xref: /dragonfly/contrib/gdb-7/gdb/stabsread.c (revision e65bc1c3)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986-2012 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Support routines for reading and decoding debugging information in
21    the "stabs" format.  This format is used with many systems that use
22    the a.out object file format, as well as some systems that use
23    COFF or ELF where the stabs data is placed in a special section.
24    Avoid placing any object file format specific code in this file.  */
25 
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native.  */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48 
49 #include <ctype.h>
50 
51 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
52 #define	EXTERN
53 /**/
54 #include "stabsread.h"		/* Our own declarations */
55 #undef	EXTERN
56 
57 extern void _initialize_stabsread (void);
58 
59 /* The routines that read and process a complete stabs for a C struct or
60    C++ class pass lists of data member fields and lists of member function
61    fields in an instance of a field_info structure, as defined below.
62    This is part of some reorganization of low level C++ support and is
63    expected to eventually go away...  (FIXME) */
64 
65 struct field_info
66   {
67     struct nextfield
68       {
69 	struct nextfield *next;
70 
71 	/* This is the raw visibility from the stab.  It is not checked
72 	   for being one of the visibilities we recognize, so code which
73 	   examines this field better be able to deal.  */
74 	int visibility;
75 
76 	struct field field;
77       }
78      *list;
79     struct next_fnfieldlist
80       {
81 	struct next_fnfieldlist *next;
82 	struct fn_fieldlist fn_fieldlist;
83       }
84      *fnlist;
85   };
86 
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 		       struct type *, struct objfile *);
90 
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92 
93 static long read_huge_number (char **, int, int *, int);
94 
95 static struct type *error_type (char **, struct objfile *);
96 
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 		   struct objfile *);
100 
101 static void fix_common_block (struct symbol *, int);
102 
103 static int read_type_number (char **, int *);
104 
105 static struct type *read_type (char **, struct objfile *);
106 
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108 
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110 
111 static struct type *read_sun_floating_type (char **, int[2],
112 					    struct objfile *);
113 
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115 
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117 
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 		       struct objfile *);
121 
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 		    struct objfile *);
125 
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 		  struct objfile *);
129 
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 		   struct objfile *);
133 
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135 
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 				  struct objfile *);
138 
139 static struct type *read_struct_type (char **, struct type *,
140                                       enum type_code,
141 				      struct objfile *);
142 
143 static struct type *read_array_type (char **, struct type *,
144 				     struct objfile *);
145 
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147 
148 static void add_undefined_type (struct type *, int[2]);
149 
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 		 struct objfile *);
153 
154 static char *find_name_end (char *name);
155 
156 static int process_reference (char **string);
157 
158 void stabsread_clear_cache (void);
159 
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162 
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166   complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168 
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172   complaint (&symfile_complaints,
173 	     _("register number %d too large (max %d) in symbol %s"),
174              regnum, num_regs - 1, sym);
175 }
176 
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180   complaint (&symfile_complaints, "%s", arg1);
181 }
182 
183 /* Make a list of forward references which haven't been defined.  */
184 
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189 
190 /* Make a list of nameless types that are undefined.
191    This happens when another type is referenced by its number
192    before this type is actually defined.  For instance "t(0,1)=k(0,2)"
193    and type (0,2) is defined only later.  */
194 
195 struct nat
196 {
197   int typenums[2];
198   struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203 
204 /* Check for and handle cretinous stabs symbol name continuation!  */
205 #define STABS_CONTINUE(pp,objfile)				\
206   do {							\
207     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208       *(pp) = next_symbol_text (objfile);	\
209   } while (0)
210 
211 
212 /* Look up a dbx type-number pair.  Return the address of the slot
213    where the type for that number-pair is stored.
214    The number-pair is in TYPENUMS.
215 
216    This can be used for finding the type associated with that pair
217    or for associating a new type with the pair.  */
218 
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222   int filenum = typenums[0];
223   int index = typenums[1];
224   unsigned old_len;
225   int real_filenum;
226   struct header_file *f;
227   int f_orig_length;
228 
229   if (filenum == -1)		/* -1,-1 is for temporary types.  */
230     return 0;
231 
232   if (filenum < 0 || filenum >= n_this_object_header_files)
233     {
234       complaint (&symfile_complaints,
235 		 _("Invalid symbol data: type number "
236 		   "(%d,%d) out of range at symtab pos %d."),
237 		 filenum, index, symnum);
238       goto error_return;
239     }
240 
241   if (filenum == 0)
242     {
243       if (index < 0)
244 	{
245 	  /* Caller wants address of address of type.  We think
246 	     that negative (rs6k builtin) types will never appear as
247 	     "lvalues", (nor should they), so we stuff the real type
248 	     pointer into a temp, and return its address.  If referenced,
249 	     this will do the right thing.  */
250 	  static struct type *temp_type;
251 
252 	  temp_type = rs6000_builtin_type (index, objfile);
253 	  return &temp_type;
254 	}
255 
256       /* Type is defined outside of header files.
257          Find it in this object file's type vector.  */
258       if (index >= type_vector_length)
259 	{
260 	  old_len = type_vector_length;
261 	  if (old_len == 0)
262 	    {
263 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 	      type_vector = (struct type **)
265 		xmalloc (type_vector_length * sizeof (struct type *));
266 	    }
267 	  while (index >= type_vector_length)
268 	    {
269 	      type_vector_length *= 2;
270 	    }
271 	  type_vector = (struct type **)
272 	    xrealloc ((char *) type_vector,
273 		      (type_vector_length * sizeof (struct type *)));
274 	  memset (&type_vector[old_len], 0,
275 		  (type_vector_length - old_len) * sizeof (struct type *));
276 	}
277       return (&type_vector[index]);
278     }
279   else
280     {
281       real_filenum = this_object_header_files[filenum];
282 
283       if (real_filenum >= N_HEADER_FILES (objfile))
284 	{
285 	  static struct type *temp_type;
286 
287 	  warning (_("GDB internal error: bad real_filenum"));
288 
289 	error_return:
290 	  temp_type = objfile_type (objfile)->builtin_error;
291 	  return &temp_type;
292 	}
293 
294       f = HEADER_FILES (objfile) + real_filenum;
295 
296       f_orig_length = f->length;
297       if (index >= f_orig_length)
298 	{
299 	  while (index >= f->length)
300 	    {
301 	      f->length *= 2;
302 	    }
303 	  f->vector = (struct type **)
304 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 	  memset (&f->vector[f_orig_length], 0,
306 		  (f->length - f_orig_length) * sizeof (struct type *));
307 	}
308       return (&f->vector[index]);
309     }
310 }
311 
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313    and return the type object.
314    This can create an empty (zeroed) type object.
315    TYPENUMS may be (-1, -1) to return a new type object that is not
316    put into the type vector, and so may not be referred to by number.  */
317 
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321   struct type **type_addr;
322 
323   if (typenums[0] == -1)
324     {
325       return (alloc_type (objfile));
326     }
327 
328   type_addr = dbx_lookup_type (typenums, objfile);
329 
330   /* If we are referring to a type not known at all yet,
331      allocate an empty type for it.
332      We will fill it in later if we find out how.  */
333   if (*type_addr == 0)
334     {
335       *type_addr = alloc_type (objfile);
336     }
337 
338   return (*type_addr);
339 }
340 
341 /* for all the stabs in a given stab vector, build appropriate types
342    and fix their symbols in given symbol vector.  */
343 
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 		   struct objfile *objfile)
347 {
348   int ii;
349   char *name;
350   char *pp;
351   struct symbol *sym;
352 
353   if (stabs)
354     {
355       /* for all the stab entries, find their corresponding symbols and
356          patch their types!  */
357 
358       for (ii = 0; ii < stabs->count; ++ii)
359 	{
360 	  name = stabs->stab[ii];
361 	  pp = (char *) strchr (name, ':');
362 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
363 	  while (pp[1] == ':')
364 	    {
365 	      pp += 2;
366 	      pp = (char *) strchr (pp, ':');
367 	    }
368 	  sym = find_symbol_in_list (symbols, name, pp - name);
369 	  if (!sym)
370 	    {
371 	      /* FIXME-maybe: it would be nice if we noticed whether
372 	         the variable was defined *anywhere*, not just whether
373 	         it is defined in this compilation unit.  But neither
374 	         xlc or GCC seem to need such a definition, and until
375 	         we do psymtabs (so that the minimal symbols from all
376 	         compilation units are available now), I'm not sure
377 	         how to get the information.  */
378 
379 	      /* On xcoff, if a global is defined and never referenced,
380 	         ld will remove it from the executable.  There is then
381 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
382 	      sym = (struct symbol *)
383 		obstack_alloc (&objfile->objfile_obstack,
384 			       sizeof (struct symbol));
385 
386 	      memset (sym, 0, sizeof (struct symbol));
387 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 	      SYMBOL_SET_LINKAGE_NAME
390 		(sym, obsavestring (name, pp - name,
391 				    &objfile->objfile_obstack));
392 	      pp += 2;
393 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 		{
395 		  /* I don't think the linker does this with functions,
396 		     so as far as I know this is never executed.
397 		     But it doesn't hurt to check.  */
398 		  SYMBOL_TYPE (sym) =
399 		    lookup_function_type (read_type (&pp, objfile));
400 		}
401 	      else
402 		{
403 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 		}
405 	      add_symbol_to_list (sym, &global_symbols);
406 	    }
407 	  else
408 	    {
409 	      pp += 2;
410 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 		{
412 		  SYMBOL_TYPE (sym) =
413 		    lookup_function_type (read_type (&pp, objfile));
414 		}
415 	      else
416 		{
417 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 		}
419 	    }
420 	}
421     }
422 }
423 
424 
425 /* Read a number by which a type is referred to in dbx data,
426    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427    Just a single number N is equivalent to (0,N).
428    Return the two numbers by storing them in the vector TYPENUMS.
429    TYPENUMS will then be used as an argument to dbx_lookup_type.
430 
431    Returns 0 for success, -1 for error.  */
432 
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436   int nbits;
437 
438   if (**pp == '(')
439     {
440       (*pp)++;
441       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442       if (nbits != 0)
443 	return -1;
444       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445       if (nbits != 0)
446 	return -1;
447     }
448   else
449     {
450       typenums[0] = 0;
451       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452       if (nbits != 0)
453 	return -1;
454     }
455   return 0;
456 }
457 
458 
459 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
460 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
462 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
463 
464 /* Structure for storing pointers to reference definitions for fast lookup
465    during "process_later".  */
466 
467 struct ref_map
468 {
469   char *stabs;
470   CORE_ADDR value;
471   struct symbol *sym;
472 };
473 
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477 
478 static struct ref_map *ref_map;
479 
480 /* Ptr to free cell in chunk's linked list.  */
481 static int ref_count = 0;
482 
483 /* Number of chunks malloced.  */
484 static int ref_chunk = 0;
485 
486 /* This file maintains a cache of stabs aliases found in the symbol
487    table.  If the symbol table changes, this cache must be cleared
488    or we are left holding onto data in invalid obstacks.  */
489 void
490 stabsread_clear_cache (void)
491 {
492   ref_count = 0;
493   ref_chunk = 0;
494 }
495 
496 /* Create array of pointers mapping refids to symbols and stab strings.
497    Add pointers to reference definition symbols and/or their values as we
498    find them, using their reference numbers as our index.
499    These will be used later when we resolve references.  */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503   if (ref_count == 0)
504     ref_chunk = 0;
505   if (refnum >= ref_count)
506     ref_count = refnum + 1;
507   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508     {
509       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 
512       ref_map = (struct ref_map *)
513 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 	      new_chunks * REF_CHUNK_SIZE);
516       ref_chunk += new_chunks;
517     }
518   ref_map[refnum].stabs = stabs;
519   ref_map[refnum].sym = sym;
520   ref_map[refnum].value = value;
521 }
522 
523 /* Return defined sym for the reference REFNUM.  */
524 struct symbol *
525 ref_search (int refnum)
526 {
527   if (refnum < 0 || refnum > ref_count)
528     return 0;
529   return ref_map[refnum].sym;
530 }
531 
532 /* Parse a reference id in STRING and return the resulting
533    reference number.  Move STRING beyond the reference id.  */
534 
535 static int
536 process_reference (char **string)
537 {
538   char *p;
539   int refnum = 0;
540 
541   if (**string != '#')
542     return 0;
543 
544   /* Advance beyond the initial '#'.  */
545   p = *string + 1;
546 
547   /* Read number as reference id.  */
548   while (*p && isdigit (*p))
549     {
550       refnum = refnum * 10 + *p - '0';
551       p++;
552     }
553   *string = p;
554   return refnum;
555 }
556 
557 /* If STRING defines a reference, store away a pointer to the reference
558    definition for later use.  Return the reference number.  */
559 
560 int
561 symbol_reference_defined (char **string)
562 {
563   char *p = *string;
564   int refnum = 0;
565 
566   refnum = process_reference (&p);
567 
568   /* Defining symbols end in '='.  */
569   if (*p == '=')
570     {
571       /* Symbol is being defined here.  */
572       *string = p + 1;
573       return refnum;
574     }
575   else
576     {
577       /* Must be a reference.  Either the symbol has already been defined,
578          or this is a forward reference to it.  */
579       *string = p;
580       return -1;
581     }
582 }
583 
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587   int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588 
589   if (regno >= gdbarch_num_regs (gdbarch)
590 		+ gdbarch_num_pseudo_regs (gdbarch))
591     {
592       reg_value_complaint (regno,
593 			   gdbarch_num_regs (gdbarch)
594 			     + gdbarch_num_pseudo_regs (gdbarch),
595 			   SYMBOL_PRINT_NAME (sym));
596 
597       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless.  */
598     }
599 
600   return regno;
601 }
602 
603 static const struct symbol_register_ops stab_register_funcs = {
604   stab_reg_to_regnum
605 };
606 
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 	       struct objfile *objfile)
610 {
611   struct gdbarch *gdbarch = get_objfile_arch (objfile);
612   struct symbol *sym;
613   char *p = (char *) find_name_end (string);
614   int deftype;
615   int synonym = 0;
616   int i;
617   char *new_name = NULL;
618 
619   /* We would like to eliminate nameless symbols, but keep their types.
620      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621      to type 2, but, should not create a symbol to address that type.  Since
622      the symbol will be nameless, there is no way any user can refer to it.  */
623 
624   int nameless;
625 
626   /* Ignore syms with empty names.  */
627   if (string[0] == 0)
628     return 0;
629 
630   /* Ignore old-style symbols from cc -go.  */
631   if (p == 0)
632     return 0;
633 
634   while (p[1] == ':')
635     {
636       p += 2;
637       p = strchr (p, ':');
638       if (p == NULL)
639 	{
640 	  complaint (&symfile_complaints,
641 		     _("Bad stabs string '%s'"), string);
642 	  return NULL;
643 	}
644     }
645 
646   /* If a nameless stab entry, all we need is the type, not the symbol.
647      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
648   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
649 
650   current_symbol = sym = (struct symbol *)
651     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
652   memset (sym, 0, sizeof (struct symbol));
653 
654   switch (type & N_TYPE)
655     {
656     case N_TEXT:
657       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
658       break;
659     case N_DATA:
660       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
661       break;
662     case N_BSS:
663       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
664       break;
665     }
666 
667   if (processing_gcc_compilation)
668     {
669       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
670          number of bytes occupied by a type or object, which we ignore.  */
671       SYMBOL_LINE (sym) = desc;
672     }
673   else
674     {
675       SYMBOL_LINE (sym) = 0;	/* unknown */
676     }
677 
678   if (is_cplus_marker (string[0]))
679     {
680       /* Special GNU C++ names.  */
681       switch (string[1])
682 	{
683 	case 't':
684 	  SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 	  break;
686 
687 	case 'v':		/* $vtbl_ptr_type */
688 	  goto normal;
689 
690 	case 'e':
691 	  SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 	  break;
693 
694 	case '_':
695 	  /* This was an anonymous type that was never fixed up.  */
696 	  goto normal;
697 
698 	case 'X':
699 	  /* SunPRO (3.0 at least) static variable encoding.  */
700 	  if (gdbarch_static_transform_name_p (gdbarch))
701 	    goto normal;
702 	  /* ... fall through ...  */
703 
704 	default:
705 	  complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 		     string);
707 	  goto normal;		/* Do *something* with it.  */
708 	}
709     }
710   else
711     {
712     normal:
713       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
714       if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 	{
716 	  char *name = alloca (p - string + 1);
717 
718 	  memcpy (name, string, p - string);
719 	  name[p - string] = '\0';
720 	  new_name = cp_canonicalize_string (name);
721 	}
722       if (new_name != NULL)
723 	{
724 	  SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 	  xfree (new_name);
726 	}
727       else
728 	SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729 
730       if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 	cp_scan_for_anonymous_namespaces (sym, objfile);
732 
733     }
734   p++;
735 
736   /* Determine the type of name being defined.  */
737 #if 0
738   /* Getting GDB to correctly skip the symbol on an undefined symbol
739      descriptor and not ever dump core is a very dodgy proposition if
740      we do things this way.  I say the acorn RISC machine can just
741      fix their compiler.  */
742   /* The Acorn RISC machine's compiler can put out locals that don't
743      start with "234=" or "(3,4)=", so assume anything other than the
744      deftypes we know how to handle is a local.  */
745   if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747   if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749     deftype = 'l';
750   else
751     deftype = *p++;
752 
753   switch (deftype)
754     {
755     case 'c':
756       /* c is a special case, not followed by a type-number.
757          SYMBOL:c=iVALUE for an integer constant symbol.
758          SYMBOL:c=rVALUE for a floating constant symbol.
759          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760          e.g. "b:c=e6,0" for "const b = blob1"
761          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
762       if (*p != '=')
763 	{
764 	  SYMBOL_CLASS (sym) = LOC_CONST;
765 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 	  add_symbol_to_list (sym, &file_symbols);
768 	  return sym;
769 	}
770       ++p;
771       switch (*p++)
772 	{
773 	case 'r':
774 	  {
775 	    double d = atof (p);
776 	    gdb_byte *dbl_valu;
777 	    struct type *dbl_type;
778 
779 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
780 	       target arithmetic to get the value.  real.c in GCC
781 	       probably has the necessary code.  */
782 
783 	    dbl_type = objfile_type (objfile)->builtin_double;
784 	    dbl_valu =
785 	      obstack_alloc (&objfile->objfile_obstack,
786 			     TYPE_LENGTH (dbl_type));
787 	    store_typed_floating (dbl_valu, dbl_type, d);
788 
789 	    SYMBOL_TYPE (sym) = dbl_type;
790 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
792 	  }
793 	  break;
794 	case 'i':
795 	  {
796 	    /* Defining integer constants this way is kind of silly,
797 	       since 'e' constants allows the compiler to give not
798 	       only the value, but the type as well.  C has at least
799 	       int, long, unsigned int, and long long as constant
800 	       types; other languages probably should have at least
801 	       unsigned as well as signed constants.  */
802 
803 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 	    SYMBOL_VALUE (sym) = atoi (p);
805 	    SYMBOL_CLASS (sym) = LOC_CONST;
806 	  }
807 	  break;
808 
809 	case 'c':
810 	  {
811 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 	    SYMBOL_VALUE (sym) = atoi (p);
813 	    SYMBOL_CLASS (sym) = LOC_CONST;
814 	  }
815 	  break;
816 
817 	case 's':
818 	  {
819 	    struct type *range_type;
820 	    int ind = 0;
821 	    char quote = *p++;
822 	    gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 	    gdb_byte *string_value;
824 
825 	    if (quote != '\'' && quote != '"')
826 	      {
827 		SYMBOL_CLASS (sym) = LOC_CONST;
828 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 		add_symbol_to_list (sym, &file_symbols);
831 		return sym;
832 	      }
833 
834 	    /* Find matching quote, rejecting escaped quotes.  */
835 	    while (*p && *p != quote)
836 	      {
837 		if (*p == '\\' && p[1] == quote)
838 		  {
839 		    string_local[ind] = (gdb_byte) quote;
840 		    ind++;
841 		    p += 2;
842 		  }
843 		else if (*p)
844 		  {
845 		    string_local[ind] = (gdb_byte) (*p);
846 		    ind++;
847 		    p++;
848 		  }
849 	      }
850 	    if (*p != quote)
851 	      {
852 		SYMBOL_CLASS (sym) = LOC_CONST;
853 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 		add_symbol_to_list (sym, &file_symbols);
856 		return sym;
857 	      }
858 
859 	    /* NULL terminate the string.  */
860 	    string_local[ind] = 0;
861 	    range_type
862 	      = create_range_type (NULL,
863 				   objfile_type (objfile)->builtin_int,
864 				   0, ind);
865 	    SYMBOL_TYPE (sym) = create_array_type (NULL,
866 				  objfile_type (objfile)->builtin_char,
867 				  range_type);
868 	    string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 	    memcpy (string_value, string_local, ind + 1);
870 	    p++;
871 
872 	    SYMBOL_VALUE_BYTES (sym) = string_value;
873 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
874 	  }
875 	  break;
876 
877 	case 'e':
878 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 	     can be represented as integral.
880 	     e.g. "b:c=e6,0" for "const b = blob1"
881 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
882 	  {
883 	    SYMBOL_CLASS (sym) = LOC_CONST;
884 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
885 
886 	    if (*p != ',')
887 	      {
888 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 		break;
890 	      }
891 	    ++p;
892 
893 	    /* If the value is too big to fit in an int (perhaps because
894 	       it is unsigned), or something like that, we silently get
895 	       a bogus value.  The type and everything else about it is
896 	       correct.  Ideally, we should be using whatever we have
897 	       available for parsing unsigned and long long values,
898 	       however.  */
899 	    SYMBOL_VALUE (sym) = atoi (p);
900 	  }
901 	  break;
902 	default:
903 	  {
904 	    SYMBOL_CLASS (sym) = LOC_CONST;
905 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 	  }
907 	}
908       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909       add_symbol_to_list (sym, &file_symbols);
910       return sym;
911 
912     case 'C':
913       /* The name of a caught exception.  */
914       SYMBOL_TYPE (sym) = read_type (&p, objfile);
915       SYMBOL_CLASS (sym) = LOC_LABEL;
916       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917       SYMBOL_VALUE_ADDRESS (sym) = valu;
918       add_symbol_to_list (sym, &local_symbols);
919       break;
920 
921     case 'f':
922       /* A static function definition.  */
923       SYMBOL_TYPE (sym) = read_type (&p, objfile);
924       SYMBOL_CLASS (sym) = LOC_BLOCK;
925       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926       add_symbol_to_list (sym, &file_symbols);
927       /* fall into process_function_types.  */
928 
929     process_function_types:
930       /* Function result types are described as the result type in stabs.
931          We need to convert this to the function-returning-type-X type
932          in GDB.  E.g. "int" is converted to "function returning int".  */
933       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935 
936       /* All functions in C++ have prototypes.  Stabs does not offer an
937          explicit way to identify prototyped or unprototyped functions,
938          but both GCC and Sun CC emit stabs for the "call-as" type rather
939          than the "declared-as" type for unprototyped functions, so
940          we treat all functions as if they were prototyped.  This is used
941          primarily for promotion when calling the function from GDB.  */
942       TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943 
944       /* fall into process_prototype_types.  */
945 
946     process_prototype_types:
947       /* Sun acc puts declared types of arguments here.  */
948       if (*p == ';')
949 	{
950 	  struct type *ftype = SYMBOL_TYPE (sym);
951 	  int nsemi = 0;
952 	  int nparams = 0;
953 	  char *p1 = p;
954 
955 	  /* Obtain a worst case guess for the number of arguments
956 	     by counting the semicolons.  */
957 	  while (*p1)
958 	    {
959 	      if (*p1++ == ';')
960 		nsemi++;
961 	    }
962 
963 	  /* Allocate parameter information fields and fill them in.  */
964 	  TYPE_FIELDS (ftype) = (struct field *)
965 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 	  while (*p++ == ';')
967 	    {
968 	      struct type *ptype;
969 
970 	      /* A type number of zero indicates the start of varargs.
971 	         FIXME: GDB currently ignores vararg functions.  */
972 	      if (p[0] == '0' && p[1] == '\0')
973 		break;
974 	      ptype = read_type (&p, objfile);
975 
976 	      /* The Sun compilers mark integer arguments, which should
977 	         be promoted to the width of the calling conventions, with
978 	         a type which references itself.  This type is turned into
979 	         a TYPE_CODE_VOID type by read_type, and we have to turn
980 	         it back into builtin_int here.
981 	         FIXME: Do we need a new builtin_promoted_int_arg ?  */
982 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 		ptype = objfile_type (objfile)->builtin_int;
984 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 	    }
987 	  TYPE_NFIELDS (ftype) = nparams;
988 	  TYPE_PROTOTYPED (ftype) = 1;
989 	}
990       break;
991 
992     case 'F':
993       /* A global function definition.  */
994       SYMBOL_TYPE (sym) = read_type (&p, objfile);
995       SYMBOL_CLASS (sym) = LOC_BLOCK;
996       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997       add_symbol_to_list (sym, &global_symbols);
998       goto process_function_types;
999 
1000     case 'G':
1001       /* For a class G (global) symbol, it appears that the
1002          value is not correct.  It is necessary to search for the
1003          corresponding linker definition to find the value.
1004          These definitions appear at the end of the namelist.  */
1005       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006       SYMBOL_CLASS (sym) = LOC_STATIC;
1007       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008       /* Don't add symbol references to global_sym_chain.
1009          Symbol references don't have valid names and wont't match up with
1010          minimal symbols when the global_sym_chain is relocated.
1011          We'll fixup symbol references when we fixup the defining symbol.  */
1012       if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 	{
1014 	  i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 	  global_sym_chain[i] = sym;
1017 	}
1018       add_symbol_to_list (sym, &global_symbols);
1019       break;
1020 
1021       /* This case is faked by a conditional above,
1022          when there is no code letter in the dbx data.
1023          Dbx data never actually contains 'l'.  */
1024     case 's':
1025     case 'l':
1026       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027       SYMBOL_CLASS (sym) = LOC_LOCAL;
1028       SYMBOL_VALUE (sym) = valu;
1029       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030       add_symbol_to_list (sym, &local_symbols);
1031       break;
1032 
1033     case 'p':
1034       if (*p == 'F')
1035 	/* pF is a two-letter code that means a function parameter in Fortran.
1036 	   The type-number specifies the type of the return value.
1037 	   Translate it into a pointer-to-function type.  */
1038 	{
1039 	  p++;
1040 	  SYMBOL_TYPE (sym)
1041 	    = lookup_pointer_type
1042 	    (lookup_function_type (read_type (&p, objfile)));
1043 	}
1044       else
1045 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046 
1047       SYMBOL_CLASS (sym) = LOC_ARG;
1048       SYMBOL_VALUE (sym) = valu;
1049       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050       SYMBOL_IS_ARGUMENT (sym) = 1;
1051       add_symbol_to_list (sym, &local_symbols);
1052 
1053       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 	{
1055 	  /* On little-endian machines, this crud is never necessary,
1056 	     and, if the extra bytes contain garbage, is harmful.  */
1057 	  break;
1058 	}
1059 
1060       /* If it's gcc-compiled, if it says `short', believe it.  */
1061       if (processing_gcc_compilation
1062 	  || gdbarch_believe_pcc_promotion (gdbarch))
1063 	break;
1064 
1065       if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 	{
1067 	  /* If PCC says a parameter is a short or a char, it is
1068 	     really an int.  */
1069 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 	    {
1073 	      SYMBOL_TYPE (sym) =
1074 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 		? objfile_type (objfile)->builtin_unsigned_int
1076 		: objfile_type (objfile)->builtin_int;
1077 	    }
1078 	  break;
1079 	}
1080 
1081     case 'P':
1082       /* acc seems to use P to declare the prototypes of functions that
1083          are referenced by this file.  gdb is not prepared to deal
1084          with this extra information.  FIXME, it ought to.  */
1085       if (type == N_FUN)
1086 	{
1087 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 	  goto process_prototype_types;
1089 	}
1090       /*FALLTHROUGH */
1091 
1092     case 'R':
1093       /* Parameter which is in a register.  */
1094       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095       SYMBOL_CLASS (sym) = LOC_REGISTER;
1096       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1097       SYMBOL_IS_ARGUMENT (sym) = 1;
1098       SYMBOL_VALUE (sym) = valu;
1099       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100       add_symbol_to_list (sym, &local_symbols);
1101       break;
1102 
1103     case 'r':
1104       /* Register variable (either global or local).  */
1105       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106       SYMBOL_CLASS (sym) = LOC_REGISTER;
1107       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1108       SYMBOL_VALUE (sym) = valu;
1109       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110       if (within_function)
1111 	{
1112 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 	     the same name to represent an argument passed in a
1114 	     register.  GCC uses 'P' for the same case.  So if we find
1115 	     such a symbol pair we combine it into one 'P' symbol.
1116 	     For Sun cc we need to do this regardless of
1117 	     stabs_argument_has_addr, because the compiler puts out
1118 	     the 'p' symbol even if it never saves the argument onto
1119 	     the stack.
1120 
1121 	     On most machines, we want to preserve both symbols, so
1122 	     that we can still get information about what is going on
1123 	     with the stack (VAX for computing args_printed, using
1124 	     stack slots instead of saved registers in backtraces,
1125 	     etc.).
1126 
1127 	     Note that this code illegally combines
1128 	     main(argc) struct foo argc; { register struct foo argc; }
1129 	     but this case is considered pathological and causes a warning
1130 	     from a decent compiler.  */
1131 
1132 	  if (local_symbols
1133 	      && local_symbols->nsyms > 0
1134 	      && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 	    {
1136 	      struct symbol *prev_sym;
1137 
1138 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 		  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 			     SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 		{
1144 		  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1145 		  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1146 		  /* Use the type from the LOC_REGISTER; that is the type
1147 		     that is actually in that register.  */
1148 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1149 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1150 		  sym = prev_sym;
1151 		  break;
1152 		}
1153 	    }
1154 	  add_symbol_to_list (sym, &local_symbols);
1155 	}
1156       else
1157 	add_symbol_to_list (sym, &file_symbols);
1158       break;
1159 
1160     case 'S':
1161       /* Static symbol at top level of file.  */
1162       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1163       SYMBOL_CLASS (sym) = LOC_STATIC;
1164       SYMBOL_VALUE_ADDRESS (sym) = valu;
1165       if (gdbarch_static_transform_name_p (gdbarch)
1166 	  && gdbarch_static_transform_name (gdbarch,
1167 					    SYMBOL_LINKAGE_NAME (sym))
1168 	     != SYMBOL_LINKAGE_NAME (sym))
1169 	{
1170 	  struct minimal_symbol *msym;
1171 
1172 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1173 					NULL, objfile);
1174 	  if (msym != NULL)
1175 	    {
1176 	      char *new_name = gdbarch_static_transform_name
1177 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1178 
1179 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1180 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1181 	    }
1182 	}
1183       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184       add_symbol_to_list (sym, &file_symbols);
1185       break;
1186 
1187     case 't':
1188       /* In Ada, there is no distinction between typedef and non-typedef;
1189          any type declaration implicitly has the equivalent of a typedef,
1190          and thus 't' is in fact equivalent to 'Tt'.
1191 
1192          Therefore, for Ada units, we check the character immediately
1193          before the 't', and if we do not find a 'T', then make sure to
1194          create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195          will be stored in the VAR_DOMAIN).  If the symbol was indeed
1196          defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197          elsewhere, so we don't need to take care of that.
1198 
1199          This is important to do, because of forward references:
1200          The cleanup of undefined types stored in undef_types only uses
1201          STRUCT_DOMAIN symbols to perform the replacement.  */
1202       synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1203 
1204       /* Typedef */
1205       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206 
1207       /* For a nameless type, we don't want a create a symbol, thus we
1208          did not use `sym'.  Return without further processing.  */
1209       if (nameless)
1210 	return NULL;
1211 
1212       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1213       SYMBOL_VALUE (sym) = valu;
1214       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215       /* C++ vagaries: we may have a type which is derived from
1216          a base type which did not have its name defined when the
1217          derived class was output.  We fill in the derived class's
1218          base part member's name here in that case.  */
1219       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1220 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1221 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1222 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 	  {
1224 	    int j;
1225 
1226 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1230 	  }
1231 
1232       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1233 	{
1234 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1235 	     emits a unique named type for a vtable entry.
1236 	     Some gdb code depends on that specific name.  */
1237 	  extern const char vtbl_ptr_name[];
1238 
1239 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1240 	       && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1241 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1242 	    {
1243 	      /* If we are giving a name to a type such as "pointer to
1244 	         foo" or "function returning foo", we better not set
1245 	         the TYPE_NAME.  If the program contains "typedef char
1246 	         *caddr_t;", we don't want all variables of type char
1247 	         * to print as caddr_t.  This is not just a
1248 	         consequence of GDB's type management; PCC and GCC (at
1249 	         least through version 2.4) both output variables of
1250 	         either type char * or caddr_t with the type number
1251 	         defined in the 't' symbol for caddr_t.  If a future
1252 	         compiler cleans this up it GDB is not ready for it
1253 	         yet, but if it becomes ready we somehow need to
1254 	         disable this check (without breaking the PCC/GCC2.4
1255 	         case).
1256 
1257 	         Sigh.
1258 
1259 	         Fortunately, this check seems not to be necessary
1260 	         for anything except pointers or functions.  */
1261               /* ezannoni: 2000-10-26.  This seems to apply for
1262 		 versions of gcc older than 2.8.  This was the original
1263 		 problem: with the following code gdb would tell that
1264 		 the type for name1 is caddr_t, and func is char().
1265 
1266 	         typedef char *caddr_t;
1267 		 char *name2;
1268 		 struct x
1269 		 {
1270 		   char *name1;
1271 		 } xx;
1272 		 char *func()
1273 		 {
1274 		 }
1275 		 main () {}
1276 		 */
1277 
1278 	      /* Pascal accepts names for pointer types.  */
1279 	      if (current_subfile->language == language_pascal)
1280 		{
1281 		  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282           	}
1283 	    }
1284 	  else
1285 	    TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1286 	}
1287 
1288       add_symbol_to_list (sym, &file_symbols);
1289 
1290       if (synonym)
1291         {
1292           /* Create the STRUCT_DOMAIN clone.  */
1293           struct symbol *struct_sym = (struct symbol *)
1294             obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1295 
1296           *struct_sym = *sym;
1297           SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1298           SYMBOL_VALUE (struct_sym) = valu;
1299           SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300           if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301             TYPE_NAME (SYMBOL_TYPE (sym))
1302 	      = obconcat (&objfile->objfile_obstack,
1303 			  SYMBOL_LINKAGE_NAME (sym),
1304 			  (char *) NULL);
1305           add_symbol_to_list (struct_sym, &file_symbols);
1306         }
1307 
1308       break;
1309 
1310     case 'T':
1311       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1312          by 't' which means we are typedef'ing it as well.  */
1313       synonym = *p == 't';
1314 
1315       if (synonym)
1316 	p++;
1317 
1318       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319 
1320       /* For a nameless type, we don't want a create a symbol, thus we
1321          did not use `sym'.  Return without further processing.  */
1322       if (nameless)
1323 	return NULL;
1324 
1325       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1326       SYMBOL_VALUE (sym) = valu;
1327       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 	TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 	  = obconcat (&objfile->objfile_obstack,
1331 		      SYMBOL_LINKAGE_NAME (sym),
1332 		      (char *) NULL);
1333       add_symbol_to_list (sym, &file_symbols);
1334 
1335       if (synonym)
1336 	{
1337 	  /* Clone the sym and then modify it.  */
1338 	  struct symbol *typedef_sym = (struct symbol *)
1339 	    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1340 
1341 	  *typedef_sym = *sym;
1342 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1343 	  SYMBOL_VALUE (typedef_sym) = valu;
1344 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 	    TYPE_NAME (SYMBOL_TYPE (sym))
1347 	      = obconcat (&objfile->objfile_obstack,
1348 			  SYMBOL_LINKAGE_NAME (sym),
1349 			  (char *) NULL);
1350 	  add_symbol_to_list (typedef_sym, &file_symbols);
1351 	}
1352       break;
1353 
1354     case 'V':
1355       /* Static symbol of local scope.  */
1356       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357       SYMBOL_CLASS (sym) = LOC_STATIC;
1358       SYMBOL_VALUE_ADDRESS (sym) = valu;
1359       if (gdbarch_static_transform_name_p (gdbarch)
1360 	  && gdbarch_static_transform_name (gdbarch,
1361 					    SYMBOL_LINKAGE_NAME (sym))
1362 	     != SYMBOL_LINKAGE_NAME (sym))
1363 	{
1364 	  struct minimal_symbol *msym;
1365 
1366 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 					NULL, objfile);
1368 	  if (msym != NULL)
1369 	    {
1370 	      char *new_name = gdbarch_static_transform_name
1371 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372 
1373 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1375 	    }
1376 	}
1377       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 	add_symbol_to_list (sym, &local_symbols);
1379       break;
1380 
1381     case 'v':
1382       /* Reference parameter */
1383       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1385       SYMBOL_IS_ARGUMENT (sym) = 1;
1386       SYMBOL_VALUE (sym) = valu;
1387       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388       add_symbol_to_list (sym, &local_symbols);
1389       break;
1390 
1391     case 'a':
1392       /* Reference parameter which is in a register.  */
1393       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1395       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1396       SYMBOL_IS_ARGUMENT (sym) = 1;
1397       SYMBOL_VALUE (sym) = valu;
1398       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399       add_symbol_to_list (sym, &local_symbols);
1400       break;
1401 
1402     case 'X':
1403       /* This is used by Sun FORTRAN for "function result value".
1404          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1405          that Pascal uses it too, but when I tried it Pascal used
1406          "x:3" (local symbol) instead.  */
1407       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408       SYMBOL_CLASS (sym) = LOC_LOCAL;
1409       SYMBOL_VALUE (sym) = valu;
1410       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411       add_symbol_to_list (sym, &local_symbols);
1412       break;
1413 
1414     default:
1415       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1416       SYMBOL_CLASS (sym) = LOC_CONST;
1417       SYMBOL_VALUE (sym) = 0;
1418       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419       add_symbol_to_list (sym, &file_symbols);
1420       break;
1421     }
1422 
1423   /* Some systems pass variables of certain types by reference instead
1424      of by value, i.e. they will pass the address of a structure (in a
1425      register or on the stack) instead of the structure itself.  */
1426 
1427   if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1428       && SYMBOL_IS_ARGUMENT (sym))
1429     {
1430       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1431          variables passed in a register).  */
1432       if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1433 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1434       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1435 	 and subsequent arguments on SPARC, for example).  */
1436       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1437 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1438     }
1439 
1440   return sym;
1441 }
1442 
1443 /* Skip rest of this symbol and return an error type.
1444 
1445    General notes on error recovery:  error_type always skips to the
1446    end of the symbol (modulo cretinous dbx symbol name continuation).
1447    Thus code like this:
1448 
1449    if (*(*pp)++ != ';')
1450    return error_type (pp, objfile);
1451 
1452    is wrong because if *pp starts out pointing at '\0' (typically as the
1453    result of an earlier error), it will be incremented to point to the
1454    start of the next symbol, which might produce strange results, at least
1455    if you run off the end of the string table.  Instead use
1456 
1457    if (**pp != ';')
1458    return error_type (pp, objfile);
1459    ++*pp;
1460 
1461    or
1462 
1463    if (**pp != ';')
1464    foo = error_type (pp, objfile);
1465    else
1466    ++*pp;
1467 
1468    And in case it isn't obvious, the point of all this hair is so the compiler
1469    can define new types and new syntaxes, and old versions of the
1470    debugger will be able to read the new symbol tables.  */
1471 
1472 static struct type *
1473 error_type (char **pp, struct objfile *objfile)
1474 {
1475   complaint (&symfile_complaints,
1476 	     _("couldn't parse type; debugger out of date?"));
1477   while (1)
1478     {
1479       /* Skip to end of symbol.  */
1480       while (**pp != '\0')
1481 	{
1482 	  (*pp)++;
1483 	}
1484 
1485       /* Check for and handle cretinous dbx symbol name continuation!  */
1486       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 	{
1488 	  *pp = next_symbol_text (objfile);
1489 	}
1490       else
1491 	{
1492 	  break;
1493 	}
1494     }
1495   return objfile_type (objfile)->builtin_error;
1496 }
1497 
1498 
1499 /* Read type information or a type definition; return the type.  Even
1500    though this routine accepts either type information or a type
1501    definition, the distinction is relevant--some parts of stabsread.c
1502    assume that type information starts with a digit, '-', or '(' in
1503    deciding whether to call read_type.  */
1504 
1505 static struct type *
1506 read_type (char **pp, struct objfile *objfile)
1507 {
1508   struct type *type = 0;
1509   struct type *type1;
1510   int typenums[2];
1511   char type_descriptor;
1512 
1513   /* Size in bits of type if specified by a type attribute, or -1 if
1514      there is no size attribute.  */
1515   int type_size = -1;
1516 
1517   /* Used to distinguish string and bitstring from char-array and set.  */
1518   int is_string = 0;
1519 
1520   /* Used to distinguish vector from array.  */
1521   int is_vector = 0;
1522 
1523   /* Read type number if present.  The type number may be omitted.
1524      for instance in a two-dimensional array declared with type
1525      "ar1;1;10;ar1;1;10;4".  */
1526   if ((**pp >= '0' && **pp <= '9')
1527       || **pp == '('
1528       || **pp == '-')
1529     {
1530       if (read_type_number (pp, typenums) != 0)
1531 	return error_type (pp, objfile);
1532 
1533       if (**pp != '=')
1534         {
1535           /* Type is not being defined here.  Either it already
1536              exists, or this is a forward reference to it.
1537              dbx_alloc_type handles both cases.  */
1538           type = dbx_alloc_type (typenums, objfile);
1539 
1540           /* If this is a forward reference, arrange to complain if it
1541              doesn't get patched up by the time we're done
1542              reading.  */
1543           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1544             add_undefined_type (type, typenums);
1545 
1546           return type;
1547         }
1548 
1549       /* Type is being defined here.  */
1550       /* Skip the '='.
1551          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1552       (*pp) += 2;
1553     }
1554   else
1555     {
1556       /* 'typenums=' not present, type is anonymous.  Read and return
1557          the definition, but don't put it in the type vector.  */
1558       typenums[0] = typenums[1] = -1;
1559       (*pp)++;
1560     }
1561 
1562 again:
1563   type_descriptor = (*pp)[-1];
1564   switch (type_descriptor)
1565     {
1566     case 'x':
1567       {
1568 	enum type_code code;
1569 
1570 	/* Used to index through file_symbols.  */
1571 	struct pending *ppt;
1572 	int i;
1573 
1574 	/* Name including "struct", etc.  */
1575 	char *type_name;
1576 
1577 	{
1578 	  char *from, *to, *p, *q1, *q2;
1579 
1580 	  /* Set the type code according to the following letter.  */
1581 	  switch ((*pp)[0])
1582 	    {
1583 	    case 's':
1584 	      code = TYPE_CODE_STRUCT;
1585 	      break;
1586 	    case 'u':
1587 	      code = TYPE_CODE_UNION;
1588 	      break;
1589 	    case 'e':
1590 	      code = TYPE_CODE_ENUM;
1591 	      break;
1592 	    default:
1593 	      {
1594 		/* Complain and keep going, so compilers can invent new
1595 		   cross-reference types.  */
1596 		complaint (&symfile_complaints,
1597 			   _("Unrecognized cross-reference type `%c'"),
1598 			   (*pp)[0]);
1599 		code = TYPE_CODE_STRUCT;
1600 		break;
1601 	      }
1602 	    }
1603 
1604 	  q1 = strchr (*pp, '<');
1605 	  p = strchr (*pp, ':');
1606 	  if (p == NULL)
1607 	    return error_type (pp, objfile);
1608 	  if (q1 && p > q1 && p[1] == ':')
1609 	    {
1610 	      int nesting_level = 0;
1611 
1612 	      for (q2 = q1; *q2; q2++)
1613 		{
1614 		  if (*q2 == '<')
1615 		    nesting_level++;
1616 		  else if (*q2 == '>')
1617 		    nesting_level--;
1618 		  else if (*q2 == ':' && nesting_level == 0)
1619 		    break;
1620 		}
1621 	      p = q2;
1622 	      if (*p != ':')
1623 		return error_type (pp, objfile);
1624 	    }
1625 	  type_name = NULL;
1626 	  if (current_subfile->language == language_cplus)
1627 	    {
1628 	      char *new_name, *name = alloca (p - *pp + 1);
1629 
1630 	      memcpy (name, *pp, p - *pp);
1631 	      name[p - *pp] = '\0';
1632 	      new_name = cp_canonicalize_string (name);
1633 	      if (new_name != NULL)
1634 		{
1635 		  type_name = obsavestring (new_name, strlen (new_name),
1636 					    &objfile->objfile_obstack);
1637 		  xfree (new_name);
1638 		}
1639 	    }
1640 	  if (type_name == NULL)
1641 	    {
1642 	      to = type_name = (char *)
1643 		obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644 
1645 	      /* Copy the name.  */
1646 	      from = *pp + 1;
1647 	      while (from < p)
1648 		*to++ = *from++;
1649 	      *to = '\0';
1650 	    }
1651 
1652 	  /* Set the pointer ahead of the name which we just read, and
1653 	     the colon.  */
1654 	  *pp = p + 1;
1655 	}
1656 
1657         /* If this type has already been declared, then reuse the same
1658            type, rather than allocating a new one.  This saves some
1659            memory.  */
1660 
1661 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 	  for (i = 0; i < ppt->nsyms; i++)
1663 	    {
1664 	      struct symbol *sym = ppt->symbol[i];
1665 
1666 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 		  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 		{
1671 		  obstack_free (&objfile->objfile_obstack, type_name);
1672 		  type = SYMBOL_TYPE (sym);
1673 	          if (typenums[0] != -1)
1674 	            *dbx_lookup_type (typenums, objfile) = type;
1675 		  return type;
1676 		}
1677 	    }
1678 
1679 	/* Didn't find the type to which this refers, so we must
1680 	   be dealing with a forward reference.  Allocate a type
1681 	   structure for it, and keep track of it so we can
1682 	   fill in the rest of the fields when we get the full
1683 	   type.  */
1684 	type = dbx_alloc_type (typenums, objfile);
1685 	TYPE_CODE (type) = code;
1686 	TYPE_TAG_NAME (type) = type_name;
1687 	INIT_CPLUS_SPECIFIC (type);
1688 	TYPE_STUB (type) = 1;
1689 
1690 	add_undefined_type (type, typenums);
1691 	return type;
1692       }
1693 
1694     case '-':			/* RS/6000 built-in type */
1695     case '0':
1696     case '1':
1697     case '2':
1698     case '3':
1699     case '4':
1700     case '5':
1701     case '6':
1702     case '7':
1703     case '8':
1704     case '9':
1705     case '(':
1706       (*pp)--;
1707 
1708       /* We deal with something like t(1,2)=(3,4)=... which
1709          the Lucid compiler and recent gcc versions (post 2.7.3) use.  */
1710 
1711       /* Allocate and enter the typedef type first.
1712          This handles recursive types.  */
1713       type = dbx_alloc_type (typenums, objfile);
1714       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715       {
1716 	struct type *xtype = read_type (pp, objfile);
1717 
1718 	if (type == xtype)
1719 	  {
1720 	    /* It's being defined as itself.  That means it is "void".  */
1721 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1722 	    TYPE_LENGTH (type) = 1;
1723 	  }
1724 	else if (type_size >= 0 || is_string)
1725 	  {
1726 	    /* This is the absolute wrong way to construct types.  Every
1727 	       other debug format has found a way around this problem and
1728 	       the related problems with unnecessarily stubbed types;
1729 	       someone motivated should attempt to clean up the issue
1730 	       here as well.  Once a type pointed to has been created it
1731 	       should not be modified.
1732 
1733                Well, it's not *absolutely* wrong.  Constructing recursive
1734                types (trees, linked lists) necessarily entails modifying
1735                types after creating them.  Constructing any loop structure
1736                entails side effects.  The Dwarf 2 reader does handle this
1737                more gracefully (it never constructs more than once
1738                instance of a type object, so it doesn't have to copy type
1739                objects wholesale), but it still mutates type objects after
1740                other folks have references to them.
1741 
1742                Keep in mind that this circularity/mutation issue shows up
1743                at the source language level, too: C's "incomplete types",
1744                for example.  So the proper cleanup, I think, would be to
1745                limit GDB's type smashing to match exactly those required
1746                by the source language.  So GDB could have a
1747                "complete_this_type" function, but never create unnecessary
1748                copies of a type otherwise.  */
1749 	    replace_type (type, xtype);
1750 	    TYPE_NAME (type) = NULL;
1751 	    TYPE_TAG_NAME (type) = NULL;
1752 	  }
1753 	else
1754 	  {
1755 	    TYPE_TARGET_STUB (type) = 1;
1756 	    TYPE_TARGET_TYPE (type) = xtype;
1757 	  }
1758       }
1759       break;
1760 
1761       /* In the following types, we must be sure to overwrite any existing
1762          type that the typenums refer to, rather than allocating a new one
1763          and making the typenums point to the new one.  This is because there
1764          may already be pointers to the existing type (if it had been
1765          forward-referenced), and we must change it to a pointer, function,
1766          reference, or whatever, *in-place*.  */
1767 
1768     case '*':			/* Pointer to another type */
1769       type1 = read_type (pp, objfile);
1770       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771       break;
1772 
1773     case '&':			/* Reference to another type */
1774       type1 = read_type (pp, objfile);
1775       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776       break;
1777 
1778     case 'f':			/* Function returning another type */
1779       type1 = read_type (pp, objfile);
1780       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781       break;
1782 
1783     case 'g':                   /* Prototyped function.  (Sun)  */
1784       {
1785         /* Unresolved questions:
1786 
1787            - According to Sun's ``STABS Interface Manual'', for 'f'
1788            and 'F' symbol descriptors, a `0' in the argument type list
1789            indicates a varargs function.  But it doesn't say how 'g'
1790            type descriptors represent that info.  Someone with access
1791            to Sun's toolchain should try it out.
1792 
1793            - According to the comment in define_symbol (search for
1794            `process_prototype_types:'), Sun emits integer arguments as
1795            types which ref themselves --- like `void' types.  Do we
1796            have to deal with that here, too?  Again, someone with
1797            access to Sun's toolchain should try it out and let us
1798            know.  */
1799 
1800         const char *type_start = (*pp) - 1;
1801         struct type *return_type = read_type (pp, objfile);
1802         struct type *func_type
1803           = make_function_type (return_type,
1804 				dbx_lookup_type (typenums, objfile));
1805         struct type_list {
1806           struct type *type;
1807           struct type_list *next;
1808         } *arg_types = 0;
1809         int num_args = 0;
1810 
1811         while (**pp && **pp != '#')
1812           {
1813             struct type *arg_type = read_type (pp, objfile);
1814             struct type_list *new = alloca (sizeof (*new));
1815             new->type = arg_type;
1816             new->next = arg_types;
1817             arg_types = new;
1818             num_args++;
1819           }
1820         if (**pp == '#')
1821           ++*pp;
1822         else
1823           {
1824 	    complaint (&symfile_complaints,
1825 		       _("Prototyped function type didn't "
1826 			 "end arguments with `#':\n%s"),
1827 		       type_start);
1828           }
1829 
1830         /* If there is just one argument whose type is `void', then
1831            that's just an empty argument list.  */
1832         if (arg_types
1833             && ! arg_types->next
1834             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835           num_args = 0;
1836 
1837         TYPE_FIELDS (func_type)
1838           = (struct field *) TYPE_ALLOC (func_type,
1839                                          num_args * sizeof (struct field));
1840         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841         {
1842           int i;
1843           struct type_list *t;
1844 
1845           /* We stuck each argument type onto the front of the list
1846              when we read it, so the list is reversed.  Build the
1847              fields array right-to-left.  */
1848           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849             TYPE_FIELD_TYPE (func_type, i) = t->type;
1850         }
1851         TYPE_NFIELDS (func_type) = num_args;
1852         TYPE_PROTOTYPED (func_type) = 1;
1853 
1854         type = func_type;
1855         break;
1856       }
1857 
1858     case 'k':			/* Const qualifier on some type (Sun) */
1859       type = read_type (pp, objfile);
1860       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 			   dbx_lookup_type (typenums, objfile));
1862       break;
1863 
1864     case 'B':			/* Volatile qual on some type (Sun) */
1865       type = read_type (pp, objfile);
1866       type = make_cv_type (TYPE_CONST (type), 1, type,
1867 			   dbx_lookup_type (typenums, objfile));
1868       break;
1869 
1870     case '@':
1871       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 	{			/* Member (class & variable) type */
1873 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1874 
1875 	  struct type *domain = read_type (pp, objfile);
1876 	  struct type *memtype;
1877 
1878 	  if (**pp != ',')
1879 	    /* Invalid member type data format.  */
1880 	    return error_type (pp, objfile);
1881 	  ++*pp;
1882 
1883 	  memtype = read_type (pp, objfile);
1884 	  type = dbx_alloc_type (typenums, objfile);
1885 	  smash_to_memberptr_type (type, domain, memtype);
1886 	}
1887       else
1888 	/* type attribute */
1889 	{
1890 	  char *attr = *pp;
1891 
1892 	  /* Skip to the semicolon.  */
1893 	  while (**pp != ';' && **pp != '\0')
1894 	    ++(*pp);
1895 	  if (**pp == '\0')
1896 	    return error_type (pp, objfile);
1897 	  else
1898 	    ++ * pp;		/* Skip the semicolon.  */
1899 
1900 	  switch (*attr)
1901 	    {
1902 	    case 's':		/* Size attribute */
1903 	      type_size = atoi (attr + 1);
1904 	      if (type_size <= 0)
1905 		type_size = -1;
1906 	      break;
1907 
1908 	    case 'S':		/* String attribute */
1909 	      /* FIXME: check to see if following type is array?  */
1910 	      is_string = 1;
1911 	      break;
1912 
1913 	    case 'V':		/* Vector attribute */
1914 	      /* FIXME: check to see if following type is array?  */
1915 	      is_vector = 1;
1916 	      break;
1917 
1918 	    default:
1919 	      /* Ignore unrecognized type attributes, so future compilers
1920 	         can invent new ones.  */
1921 	      break;
1922 	    }
1923 	  ++*pp;
1924 	  goto again;
1925 	}
1926       break;
1927 
1928     case '#':			/* Method (class & fn) type */
1929       if ((*pp)[0] == '#')
1930 	{
1931 	  /* We'll get the parameter types from the name.  */
1932 	  struct type *return_type;
1933 
1934 	  (*pp)++;
1935 	  return_type = read_type (pp, objfile);
1936 	  if (*(*pp)++ != ';')
1937 	    complaint (&symfile_complaints,
1938 		       _("invalid (minimal) member type "
1939 			 "data format at symtab pos %d."),
1940 		       symnum);
1941 	  type = allocate_stub_method (return_type);
1942 	  if (typenums[0] != -1)
1943 	    *dbx_lookup_type (typenums, objfile) = type;
1944 	}
1945       else
1946 	{
1947 	  struct type *domain = read_type (pp, objfile);
1948 	  struct type *return_type;
1949 	  struct field *args;
1950 	  int nargs, varargs;
1951 
1952 	  if (**pp != ',')
1953 	    /* Invalid member type data format.  */
1954 	    return error_type (pp, objfile);
1955 	  else
1956 	    ++(*pp);
1957 
1958 	  return_type = read_type (pp, objfile);
1959 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 	  if (args == NULL)
1961 	    return error_type (pp, objfile);
1962 	  type = dbx_alloc_type (typenums, objfile);
1963 	  smash_to_method_type (type, domain, return_type, args,
1964 				nargs, varargs);
1965 	}
1966       break;
1967 
1968     case 'r':			/* Range type */
1969       type = read_range_type (pp, typenums, type_size, objfile);
1970       if (typenums[0] != -1)
1971 	*dbx_lookup_type (typenums, objfile) = type;
1972       break;
1973 
1974     case 'b':
1975 	{
1976 	  /* Sun ACC builtin int type */
1977 	  type = read_sun_builtin_type (pp, typenums, objfile);
1978 	  if (typenums[0] != -1)
1979 	    *dbx_lookup_type (typenums, objfile) = type;
1980 	}
1981       break;
1982 
1983     case 'R':			/* Sun ACC builtin float type */
1984       type = read_sun_floating_type (pp, typenums, objfile);
1985       if (typenums[0] != -1)
1986 	*dbx_lookup_type (typenums, objfile) = type;
1987       break;
1988 
1989     case 'e':			/* Enumeration type */
1990       type = dbx_alloc_type (typenums, objfile);
1991       type = read_enum_type (pp, type, objfile);
1992       if (typenums[0] != -1)
1993 	*dbx_lookup_type (typenums, objfile) = type;
1994       break;
1995 
1996     case 's':			/* Struct type */
1997     case 'u':			/* Union type */
1998       {
1999         enum type_code type_code = TYPE_CODE_UNDEF;
2000         type = dbx_alloc_type (typenums, objfile);
2001         switch (type_descriptor)
2002           {
2003           case 's':
2004             type_code = TYPE_CODE_STRUCT;
2005             break;
2006           case 'u':
2007             type_code = TYPE_CODE_UNION;
2008             break;
2009           }
2010         type = read_struct_type (pp, type, type_code, objfile);
2011         break;
2012       }
2013 
2014     case 'a':			/* Array type */
2015       if (**pp != 'r')
2016 	return error_type (pp, objfile);
2017       ++*pp;
2018 
2019       type = dbx_alloc_type (typenums, objfile);
2020       type = read_array_type (pp, type, objfile);
2021       if (is_string)
2022 	TYPE_CODE (type) = TYPE_CODE_STRING;
2023       if (is_vector)
2024 	make_vector_type (type);
2025       break;
2026 
2027     case 'S':			/* Set or bitstring  type */
2028       type1 = read_type (pp, objfile);
2029       type = create_set_type ((struct type *) NULL, type1);
2030       if (is_string)
2031 	TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2032       if (typenums[0] != -1)
2033 	*dbx_lookup_type (typenums, objfile) = type;
2034       break;
2035 
2036     default:
2037       --*pp;			/* Go back to the symbol in error.  */
2038       /* Particularly important if it was \0!  */
2039       return error_type (pp, objfile);
2040     }
2041 
2042   if (type == 0)
2043     {
2044       warning (_("GDB internal error, type is NULL in stabsread.c."));
2045       return error_type (pp, objfile);
2046     }
2047 
2048   /* Size specified in a type attribute overrides any other size.  */
2049   if (type_size != -1)
2050     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2051 
2052   return type;
2053 }
2054 
2055 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2056    Return the proper type node for a given builtin type number.  */
2057 
2058 static const struct objfile_data *rs6000_builtin_type_data;
2059 
2060 static struct type *
2061 rs6000_builtin_type (int typenum, struct objfile *objfile)
2062 {
2063   struct type **negative_types = objfile_data (objfile,
2064 					       rs6000_builtin_type_data);
2065 
2066   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
2067 #define NUMBER_RECOGNIZED 34
2068   struct type *rettype = NULL;
2069 
2070   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2071     {
2072       complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2073       return objfile_type (objfile)->builtin_error;
2074     }
2075 
2076   if (!negative_types)
2077     {
2078       /* This includes an empty slot for type number -0.  */
2079       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2080 				       NUMBER_RECOGNIZED + 1, struct type *);
2081       set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2082     }
2083 
2084   if (negative_types[-typenum] != NULL)
2085     return negative_types[-typenum];
2086 
2087 #if TARGET_CHAR_BIT != 8
2088 #error This code wrong for TARGET_CHAR_BIT not 8
2089   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
2090      that if that ever becomes not true, the correct fix will be to
2091      make the size in the struct type to be in bits, not in units of
2092      TARGET_CHAR_BIT.  */
2093 #endif
2094 
2095   switch (-typenum)
2096     {
2097     case 1:
2098       /* The size of this and all the other types are fixed, defined
2099          by the debugging format.  If there is a type called "int" which
2100          is other than 32 bits, then it should use a new negative type
2101          number (or avoid negative type numbers for that case).
2102          See stabs.texinfo.  */
2103       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2104       break;
2105     case 2:
2106       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2107       break;
2108     case 3:
2109       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2110       break;
2111     case 4:
2112       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2113       break;
2114     case 5:
2115       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2116 			   "unsigned char", objfile);
2117       break;
2118     case 6:
2119       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2120       break;
2121     case 7:
2122       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2123 			   "unsigned short", objfile);
2124       break;
2125     case 8:
2126       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 			   "unsigned int", objfile);
2128       break;
2129     case 9:
2130       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2131 			   "unsigned", objfile);
2132       break;
2133     case 10:
2134       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2135 			   "unsigned long", objfile);
2136       break;
2137     case 11:
2138       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2139       break;
2140     case 12:
2141       /* IEEE single precision (32 bit).  */
2142       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2143       break;
2144     case 13:
2145       /* IEEE double precision (64 bit).  */
2146       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2147       break;
2148     case 14:
2149       /* This is an IEEE double on the RS/6000, and different machines with
2150          different sizes for "long double" should use different negative
2151          type numbers.  See stabs.texinfo.  */
2152       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2153       break;
2154     case 15:
2155       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2156       break;
2157     case 16:
2158       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2159 			   "boolean", objfile);
2160       break;
2161     case 17:
2162       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2163       break;
2164     case 18:
2165       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2166       break;
2167     case 19:
2168       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2169       break;
2170     case 20:
2171       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2172 			   "character", objfile);
2173       break;
2174     case 21:
2175       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2176 			   "logical*1", objfile);
2177       break;
2178     case 22:
2179       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2180 			   "logical*2", objfile);
2181       break;
2182     case 23:
2183       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2184 			   "logical*4", objfile);
2185       break;
2186     case 24:
2187       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2188 			   "logical", objfile);
2189       break;
2190     case 25:
2191       /* Complex type consisting of two IEEE single precision values.  */
2192       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2193       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2194 					      objfile);
2195       break;
2196     case 26:
2197       /* Complex type consisting of two IEEE double precision values.  */
2198       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2199       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2200 					      objfile);
2201       break;
2202     case 27:
2203       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2204       break;
2205     case 28:
2206       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2207       break;
2208     case 29:
2209       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2210       break;
2211     case 30:
2212       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2213       break;
2214     case 31:
2215       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2216       break;
2217     case 32:
2218       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2219 			   "unsigned long long", objfile);
2220       break;
2221     case 33:
2222       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2223 			   "logical*8", objfile);
2224       break;
2225     case 34:
2226       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2227       break;
2228     }
2229   negative_types[-typenum] = rettype;
2230   return rettype;
2231 }
2232 
2233 /* This page contains subroutines of read_type.  */
2234 
2235 /* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
2236 
2237 static void
2238 update_method_name_from_physname (char **old_name, const char *physname)
2239 {
2240   char *method_name;
2241 
2242   method_name = method_name_from_physname (physname);
2243 
2244   if (method_name == NULL)
2245     {
2246       complaint (&symfile_complaints,
2247 		 _("Method has bad physname %s\n"), physname);
2248       return;
2249     }
2250 
2251   if (strcmp (*old_name, method_name) != 0)
2252     {
2253       xfree (*old_name);
2254       *old_name = method_name;
2255     }
2256   else
2257     xfree (method_name);
2258 }
2259 
2260 /* Read member function stabs info for C++ classes.  The form of each member
2261    function data is:
2262 
2263    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2264 
2265    An example with two member functions is:
2266 
2267    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2268 
2269    For the case of overloaded operators, the format is op$::*.funcs, where
2270    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2271    name (such as `+=') and `.' marks the end of the operator name.
2272 
2273    Returns 1 for success, 0 for failure.  */
2274 
2275 static int
2276 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2277 		       struct objfile *objfile)
2278 {
2279   int nfn_fields = 0;
2280   int length = 0;
2281   /* Total number of member functions defined in this class.  If the class
2282      defines two `f' functions, and one `g' function, then this will have
2283      the value 3.  */
2284   int total_length = 0;
2285   int i;
2286   struct next_fnfield
2287     {
2288       struct next_fnfield *next;
2289       struct fn_field fn_field;
2290     }
2291    *sublist;
2292   struct type *look_ahead_type;
2293   struct next_fnfieldlist *new_fnlist;
2294   struct next_fnfield *new_sublist;
2295   char *main_fn_name;
2296   char *p;
2297 
2298   /* Process each list until we find something that is not a member function
2299      or find the end of the functions.  */
2300 
2301   while (**pp != ';')
2302     {
2303       /* We should be positioned at the start of the function name.
2304          Scan forward to find the first ':' and if it is not the
2305          first of a "::" delimiter, then this is not a member function.  */
2306       p = *pp;
2307       while (*p != ':')
2308 	{
2309 	  p++;
2310 	}
2311       if (p[1] != ':')
2312 	{
2313 	  break;
2314 	}
2315 
2316       sublist = NULL;
2317       look_ahead_type = NULL;
2318       length = 0;
2319 
2320       new_fnlist = (struct next_fnfieldlist *)
2321 	xmalloc (sizeof (struct next_fnfieldlist));
2322       make_cleanup (xfree, new_fnlist);
2323       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2324 
2325       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2326 	{
2327 	  /* This is a completely wierd case.  In order to stuff in the
2328 	     names that might contain colons (the usual name delimiter),
2329 	     Mike Tiemann defined a different name format which is
2330 	     signalled if the identifier is "op$".  In that case, the
2331 	     format is "op$::XXXX." where XXXX is the name.  This is
2332 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2333 	  /* This lets the user type "break operator+".
2334 	     We could just put in "+" as the name, but that wouldn't
2335 	     work for "*".  */
2336 	  static char opname[32] = "op$";
2337 	  char *o = opname + 3;
2338 
2339 	  /* Skip past '::'.  */
2340 	  *pp = p + 2;
2341 
2342 	  STABS_CONTINUE (pp, objfile);
2343 	  p = *pp;
2344 	  while (*p != '.')
2345 	    {
2346 	      *o++ = *p++;
2347 	    }
2348 	  main_fn_name = savestring (opname, o - opname);
2349 	  /* Skip past '.'  */
2350 	  *pp = p + 1;
2351 	}
2352       else
2353 	{
2354 	  main_fn_name = savestring (*pp, p - *pp);
2355 	  /* Skip past '::'.  */
2356 	  *pp = p + 2;
2357 	}
2358       new_fnlist->fn_fieldlist.name = main_fn_name;
2359 
2360       do
2361 	{
2362 	  new_sublist =
2363 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2364 	  make_cleanup (xfree, new_sublist);
2365 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2366 
2367 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2368 	  if (look_ahead_type == NULL)
2369 	    {
2370 	      /* Normal case.  */
2371 	      STABS_CONTINUE (pp, objfile);
2372 
2373 	      new_sublist->fn_field.type = read_type (pp, objfile);
2374 	      if (**pp != ':')
2375 		{
2376 		  /* Invalid symtab info for member function.  */
2377 		  return 0;
2378 		}
2379 	    }
2380 	  else
2381 	    {
2382 	      /* g++ version 1 kludge */
2383 	      new_sublist->fn_field.type = look_ahead_type;
2384 	      look_ahead_type = NULL;
2385 	    }
2386 
2387 	  (*pp)++;
2388 	  p = *pp;
2389 	  while (*p != ';')
2390 	    {
2391 	      p++;
2392 	    }
2393 
2394 	  /* If this is just a stub, then we don't have the real name here.  */
2395 
2396 	  if (TYPE_STUB (new_sublist->fn_field.type))
2397 	    {
2398 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2399 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2400 	      new_sublist->fn_field.is_stub = 1;
2401 	    }
2402 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2403 	  *pp = p + 1;
2404 
2405 	  /* Set this member function's visibility fields.  */
2406 	  switch (*(*pp)++)
2407 	    {
2408 	    case VISIBILITY_PRIVATE:
2409 	      new_sublist->fn_field.is_private = 1;
2410 	      break;
2411 	    case VISIBILITY_PROTECTED:
2412 	      new_sublist->fn_field.is_protected = 1;
2413 	      break;
2414 	    }
2415 
2416 	  STABS_CONTINUE (pp, objfile);
2417 	  switch (**pp)
2418 	    {
2419 	    case 'A':		/* Normal functions.  */
2420 	      new_sublist->fn_field.is_const = 0;
2421 	      new_sublist->fn_field.is_volatile = 0;
2422 	      (*pp)++;
2423 	      break;
2424 	    case 'B':		/* `const' member functions.  */
2425 	      new_sublist->fn_field.is_const = 1;
2426 	      new_sublist->fn_field.is_volatile = 0;
2427 	      (*pp)++;
2428 	      break;
2429 	    case 'C':		/* `volatile' member function.  */
2430 	      new_sublist->fn_field.is_const = 0;
2431 	      new_sublist->fn_field.is_volatile = 1;
2432 	      (*pp)++;
2433 	      break;
2434 	    case 'D':		/* `const volatile' member function.  */
2435 	      new_sublist->fn_field.is_const = 1;
2436 	      new_sublist->fn_field.is_volatile = 1;
2437 	      (*pp)++;
2438 	      break;
2439 	    case '*':		/* File compiled with g++ version 1 --
2440 				   no info.  */
2441 	    case '?':
2442 	    case '.':
2443 	      break;
2444 	    default:
2445 	      complaint (&symfile_complaints,
2446 			 _("const/volatile indicator missing, got '%c'"),
2447 			 **pp);
2448 	      break;
2449 	    }
2450 
2451 	  switch (*(*pp)++)
2452 	    {
2453 	    case '*':
2454 	      {
2455 		int nbits;
2456 		/* virtual member function, followed by index.
2457 		   The sign bit is set to distinguish pointers-to-methods
2458 		   from virtual function indicies.  Since the array is
2459 		   in words, the quantity must be shifted left by 1
2460 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2461 		   the sign bit out, and usable as a valid index into
2462 		   the array.  Remove the sign bit here.  */
2463 		new_sublist->fn_field.voffset =
2464 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2465 		if (nbits != 0)
2466 		  return 0;
2467 
2468 		STABS_CONTINUE (pp, objfile);
2469 		if (**pp == ';' || **pp == '\0')
2470 		  {
2471 		    /* Must be g++ version 1.  */
2472 		    new_sublist->fn_field.fcontext = 0;
2473 		  }
2474 		else
2475 		  {
2476 		    /* Figure out from whence this virtual function came.
2477 		       It may belong to virtual function table of
2478 		       one of its baseclasses.  */
2479 		    look_ahead_type = read_type (pp, objfile);
2480 		    if (**pp == ':')
2481 		      {
2482 			/* g++ version 1 overloaded methods.  */
2483 		      }
2484 		    else
2485 		      {
2486 			new_sublist->fn_field.fcontext = look_ahead_type;
2487 			if (**pp != ';')
2488 			  {
2489 			    return 0;
2490 			  }
2491 			else
2492 			  {
2493 			    ++*pp;
2494 			  }
2495 			look_ahead_type = NULL;
2496 		      }
2497 		  }
2498 		break;
2499 	      }
2500 	    case '?':
2501 	      /* static member function.  */
2502 	      {
2503 		int slen = strlen (main_fn_name);
2504 
2505 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2506 
2507 		/* For static member functions, we can't tell if they
2508 		   are stubbed, as they are put out as functions, and not as
2509 		   methods.
2510 		   GCC v2 emits the fully mangled name if
2511 		   dbxout.c:flag_minimal_debug is not set, so we have to
2512 		   detect a fully mangled physname here and set is_stub
2513 		   accordingly.  Fully mangled physnames in v2 start with
2514 		   the member function name, followed by two underscores.
2515 		   GCC v3 currently always emits stubbed member functions,
2516 		   but with fully mangled physnames, which start with _Z.  */
2517 		if (!(strncmp (new_sublist->fn_field.physname,
2518 			       main_fn_name, slen) == 0
2519 		      && new_sublist->fn_field.physname[slen] == '_'
2520 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2521 		  {
2522 		    new_sublist->fn_field.is_stub = 1;
2523 		  }
2524 		break;
2525 	      }
2526 
2527 	    default:
2528 	      /* error */
2529 	      complaint (&symfile_complaints,
2530 			 _("member function type missing, got '%c'"),
2531 			 (*pp)[-1]);
2532 	      /* Fall through into normal member function.  */
2533 
2534 	    case '.':
2535 	      /* normal member function.  */
2536 	      new_sublist->fn_field.voffset = 0;
2537 	      new_sublist->fn_field.fcontext = 0;
2538 	      break;
2539 	    }
2540 
2541 	  new_sublist->next = sublist;
2542 	  sublist = new_sublist;
2543 	  length++;
2544 	  STABS_CONTINUE (pp, objfile);
2545 	}
2546       while (**pp != ';' && **pp != '\0');
2547 
2548       (*pp)++;
2549       STABS_CONTINUE (pp, objfile);
2550 
2551       /* Skip GCC 3.X member functions which are duplicates of the callable
2552 	 constructor/destructor.  */
2553       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2554 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2555 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2556 	{
2557 	  xfree (main_fn_name);
2558 	}
2559       else
2560 	{
2561 	  int has_stub = 0;
2562 	  int has_destructor = 0, has_other = 0;
2563 	  int is_v3 = 0;
2564 	  struct next_fnfield *tmp_sublist;
2565 
2566 	  /* Various versions of GCC emit various mostly-useless
2567 	     strings in the name field for special member functions.
2568 
2569 	     For stub methods, we need to defer correcting the name
2570 	     until we are ready to unstub the method, because the current
2571 	     name string is used by gdb_mangle_name.  The only stub methods
2572 	     of concern here are GNU v2 operators; other methods have their
2573 	     names correct (see caveat below).
2574 
2575 	     For non-stub methods, in GNU v3, we have a complete physname.
2576 	     Therefore we can safely correct the name now.  This primarily
2577 	     affects constructors and destructors, whose name will be
2578 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2579 	     operators will also have incorrect names; for instance,
2580 	     "operator int" will be named "operator i" (i.e. the type is
2581 	     mangled).
2582 
2583 	     For non-stub methods in GNU v2, we have no easy way to
2584 	     know if we have a complete physname or not.  For most
2585 	     methods the result depends on the platform (if CPLUS_MARKER
2586 	     can be `$' or `.', it will use minimal debug information, or
2587 	     otherwise the full physname will be included).
2588 
2589 	     Rather than dealing with this, we take a different approach.
2590 	     For v3 mangled names, we can use the full physname; for v2,
2591 	     we use cplus_demangle_opname (which is actually v2 specific),
2592 	     because the only interesting names are all operators - once again
2593 	     barring the caveat below.  Skip this process if any method in the
2594 	     group is a stub, to prevent our fouling up the workings of
2595 	     gdb_mangle_name.
2596 
2597 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2598 	     destructors in the same method group.  We need to split this
2599 	     into two groups, because they should have different names.
2600 	     So for each method group we check whether it contains both
2601 	     routines whose physname appears to be a destructor (the physnames
2602 	     for and destructors are always provided, due to quirks in v2
2603 	     mangling) and routines whose physname does not appear to be a
2604 	     destructor.  If so then we break up the list into two halves.
2605 	     Even if the constructors and destructors aren't in the same group
2606 	     the destructor will still lack the leading tilde, so that also
2607 	     needs to be fixed.
2608 
2609 	     So, to summarize what we expect and handle here:
2610 
2611 	        Given         Given          Real         Real       Action
2612 	     method name     physname      physname   method name
2613 
2614 	     __opi            [none]     __opi__3Foo  operator int    opname
2615 	                                                         [now or later]
2616 	     Foo              _._3Foo       _._3Foo      ~Foo      separate and
2617 	                                                               rename
2618 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2619 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2620 	  */
2621 
2622 	  tmp_sublist = sublist;
2623 	  while (tmp_sublist != NULL)
2624 	    {
2625 	      if (tmp_sublist->fn_field.is_stub)
2626 		has_stub = 1;
2627 	      if (tmp_sublist->fn_field.physname[0] == '_'
2628 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2629 		is_v3 = 1;
2630 
2631 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2632 		has_destructor++;
2633 	      else
2634 		has_other++;
2635 
2636 	      tmp_sublist = tmp_sublist->next;
2637 	    }
2638 
2639 	  if (has_destructor && has_other)
2640 	    {
2641 	      struct next_fnfieldlist *destr_fnlist;
2642 	      struct next_fnfield *last_sublist;
2643 
2644 	      /* Create a new fn_fieldlist for the destructors.  */
2645 
2646 	      destr_fnlist = (struct next_fnfieldlist *)
2647 		xmalloc (sizeof (struct next_fnfieldlist));
2648 	      make_cleanup (xfree, destr_fnlist);
2649 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2650 	      destr_fnlist->fn_fieldlist.name
2651 		= obconcat (&objfile->objfile_obstack, "~",
2652 			    new_fnlist->fn_fieldlist.name, (char *) NULL);
2653 
2654 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2655 		obstack_alloc (&objfile->objfile_obstack,
2656 			       sizeof (struct fn_field) * has_destructor);
2657 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2658 		  sizeof (struct fn_field) * has_destructor);
2659 	      tmp_sublist = sublist;
2660 	      last_sublist = NULL;
2661 	      i = 0;
2662 	      while (tmp_sublist != NULL)
2663 		{
2664 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2665 		    {
2666 		      tmp_sublist = tmp_sublist->next;
2667 		      continue;
2668 		    }
2669 
2670 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2671 		    = tmp_sublist->fn_field;
2672 		  if (last_sublist)
2673 		    last_sublist->next = tmp_sublist->next;
2674 		  else
2675 		    sublist = tmp_sublist->next;
2676 		  last_sublist = tmp_sublist;
2677 		  tmp_sublist = tmp_sublist->next;
2678 		}
2679 
2680 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2681 	      destr_fnlist->next = fip->fnlist;
2682 	      fip->fnlist = destr_fnlist;
2683 	      nfn_fields++;
2684 	      total_length += has_destructor;
2685 	      length -= has_destructor;
2686 	    }
2687 	  else if (is_v3)
2688 	    {
2689 	      /* v3 mangling prevents the use of abbreviated physnames,
2690 		 so we can do this here.  There are stubbed methods in v3
2691 		 only:
2692 		 - in -gstabs instead of -gstabs+
2693 		 - or for static methods, which are output as a function type
2694 		   instead of a method type.  */
2695 
2696 	      update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2697 						sublist->fn_field.physname);
2698 	    }
2699 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2700 	    {
2701 	      new_fnlist->fn_fieldlist.name =
2702 		concat ("~", main_fn_name, (char *)NULL);
2703 	      xfree (main_fn_name);
2704 	    }
2705 	  else if (!has_stub)
2706 	    {
2707 	      char dem_opname[256];
2708 	      int ret;
2709 
2710 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2711 					      dem_opname, DMGL_ANSI);
2712 	      if (!ret)
2713 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 					     dem_opname, 0);
2715 	      if (ret)
2716 		new_fnlist->fn_fieldlist.name
2717 		  = obsavestring (dem_opname, strlen (dem_opname),
2718 				  &objfile->objfile_obstack);
2719 	    }
2720 
2721 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2722 	    obstack_alloc (&objfile->objfile_obstack,
2723 			   sizeof (struct fn_field) * length);
2724 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2725 		  sizeof (struct fn_field) * length);
2726 	  for (i = length; (i--, sublist); sublist = sublist->next)
2727 	    {
2728 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2729 	    }
2730 
2731 	  new_fnlist->fn_fieldlist.length = length;
2732 	  new_fnlist->next = fip->fnlist;
2733 	  fip->fnlist = new_fnlist;
2734 	  nfn_fields++;
2735 	  total_length += length;
2736 	}
2737     }
2738 
2739   if (nfn_fields)
2740     {
2741       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2742       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2743 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2744       memset (TYPE_FN_FIELDLISTS (type), 0,
2745 	      sizeof (struct fn_fieldlist) * nfn_fields);
2746       TYPE_NFN_FIELDS (type) = nfn_fields;
2747       TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2748     }
2749 
2750   return 1;
2751 }
2752 
2753 /* Special GNU C++ name.
2754 
2755    Returns 1 for success, 0 for failure.  "failure" means that we can't
2756    keep parsing and it's time for error_type().  */
2757 
2758 static int
2759 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2760 		 struct objfile *objfile)
2761 {
2762   char *p;
2763   char *name;
2764   char cpp_abbrev;
2765   struct type *context;
2766 
2767   p = *pp;
2768   if (*++p == 'v')
2769     {
2770       name = NULL;
2771       cpp_abbrev = *++p;
2772 
2773       *pp = p + 1;
2774 
2775       /* At this point, *pp points to something like "22:23=*22...",
2776          where the type number before the ':' is the "context" and
2777          everything after is a regular type definition.  Lookup the
2778          type, find it's name, and construct the field name.  */
2779 
2780       context = read_type (pp, objfile);
2781 
2782       switch (cpp_abbrev)
2783 	{
2784 	case 'f':		/* $vf -- a virtual function table pointer */
2785 	  name = type_name_no_tag (context);
2786 	  if (name == NULL)
2787 	    {
2788 	      name = "";
2789 	    }
2790 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 					    vptr_name, name, (char *) NULL);
2792 	  break;
2793 
2794 	case 'b':		/* $vb -- a virtual bsomethingorother */
2795 	  name = type_name_no_tag (context);
2796 	  if (name == NULL)
2797 	    {
2798 	      complaint (&symfile_complaints,
2799 			 _("C++ abbreviated type name "
2800 			   "unknown at symtab pos %d"),
2801 			 symnum);
2802 	      name = "FOO";
2803 	    }
2804 	  fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 					    name, (char *) NULL);
2806 	  break;
2807 
2808 	default:
2809 	  invalid_cpp_abbrev_complaint (*pp);
2810 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 					    "INVALID_CPLUSPLUS_ABBREV",
2812 					    (char *) NULL);
2813 	  break;
2814 	}
2815 
2816       /* At this point, *pp points to the ':'.  Skip it and read the
2817          field type.  */
2818 
2819       p = ++(*pp);
2820       if (p[-1] != ':')
2821 	{
2822 	  invalid_cpp_abbrev_complaint (*pp);
2823 	  return 0;
2824 	}
2825       fip->list->field.type = read_type (pp, objfile);
2826       if (**pp == ',')
2827 	(*pp)++;		/* Skip the comma.  */
2828       else
2829 	return 0;
2830 
2831       {
2832 	int nbits;
2833 
2834 	FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2835                                                             0);
2836 	if (nbits != 0)
2837 	  return 0;
2838       }
2839       /* This field is unpacked.  */
2840       FIELD_BITSIZE (fip->list->field) = 0;
2841       fip->list->visibility = VISIBILITY_PRIVATE;
2842     }
2843   else
2844     {
2845       invalid_cpp_abbrev_complaint (*pp);
2846       /* We have no idea what syntax an unrecognized abbrev would have, so
2847          better return 0.  If we returned 1, we would need to at least advance
2848          *pp to avoid an infinite loop.  */
2849       return 0;
2850     }
2851   return 1;
2852 }
2853 
2854 static void
2855 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2856 		       struct type *type, struct objfile *objfile)
2857 {
2858   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859 
2860   fip->list->field.name =
2861     obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2862   *pp = p + 1;
2863 
2864   /* This means we have a visibility for a field coming.  */
2865   if (**pp == '/')
2866     {
2867       (*pp)++;
2868       fip->list->visibility = *(*pp)++;
2869     }
2870   else
2871     {
2872       /* normal dbx-style format, no explicit visibility */
2873       fip->list->visibility = VISIBILITY_PUBLIC;
2874     }
2875 
2876   fip->list->field.type = read_type (pp, objfile);
2877   if (**pp == ':')
2878     {
2879       p = ++(*pp);
2880 #if 0
2881       /* Possible future hook for nested types.  */
2882       if (**pp == '!')
2883 	{
2884 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2885 	  p = ++(*pp);
2886 	}
2887       else
2888 	...;
2889 #endif
2890       while (*p != ';')
2891 	{
2892 	  p++;
2893 	}
2894       /* Static class member.  */
2895       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896       *pp = p + 1;
2897       return;
2898     }
2899   else if (**pp != ',')
2900     {
2901       /* Bad structure-type format.  */
2902       stabs_general_complaint ("bad structure-type format");
2903       return;
2904     }
2905 
2906   (*pp)++;			/* Skip the comma.  */
2907 
2908   {
2909     int nbits;
2910 
2911     FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2912     if (nbits != 0)
2913       {
2914 	stabs_general_complaint ("bad structure-type format");
2915 	return;
2916       }
2917     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2918     if (nbits != 0)
2919       {
2920 	stabs_general_complaint ("bad structure-type format");
2921 	return;
2922       }
2923   }
2924 
2925   if (FIELD_BITPOS (fip->list->field) == 0
2926       && FIELD_BITSIZE (fip->list->field) == 0)
2927     {
2928       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2929          it is a field which has been optimized out.  The correct stab for
2930          this case is to use VISIBILITY_IGNORE, but that is a recent
2931          invention.  (2) It is a 0-size array.  For example
2932          union { int num; char str[0]; } foo.  Printing _("<no value>" for
2933          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2934          will continue to work, and a 0-size array as a whole doesn't
2935          have any contents to print.
2936 
2937          I suspect this probably could also happen with gcc -gstabs (not
2938          -gstabs+) for static fields, and perhaps other C++ extensions.
2939          Hopefully few people use -gstabs with gdb, since it is intended
2940          for dbx compatibility.  */
2941 
2942       /* Ignore this field.  */
2943       fip->list->visibility = VISIBILITY_IGNORE;
2944     }
2945   else
2946     {
2947       /* Detect an unpacked field and mark it as such.
2948          dbx gives a bit size for all fields.
2949          Note that forward refs cannot be packed,
2950          and treat enums as if they had the width of ints.  */
2951 
2952       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953 
2954       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2955 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2956 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2957 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 	{
2959 	  FIELD_BITSIZE (fip->list->field) = 0;
2960 	}
2961       if ((FIELD_BITSIZE (fip->list->field)
2962 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2963 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2964 	       && FIELD_BITSIZE (fip->list->field)
2965 		  == gdbarch_int_bit (gdbarch))
2966 	  )
2967 	  &&
2968 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 	{
2970 	  FIELD_BITSIZE (fip->list->field) = 0;
2971 	}
2972     }
2973 }
2974 
2975 
2976 /* Read struct or class data fields.  They have the form:
2977 
2978    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2979 
2980    At the end, we see a semicolon instead of a field.
2981 
2982    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2983    a static field.
2984 
2985    The optional VISIBILITY is one of:
2986 
2987    '/0' (VISIBILITY_PRIVATE)
2988    '/1' (VISIBILITY_PROTECTED)
2989    '/2' (VISIBILITY_PUBLIC)
2990    '/9' (VISIBILITY_IGNORE)
2991 
2992    or nothing, for C style fields with public visibility.
2993 
2994    Returns 1 for success, 0 for failure.  */
2995 
2996 static int
2997 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2998 		    struct objfile *objfile)
2999 {
3000   char *p;
3001   struct nextfield *new;
3002 
3003   /* We better set p right now, in case there are no fields at all...    */
3004 
3005   p = *pp;
3006 
3007   /* Read each data member type until we find the terminating ';' at the end of
3008      the data member list, or break for some other reason such as finding the
3009      start of the member function list.  */
3010   /* Stab string for structure/union does not end with two ';' in
3011      SUN C compiler 5.3 i.e. F6U2, hence check for end of string.  */
3012 
3013   while (**pp != ';' && **pp != '\0')
3014     {
3015       STABS_CONTINUE (pp, objfile);
3016       /* Get space to record the next field's data.  */
3017       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3018       make_cleanup (xfree, new);
3019       memset (new, 0, sizeof (struct nextfield));
3020       new->next = fip->list;
3021       fip->list = new;
3022 
3023       /* Get the field name.  */
3024       p = *pp;
3025 
3026       /* If is starts with CPLUS_MARKER it is a special abbreviation,
3027          unless the CPLUS_MARKER is followed by an underscore, in
3028          which case it is just the name of an anonymous type, which we
3029          should handle like any other type name.  */
3030 
3031       if (is_cplus_marker (p[0]) && p[1] != '_')
3032 	{
3033 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
3034 	    return 0;
3035 	  continue;
3036 	}
3037 
3038       /* Look for the ':' that separates the field name from the field
3039          values.  Data members are delimited by a single ':', while member
3040          functions are delimited by a pair of ':'s.  When we hit the member
3041          functions (if any), terminate scan loop and return.  */
3042 
3043       while (*p != ':' && *p != '\0')
3044 	{
3045 	  p++;
3046 	}
3047       if (*p == '\0')
3048 	return 0;
3049 
3050       /* Check to see if we have hit the member functions yet.  */
3051       if (p[1] == ':')
3052 	{
3053 	  break;
3054 	}
3055       read_one_struct_field (fip, pp, p, type, objfile);
3056     }
3057   if (p[0] == ':' && p[1] == ':')
3058     {
3059       /* (the deleted) chill the list of fields: the last entry (at
3060          the head) is a partially constructed entry which we now
3061          scrub.  */
3062       fip->list = fip->list->next;
3063     }
3064   return 1;
3065 }
3066 /* *INDENT-OFF* */
3067 /* The stabs for C++ derived classes contain baseclass information which
3068    is marked by a '!' character after the total size.  This function is
3069    called when we encounter the baseclass marker, and slurps up all the
3070    baseclass information.
3071 
3072    Immediately following the '!' marker is the number of base classes that
3073    the class is derived from, followed by information for each base class.
3074    For each base class, there are two visibility specifiers, a bit offset
3075    to the base class information within the derived class, a reference to
3076    the type for the base class, and a terminating semicolon.
3077 
3078    A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079    						       ^^ ^ ^ ^  ^ ^  ^
3080 	Baseclass information marker __________________|| | | |  | |  |
3081 	Number of baseclasses __________________________| | | |  | |  |
3082 	Visibility specifiers (2) ________________________| | |  | |  |
3083 	Offset in bits from start of class _________________| |  | |  |
3084 	Type number for base class ___________________________|  | |  |
3085 	Visibility specifiers (2) _______________________________| |  |
3086 	Offset in bits from start of class ________________________|  |
3087 	Type number of base class ____________________________________|
3088 
3089   Return 1 for success, 0 for (error-type-inducing) failure.  */
3090 /* *INDENT-ON* */
3091 
3092 
3093 
3094 static int
3095 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3096 		  struct objfile *objfile)
3097 {
3098   int i;
3099   struct nextfield *new;
3100 
3101   if (**pp != '!')
3102     {
3103       return 1;
3104     }
3105   else
3106     {
3107       /* Skip the '!' baseclass information marker.  */
3108       (*pp)++;
3109     }
3110 
3111   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3112   {
3113     int nbits;
3114 
3115     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3116     if (nbits != 0)
3117       return 0;
3118   }
3119 
3120 #if 0
3121   /* Some stupid compilers have trouble with the following, so break
3122      it up into simpler expressions.  */
3123   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3124     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3125 #else
3126   {
3127     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3128     char *pointer;
3129 
3130     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3131     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3132   }
3133 #endif /* 0 */
3134 
3135   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136 
3137   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138     {
3139       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3140       make_cleanup (xfree, new);
3141       memset (new, 0, sizeof (struct nextfield));
3142       new->next = fip->list;
3143       fip->list = new;
3144       FIELD_BITSIZE (new->field) = 0;	/* This should be an unpacked
3145 					   field!  */
3146 
3147       STABS_CONTINUE (pp, objfile);
3148       switch (**pp)
3149 	{
3150 	case '0':
3151 	  /* Nothing to do.  */
3152 	  break;
3153 	case '1':
3154 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3155 	  break;
3156 	default:
3157 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3158 	  {
3159 	    complaint (&symfile_complaints,
3160 		       _("Unknown virtual character `%c' for baseclass"),
3161 		       **pp);
3162 	  }
3163 	}
3164       ++(*pp);
3165 
3166       new->visibility = *(*pp)++;
3167       switch (new->visibility)
3168 	{
3169 	case VISIBILITY_PRIVATE:
3170 	case VISIBILITY_PROTECTED:
3171 	case VISIBILITY_PUBLIC:
3172 	  break;
3173 	default:
3174 	  /* Bad visibility format.  Complain and treat it as
3175 	     public.  */
3176 	  {
3177 	    complaint (&symfile_complaints,
3178 		       _("Unknown visibility `%c' for baseclass"),
3179 		       new->visibility);
3180 	    new->visibility = VISIBILITY_PUBLIC;
3181 	  }
3182 	}
3183 
3184       {
3185 	int nbits;
3186 
3187 	/* The remaining value is the bit offset of the portion of the object
3188 	   corresponding to this baseclass.  Always zero in the absence of
3189 	   multiple inheritance.  */
3190 
3191 	FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3192 	if (nbits != 0)
3193 	  return 0;
3194       }
3195 
3196       /* The last piece of baseclass information is the type of the
3197          base class.  Read it, and remember it's type name as this
3198          field's name.  */
3199 
3200       new->field.type = read_type (pp, objfile);
3201       new->field.name = type_name_no_tag (new->field.type);
3202 
3203       /* Skip trailing ';' and bump count of number of fields seen.  */
3204       if (**pp == ';')
3205 	(*pp)++;
3206       else
3207 	return 0;
3208     }
3209   return 1;
3210 }
3211 
3212 /* The tail end of stabs for C++ classes that contain a virtual function
3213    pointer contains a tilde, a %, and a type number.
3214    The type number refers to the base class (possibly this class itself) which
3215    contains the vtable pointer for the current class.
3216 
3217    This function is called when we have parsed all the method declarations,
3218    so we can look for the vptr base class info.  */
3219 
3220 static int
3221 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3222 		   struct objfile *objfile)
3223 {
3224   char *p;
3225 
3226   STABS_CONTINUE (pp, objfile);
3227 
3228   /* If we are positioned at a ';', then skip it.  */
3229   if (**pp == ';')
3230     {
3231       (*pp)++;
3232     }
3233 
3234   if (**pp == '~')
3235     {
3236       (*pp)++;
3237 
3238       if (**pp == '=' || **pp == '+' || **pp == '-')
3239 	{
3240 	  /* Obsolete flags that used to indicate the presence
3241 	     of constructors and/or destructors.  */
3242 	  (*pp)++;
3243 	}
3244 
3245       /* Read either a '%' or the final ';'.  */
3246       if (*(*pp)++ == '%')
3247 	{
3248 	  /* The next number is the type number of the base class
3249 	     (possibly our own class) which supplies the vtable for
3250 	     this class.  Parse it out, and search that class to find
3251 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3252 	     and TYPE_VPTR_FIELDNO.  */
3253 
3254 	  struct type *t;
3255 	  int i;
3256 
3257 	  t = read_type (pp, objfile);
3258 	  p = (*pp)++;
3259 	  while (*p != '\0' && *p != ';')
3260 	    {
3261 	      p++;
3262 	    }
3263 	  if (*p == '\0')
3264 	    {
3265 	      /* Premature end of symbol.  */
3266 	      return 0;
3267 	    }
3268 
3269 	  TYPE_VPTR_BASETYPE (type) = t;
3270 	  if (type == t)	/* Our own class provides vtbl ptr.  */
3271 	    {
3272 	      for (i = TYPE_NFIELDS (t) - 1;
3273 		   i >= TYPE_N_BASECLASSES (t);
3274 		   --i)
3275 		{
3276 		  char *name = TYPE_FIELD_NAME (t, i);
3277 
3278 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3279 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3280 		    {
3281 		      TYPE_VPTR_FIELDNO (type) = i;
3282 		      goto gotit;
3283 		    }
3284 		}
3285 	      /* Virtual function table field not found.  */
3286 	      complaint (&symfile_complaints,
3287 			 _("virtual function table pointer "
3288 			   "not found when defining class `%s'"),
3289 			 TYPE_NAME (type));
3290 	      return 0;
3291 	    }
3292 	  else
3293 	    {
3294 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3295 	    }
3296 
3297 	gotit:
3298 	  *pp = p + 1;
3299 	}
3300     }
3301   return 1;
3302 }
3303 
3304 static int
3305 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3306 {
3307   int n;
3308 
3309   for (n = TYPE_NFN_FIELDS (type);
3310        fip->fnlist != NULL;
3311        fip->fnlist = fip->fnlist->next)
3312     {
3313       --n;			/* Circumvent Sun3 compiler bug.  */
3314       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3315     }
3316   return 1;
3317 }
3318 
3319 /* Create the vector of fields, and record how big it is.
3320    We need this info to record proper virtual function table information
3321    for this class's virtual functions.  */
3322 
3323 static int
3324 attach_fields_to_type (struct field_info *fip, struct type *type,
3325 		       struct objfile *objfile)
3326 {
3327   int nfields = 0;
3328   int non_public_fields = 0;
3329   struct nextfield *scan;
3330 
3331   /* Count up the number of fields that we have, as well as taking note of
3332      whether or not there are any non-public fields, which requires us to
3333      allocate and build the private_field_bits and protected_field_bits
3334      bitfields.  */
3335 
3336   for (scan = fip->list; scan != NULL; scan = scan->next)
3337     {
3338       nfields++;
3339       if (scan->visibility != VISIBILITY_PUBLIC)
3340 	{
3341 	  non_public_fields++;
3342 	}
3343     }
3344 
3345   /* Now we know how many fields there are, and whether or not there are any
3346      non-public fields.  Record the field count, allocate space for the
3347      array of fields, and create blank visibility bitfields if necessary.  */
3348 
3349   TYPE_NFIELDS (type) = nfields;
3350   TYPE_FIELDS (type) = (struct field *)
3351     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3352   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3353 
3354   if (non_public_fields)
3355     {
3356       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3357 
3358       TYPE_FIELD_PRIVATE_BITS (type) =
3359 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3361 
3362       TYPE_FIELD_PROTECTED_BITS (type) =
3363 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3365 
3366       TYPE_FIELD_IGNORE_BITS (type) =
3367 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3368       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3369     }
3370 
3371   /* Copy the saved-up fields into the field vector.  Start from the
3372      head of the list, adding to the tail of the field array, so that
3373      they end up in the same order in the array in which they were
3374      added to the list.  */
3375 
3376   while (nfields-- > 0)
3377     {
3378       TYPE_FIELD (type, nfields) = fip->list->field;
3379       switch (fip->list->visibility)
3380 	{
3381 	case VISIBILITY_PRIVATE:
3382 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3383 	  break;
3384 
3385 	case VISIBILITY_PROTECTED:
3386 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3387 	  break;
3388 
3389 	case VISIBILITY_IGNORE:
3390 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3391 	  break;
3392 
3393 	case VISIBILITY_PUBLIC:
3394 	  break;
3395 
3396 	default:
3397 	  /* Unknown visibility.  Complain and treat it as public.  */
3398 	  {
3399 	    complaint (&symfile_complaints,
3400 		       _("Unknown visibility `%c' for field"),
3401 		       fip->list->visibility);
3402 	  }
3403 	  break;
3404 	}
3405       fip->list = fip->list->next;
3406     }
3407   return 1;
3408 }
3409 
3410 
3411 /* Complain that the compiler has emitted more than one definition for the
3412    structure type TYPE.  */
3413 static void
3414 complain_about_struct_wipeout (struct type *type)
3415 {
3416   char *name = "";
3417   char *kind = "";
3418 
3419   if (TYPE_TAG_NAME (type))
3420     {
3421       name = TYPE_TAG_NAME (type);
3422       switch (TYPE_CODE (type))
3423         {
3424         case TYPE_CODE_STRUCT: kind = "struct "; break;
3425         case TYPE_CODE_UNION:  kind = "union ";  break;
3426         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3427         default: kind = "";
3428         }
3429     }
3430   else if (TYPE_NAME (type))
3431     {
3432       name = TYPE_NAME (type);
3433       kind = "";
3434     }
3435   else
3436     {
3437       name = "<unknown>";
3438       kind = "";
3439     }
3440 
3441   complaint (&symfile_complaints,
3442 	     _("struct/union type gets multiply defined: %s%s"), kind, name);
3443 }
3444 
3445 /* Set the length for all variants of a same main_type, which are
3446    connected in the closed chain.
3447 
3448    This is something that needs to be done when a type is defined *after*
3449    some cross references to this type have already been read.  Consider
3450    for instance the following scenario where we have the following two
3451    stabs entries:
3452 
3453         .stabs  "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3454         .stabs  "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3455 
3456    A stubbed version of type dummy is created while processing the first
3457    stabs entry.  The length of that type is initially set to zero, since
3458    it is unknown at this point.  Also, a "constant" variation of type
3459    "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3460    the stabs line).
3461 
3462    The second stabs entry allows us to replace the stubbed definition
3463    with the real definition.  However, we still need to adjust the length
3464    of the "constant" variation of that type, as its length was left
3465    untouched during the main type replacement...  */
3466 
3467 static void
3468 set_length_in_type_chain (struct type *type)
3469 {
3470   struct type *ntype = TYPE_CHAIN (type);
3471 
3472   while (ntype != type)
3473     {
3474       if (TYPE_LENGTH(ntype) == 0)
3475 	TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3476       else
3477         complain_about_struct_wipeout (ntype);
3478       ntype = TYPE_CHAIN (ntype);
3479     }
3480 }
3481 
3482 /* Read the description of a structure (or union type) and return an object
3483    describing the type.
3484 
3485    PP points to a character pointer that points to the next unconsumed token
3486    in the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3487    *PP will point to "4a:1,0,32;;".
3488 
3489    TYPE points to an incomplete type that needs to be filled in.
3490 
3491    OBJFILE points to the current objfile from which the stabs information is
3492    being read.  (Note that it is redundant in that TYPE also contains a pointer
3493    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3494  */
3495 
3496 static struct type *
3497 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3498                   struct objfile *objfile)
3499 {
3500   struct cleanup *back_to;
3501   struct field_info fi;
3502 
3503   fi.list = NULL;
3504   fi.fnlist = NULL;
3505 
3506   /* When describing struct/union/class types in stabs, G++ always drops
3507      all qualifications from the name.  So if you've got:
3508        struct A { ... struct B { ... }; ... };
3509      then G++ will emit stabs for `struct A::B' that call it simply
3510      `struct B'.  Obviously, if you've got a real top-level definition for
3511      `struct B', or other nested definitions, this is going to cause
3512      problems.
3513 
3514      Obviously, GDB can't fix this by itself, but it can at least avoid
3515      scribbling on existing structure type objects when new definitions
3516      appear.  */
3517   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3518          || TYPE_STUB (type)))
3519     {
3520       complain_about_struct_wipeout (type);
3521 
3522       /* It's probably best to return the type unchanged.  */
3523       return type;
3524     }
3525 
3526   back_to = make_cleanup (null_cleanup, 0);
3527 
3528   INIT_CPLUS_SPECIFIC (type);
3529   TYPE_CODE (type) = type_code;
3530   TYPE_STUB (type) = 0;
3531 
3532   /* First comes the total size in bytes.  */
3533 
3534   {
3535     int nbits;
3536 
3537     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3538     if (nbits != 0)
3539       return error_type (pp, objfile);
3540     set_length_in_type_chain (type);
3541   }
3542 
3543   /* Now read the baseclasses, if any, read the regular C struct or C++
3544      class member fields, attach the fields to the type, read the C++
3545      member functions, attach them to the type, and then read any tilde
3546      field (baseclass specifier for the class holding the main vtable).  */
3547 
3548   if (!read_baseclasses (&fi, pp, type, objfile)
3549       || !read_struct_fields (&fi, pp, type, objfile)
3550       || !attach_fields_to_type (&fi, type, objfile)
3551       || !read_member_functions (&fi, pp, type, objfile)
3552       || !attach_fn_fields_to_type (&fi, type)
3553       || !read_tilde_fields (&fi, pp, type, objfile))
3554     {
3555       type = error_type (pp, objfile);
3556     }
3557 
3558   do_cleanups (back_to);
3559   return (type);
3560 }
3561 
3562 /* Read a definition of an array type,
3563    and create and return a suitable type object.
3564    Also creates a range type which represents the bounds of that
3565    array.  */
3566 
3567 static struct type *
3568 read_array_type (char **pp, struct type *type,
3569 		 struct objfile *objfile)
3570 {
3571   struct type *index_type, *element_type, *range_type;
3572   int lower, upper;
3573   int adjustable = 0;
3574   int nbits;
3575 
3576   /* Format of an array type:
3577      "ar<index type>;lower;upper;<array_contents_type>".
3578      OS9000: "arlower,upper;<array_contents_type>".
3579 
3580      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3581      for these, produce a type like float[][].  */
3582 
3583     {
3584       index_type = read_type (pp, objfile);
3585       if (**pp != ';')
3586 	/* Improper format of array type decl.  */
3587 	return error_type (pp, objfile);
3588       ++*pp;
3589     }
3590 
3591   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3592     {
3593       (*pp)++;
3594       adjustable = 1;
3595     }
3596   lower = read_huge_number (pp, ';', &nbits, 0);
3597 
3598   if (nbits != 0)
3599     return error_type (pp, objfile);
3600 
3601   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3602     {
3603       (*pp)++;
3604       adjustable = 1;
3605     }
3606   upper = read_huge_number (pp, ';', &nbits, 0);
3607   if (nbits != 0)
3608     return error_type (pp, objfile);
3609 
3610   element_type = read_type (pp, objfile);
3611 
3612   if (adjustable)
3613     {
3614       lower = 0;
3615       upper = -1;
3616     }
3617 
3618   range_type =
3619     create_range_type ((struct type *) NULL, index_type, lower, upper);
3620   type = create_array_type (type, element_type, range_type);
3621 
3622   return type;
3623 }
3624 
3625 
3626 /* Read a definition of an enumeration type,
3627    and create and return a suitable type object.
3628    Also defines the symbols that represent the values of the type.  */
3629 
3630 static struct type *
3631 read_enum_type (char **pp, struct type *type,
3632 		struct objfile *objfile)
3633 {
3634   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3635   char *p;
3636   char *name;
3637   long n;
3638   struct symbol *sym;
3639   int nsyms = 0;
3640   struct pending **symlist;
3641   struct pending *osyms, *syms;
3642   int o_nsyms;
3643   int nbits;
3644   int unsigned_enum = 1;
3645 
3646 #if 0
3647   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3648      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3649      to do?  For now, force all enum values to file scope.  */
3650   if (within_function)
3651     symlist = &local_symbols;
3652   else
3653 #endif
3654     symlist = &file_symbols;
3655   osyms = *symlist;
3656   o_nsyms = osyms ? osyms->nsyms : 0;
3657 
3658   /* The aix4 compiler emits an extra field before the enum members;
3659      my guess is it's a type of some sort.  Just ignore it.  */
3660   if (**pp == '-')
3661     {
3662       /* Skip over the type.  */
3663       while (**pp != ':')
3664 	(*pp)++;
3665 
3666       /* Skip over the colon.  */
3667       (*pp)++;
3668     }
3669 
3670   /* Read the value-names and their values.
3671      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3672      A semicolon or comma instead of a NAME means the end.  */
3673   while (**pp && **pp != ';' && **pp != ',')
3674     {
3675       STABS_CONTINUE (pp, objfile);
3676       p = *pp;
3677       while (*p != ':')
3678 	p++;
3679       name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3680       *pp = p + 1;
3681       n = read_huge_number (pp, ',', &nbits, 0);
3682       if (nbits != 0)
3683 	return error_type (pp, objfile);
3684 
3685       sym = (struct symbol *)
3686 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3687       memset (sym, 0, sizeof (struct symbol));
3688       SYMBOL_SET_LINKAGE_NAME (sym, name);
3689       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3690       SYMBOL_CLASS (sym) = LOC_CONST;
3691       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3692       SYMBOL_VALUE (sym) = n;
3693       if (n < 0)
3694 	unsigned_enum = 0;
3695       add_symbol_to_list (sym, symlist);
3696       nsyms++;
3697     }
3698 
3699   if (**pp == ';')
3700     (*pp)++;			/* Skip the semicolon.  */
3701 
3702   /* Now fill in the fields of the type-structure.  */
3703 
3704   TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3705   set_length_in_type_chain (type);
3706   TYPE_CODE (type) = TYPE_CODE_ENUM;
3707   TYPE_STUB (type) = 0;
3708   if (unsigned_enum)
3709     TYPE_UNSIGNED (type) = 1;
3710   TYPE_NFIELDS (type) = nsyms;
3711   TYPE_FIELDS (type) = (struct field *)
3712     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3713   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3714 
3715   /* Find the symbols for the values and put them into the type.
3716      The symbols can be found in the symlist that we put them on
3717      to cause them to be defined.  osyms contains the old value
3718      of that symlist; everything up to there was defined by us.  */
3719   /* Note that we preserve the order of the enum constants, so
3720      that in something like "enum {FOO, LAST_THING=FOO}" we print
3721      FOO, not LAST_THING.  */
3722 
3723   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3724     {
3725       int last = syms == osyms ? o_nsyms : 0;
3726       int j = syms->nsyms;
3727 
3728       for (; --j >= last; --n)
3729 	{
3730 	  struct symbol *xsym = syms->symbol[j];
3731 
3732 	  SYMBOL_TYPE (xsym) = type;
3733 	  TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3734 	  TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3735 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3736 	}
3737       if (syms == osyms)
3738 	break;
3739     }
3740 
3741   return type;
3742 }
3743 
3744 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3745    typedefs in every file (for int, long, etc):
3746 
3747    type = b <signed> <width> <format type>; <offset>; <nbits>
3748    signed = u or s.
3749    optional format type = c or b for char or boolean.
3750    offset = offset from high order bit to start bit of type.
3751    width is # bytes in object of this type, nbits is # bits in type.
3752 
3753    The width/offset stuff appears to be for small objects stored in
3754    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3755    FIXME.  */
3756 
3757 static struct type *
3758 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3759 {
3760   int type_bits;
3761   int nbits;
3762   int signed_type;
3763   enum type_code code = TYPE_CODE_INT;
3764 
3765   switch (**pp)
3766     {
3767     case 's':
3768       signed_type = 1;
3769       break;
3770     case 'u':
3771       signed_type = 0;
3772       break;
3773     default:
3774       return error_type (pp, objfile);
3775     }
3776   (*pp)++;
3777 
3778   /* For some odd reason, all forms of char put a c here.  This is strange
3779      because no other type has this honor.  We can safely ignore this because
3780      we actually determine 'char'acterness by the number of bits specified in
3781      the descriptor.
3782      Boolean forms, e.g Fortran logical*X, put a b here.  */
3783 
3784   if (**pp == 'c')
3785     (*pp)++;
3786   else if (**pp == 'b')
3787     {
3788       code = TYPE_CODE_BOOL;
3789       (*pp)++;
3790     }
3791 
3792   /* The first number appears to be the number of bytes occupied
3793      by this type, except that unsigned short is 4 instead of 2.
3794      Since this information is redundant with the third number,
3795      we will ignore it.  */
3796   read_huge_number (pp, ';', &nbits, 0);
3797   if (nbits != 0)
3798     return error_type (pp, objfile);
3799 
3800   /* The second number is always 0, so ignore it too.  */
3801   read_huge_number (pp, ';', &nbits, 0);
3802   if (nbits != 0)
3803     return error_type (pp, objfile);
3804 
3805   /* The third number is the number of bits for this type.  */
3806   type_bits = read_huge_number (pp, 0, &nbits, 0);
3807   if (nbits != 0)
3808     return error_type (pp, objfile);
3809   /* The type *should* end with a semicolon.  If it are embedded
3810      in a larger type the semicolon may be the only way to know where
3811      the type ends.  If this type is at the end of the stabstring we
3812      can deal with the omitted semicolon (but we don't have to like
3813      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3814      for "void".  */
3815   if (**pp == ';')
3816     ++(*pp);
3817 
3818   if (type_bits == 0)
3819     return init_type (TYPE_CODE_VOID, 1,
3820 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3821 		      objfile);
3822   else
3823     return init_type (code,
3824 		      type_bits / TARGET_CHAR_BIT,
3825 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3826 		      objfile);
3827 }
3828 
3829 static struct type *
3830 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3831 {
3832   int nbits;
3833   int details;
3834   int nbytes;
3835   struct type *rettype;
3836 
3837   /* The first number has more details about the type, for example
3838      FN_COMPLEX.  */
3839   details = read_huge_number (pp, ';', &nbits, 0);
3840   if (nbits != 0)
3841     return error_type (pp, objfile);
3842 
3843   /* The second number is the number of bytes occupied by this type.  */
3844   nbytes = read_huge_number (pp, ';', &nbits, 0);
3845   if (nbits != 0)
3846     return error_type (pp, objfile);
3847 
3848   if (details == NF_COMPLEX || details == NF_COMPLEX16
3849       || details == NF_COMPLEX32)
3850     {
3851       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3852       TYPE_TARGET_TYPE (rettype)
3853 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3854       return rettype;
3855     }
3856 
3857   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3858 }
3859 
3860 /* Read a number from the string pointed to by *PP.
3861    The value of *PP is advanced over the number.
3862    If END is nonzero, the character that ends the
3863    number must match END, or an error happens;
3864    and that character is skipped if it does match.
3865    If END is zero, *PP is left pointing to that character.
3866 
3867    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3868    the number is represented in an octal representation, assume that
3869    it is represented in a 2's complement representation with a size of
3870    TWOS_COMPLEMENT_BITS.
3871 
3872    If the number fits in a long, set *BITS to 0 and return the value.
3873    If not, set *BITS to be the number of bits in the number and return 0.
3874 
3875    If encounter garbage, set *BITS to -1 and return 0.  */
3876 
3877 static long
3878 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3879 {
3880   char *p = *pp;
3881   int sign = 1;
3882   int sign_bit = 0;
3883   long n = 0;
3884   int radix = 10;
3885   char overflow = 0;
3886   int nbits = 0;
3887   int c;
3888   long upper_limit;
3889   int twos_complement_representation = 0;
3890 
3891   if (*p == '-')
3892     {
3893       sign = -1;
3894       p++;
3895     }
3896 
3897   /* Leading zero means octal.  GCC uses this to output values larger
3898      than an int (because that would be hard in decimal).  */
3899   if (*p == '0')
3900     {
3901       radix = 8;
3902       p++;
3903     }
3904 
3905   /* Skip extra zeros.  */
3906   while (*p == '0')
3907     p++;
3908 
3909   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3910     {
3911       /* Octal, possibly signed.  Check if we have enough chars for a
3912 	 negative number.  */
3913 
3914       size_t len;
3915       char *p1 = p;
3916 
3917       while ((c = *p1) >= '0' && c < '8')
3918 	p1++;
3919 
3920       len = p1 - p;
3921       if (len > twos_complement_bits / 3
3922 	  || (twos_complement_bits % 3 == 0
3923 	      && len == twos_complement_bits / 3))
3924 	{
3925 	  /* Ok, we have enough characters for a signed value, check
3926 	     for signness by testing if the sign bit is set.  */
3927 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3928 	  c = *p - '0';
3929 	  if (c & (1 << sign_bit))
3930 	    {
3931 	      /* Definitely signed.  */
3932 	      twos_complement_representation = 1;
3933 	      sign = -1;
3934 	    }
3935 	}
3936     }
3937 
3938   upper_limit = LONG_MAX / radix;
3939 
3940   while ((c = *p++) >= '0' && c < ('0' + radix))
3941     {
3942       if (n <= upper_limit)
3943         {
3944           if (twos_complement_representation)
3945             {
3946 	      /* Octal, signed, twos complement representation.  In
3947 		 this case, n is the corresponding absolute value.  */
3948 	      if (n == 0)
3949 		{
3950 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3951 
3952 		  n = -sn;
3953 		}
3954               else
3955                 {
3956                   n *= radix;
3957                   n -= c - '0';
3958                 }
3959             }
3960           else
3961             {
3962               /* unsigned representation */
3963               n *= radix;
3964               n += c - '0';		/* FIXME this overflows anyway.  */
3965             }
3966         }
3967       else
3968         overflow = 1;
3969 
3970       /* This depends on large values being output in octal, which is
3971          what GCC does.  */
3972       if (radix == 8)
3973 	{
3974 	  if (nbits == 0)
3975 	    {
3976 	      if (c == '0')
3977 		/* Ignore leading zeroes.  */
3978 		;
3979 	      else if (c == '1')
3980 		nbits = 1;
3981 	      else if (c == '2' || c == '3')
3982 		nbits = 2;
3983 	      else
3984 		nbits = 3;
3985 	    }
3986 	  else
3987 	    nbits += 3;
3988 	}
3989     }
3990   if (end)
3991     {
3992       if (c && c != end)
3993 	{
3994 	  if (bits != NULL)
3995 	    *bits = -1;
3996 	  return 0;
3997 	}
3998     }
3999   else
4000     --p;
4001 
4002   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4003     {
4004       /* We were supposed to parse a number with maximum
4005 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
4006       if (bits != NULL)
4007 	*bits = -1;
4008       return 0;
4009     }
4010 
4011   *pp = p;
4012   if (overflow)
4013     {
4014       if (nbits == 0)
4015 	{
4016 	  /* Large decimal constants are an error (because it is hard to
4017 	     count how many bits are in them).  */
4018 	  if (bits != NULL)
4019 	    *bits = -1;
4020 	  return 0;
4021 	}
4022 
4023       /* -0x7f is the same as 0x80.  So deal with it by adding one to
4024          the number of bits.  Two's complement represention octals
4025          can't have a '-' in front.  */
4026       if (sign == -1 && !twos_complement_representation)
4027 	++nbits;
4028       if (bits)
4029 	*bits = nbits;
4030     }
4031   else
4032     {
4033       if (bits)
4034 	*bits = 0;
4035       return n * sign;
4036     }
4037   /* It's *BITS which has the interesting information.  */
4038   return 0;
4039 }
4040 
4041 static struct type *
4042 read_range_type (char **pp, int typenums[2], int type_size,
4043                  struct objfile *objfile)
4044 {
4045   struct gdbarch *gdbarch = get_objfile_arch (objfile);
4046   char *orig_pp = *pp;
4047   int rangenums[2];
4048   long n2, n3;
4049   int n2bits, n3bits;
4050   int self_subrange;
4051   struct type *result_type;
4052   struct type *index_type = NULL;
4053 
4054   /* First comes a type we are a subrange of.
4055      In C it is usually 0, 1 or the type being defined.  */
4056   if (read_type_number (pp, rangenums) != 0)
4057     return error_type (pp, objfile);
4058   self_subrange = (rangenums[0] == typenums[0] &&
4059 		   rangenums[1] == typenums[1]);
4060 
4061   if (**pp == '=')
4062     {
4063       *pp = orig_pp;
4064       index_type = read_type (pp, objfile);
4065     }
4066 
4067   /* A semicolon should now follow; skip it.  */
4068   if (**pp == ';')
4069     (*pp)++;
4070 
4071   /* The remaining two operands are usually lower and upper bounds
4072      of the range.  But in some special cases they mean something else.  */
4073   n2 = read_huge_number (pp, ';', &n2bits, type_size);
4074   n3 = read_huge_number (pp, ';', &n3bits, type_size);
4075 
4076   if (n2bits == -1 || n3bits == -1)
4077     return error_type (pp, objfile);
4078 
4079   if (index_type)
4080     goto handle_true_range;
4081 
4082   /* If limits are huge, must be large integral type.  */
4083   if (n2bits != 0 || n3bits != 0)
4084     {
4085       char got_signed = 0;
4086       char got_unsigned = 0;
4087       /* Number of bits in the type.  */
4088       int nbits = 0;
4089 
4090       /* If a type size attribute has been specified, the bounds of
4091          the range should fit in this size.  If the lower bounds needs
4092          more bits than the upper bound, then the type is signed.  */
4093       if (n2bits <= type_size && n3bits <= type_size)
4094         {
4095           if (n2bits == type_size && n2bits > n3bits)
4096             got_signed = 1;
4097           else
4098             got_unsigned = 1;
4099           nbits = type_size;
4100         }
4101       /* Range from 0 to <large number> is an unsigned large integral type.  */
4102       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4103 	{
4104 	  got_unsigned = 1;
4105 	  nbits = n3bits;
4106 	}
4107       /* Range from <large number> to <large number>-1 is a large signed
4108          integral type.  Take care of the case where <large number> doesn't
4109          fit in a long but <large number>-1 does.  */
4110       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4111 	       || (n2bits != 0 && n3bits == 0
4112 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4113 		   && n3 == LONG_MAX))
4114 	{
4115 	  got_signed = 1;
4116 	  nbits = n2bits;
4117 	}
4118 
4119       if (got_signed || got_unsigned)
4120 	{
4121 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4122 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4123 			    objfile);
4124 	}
4125       else
4126 	return error_type (pp, objfile);
4127     }
4128 
4129   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
4130   if (self_subrange && n2 == 0 && n3 == 0)
4131     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4132 
4133   /* If n3 is zero and n2 is positive, we want a floating type, and n2
4134      is the width in bytes.
4135 
4136      Fortran programs appear to use this for complex types also.  To
4137      distinguish between floats and complex, g77 (and others?)  seem
4138      to use self-subranges for the complexes, and subranges of int for
4139      the floats.
4140 
4141      Also note that for complexes, g77 sets n2 to the size of one of
4142      the member floats, not the whole complex beast.  My guess is that
4143      this was to work well with pre-COMPLEX versions of gdb.  */
4144 
4145   if (n3 == 0 && n2 > 0)
4146     {
4147       struct type *float_type
4148 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4149 
4150       if (self_subrange)
4151 	{
4152 	  struct type *complex_type =
4153 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4154 
4155 	  TYPE_TARGET_TYPE (complex_type) = float_type;
4156 	  return complex_type;
4157 	}
4158       else
4159 	return float_type;
4160     }
4161 
4162   /* If the upper bound is -1, it must really be an unsigned integral.  */
4163 
4164   else if (n2 == 0 && n3 == -1)
4165     {
4166       int bits = type_size;
4167 
4168       if (bits <= 0)
4169 	{
4170 	  /* We don't know its size.  It is unsigned int or unsigned
4171 	     long.  GCC 2.3.3 uses this for long long too, but that is
4172 	     just a GDB 3.5 compatibility hack.  */
4173 	  bits = gdbarch_int_bit (gdbarch);
4174 	}
4175 
4176       return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4177 			TYPE_FLAG_UNSIGNED, NULL, objfile);
4178     }
4179 
4180   /* Special case: char is defined (Who knows why) as a subrange of
4181      itself with range 0-127.  */
4182   else if (self_subrange && n2 == 0 && n3 == 127)
4183     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4184 
4185   /* We used to do this only for subrange of self or subrange of int.  */
4186   else if (n2 == 0)
4187     {
4188       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4189          "unsigned long", and we already checked for that,
4190          so don't need to test for it here.  */
4191 
4192       if (n3 < 0)
4193 	/* n3 actually gives the size.  */
4194 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4195 			  NULL, objfile);
4196 
4197       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4198          unsigned n-byte integer.  But do require n to be a power of
4199          two; we don't want 3- and 5-byte integers flying around.  */
4200       {
4201 	int bytes;
4202 	unsigned long bits;
4203 
4204 	bits = n3;
4205 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4206 	  bits >>= 8;
4207 	if (bits == 0
4208 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4209 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4210 			    objfile);
4211       }
4212     }
4213   /* I think this is for Convex "long long".  Since I don't know whether
4214      Convex sets self_subrange, I also accept that particular size regardless
4215      of self_subrange.  */
4216   else if (n3 == 0 && n2 < 0
4217 	   && (self_subrange
4218 	       || n2 == -gdbarch_long_long_bit
4219 			  (gdbarch) / TARGET_CHAR_BIT))
4220     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4221   else if (n2 == -n3 - 1)
4222     {
4223       if (n3 == 0x7f)
4224 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4225       if (n3 == 0x7fff)
4226 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4227       if (n3 == 0x7fffffff)
4228 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4229     }
4230 
4231   /* We have a real range type on our hands.  Allocate space and
4232      return a real pointer.  */
4233 handle_true_range:
4234 
4235   if (self_subrange)
4236     index_type = objfile_type (objfile)->builtin_int;
4237   else
4238     index_type = *dbx_lookup_type (rangenums, objfile);
4239   if (index_type == NULL)
4240     {
4241       /* Does this actually ever happen?  Is that why we are worrying
4242          about dealing with it rather than just calling error_type?  */
4243 
4244       complaint (&symfile_complaints,
4245 		 _("base type %d of range type is not defined"), rangenums[1]);
4246 
4247       index_type = objfile_type (objfile)->builtin_int;
4248     }
4249 
4250   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4251   return (result_type);
4252 }
4253 
4254 /* Read in an argument list.  This is a list of types, separated by commas
4255    and terminated with END.  Return the list of types read in, or NULL
4256    if there is an error.  */
4257 
4258 static struct field *
4259 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4260 	   int *varargsp)
4261 {
4262   /* FIXME!  Remove this arbitrary limit!  */
4263   struct type *types[1024];	/* Allow for fns of 1023 parameters.  */
4264   int n = 0, i;
4265   struct field *rval;
4266 
4267   while (**pp != end)
4268     {
4269       if (**pp != ',')
4270 	/* Invalid argument list: no ','.  */
4271 	return NULL;
4272       (*pp)++;
4273       STABS_CONTINUE (pp, objfile);
4274       types[n++] = read_type (pp, objfile);
4275     }
4276   (*pp)++;			/* get past `end' (the ':' character).  */
4277 
4278   if (n == 0)
4279     {
4280       /* We should read at least the THIS parameter here.  Some broken stabs
4281 	 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4282 	 have been present ";-16,(0,43)" reference instead.  This way the
4283 	 excessive ";" marker prematurely stops the parameters parsing.  */
4284 
4285       complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4286       *varargsp = 0;
4287     }
4288   else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4289     *varargsp = 1;
4290   else
4291     {
4292       n--;
4293       *varargsp = 0;
4294     }
4295 
4296   rval = (struct field *) xmalloc (n * sizeof (struct field));
4297   memset (rval, 0, n * sizeof (struct field));
4298   for (i = 0; i < n; i++)
4299     rval[i].type = types[i];
4300   *nargsp = n;
4301   return rval;
4302 }
4303 
4304 /* Common block handling.  */
4305 
4306 /* List of symbols declared since the last BCOMM.  This list is a tail
4307    of local_symbols.  When ECOMM is seen, the symbols on the list
4308    are noted so their proper addresses can be filled in later,
4309    using the common block base address gotten from the assembler
4310    stabs.  */
4311 
4312 static struct pending *common_block;
4313 static int common_block_i;
4314 
4315 /* Name of the current common block.  We get it from the BCOMM instead of the
4316    ECOMM to match IBM documentation (even though IBM puts the name both places
4317    like everyone else).  */
4318 static char *common_block_name;
4319 
4320 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4321    to remain after this function returns.  */
4322 
4323 void
4324 common_block_start (char *name, struct objfile *objfile)
4325 {
4326   if (common_block_name != NULL)
4327     {
4328       complaint (&symfile_complaints,
4329 		 _("Invalid symbol data: common block within common block"));
4330     }
4331   common_block = local_symbols;
4332   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4333   common_block_name = obsavestring (name, strlen (name),
4334 				    &objfile->objfile_obstack);
4335 }
4336 
4337 /* Process a N_ECOMM symbol.  */
4338 
4339 void
4340 common_block_end (struct objfile *objfile)
4341 {
4342   /* Symbols declared since the BCOMM are to have the common block
4343      start address added in when we know it.  common_block and
4344      common_block_i point to the first symbol after the BCOMM in
4345      the local_symbols list; copy the list and hang it off the
4346      symbol for the common block name for later fixup.  */
4347   int i;
4348   struct symbol *sym;
4349   struct pending *new = 0;
4350   struct pending *next;
4351   int j;
4352 
4353   if (common_block_name == NULL)
4354     {
4355       complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4356       return;
4357     }
4358 
4359   sym = (struct symbol *)
4360     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4361   memset (sym, 0, sizeof (struct symbol));
4362   /* Note: common_block_name already saved on objfile_obstack.  */
4363   SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4364   SYMBOL_CLASS (sym) = LOC_BLOCK;
4365 
4366   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4367 
4368   /* Copy all the struct pendings before common_block.  */
4369   for (next = local_symbols;
4370        next != NULL && next != common_block;
4371        next = next->next)
4372     {
4373       for (j = 0; j < next->nsyms; j++)
4374 	add_symbol_to_list (next->symbol[j], &new);
4375     }
4376 
4377   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4378      NULL, it means copy all the local symbols (which we already did
4379      above).  */
4380 
4381   if (common_block != NULL)
4382     for (j = common_block_i; j < common_block->nsyms; j++)
4383       add_symbol_to_list (common_block->symbol[j], &new);
4384 
4385   SYMBOL_TYPE (sym) = (struct type *) new;
4386 
4387   /* Should we be putting local_symbols back to what it was?
4388      Does it matter?  */
4389 
4390   i = hashname (SYMBOL_LINKAGE_NAME (sym));
4391   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4392   global_sym_chain[i] = sym;
4393   common_block_name = NULL;
4394 }
4395 
4396 /* Add a common block's start address to the offset of each symbol
4397    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4398    the common block name).  */
4399 
4400 static void
4401 fix_common_block (struct symbol *sym, int valu)
4402 {
4403   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4404 
4405   for (; next; next = next->next)
4406     {
4407       int j;
4408 
4409       for (j = next->nsyms - 1; j >= 0; j--)
4410 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4411     }
4412 }
4413 
4414 
4415 
4416 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4417    See add_undefined_type for more details.  */
4418 
4419 static void
4420 add_undefined_type_noname (struct type *type, int typenums[2])
4421 {
4422   struct nat nat;
4423 
4424   nat.typenums[0] = typenums [0];
4425   nat.typenums[1] = typenums [1];
4426   nat.type = type;
4427 
4428   if (noname_undefs_length == noname_undefs_allocated)
4429     {
4430       noname_undefs_allocated *= 2;
4431       noname_undefs = (struct nat *)
4432 	xrealloc ((char *) noname_undefs,
4433 		  noname_undefs_allocated * sizeof (struct nat));
4434     }
4435   noname_undefs[noname_undefs_length++] = nat;
4436 }
4437 
4438 /* Add TYPE to the UNDEF_TYPES vector.
4439    See add_undefined_type for more details.  */
4440 
4441 static void
4442 add_undefined_type_1 (struct type *type)
4443 {
4444   if (undef_types_length == undef_types_allocated)
4445     {
4446       undef_types_allocated *= 2;
4447       undef_types = (struct type **)
4448 	xrealloc ((char *) undef_types,
4449 		  undef_types_allocated * sizeof (struct type *));
4450     }
4451   undef_types[undef_types_length++] = type;
4452 }
4453 
4454 /* What about types defined as forward references inside of a small lexical
4455    scope?  */
4456 /* Add a type to the list of undefined types to be checked through
4457    once this file has been read in.
4458 
4459    In practice, we actually maintain two such lists: The first list
4460    (UNDEF_TYPES) is used for types whose name has been provided, and
4461    concerns forward references (eg 'xs' or 'xu' forward references);
4462    the second list (NONAME_UNDEFS) is used for types whose name is
4463    unknown at creation time, because they were referenced through
4464    their type number before the actual type was declared.
4465    This function actually adds the given type to the proper list.  */
4466 
4467 static void
4468 add_undefined_type (struct type *type, int typenums[2])
4469 {
4470   if (TYPE_TAG_NAME (type) == NULL)
4471     add_undefined_type_noname (type, typenums);
4472   else
4473     add_undefined_type_1 (type);
4474 }
4475 
4476 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4477 
4478 static void
4479 cleanup_undefined_types_noname (struct objfile *objfile)
4480 {
4481   int i;
4482 
4483   for (i = 0; i < noname_undefs_length; i++)
4484     {
4485       struct nat nat = noname_undefs[i];
4486       struct type **type;
4487 
4488       type = dbx_lookup_type (nat.typenums, objfile);
4489       if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4490         {
4491           /* The instance flags of the undefined type are still unset,
4492              and needs to be copied over from the reference type.
4493              Since replace_type expects them to be identical, we need
4494              to set these flags manually before hand.  */
4495           TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4496           replace_type (nat.type, *type);
4497         }
4498     }
4499 
4500   noname_undefs_length = 0;
4501 }
4502 
4503 /* Go through each undefined type, see if it's still undefined, and fix it
4504    up if possible.  We have two kinds of undefined types:
4505 
4506    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4507    Fix:  update array length using the element bounds
4508    and the target type's length.
4509    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4510    yet defined at the time a pointer to it was made.
4511    Fix:  Do a full lookup on the struct/union tag.  */
4512 
4513 static void
4514 cleanup_undefined_types_1 (void)
4515 {
4516   struct type **type;
4517 
4518   /* Iterate over every undefined type, and look for a symbol whose type
4519      matches our undefined type.  The symbol matches if:
4520        1. It is a typedef in the STRUCT domain;
4521        2. It has the same name, and same type code;
4522        3. The instance flags are identical.
4523 
4524      It is important to check the instance flags, because we have seen
4525      examples where the debug info contained definitions such as:
4526 
4527          "foo_t:t30=B31=xefoo_t:"
4528 
4529      In this case, we have created an undefined type named "foo_t" whose
4530      instance flags is null (when processing "xefoo_t"), and then created
4531      another type with the same name, but with different instance flags
4532      ('B' means volatile).  I think that the definition above is wrong,
4533      since the same type cannot be volatile and non-volatile at the same
4534      time, but we need to be able to cope with it when it happens.  The
4535      approach taken here is to treat these two types as different.  */
4536 
4537   for (type = undef_types; type < undef_types + undef_types_length; type++)
4538     {
4539       switch (TYPE_CODE (*type))
4540 	{
4541 
4542 	case TYPE_CODE_STRUCT:
4543 	case TYPE_CODE_UNION:
4544 	case TYPE_CODE_ENUM:
4545 	  {
4546 	    /* Check if it has been defined since.  Need to do this here
4547 	       as well as in check_typedef to deal with the (legitimate in
4548 	       C though not C++) case of several types with the same name
4549 	       in different source files.  */
4550 	    if (TYPE_STUB (*type))
4551 	      {
4552 		struct pending *ppt;
4553 		int i;
4554 		/* Name of the type, without "struct" or "union".  */
4555 		char *typename = TYPE_TAG_NAME (*type);
4556 
4557 		if (typename == NULL)
4558 		  {
4559 		    complaint (&symfile_complaints, _("need a type name"));
4560 		    break;
4561 		  }
4562 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4563 		  {
4564 		    for (i = 0; i < ppt->nsyms; i++)
4565 		      {
4566 			struct symbol *sym = ppt->symbol[i];
4567 
4568 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4569 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4570 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4571 				TYPE_CODE (*type))
4572 			    && (TYPE_INSTANCE_FLAGS (*type) ==
4573 				TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4574 			    && strcmp (SYMBOL_LINKAGE_NAME (sym),
4575 				       typename) == 0)
4576                           replace_type (*type, SYMBOL_TYPE (sym));
4577 		      }
4578 		  }
4579 	      }
4580 	  }
4581 	  break;
4582 
4583 	default:
4584 	  {
4585 	    complaint (&symfile_complaints,
4586 		       _("forward-referenced types left unresolved, "
4587                        "type code %d."),
4588 		       TYPE_CODE (*type));
4589 	  }
4590 	  break;
4591 	}
4592     }
4593 
4594   undef_types_length = 0;
4595 }
4596 
4597 /* Try to fix all the undefined types we ecountered while processing
4598    this unit.  */
4599 
4600 void
4601 cleanup_undefined_types (struct objfile *objfile)
4602 {
4603   cleanup_undefined_types_1 ();
4604   cleanup_undefined_types_noname (objfile);
4605 }
4606 
4607 /* Scan through all of the global symbols defined in the object file,
4608    assigning values to the debugging symbols that need to be assigned
4609    to.  Get these symbols from the minimal symbol table.  */
4610 
4611 void
4612 scan_file_globals (struct objfile *objfile)
4613 {
4614   int hash;
4615   struct minimal_symbol *msymbol;
4616   struct symbol *sym, *prev;
4617   struct objfile *resolve_objfile;
4618 
4619   /* SVR4 based linkers copy referenced global symbols from shared
4620      libraries to the main executable.
4621      If we are scanning the symbols for a shared library, try to resolve
4622      them from the minimal symbols of the main executable first.  */
4623 
4624   if (symfile_objfile && objfile != symfile_objfile)
4625     resolve_objfile = symfile_objfile;
4626   else
4627     resolve_objfile = objfile;
4628 
4629   while (1)
4630     {
4631       /* Avoid expensive loop through all minimal symbols if there are
4632          no unresolved symbols.  */
4633       for (hash = 0; hash < HASHSIZE; hash++)
4634 	{
4635 	  if (global_sym_chain[hash])
4636 	    break;
4637 	}
4638       if (hash >= HASHSIZE)
4639 	return;
4640 
4641       ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4642 	{
4643 	  QUIT;
4644 
4645 	  /* Skip static symbols.  */
4646 	  switch (MSYMBOL_TYPE (msymbol))
4647 	    {
4648 	    case mst_file_text:
4649 	    case mst_file_data:
4650 	    case mst_file_bss:
4651 	      continue;
4652 	    default:
4653 	      break;
4654 	    }
4655 
4656 	  prev = NULL;
4657 
4658 	  /* Get the hash index and check all the symbols
4659 	     under that hash index.  */
4660 
4661 	  hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4662 
4663 	  for (sym = global_sym_chain[hash]; sym;)
4664 	    {
4665 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4666 			  SYMBOL_LINKAGE_NAME (sym)) == 0)
4667 		{
4668 		  /* Splice this symbol out of the hash chain and
4669 		     assign the value we have to it.  */
4670 		  if (prev)
4671 		    {
4672 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4673 		    }
4674 		  else
4675 		    {
4676 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4677 		    }
4678 
4679 		  /* Check to see whether we need to fix up a common block.  */
4680 		  /* Note: this code might be executed several times for
4681 		     the same symbol if there are multiple references.  */
4682 		  if (sym)
4683 		    {
4684 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4685 			{
4686 			  fix_common_block (sym,
4687 					    SYMBOL_VALUE_ADDRESS (msymbol));
4688 			}
4689 		      else
4690 			{
4691 			  SYMBOL_VALUE_ADDRESS (sym)
4692 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4693 			}
4694 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4695 		    }
4696 
4697 		  if (prev)
4698 		    {
4699 		      sym = SYMBOL_VALUE_CHAIN (prev);
4700 		    }
4701 		  else
4702 		    {
4703 		      sym = global_sym_chain[hash];
4704 		    }
4705 		}
4706 	      else
4707 		{
4708 		  prev = sym;
4709 		  sym = SYMBOL_VALUE_CHAIN (sym);
4710 		}
4711 	    }
4712 	}
4713       if (resolve_objfile == objfile)
4714 	break;
4715       resolve_objfile = objfile;
4716     }
4717 
4718   /* Change the storage class of any remaining unresolved globals to
4719      LOC_UNRESOLVED and remove them from the chain.  */
4720   for (hash = 0; hash < HASHSIZE; hash++)
4721     {
4722       sym = global_sym_chain[hash];
4723       while (sym)
4724 	{
4725 	  prev = sym;
4726 	  sym = SYMBOL_VALUE_CHAIN (sym);
4727 
4728 	  /* Change the symbol address from the misleading chain value
4729 	     to address zero.  */
4730 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4731 
4732 	  /* Complain about unresolved common block symbols.  */
4733 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4734 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4735 	  else
4736 	    complaint (&symfile_complaints,
4737 		       _("%s: common block `%s' from "
4738 			 "global_sym_chain unresolved"),
4739 		       objfile->name, SYMBOL_PRINT_NAME (prev));
4740 	}
4741     }
4742   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4743 }
4744 
4745 /* Initialize anything that needs initializing when starting to read
4746    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4747    to a psymtab.  */
4748 
4749 void
4750 stabsread_init (void)
4751 {
4752 }
4753 
4754 /* Initialize anything that needs initializing when a completely new
4755    symbol file is specified (not just adding some symbols from another
4756    file, e.g. a shared library).  */
4757 
4758 void
4759 stabsread_new_init (void)
4760 {
4761   /* Empty the hash table of global syms looking for values.  */
4762   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4763 }
4764 
4765 /* Initialize anything that needs initializing at the same time as
4766    start_symtab() is called.  */
4767 
4768 void
4769 start_stabs (void)
4770 {
4771   global_stabs = NULL;		/* AIX COFF */
4772   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4773   n_this_object_header_files = 1;
4774   type_vector_length = 0;
4775   type_vector = (struct type **) 0;
4776 
4777   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4778   common_block_name = NULL;
4779 }
4780 
4781 /* Call after end_symtab().  */
4782 
4783 void
4784 end_stabs (void)
4785 {
4786   if (type_vector)
4787     {
4788       xfree (type_vector);
4789     }
4790   type_vector = 0;
4791   type_vector_length = 0;
4792   previous_stab_code = 0;
4793 }
4794 
4795 void
4796 finish_global_stabs (struct objfile *objfile)
4797 {
4798   if (global_stabs)
4799     {
4800       patch_block_stabs (global_symbols, global_stabs, objfile);
4801       xfree (global_stabs);
4802       global_stabs = NULL;
4803     }
4804 }
4805 
4806 /* Find the end of the name, delimited by a ':', but don't match
4807    ObjC symbols which look like -[Foo bar::]:bla.  */
4808 static char *
4809 find_name_end (char *name)
4810 {
4811   char *s = name;
4812 
4813   if (s[0] == '-' || *s == '+')
4814     {
4815       /* Must be an ObjC method symbol.  */
4816       if (s[1] != '[')
4817 	{
4818 	  error (_("invalid symbol name \"%s\""), name);
4819 	}
4820       s = strchr (s, ']');
4821       if (s == NULL)
4822 	{
4823 	  error (_("invalid symbol name \"%s\""), name);
4824 	}
4825       return strchr (s, ':');
4826     }
4827   else
4828     {
4829       return strchr (s, ':');
4830     }
4831 }
4832 
4833 /* Initializer for this module.  */
4834 
4835 void
4836 _initialize_stabsread (void)
4837 {
4838   rs6000_builtin_type_data = register_objfile_data ();
4839 
4840   undef_types_allocated = 20;
4841   undef_types_length = 0;
4842   undef_types = (struct type **)
4843     xmalloc (undef_types_allocated * sizeof (struct type *));
4844 
4845   noname_undefs_allocated = 20;
4846   noname_undefs_length = 0;
4847   noname_undefs = (struct nat *)
4848     xmalloc (noname_undefs_allocated * sizeof (struct nat));
4849 }
4850