtual functions.  */
3320 
3321 static int
3322 attach_fields_to_type (struct field_info *fip, struct type *type,
3323 		       struct objfile *objfile)
3324 {
3325   int nfields = 0;
3326   int non_public_fields = 0;
3327   struct nextfield *scan;
3328 
3329   /* Count up the number of fields that we have, as well as taking note of
3330      whether or not there are any non-public fields, which requires us to
3331      allocate and build the private_field_bits and protected_field_bits
3332      bitfields.  */
3333 
3334   for (scan = fip->list; scan != NULL; scan = scan->next)
3335     {
3336       nfields++;
3337       if (scan->visibility != VISIBILITY_PUBLIC)
3338 	{
3339 	  non_public_fields++;
3340 	}
3341     }
3342 
3343   /* Now we know how many fields there are, and whether or not there are any
3344      non-public fields.  Record the field count, allocate space for the
3345      array of fields, and create blank visibility bitfields if necessary.  */
3346 
3347   TYPE_NFIELDS (type) = nfields;
3348   TYPE_FIELDS (type) = (struct field *)
3349     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3350   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3351 
3352   if (non_public_fields)
3353     {
3354       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3355 
3356       TYPE_FIELD_PRIVATE_BITS (type) =
3357 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3359 
3360       TYPE_FIELD_PROTECTED_BITS (type) =
3361 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3363 
3364       TYPE_FIELD_IGNORE_BITS (type) =
3365 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3366       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3367     }
3368 
3369   /* Copy the saved-up fields into the field vector.  Start from the
3370      head of the list, adding to the tail of the field array, so that
3371      they end up in the same order in the array in which they were
3372      added to the list.  */
3373 
3374   while (nfields-- > 0)
3375     {
3376       TYPE_FIELD (type, nfields) = fip->list->field;
3377       switch (fip->list->visibility)
3378 	{
3379 	case VISIBILITY_PRIVATE:
3380 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3381 	  break;
3382 
3383 	case VISIBILITY_PROTECTED:
3384 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3385 	  break;
3386 
3387 	case VISIBILITY_IGNORE:
3388 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3389 	  break;
3390 
3391 	case VISIBILITY_PUBLIC:
3392 	  break;
3393 
3394 	default:
3395 	  /* Unknown visibility.  Complain and treat it as public.  */
3396 	  {
3397 	    complaint (&symfile_complaints,
3398 		       _("Unknown visibility `%c' for field"),
3399 		       fip->list->visibility);
3400 	  }
3401 	  break;
3402 	}
3403       fip->list = fip->list->next;
3404     }
3405   return 1;
3406 }
3407 
3408 
3409 /* Complain that the compiler has emitted more than one definition for the
3410    structure type TYPE.  */
3411 static void
3412 complain_about_struct_wipeout (struct type *type)
3413 {
3414   const char *name = "";
3415   const char *kind = "";
3416 
3417   if (TYPE_TAG_NAME (type))
3418     {
3419       name = TYPE_TAG_NAME (type);
3420       switch (TYPE_CODE (type))
3421         {
3422         case TYPE_CODE_STRUCT: kind = "struct "; break;
3423         case TYPE_CODE_UNION:  kind = "union ";  break;
3424         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3425         default: kind = "";
3426         }
3427     }
3428   else if (TYPE_NAME (type))
3429     {
3430       name = TYPE_NAME (type);
3431       kind = "";
3432     }
3433   else
3434     {
3435       name = "<unknown>";
3436       kind = "";
3437     }
3438 
3439   complaint (&symfile_complaints,
3440 	     _("struct/union type gets multiply defined: %s%s"), kind, name);
3441 }
3442 
3443 /* Set the length for all variants of a same main_type, which are
3444    connected in the closed chain.
3445 
3446    This is something that needs to be done when a type is defined *after*
3447    some cross references to this type have already been read.  Consider
3448    for instance the following scenario where we have the following two
3449    stabs entries:
3450 
3451         .stabs  "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3452         .stabs  "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3453 
3454    A stubbed version of type dummy is created while processing the first
3455    stabs entry.  The length of that type is initially set to zero, since
3456    it is unknown at this point.  Also, a "constant" variation of type
3457    "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3458    the stabs line).
3459 
3460    The second stabs entry allows us to replace the stubbed definition
3461    with the real definition.  However, we still need to adjust the length
3462    of the "constant" variation of that type, as its length was left
3463    untouched during the main type replacement...  */
3464 
3465 static void
3466 set_length_in_type_chain (struct type *type)
3467 {
3468   struct type *ntype = TYPE_CHAIN (type);
3469 
3470   while (ntype != type)
3471     {
3472       if (TYPE_LENGTH(ntype) == 0)
3473 	TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3474       else
3475         complain_about_struct_wipeout (ntype);
3476       ntype = TYPE_CHAIN (ntype);
3477     }
3478 }
3479 
3480 /* Read the description of a structure (or union type) and return an object
3481    describing the type.
3482 
3483    PP points to a character pointer that points to the next unconsumed token
3484    in the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3485    *PP will point to "4a:1,0,32;;".
3486 
3487    TYPE points to an incomplete type that needs to be filled in.
3488 
3489    OBJFILE points to the current objfile from which the stabs information is
3490    being read.  (Note that it is redundant in that TYPE also contains a pointer
3491    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3492  */
3493 
3494 static struct type *
3495 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3496                   struct objfile *objfile)
3497 {
3498   struct cleanup *back_to;
3499   struct field_info fi;
3500 
3501   fi.list = NULL;
3502   fi.fnlist = NULL;
3503 
3504   /* When describing struct/union/class types in stabs, G++ always drops
3505      all qualifications from the name.  So if you've got:
3506        struct A { ... struct B { ... }; ... };
3507      then G++ will emit stabs for `struct A::B' that call it simply
3508      `struct B'.  Obviously, if you've got a real top-level definition for
3509      `struct B', or other nested definitions, this is going to cause
3510      problems.
3511 
3512      Obviously, GDB can't fix this by itself, but it can at least avoid
3513      scribbling on existing structure type objects when new definitions
3514      appear.  */
3515   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3516          || TYPE_STUB (type)))
3517     {
3518       complain_about_struct_wipeout (type);
3519 
3520       /* It's probably best to return the type unchanged.  */
3521       return type;
3522     }
3523 
3524   back_to = make_cleanup (null_cleanup, 0);
3525 
3526   INIT_CPLUS_SPECIFIC (type);
3527   TYPE_CODE (type) = type_code;
3528   TYPE_STUB (type) = 0;
3529 
3530   /* First comes the total size in bytes.  */
3531 
3532   {
3533     int nbits;
3534 
3535     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3536     if (nbits != 0)
3537       return error_type (pp, objfile);
3538     set_length_in_type_chain (type);
3539   }
3540 
3541   /* Now read the baseclasses, if any, read the regular C struct or C++
3542      class member fields, attach the fields to the type, read the C++
3543      member functions, attach them to the type, and then read any tilde
3544      field (baseclass specifier for the class holding the main vtable).  */
3545 
3546   if (!read_baseclasses (&fi, pp, type, objfile)
3547       || !read_struct_fields (&fi, pp, type, objfile)
3548       || !attach_fields_to_type (&fi, type, objfile)
3549       || !read_member_functions (&fi, pp, type, objfile)
3550       || !attach_fn_fields_to_type (&fi, type)
3551       || !read_tilde_fields (&fi, pp, type, objfile))
3552     {
3553       type = error_type (pp, objfile);
3554     }
3555 
3556   do_cleanups (back_to);
3557   return (type);
3558 }
3559 
3560 /* Read a definition of an array type,
3561    and create and return a suitable type object.
3562    Also creates a range type which represents the bounds of that
3563    array.  */
3564 
3565 static struct type *
3566 read_array_type (char **pp, struct type *type,
3567 		 struct objfile *objfile)
3568 {
3569   struct type *index_type, *element_type, *range_type;
3570   int lower, upper;
3571   int adjustable = 0;
3572   int nbits;
3573 
3574   /* Format of an array type:
3575      "ar<index type>;lower;upper;<array_contents_type>".
3576      OS9000: "arlower,upper;<array_contents_type>".
3577 
3578      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3579      for these, produce a type like float[][].  */
3580 
3581     {
3582       index_type = read_type (pp, objfile);
3583       if (**pp != ';')
3584 	/* Improper format of array type decl.  */
3585 	return error_type (pp, objfile);
3586       ++*pp;
3587     }
3588 
3589   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3590     {
3591       (*pp)++;
3592       adjustable = 1;
3593     }
3594   lower = read_huge_number (pp, ';', &nbits, 0);
3595 
3596   if (nbits != 0)
3597     return error_type (pp, objfile);
3598 
3599   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3600     {
3601       (*pp)++;
3602       adjustable = 1;
3603     }
3604   upper = read_huge_number (pp, ';', &nbits, 0);
3605   if (nbits != 0)
3606     return error_type (pp, objfile);
3607 
3608   element_type = read_type (pp, objfile);
3609 
3610   if (adjustable)
3611     {
3612       lower = 0;
3613       upper = -1;
3614     }
3615 
3616   range_type =
3617     create_range_type ((struct type *) NULL, index_type, lower, upper);
3618   type = create_array_type (type, element_type, range_type);
3619 
3620   return type;
3621 }
3622 
3623 
3624 /* Read a definition of an enumeration type,
3625    and create and return a suitable type object.
3626    Also defines the symbols that represent the values of the type.  */
3627 
3628 static struct type *
3629 read_enum_type (char **pp, struct type *type,
3630 		struct objfile *objfile)
3631 {
3632   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3633   char *p;
3634   char *name;
3635   long n;
3636   struct symbol *sym;
3637   int nsyms = 0;
3638   struct pending **symlist;
3639   struct pending *osyms, *syms;
3640   int o_nsyms;
3641   int nbits;
3642   int unsigned_enum = 1;
3643 
3644 #if 0
3645   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3646      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3647      to do?  For now, force all enum values to file scope.  */
3648   if (within_function)
3649     symlist = &local_symbols;
3650   else
3651 #endif
3652     symlist = &file_symbols;
3653   osyms = *symlist;
3654   o_nsyms = osyms ? osyms->nsyms : 0;
3655 
3656   /* The aix4 compiler emits an extra field before the enum members;
3657      my guess is it's a type of some sort.  Just ignore it.  */
3658   if (**pp == '-')
3659     {
3660       /* Skip over the type.  */
3661       while (**pp != ':')
3662 	(*pp)++;
3663 
3664       /* Skip over the colon.  */
3665       (*pp)++;
3666     }
3667 
3668   /* Read the value-names and their values.
3669      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3670      A semicolon or comma instead of a NAME means the end.  */
3671   while (**pp && **pp != ';' && **pp != ',')
3672     {
3673       STABS_CONTINUE (pp, objfile);
3674       p = *pp;
3675       while (*p != ':')
3676 	p++;
3677       name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3678       *pp = p + 1;
3679       n = read_huge_number (pp, ',', &nbits, 0);
3680       if (nbits != 0)
3681 	return error_type (pp, objfile);
3682 
3683       sym = (struct symbol *)
3684 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3685       memset (sym, 0, sizeof (struct symbol));
3686       SYMBOL_SET_LINKAGE_NAME (sym, name);
3687       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3688       SYMBOL_CLASS (sym) = LOC_CONST;
3689       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3690       SYMBOL_VALUE (sym) = n;
3691       if (n < 0)
3692 	unsigned_enum = 0;
3693       add_symbol_to_list (sym, symlist);
3694       nsyms++;
3695     }
3696 
3697   if (**pp == ';')
3698     (*pp)++;			/* Skip the semicolon.  */
3699 
3700   /* Now fill in the fields of the type-structure.  */
3701 
3702   TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3703   set_length_in_type_chain (type);
3704   TYPE_CODE (type) = TYPE_CODE_ENUM;
3705   TYPE_STUB (type) = 0;
3706   if (unsigned_enum)
3707     TYPE_UNSIGNED (type) = 1;
3708   TYPE_NFIELDS (type) = nsyms;
3709   TYPE_FIELDS (type) = (struct field *)
3710     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712 
3713   /* Find the symbols for the values and put them into the type.
3714      The symbols can be found in the symlist that we put them on
3715      to cause them to be defined.  osyms contains the old value
3716      of that symlist; everything up to there was defined by us.  */
3717   /* Note that we preserve the order of the enum constants, so
3718      that in something like "enum {FOO, LAST_THING=FOO}" we print
3719      FOO, not LAST_THING.  */
3720 
3721   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722     {
3723       int last = syms == osyms ? o_nsyms : 0;
3724       int j = syms->nsyms;
3725 
3726       for (; --j >= last; --n)
3727 	{
3728 	  struct symbol *xsym = syms->symbol[j];
3729 
3730 	  SYMBOL_TYPE (xsym) = type;
3731 	  TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3732 	  SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3733 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3734 	}
3735       if (syms == osyms)
3736 	break;
3737     }
3738 
3739   return type;
3740 }
3741 
3742 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3743    typedefs in every file (for int, long, etc):
3744 
3745    type = b <signed> <width> <format type>; <offset>; <nbits>
3746    signed = u or s.
3747    optional format type = c or b for char or boolean.
3748    offset = offset from high order bit to start bit of type.
3749    width is # bytes in object of this type, nbits is # bits in type.
3750 
3751    The width/offset stuff appears to be for small objects stored in
3752    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3753    FIXME.  */
3754 
3755 static struct type *
3756 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3757 {
3758   int type_bits;
3759   int nbits;
3760   int signed_type;
3761   enum type_code code = TYPE_CODE_INT;
3762 
3763   switch (**pp)
3764     {
3765     case 's':
3766       signed_type = 1;
3767       break;
3768     case 'u':
3769       signed_type = 0;
3770       break;
3771     default:
3772       return error_type (pp, objfile);
3773     }
3774   (*pp)++;
3775 
3776   /* For some odd reason, all forms of char put a c here.  This is strange
3777      because no other type has this honor.  We can safely ignore this because
3778      we actually determine 'char'acterness by the number of bits specified in
3779      the descriptor.
3780      Boolean forms, e.g Fortran logical*X, put a b here.  */
3781 
3782   if (**pp == 'c')
3783     (*pp)++;
3784   else if (**pp == 'b')
3785     {
3786       code = TYPE_CODE_BOOL;
3787       (*pp)++;
3788     }
3789 
3790   /* The first number appears to be the number of bytes occupied
3791      by this type, except that unsigned short is 4 instead of 2.
3792      Since this information is redundant with the third number,
3793      we will ignore it.  */
3794   read_huge_number (pp, ';', &nbits, 0);
3795   if (nbits != 0)
3796     return error_type (pp, objfile);
3797 
3798   /* The second number is always 0, so ignore it too.  */
3799   read_huge_number (pp, ';', &nbits, 0);
3800   if (nbits != 0)
3801     return error_type (pp, objfile);
3802 
3803   /* The third number is the number of bits for this type.  */
3804   type_bits = read_huge_number (pp, 0, &nbits, 0);
3805   if (nbits != 0)
3806     return error_type (pp, objfile);
3807   /* The type *should* end with a semicolon.  If it are embedded
3808      in a larger type the semicolon may be the only way to know where
3809      the type ends.  If this type is at the end of the stabstring we
3810      can deal with the omitted semicolon (but we don't have to like
3811      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3812      for "void".  */
3813   if (**pp == ';')
3814     ++(*pp);
3815 
3816   if (type_bits == 0)
3817     return init_type (TYPE_CODE_VOID, 1,
3818 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3819 		      objfile);
3820   else
3821     return init_type (code,
3822 		      type_bits / TARGET_CHAR_BIT,
3823 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3824 		      objfile);
3825 }
3826 
3827 static struct type *
3828 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3829 {
3830   int nbits;
3831   int details;
3832   int nbytes;
3833   struct type *rettype;
3834 
3835   /* The first number has more details about the type, for example
3836      FN_COMPLEX.  */
3837   details = read_huge_number (pp, ';', &nbits, 0);
3838   if (nbits != 0)
3839     return error_type (pp, objfile);
3840 
3841   /* The second number is the number of bytes occupied by this type.  */
3842   nbytes = read_huge_number (pp, ';', &nbits, 0);
3843   if (nbits != 0)
3844     return error_type (pp, objfile);
3845 
3846   if (details == NF_COMPLEX || details == NF_COMPLEX16
3847       || details == NF_COMPLEX32)
3848     {
3849       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3850       TYPE_TARGET_TYPE (rettype)
3851 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3852       return rettype;
3853     }
3854 
3855   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3856 }
3857 
3858 /* Read a number from the string pointed to by *PP.
3859    The value of *PP is advanced over the number.
3860    If END is nonzero, the character that ends the
3861    number must match END, or an error happens;
3862    and that character is skipped if it does match.
3863    If END is zero, *PP is left pointing to that character.
3864 
3865    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3866    the number is represented in an octal representation, assume that
3867    it is represented in a 2's complement representation with a size of
3868    TWOS_COMPLEMENT_BITS.
3869 
3870    If the number fits in a long, set *BITS to 0 and return the value.
3871    If not, set *BITS to be the number of bits in the number and return 0.
3872 
3873    If encounter garbage, set *BITS to -1 and return 0.  */
3874 
3875 static long
3876 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3877 {
3878   char *p = *pp;
3879   int sign = 1;
3880   int sign_bit = 0;
3881   long n = 0;
3882   int radix = 10;
3883   char overflow = 0;
3884   int nbits = 0;
3885   int c;
3886   long upper_limit;
3887   int twos_complement_representation = 0;
3888 
3889   if (*p == '-')
3890     {
3891       sign = -1;
3892       p++;
3893     }
3894 
3895   /* Leading zero means octal.  GCC uses this to output values larger
3896      than an int (because that would be hard in decimal).  */
3897   if (*p == '0')
3898     {
3899       radix = 8;
3900       p++;
3901     }
3902 
3903   /* Skip extra zeros.  */
3904   while (*p == '0')
3905     p++;
3906 
3907   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908     {
3909       /* Octal, possibly signed.  Check if we have enough chars for a
3910 	 negative number.  */
3911 
3912       size_t len;
3913       char *p1 = p;
3914 
3915       while ((c = *p1) >= '0' && c < '8')
3916 	p1++;
3917 
3918       len = p1 - p;
3919       if (len > twos_complement_bits / 3
3920 	  || (twos_complement_bits % 3 == 0
3921 	      && len == twos_complement_bits / 3))
3922 	{
3923 	  /* Ok, we have enough characters for a signed value, check
3924 	     for signness by testing if the sign bit is set.  */
3925 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 	  c = *p - '0';
3927 	  if (c & (1 << sign_bit))
3928 	    {
3929 	      /* Definitely signed.  */
3930 	      twos_complement_representation = 1;
3931 	      sign = -1;
3932 	    }
3933 	}
3934     }
3935 
3936   upper_limit = LONG_MAX / radix;
3937 
3938   while ((c = *p++) >= '0' && c < ('0' + radix))
3939     {
3940       if (n <= upper_limit)
3941         {
3942           if (twos_complement_representation)
3943             {
3944 	      /* Octal, signed, twos complement representation.  In
3945 		 this case, n is the corresponding absolute value.  */
3946 	      if (n == 0)
3947 		{
3948 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3949 
3950 		  n = -sn;
3951 		}
3952               else
3953                 {
3954                   n *= radix;
3955                   n -= c - '0';
3956                 }
3957             }
3958           else
3959             {
3960               /* unsigned representation */
3961               n *= radix;
3962               n += c - '0';		/* FIXME this overflows anyway.  */
3963             }
3964         }
3965       else
3966         overflow = 1;
3967 
3968       /* This depends on large values being output in octal, which is
3969          what GCC does.  */
3970       if (radix == 8)
3971 	{
3972 	  if (nbits == 0)
3973 	    {
3974 	      if (c == '0')
3975 		/* Ignore leading zeroes.  */
3976 		;
3977 	      else if (c == '1')
3978 		nbits = 1;
3979 	      else if (c == '2' || c == '3')
3980 		nbits = 2;
3981 	      else
3982 		nbits = 3;
3983 	    }
3984 	  else
3985 	    nbits += 3;
3986 	}
3987     }
3988   if (end)
3989     {
3990       if (c && c != end)
3991 	{
3992 	  if (bits != NULL)
3993 	    *bits = -1;
3994 	  return 0;
3995 	}
3996     }
3997   else
3998     --p;
3999 
4000   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001     {
4002       /* We were supposed to parse a number with maximum
4003 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
4004       if (bits != NULL)
4005 	*bits = -1;
4006       return 0;
4007     }
4008 
4009   *pp = p;
4010   if (overflow)
4011     {
4012       if (nbits == 0)
4013 	{
4014 	  /* Large decimal constants are an error (because it is hard to
4015 	     count how many bits are in them).  */
4016 	  if (bits != NULL)
4017 	    *bits = -1;
4018 	  return 0;
4019 	}
4020 
4021       /* -0x7f is the same as 0x80.  So deal with it by adding one to
4022          the number of bits.  Two's complement represention octals
4023          can't have a '-' in front.  */
4024       if (sign == -1 && !twos_complement_representation)
4025 	++nbits;
4026       if (bits)
4027 	*bits = nbits;
4028     }
4029   else
4030     {
4031       if (bits)
4032 	*bits = 0;
4033       return n * sign;
4034     }
4035   /* It's *BITS which has the interesting information.  */
4036   return 0;
4037 }
4038 
4039 static struct type *
4040 read_range_type (char **pp, int typenums[2], int type_size,
4041                  struct objfile *objfile)
4042 {
4043   struct gdbarch *gdbarch = get_objfile_arch (objfile);
4044   char *orig_pp = *pp;
4045   int rangenums[2];
4046   long n2, n3;
4047   int n2bits, n3bits;
4048   int self_subrange;
4049   struct type *result_type;
4050   struct type *index_type = NULL;
4051 
4052   /* First comes a type we are a subrange of.
4053      In C it is usually 0, 1 or the type being defined.  */
4054   if (read_type_number (pp, rangenums) != 0)
4055     return error_type (pp, objfile);
4056   self_subrange = (rangenums[0] == typenums[0] &&
4057 		   rangenums[1] == typenums[1]);
4058 
4059   if (**pp == '=')
4060     {
4061       *pp = orig_pp;
4062       index_type = read_type (pp, objfile);
4063     }
4064 
4065   /* A semicolon should now follow; skip it.  */
4066   if (**pp == ';')
4067     (*pp)++;
4068 
4069   /* The remaining two operands are usually lower and upper bounds
4070      of the range.  But in some special cases they mean something else.  */
4071   n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072   n3 = read_huge_number (pp, ';', &n3bits, type_size);
4073 
4074   if (n2bits == -1 || n3bits == -1)
4075     return error_type (pp, objfile);
4076 
4077   if (index_type)
4078     goto handle_true_range;
4079 
4080   /* If limits are huge, must be large integral type.  */
4081   if (n2bits != 0 || n3bits != 0)
4082     {
4083       char got_signed = 0;
4084       char got_unsigned = 0;
4085       /* Number of bits in the type.  */
4086       int nbits = 0;
4087 
4088       /* If a type size attribute has been specified, the bounds of
4089          the range should fit in this size.  If the lower bounds needs
4090          more bits than the upper bound, then the type is signed.  */
4091       if (n2bits <= type_size && n3bits <= type_size)
4092         {
4093           if (n2bits == type_size && n2bits > n3bits)
4094             got_signed = 1;
4095           else
4096             got_unsigned = 1;
4097           nbits = type_size;
4098         }
4099       /* Range from 0 to <large number> is an unsigned large integral type.  */
4100       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4101 	{
4102 	  got_unsigned = 1;
4103 	  nbits = n3bits;
4104 	}
4105       /* Range from <large number> to <large number>-1 is a large signed
4106          integral type.  Take care of the case where <large number> doesn't
4107          fit in a long but <large number>-1 does.  */
4108       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 	       || (n2bits != 0 && n3bits == 0
4110 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 		   && n3 == LONG_MAX))
4112 	{
4113 	  got_signed = 1;
4114 	  nbits = n2bits;
4115 	}
4116 
4117       if (got_signed || got_unsigned)
4118 	{
4119 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4120 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4121 			    objfile);
4122 	}
4123       else
4124 	return error_type (pp, objfile);
4125     }
4126 
4127   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
4128   if (self_subrange && n2 == 0 && n3 == 0)
4129     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4130 
4131   /* If n3 is zero and n2 is positive, we want a floating type, and n2
4132      is the width in bytes.
4133 
4134      Fortran programs appear to use this for complex types also.  To
4135      distinguish between floats and complex, g77 (and others?)  seem
4136      to use self-subranges for the complexes, and subranges of int for
4137      the floats.
4138 
4139      Also note that for complexes, g77 sets n2 to the size of one of
4140      the member floats, not the whole complex beast.  My guess is that
4141      this was to work well with pre-COMPLEX versions of gdb.  */
4142 
4143   if (n3 == 0 && n2 > 0)
4144     {
4145       struct type *float_type
4146 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4147 
4148       if (self_subrange)
4149 	{
4150 	  struct type *complex_type =
4151 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4152 
4153 	  TYPE_TARGET_TYPE (complex_type) = float_type;
4154 	  return complex_type;
4155 	}
4156       else
4157 	return float_type;
4158     }
4159 
4160   /* If the upper bound is -1, it must really be an unsigned integral.  */
4161 
4162   else if (n2 == 0 && n3 == -1)
4163     {
4164       int bits = type_size;
4165 
4166       if (bits <= 0)
4167 	{
4168 	  /* We don't know its size.  It is unsigned int or unsigned
4169 	     long.  GCC 2.3.3 uses this for long long too, but that is
4170 	     just a GDB 3.5 compatibility hack.  */
4171 	  bits = gdbarch_int_bit (gdbarch);
4172 	}
4173 
4174       return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4175 			TYPE_FLAG_UNSIGNED, NULL, objfile);
4176     }
4177 
4178   /* Special case: char is defined (Who knows why) as a subrange of
4179      itself with range 0-127.  */
4180   else if (self_subrange && n2 == 0 && n3 == 127)
4181     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4182 
4183   /* We used to do this only for subrange of self or subrange of int.  */
4184   else if (n2 == 0)
4185     {
4186       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4187          "unsigned long", and we already checked for that,
4188          so don't need to test for it here.  */
4189 
4190       if (n3 < 0)
4191 	/* n3 actually gives the size.  */
4192 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4193 			  NULL, objfile);
4194 
4195       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4196          unsigned n-byte integer.  But do require n to be a power of
4197          two; we don't want 3- and 5-byte integers flying around.  */
4198       {
4199 	int bytes;
4200 	unsigned long bits;
4201 
4202 	bits = n3;
4203 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4204 	  bits >>= 8;
4205 	if (bits == 0
4206 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4207 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4208 			    objfile);
4209       }
4210     }
4211   /* I think this is for Convex "long long".  Since I don't know whether
4212      Convex sets self_subrange, I also accept that particular size regardless
4213      of self_subrange.  */
4214   else if (n3 == 0 && n2 < 0
4215 	   && (self_subrange
4216 	       || n2 == -gdbarch_long_long_bit
4217 			  (gdbarch) / TARGET_CHAR_BIT))
4218     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4219   else if (n2 == -n3 - 1)
4220     {
4221       if (n3 == 0x7f)
4222 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4223       if (n3 == 0x7fff)
4224 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4225       if (n3 == 0x7fffffff)
4226 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4227     }
4228 
4229   /* We have a real range type on our hands.  Allocate space and
4230      return a real pointer.  */
4231 handle_true_range:
4232 
4233   if (self_subrange)
4234     index_type = objfile_type (objfile)->builtin_int;
4235   else
4236     index_type = *dbx_lookup_type (rangenums, objfile);
4237   if (index_type == NULL)
4238     {
4239       /* Does this actually ever happen?  Is that why we are worrying
4240          about dealing with it rather than just calling error_type?  */
4241 
4242       complaint (&symfile_complaints,
4243 		 _("base type %d of range type is not defined"), rangenums[1]);
4244 
4245       index_type = objfile_type (objfile)->builtin_int;
4246     }
4247 
4248   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4249   return (result_type);
4250 }
4251 
4252 /* Read in an argument list.  This is a list of types, separated by commas
4253    and terminated with END.  Return the list of types read in, or NULL
4254    if there is an error.  */
4255 
4256 static struct field *
4257 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4258 	   int *varargsp)
4259 {
4260   /* FIXME!  Remove this arbitrary limit!  */
4261   struct type *types[1024];	/* Allow for fns of 1023 parameters.  */
4262   int n = 0, i;
4263   struct field *rval;
4264 
4265   while (**pp != end)
4266     {
4267       if (**pp != ',')
4268 	/* Invalid argument list: no ','.  */
4269 	return NULL;
4270       (*pp)++;
4271       STABS_CONTINUE (pp, objfile);
4272       types[n++] = read_type (pp, objfile);
4273     }
4274   (*pp)++;			/* get past `end' (the ':' character).  */
4275 
4276   if (n == 0)
4277     {
4278       /* We should read at least the THIS parameter here.  Some broken stabs
4279 	 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4280 	 have been present ";-16,(0,43)" reference instead.  This way the
4281 	 excessive ";" marker prematurely stops the parameters parsing.  */
4282 
4283       complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4284       *varargsp = 0;
4285     }
4286   else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4287     *varargsp = 1;
4288   else
4289     {
4290       n--;
4291       *varargsp = 0;
4292     }
4293 
4294   rval = (struct field *) xmalloc (n * sizeof (struct field));
4295   memset (rval, 0, n * sizeof (struct field));
4296   for (i = 0; i < n; i++)
4297     rval[i].type = types[i];
4298   *nargsp = n;
4299   return rval;
4300 }
4301 
4302 /* Common block handling.  */
4303 
4304 /* List of symbols declared since the last BCOMM.  This list is a tail
4305    of local_symbols.  When ECOMM is seen, the symbols on the list
4306    are noted so their proper addresses can be filled in later,
4307    using the common block base address gotten from the assembler
4308    stabs.  */
4309 
4310 static struct pending *common_block;
4311 static int common_block_i;
4312 
4313 /* Name of the current common block.  We get it from the BCOMM instead of the
4314    ECOMM to match IBM documentation (even though IBM puts the name both places
4315    like everyone else).  */
4316 static char *common_block_name;
4317 
4318 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4319    to remain after this function returns.  */
4320 
4321 void
4322 common_block_start (char *name, struct objfile *objfile)
4323 {
4324   if (common_block_name != NULL)
4325     {
4326       complaint (&symfile_complaints,
4327 		 _("Invalid symbol data: common block within common block"));
4328     }
4329   common_block = local_symbols;
4330   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4331   common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4332 				     name, strlen (name));
4333 }
4334 
4335 /* Process a N_ECOMM symbol.  */
4336 
4337 void
4338 common_block_end (struct objfile *objfile)
4339 {
4340   /* Symbols declared since the BCOMM are to have the common block
4341      start address added in when we know it.  common_block and
4342      common_block_i point to the first symbol after the BCOMM in
4343      the local_symbols list; copy the list and hang it off the
4344      symbol for the common block name for later fixup.  */
4345   int i;
4346   struct symbol *sym;
4347   struct pending *new = 0;
4348   struct pending *next;
4349   int j;
4350 
4351   if (common_block_name == NULL)
4352     {
4353       complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4354       return;
4355     }
4356 
4357   sym = (struct symbol *)
4358     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4359   memset (sym, 0, sizeof (struct symbol));
4360   /* Note: common_block_name already saved on objfile_obstack.  */
4361   SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4362   SYMBOL_CLASS (sym) = LOC_BLOCK;
4363 
4364   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4365 
4366   /* Copy all the struct pendings before common_block.  */
4367   for (next = local_symbols;
4368        next != NULL && next != common_block;
4369        next = next->next)
4370     {
4371       for (j = 0; j < next->nsyms; j++)
4372 	add_symbol_to_list (next->symbol[j], &new);
4373     }
4374 
4375   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4376      NULL, it means copy all the local symbols (which we already did
4377      above).  */
4378 
4379   if (common_block != NULL)
4380     for (j = common_block_i; j < common_block->nsyms; j++)
4381       add_symbol_to_list (common_block->symbol[j], &new);
4382 
4383   SYMBOL_TYPE (sym) = (struct type *) new;
4384 
4385   /* Should we be putting local_symbols back to what it was?
4386      Does it matter?  */
4387 
4388   i = hashname (SYMBOL_LINKAGE_NAME (sym));
4389   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4390   global_sym_chain[i] = sym;
4391   common_block_name = NULL;
4392 }
4393 
4394 /* Add a common block's start address to the offset of each symbol
4395    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4396    the common block name).  */
4397 
4398 static void
4399 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4400 {
4401   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4402 
4403   for (; next; next = next->next)
4404     {
4405       int j;
4406 
4407       for (j = next->nsyms - 1; j >= 0; j--)
4408 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4409     }
4410 }
4411 
4412 
4413 
4414 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4415    See add_undefined_type for more details.  */
4416 
4417 static void
4418 add_undefined_type_noname (struct type *type, int typenums[2])
4419 {
4420   struct nat nat;
4421 
4422   nat.typenums[0] = typenums [0];
4423   nat.typenums[1] = typenums [1];
4424   nat.type = type;
4425 
4426   if (noname_undefs_length == noname_undefs_allocated)
4427     {
4428       noname_undefs_allocated *= 2;
4429       noname_undefs = (struct nat *)
4430 	xrealloc ((char *) noname_undefs,
4431 		  noname_undefs_allocated * sizeof (struct nat));
4432     }
4433   noname_undefs[noname_undefs_length++] = nat;
4434 }
4435 
4436 /* Add TYPE to the UNDEF_TYPES vector.
4437    See add_undefined_type for more details.  */
4438 
4439 static void
4440 add_undefined_type_1 (struct type *type)
4441 {
4442   if (undef_types_length == undef_types_allocated)
4443     {
4444       undef_types_allocated *= 2;
4445       undef_types = (struct type **)
4446 	xrealloc ((char *) undef_types,
4447 		  undef_types_allocated * sizeof (struct type *));
4448     }
4449   undef_types[undef_types_length++] = type;
4450 }
4451 
4452 /* What about types defined as forward references inside of a small lexical
4453    scope?  */
4454 /* Add a type to the list of undefined types to be checked through
4455    once this file has been read in.
4456 
4457    In practice, we actually maintain two such lists: The first list
4458    (UNDEF_TYPES) is used for types whose name has been provided, and
4459    concerns forward references (eg 'xs' or 'xu' forward references);
4460    the second list (NONAME_UNDEFS) is used for types whose name is
4461    unknown at creation time, because they were referenced through
4462    their type number before the actual type was declared.
4463    This function actually adds the given type to the proper list.  */
4464 
4465 static void
4466 add_undefined_type (struct type *type, int typenums[2])
4467 {
4468   if (TYPE_TAG_NAME (type) == NULL)
4469     add_undefined_type_noname (type, typenums);
4470   else
4471     add_undefined_type_1 (type);
4472 }
4473 
4474 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4475 
4476 static void
4477 cleanup_undefined_types_noname (struct objfile *objfile)
4478 {
4479   int i;
4480 
4481   for (i = 0; i < noname_undefs_length; i++)
4482     {
4483       struct nat nat = noname_undefs[i];
4484       struct type **type;
4485 
4486       type = dbx_lookup_type (nat.typenums, objfile);
4487       if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4488         {
4489           /* The instance flags of the undefined type are still unset,
4490              and needs to be copied over from the reference type.
4491              Since replace_type expects them to be identical, we need
4492              to set these flags manually before hand.  */
4493           TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4494           replace_type (nat.type, *type);
4495         }
4496     }
4497 
4498   noname_undefs_length = 0;
4499 }
4500 
4501 /* Go through each undefined type, see if it's still undefined, and fix it
4502    up if possible.  We have two kinds of undefined types:
4503 
4504    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4505    Fix:  update array length using the element bounds
4506    and the target type's length.
4507    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4508    yet defined at the time a pointer to it was made.
4509    Fix:  Do a full lookup on the struct/union tag.  */
4510 
4511 static void
4512 cleanup_undefined_types_1 (void)
4513 {
4514   struct type **type;
4515 
4516   /* Iterate over every undefined type, and look for a symbol whose type
4517      matches our undefined type.  The symbol matches if:
4518        1. It is a typedef in the STRUCT domain;
4519        2. It has the same name, and same type code;
4520        3. The instance flags are identical.
4521 
4522      It is important to check the instance flags, because we have seen
4523      examples where the debug info contained definitions such as:
4524 
4525          "foo_t:t30=B31=xefoo_t:"
4526 
4527      In this case, we have created an undefined type named "foo_t" whose
4528      instance flags is null (when processing "xefoo_t"), and then created
4529      another type with the same name, but with different instance flags
4530      ('B' means volatile).  I think that the definition above is wrong,
4531      since the same type cannot be volatile and non-volatile at the same
4532      time, but we need to be able to cope with it when it happens.  The
4533      approach taken here is to treat these two types as different.  */
4534 
4535   for (type = undef_types; type < undef_types + undef_types_length; type++)
4536     {
4537       switch (TYPE_CODE (*type))
4538 	{
4539 
4540 	case TYPE_CODE_STRUCT:
4541 	case TYPE_CODE_UNION:
4542 	case TYPE_CODE_ENUM:
4543 	  {
4544 	    /* Check if it has been defined since.  Need to do this here
4545 	       as well as in check_typedef to deal with the (legitimate in
4546 	       C though not C++) case of several types with the same name
4547 	       in different source files.  */
4548 	    if (TYPE_STUB (*type))
4549 	      {
4550 		struct pending *ppt;
4551 		int i;
4552 		/* Name of the type, without "struct" or "union".  */
4553 		const char *typename = TYPE_TAG_NAME (*type);
4554 
4555 		if (typename == NULL)
4556 		  {
4557 		    complaint (&symfile_complaints, _("need a type name"));
4558 		    break;
4559 		  }
4560 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4561 		  {
4562 		    for (i = 0; i < ppt->nsyms; i++)
4563 		      {
4564 			struct symbol *sym = ppt->symbol[i];
4565 
4566 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4567 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4568 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4569 				TYPE_CODE (*type))
4570 			    && (TYPE_INSTANCE_FLAGS (*type) ==
4571 				TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4572 			    && strcmp (SYMBOL_LINKAGE_NAME (sym),
4573 				       typename) == 0)
4574                           replace_type (*type, SYMBOL_TYPE (sym));
4575 		      }
4576 		  }
4577 	      }
4578 	  }
4579 	  break;
4580 
4581 	default:
4582 	  {
4583 	    complaint (&symfile_complaints,
4584 		       _("forward-referenced types left unresolved, "
4585                        "type code %d."),
4586 		       TYPE_CODE (*type));
4587 	  }
4588 	  break;
4589 	}
4590     }
4591 
4592   undef_types_length = 0;
4593 }
4594 
4595 /* Try to fix all the undefined types we ecountered while processing
4596    this unit.  */
4597 
4598 void
4599 cleanup_undefined_stabs_types (struct objfile *objfile)
4600 {
4601   cleanup_undefined_types_1 ();
4602   cleanup_undefined_types_noname (objfile);
4603 }
4604 
4605 /* Scan through all of the global symbols defined in the object file,
4606    assigning values to the debugging symbols that need to be assigned
4607    to.  Get these symbols from the minimal symbol table.  */
4608 
4609 void
4610 scan_file_globals (struct objfile *objfile)
4611 {
4612   int hash;
4613   struct minimal_symbol *msymbol;
4614   struct symbol *sym, *prev;
4615   struct objfile *resolve_objfile;
4616 
4617   /* SVR4 based linkers copy referenced global symbols from shared
4618      libraries to the main executable.
4619      If we are scanning the symbols for a shared library, try to resolve
4620      them from the minimal symbols of the main executable first.  */
4621 
4622   if (symfile_objfile && objfile != symfile_objfile)
4623     resolve_objfile = symfile_objfile;
4624   else
4625     resolve_objfile = objfile;
4626 
4627   while (1)
4628     {
4629       /* Avoid expensive loop through all minimal symbols if there are
4630          no unresolved symbols.  */
4631       for (hash = 0; hash < HASHSIZE; hash++)
4632 	{
4633 	  if (global_sym_chain[hash])
4634 	    break;
4635 	}
4636       if (hash >= HASHSIZE)
4637 	return;
4638 
4639       ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4640 	{
4641 	  QUIT;
4642 
4643 	  /* Skip static symbols.  */
4644 	  switch (MSYMBOL_TYPE (msymbol))
4645 	    {
4646 	    case mst_file_text:
4647 	    case mst_file_data:
4648 	    case mst_file_bss:
4649 	      continue;
4650 	    default:
4651 	      break;
4652 	    }
4653 
4654 	  prev = NULL;
4655 
4656 	  /* Get the hash index and check all the symbols
4657 	     under that hash index.  */
4658 
4659 	  hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4660 
4661 	  for (sym = global_sym_chain[hash]; sym;)
4662 	    {
4663 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4664 			  SYMBOL_LINKAGE_NAME (sym)) == 0)
4665 		{
4666 		  /* Splice this symbol out of the hash chain and
4667 		     assign the value we have to it.  */
4668 		  if (prev)
4669 		    {
4670 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4671 		    }
4672 		  else
4673 		    {
4674 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4675 		    }
4676 
4677 		  /* Check to see whether we need to fix up a common block.  */
4678 		  /* Note: this code might be executed several times for
4679 		     the same symbol if there are multiple references.  */
4680 		  if (sym)
4681 		    {
4682 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4683 			{
4684 			  fix_common_block (sym,
4685 					    SYMBOL_VALUE_ADDRESS (msymbol));
4686 			}
4687 		      else
4688 			{
4689 			  SYMBOL_VALUE_ADDRESS (sym)
4690 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4691 			}
4692 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4693 		    }
4694 
4695 		  if (prev)
4696 		    {
4697 		      sym = SYMBOL_VALUE_CHAIN (prev);
4698 		    }
4699 		  else
4700 		    {
4701 		      sym = global_sym_chain[hash];
4702 		    }
4703 		}
4704 	      else
4705 		{
4706 		  prev = sym;
4707 		  sym = SYMBOL_VALUE_CHAIN (sym);
4708 		}
4709 	    }
4710 	}
4711       if (resolve_objfile == objfile)
4712 	break;
4713       resolve_objfile = objfile;
4714     }
4715 
4716   /* Change the storage class of any remaining unresolved globals to
4717      LOC_UNRESOLVED and remove them from the chain.  */
4718   for (hash = 0; hash < HASHSIZE; hash++)
4719     {
4720       sym = global_sym_chain[hash];
4721       while (sym)
4722 	{
4723 	  prev = sym;
4724 	  sym = SYMBOL_VALUE_CHAIN (sym);
4725 
4726 	  /* Change the symbol address from the misleading chain value
4727 	     to address zero.  */
4728 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4729 
4730 	  /* Complain about unresolved common block symbols.  */
4731 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4732 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4733 	  else
4734 	    complaint (&symfile_complaints,
4735 		       _("%s: common block `%s' from "
4736 			 "global_sym_chain unresolved"),
4737 		       objfile->name, SYMBOL_PRINT_NAME (prev));
4738 	}
4739     }
4740   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4741 }
4742 
4743 /* Initialize anything that needs initializing when starting to read
4744    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4745    to a psymtab.  */
4746 
4747 void
4748 stabsread_init (void)
4749 {
4750 }
4751 
4752 /* Initialize anything that needs initializing when a completely new
4753    symbol file is specified (not just adding some symbols from another
4754    file, e.g. a shared library).  */
4755 
4756 void
4757 stabsread_new_init (void)
4758 {
4759   /* Empty the hash table of global syms looking for values.  */
4760   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4761 }
4762 
4763 /* Initialize anything that needs initializing at the same time as
4764    start_symtab() is called.  */
4765 
4766 void
4767 start_stabs (void)
4768 {
4769   global_stabs = NULL;		/* AIX COFF */
4770   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4771   n_this_object_header_files = 1;
4772   type_vector_length = 0;
4773   type_vector = (struct type **) 0;
4774 
4775   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4776   common_block_name = NULL;
4777 }
4778 
4779 /* Call after end_symtab().  */
4780 
4781 void
4782 end_stabs (void)
4783 {
4784   if (type_vector)
4785     {
4786       xfree (type_vector);
4787     }
4788   type_vector = 0;
4789   type_vector_length = 0;
4790   previous_stab_code = 0;
4791 }
4792 
4793 void
4794 finish_global_stabs (struct objfile *objfile)
4795 {
4796   if (global_stabs)
4797     {
4798       patch_block_stabs (global_symbols, global_stabs, objfile);
4799       xfree (global_stabs);
4800       global_stabs = NULL;
4801     }
4802 }
4803 
4804 /* Find the end of the name, delimited by a ':', but don't match
4805    ObjC symbols which look like -[Foo bar::]:bla.  */
4806 static char *
4807 find_name_end (char *name)
4808 {
4809   char *s = name;
4810 
4811   if (s[0] == '-' || *s == '+')
4812     {
4813       /* Must be an ObjC method symbol.  */
4814       if (s[1] != '[')
4815 	{
4816 	  error (_("invalid symbol name \"%s\""), name);
4817 	}
4818       s = strchr (s, ']');
4819       if (s == NULL)
4820 	{
4821 	  error (_("invalid symbol name \"%s\""), name);
4822 	}
4823       return strchr (s, ':');
4824     }
4825   else
4826     {
4827       return strchr (s, ':');
4828     }
4829 }
4830 
4831 /* Initializer for this module.  */
4832 
4833 void
4834 _initialize_stabsread (void)
4835 {
4836   rs6000_builtin_type_data = register_objfile_data ();
4837 
4838   undef_types_allocated = 20;
4839   undef_types_length = 0;
4840   undef_types = (struct type **)
4841     xmalloc (undef_types_allocated * sizeof (struct type *));
4842 
4843   noname_undefs_allocated = 20;
4844   noname_undefs_length = 0;
4845   noname_undefs = (struct nat *)
4846     xmalloc (noname_undefs_allocated * sizeof (struct nat));
4847 }
4848