xref: /dragonfly/contrib/gdb-7/gdb/target.c (revision 3170ffd7)
1 /* Select target systems and architectures at runtime for GDB.
2 
3    Copyright (C) 1990-2012 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_wait.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 
46 static void target_info (char *, int);
47 
48 static void default_terminal_info (char *, int);
49 
50 static int default_watchpoint_addr_within_range (struct target_ops *,
51 						 CORE_ADDR, CORE_ADDR, int);
52 
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54 
55 static void tcomplain (void) ATTRIBUTE_NORETURN;
56 
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58 
59 static int return_zero (void);
60 
61 static int return_one (void);
62 
63 static int return_minus_one (void);
64 
65 void target_ignore (void);
66 
67 static void target_command (char *, int);
68 
69 static struct target_ops *find_default_run_target (char *);
70 
71 static LONGEST default_xfer_partial (struct target_ops *ops,
72 				     enum target_object object,
73 				     const char *annex, gdb_byte *readbuf,
74 				     const gdb_byte *writebuf,
75 				     ULONGEST offset, LONGEST len);
76 
77 static LONGEST current_xfer_partial (struct target_ops *ops,
78 				     enum target_object object,
79 				     const char *annex, gdb_byte *readbuf,
80 				     const gdb_byte *writebuf,
81 				     ULONGEST offset, LONGEST len);
82 
83 static LONGEST target_xfer_partial (struct target_ops *ops,
84 				    enum target_object object,
85 				    const char *annex,
86 				    void *readbuf, const void *writebuf,
87 				    ULONGEST offset, LONGEST len);
88 
89 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
90 						    ptid_t ptid);
91 
92 static void init_dummy_target (void);
93 
94 static struct target_ops debug_target;
95 
96 static void debug_to_open (char *, int);
97 
98 static void debug_to_prepare_to_store (struct regcache *);
99 
100 static void debug_to_files_info (struct target_ops *);
101 
102 static int debug_to_insert_breakpoint (struct gdbarch *,
103 				       struct bp_target_info *);
104 
105 static int debug_to_remove_breakpoint (struct gdbarch *,
106 				       struct bp_target_info *);
107 
108 static int debug_to_can_use_hw_breakpoint (int, int, int);
109 
110 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
111 					  struct bp_target_info *);
112 
113 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
114 					  struct bp_target_info *);
115 
116 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
117 				       struct expression *);
118 
119 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
120 				       struct expression *);
121 
122 static int debug_to_stopped_by_watchpoint (void);
123 
124 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
125 
126 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
127 						  CORE_ADDR, CORE_ADDR, int);
128 
129 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
130 
131 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
132 						    struct expression *);
133 
134 static void debug_to_terminal_init (void);
135 
136 static void debug_to_terminal_inferior (void);
137 
138 static void debug_to_terminal_ours_for_output (void);
139 
140 static void debug_to_terminal_save_ours (void);
141 
142 static void debug_to_terminal_ours (void);
143 
144 static void debug_to_terminal_info (char *, int);
145 
146 static void debug_to_load (char *, int);
147 
148 static int debug_to_can_run (void);
149 
150 static void debug_to_stop (ptid_t);
151 
152 /* Pointer to array of target architecture structures; the size of the
153    array; the current index into the array; the allocated size of the
154    array.  */
155 struct target_ops **target_structs;
156 unsigned target_struct_size;
157 unsigned target_struct_index;
158 unsigned target_struct_allocsize;
159 #define	DEFAULT_ALLOCSIZE	10
160 
161 /* The initial current target, so that there is always a semi-valid
162    current target.  */
163 
164 static struct target_ops dummy_target;
165 
166 /* Top of target stack.  */
167 
168 static struct target_ops *target_stack;
169 
170 /* The target structure we are currently using to talk to a process
171    or file or whatever "inferior" we have.  */
172 
173 struct target_ops current_target;
174 
175 /* Command list for target.  */
176 
177 static struct cmd_list_element *targetlist = NULL;
178 
179 /* Nonzero if we should trust readonly sections from the
180    executable when reading memory.  */
181 
182 static int trust_readonly = 0;
183 
184 /* Nonzero if we should show true memory content including
185    memory breakpoint inserted by gdb.  */
186 
187 static int show_memory_breakpoints = 0;
188 
189 /* These globals control whether GDB attempts to perform these
190    operations; they are useful for targets that need to prevent
191    inadvertant disruption, such as in non-stop mode.  */
192 
193 int may_write_registers = 1;
194 
195 int may_write_memory = 1;
196 
197 int may_insert_breakpoints = 1;
198 
199 int may_insert_tracepoints = 1;
200 
201 int may_insert_fast_tracepoints = 1;
202 
203 int may_stop = 1;
204 
205 /* Non-zero if we want to see trace of target level stuff.  */
206 
207 static int targetdebug = 0;
208 static void
209 show_targetdebug (struct ui_file *file, int from_tty,
210 		  struct cmd_list_element *c, const char *value)
211 {
212   fprintf_filtered (file, _("Target debugging is %s.\n"), value);
213 }
214 
215 static void setup_target_debug (void);
216 
217 /* The option sets this.  */
218 static int stack_cache_enabled_p_1 = 1;
219 /* And set_stack_cache_enabled_p updates this.
220    The reason for the separation is so that we don't flush the cache for
221    on->on transitions.  */
222 static int stack_cache_enabled_p = 1;
223 
224 /* This is called *after* the stack-cache has been set.
225    Flush the cache for off->on and on->off transitions.
226    There's no real need to flush the cache for on->off transitions,
227    except cleanliness.  */
228 
229 static void
230 set_stack_cache_enabled_p (char *args, int from_tty,
231 			   struct cmd_list_element *c)
232 {
233   if (stack_cache_enabled_p != stack_cache_enabled_p_1)
234     target_dcache_invalidate ();
235 
236   stack_cache_enabled_p = stack_cache_enabled_p_1;
237 }
238 
239 static void
240 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
241 			    struct cmd_list_element *c, const char *value)
242 {
243   fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
244 }
245 
246 /* Cache of memory operations, to speed up remote access.  */
247 static DCACHE *target_dcache;
248 
249 /* Invalidate the target dcache.  */
250 
251 void
252 target_dcache_invalidate (void)
253 {
254   dcache_invalidate (target_dcache);
255 }
256 
257 /* The user just typed 'target' without the name of a target.  */
258 
259 static void
260 target_command (char *arg, int from_tty)
261 {
262   fputs_filtered ("Argument required (target name).  Try `help target'\n",
263 		  gdb_stdout);
264 }
265 
266 /* Default target_has_* methods for process_stratum targets.  */
267 
268 int
269 default_child_has_all_memory (struct target_ops *ops)
270 {
271   /* If no inferior selected, then we can't read memory here.  */
272   if (ptid_equal (inferior_ptid, null_ptid))
273     return 0;
274 
275   return 1;
276 }
277 
278 int
279 default_child_has_memory (struct target_ops *ops)
280 {
281   /* If no inferior selected, then we can't read memory here.  */
282   if (ptid_equal (inferior_ptid, null_ptid))
283     return 0;
284 
285   return 1;
286 }
287 
288 int
289 default_child_has_stack (struct target_ops *ops)
290 {
291   /* If no inferior selected, there's no stack.  */
292   if (ptid_equal (inferior_ptid, null_ptid))
293     return 0;
294 
295   return 1;
296 }
297 
298 int
299 default_child_has_registers (struct target_ops *ops)
300 {
301   /* Can't read registers from no inferior.  */
302   if (ptid_equal (inferior_ptid, null_ptid))
303     return 0;
304 
305   return 1;
306 }
307 
308 int
309 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
310 {
311   /* If there's no thread selected, then we can't make it run through
312      hoops.  */
313   if (ptid_equal (the_ptid, null_ptid))
314     return 0;
315 
316   return 1;
317 }
318 
319 
320 int
321 target_has_all_memory_1 (void)
322 {
323   struct target_ops *t;
324 
325   for (t = current_target.beneath; t != NULL; t = t->beneath)
326     if (t->to_has_all_memory (t))
327       return 1;
328 
329   return 0;
330 }
331 
332 int
333 target_has_memory_1 (void)
334 {
335   struct target_ops *t;
336 
337   for (t = current_target.beneath; t != NULL; t = t->beneath)
338     if (t->to_has_memory (t))
339       return 1;
340 
341   return 0;
342 }
343 
344 int
345 target_has_stack_1 (void)
346 {
347   struct target_ops *t;
348 
349   for (t = current_target.beneath; t != NULL; t = t->beneath)
350     if (t->to_has_stack (t))
351       return 1;
352 
353   return 0;
354 }
355 
356 int
357 target_has_registers_1 (void)
358 {
359   struct target_ops *t;
360 
361   for (t = current_target.beneath; t != NULL; t = t->beneath)
362     if (t->to_has_registers (t))
363       return 1;
364 
365   return 0;
366 }
367 
368 int
369 target_has_execution_1 (ptid_t the_ptid)
370 {
371   struct target_ops *t;
372 
373   for (t = current_target.beneath; t != NULL; t = t->beneath)
374     if (t->to_has_execution (t, the_ptid))
375       return 1;
376 
377   return 0;
378 }
379 
380 int
381 target_has_execution_current (void)
382 {
383   return target_has_execution_1 (inferior_ptid);
384 }
385 
386 /* Add a possible target architecture to the list.  */
387 
388 void
389 add_target (struct target_ops *t)
390 {
391   /* Provide default values for all "must have" methods.  */
392   if (t->to_xfer_partial == NULL)
393     t->to_xfer_partial = default_xfer_partial;
394 
395   if (t->to_has_all_memory == NULL)
396     t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
397 
398   if (t->to_has_memory == NULL)
399     t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
400 
401   if (t->to_has_stack == NULL)
402     t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
403 
404   if (t->to_has_registers == NULL)
405     t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
406 
407   if (t->to_has_execution == NULL)
408     t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
409 
410   if (!target_structs)
411     {
412       target_struct_allocsize = DEFAULT_ALLOCSIZE;
413       target_structs = (struct target_ops **) xmalloc
414 	(target_struct_allocsize * sizeof (*target_structs));
415     }
416   if (target_struct_size >= target_struct_allocsize)
417     {
418       target_struct_allocsize *= 2;
419       target_structs = (struct target_ops **)
420 	xrealloc ((char *) target_structs,
421 		  target_struct_allocsize * sizeof (*target_structs));
422     }
423   target_structs[target_struct_size++] = t;
424 
425   if (targetlist == NULL)
426     add_prefix_cmd ("target", class_run, target_command, _("\
427 Connect to a target machine or process.\n\
428 The first argument is the type or protocol of the target machine.\n\
429 Remaining arguments are interpreted by the target protocol.  For more\n\
430 information on the arguments for a particular protocol, type\n\
431 `help target ' followed by the protocol name."),
432 		    &targetlist, "target ", 0, &cmdlist);
433   add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
434 }
435 
436 /* Stub functions */
437 
438 void
439 target_ignore (void)
440 {
441 }
442 
443 void
444 target_kill (void)
445 {
446   struct target_ops *t;
447 
448   for (t = current_target.beneath; t != NULL; t = t->beneath)
449     if (t->to_kill != NULL)
450       {
451 	if (targetdebug)
452 	  fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
453 
454         t->to_kill (t);
455 	return;
456       }
457 
458   noprocess ();
459 }
460 
461 void
462 target_load (char *arg, int from_tty)
463 {
464   target_dcache_invalidate ();
465   (*current_target.to_load) (arg, from_tty);
466 }
467 
468 void
469 target_create_inferior (char *exec_file, char *args,
470 			char **env, int from_tty)
471 {
472   struct target_ops *t;
473 
474   for (t = current_target.beneath; t != NULL; t = t->beneath)
475     {
476       if (t->to_create_inferior != NULL)
477 	{
478 	  t->to_create_inferior (t, exec_file, args, env, from_tty);
479 	  if (targetdebug)
480 	    fprintf_unfiltered (gdb_stdlog,
481 				"target_create_inferior (%s, %s, xxx, %d)\n",
482 				exec_file, args, from_tty);
483 	  return;
484 	}
485     }
486 
487   internal_error (__FILE__, __LINE__,
488 		  _("could not find a target to create inferior"));
489 }
490 
491 void
492 target_terminal_inferior (void)
493 {
494   /* A background resume (``run&'') should leave GDB in control of the
495      terminal.  Use target_can_async_p, not target_is_async_p, since at
496      this point the target is not async yet.  However, if sync_execution
497      is not set, we know it will become async prior to resume.  */
498   if (target_can_async_p () && !sync_execution)
499     return;
500 
501   /* If GDB is resuming the inferior in the foreground, install
502      inferior's terminal modes.  */
503   (*current_target.to_terminal_inferior) ();
504 }
505 
506 static int
507 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
508 	  struct target_ops *t)
509 {
510   errno = EIO;			/* Can't read/write this location.  */
511   return 0;			/* No bytes handled.  */
512 }
513 
514 static void
515 tcomplain (void)
516 {
517   error (_("You can't do that when your target is `%s'"),
518 	 current_target.to_shortname);
519 }
520 
521 void
522 noprocess (void)
523 {
524   error (_("You can't do that without a process to debug."));
525 }
526 
527 static void
528 default_terminal_info (char *args, int from_tty)
529 {
530   printf_unfiltered (_("No saved terminal information.\n"));
531 }
532 
533 /* A default implementation for the to_get_ada_task_ptid target method.
534 
535    This function builds the PTID by using both LWP and TID as part of
536    the PTID lwp and tid elements.  The pid used is the pid of the
537    inferior_ptid.  */
538 
539 static ptid_t
540 default_get_ada_task_ptid (long lwp, long tid)
541 {
542   return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
543 }
544 
545 static enum exec_direction_kind
546 default_execution_direction (void)
547 {
548   if (!target_can_execute_reverse)
549     return EXEC_FORWARD;
550   else if (!target_can_async_p ())
551     return EXEC_FORWARD;
552   else
553     gdb_assert_not_reached ("\
554 to_execution_direction must be implemented for reverse async");
555 }
556 
557 /* Go through the target stack from top to bottom, copying over zero
558    entries in current_target, then filling in still empty entries.  In
559    effect, we are doing class inheritance through the pushed target
560    vectors.
561 
562    NOTE: cagney/2003-10-17: The problem with this inheritance, as it
563    is currently implemented, is that it discards any knowledge of
564    which target an inherited method originally belonged to.
565    Consequently, new new target methods should instead explicitly and
566    locally search the target stack for the target that can handle the
567    request.  */
568 
569 static void
570 update_current_target (void)
571 {
572   struct target_ops *t;
573 
574   /* First, reset current's contents.  */
575   memset (&current_target, 0, sizeof (current_target));
576 
577 #define INHERIT(FIELD, TARGET) \
578       if (!current_target.FIELD) \
579 	current_target.FIELD = (TARGET)->FIELD
580 
581   for (t = target_stack; t; t = t->beneath)
582     {
583       INHERIT (to_shortname, t);
584       INHERIT (to_longname, t);
585       INHERIT (to_doc, t);
586       /* Do not inherit to_open.  */
587       /* Do not inherit to_close.  */
588       /* Do not inherit to_attach.  */
589       INHERIT (to_post_attach, t);
590       INHERIT (to_attach_no_wait, t);
591       /* Do not inherit to_detach.  */
592       /* Do not inherit to_disconnect.  */
593       /* Do not inherit to_resume.  */
594       /* Do not inherit to_wait.  */
595       /* Do not inherit to_fetch_registers.  */
596       /* Do not inherit to_store_registers.  */
597       INHERIT (to_prepare_to_store, t);
598       INHERIT (deprecated_xfer_memory, t);
599       INHERIT (to_files_info, t);
600       INHERIT (to_insert_breakpoint, t);
601       INHERIT (to_remove_breakpoint, t);
602       INHERIT (to_can_use_hw_breakpoint, t);
603       INHERIT (to_insert_hw_breakpoint, t);
604       INHERIT (to_remove_hw_breakpoint, t);
605       /* Do not inherit to_ranged_break_num_registers.  */
606       INHERIT (to_insert_watchpoint, t);
607       INHERIT (to_remove_watchpoint, t);
608       /* Do not inherit to_insert_mask_watchpoint.  */
609       /* Do not inherit to_remove_mask_watchpoint.  */
610       INHERIT (to_stopped_data_address, t);
611       INHERIT (to_have_steppable_watchpoint, t);
612       INHERIT (to_have_continuable_watchpoint, t);
613       INHERIT (to_stopped_by_watchpoint, t);
614       INHERIT (to_watchpoint_addr_within_range, t);
615       INHERIT (to_region_ok_for_hw_watchpoint, t);
616       INHERIT (to_can_accel_watchpoint_condition, t);
617       /* Do not inherit to_masked_watch_num_registers.  */
618       INHERIT (to_terminal_init, t);
619       INHERIT (to_terminal_inferior, t);
620       INHERIT (to_terminal_ours_for_output, t);
621       INHERIT (to_terminal_ours, t);
622       INHERIT (to_terminal_save_ours, t);
623       INHERIT (to_terminal_info, t);
624       /* Do not inherit to_kill.  */
625       INHERIT (to_load, t);
626       /* Do no inherit to_create_inferior.  */
627       INHERIT (to_post_startup_inferior, t);
628       INHERIT (to_insert_fork_catchpoint, t);
629       INHERIT (to_remove_fork_catchpoint, t);
630       INHERIT (to_insert_vfork_catchpoint, t);
631       INHERIT (to_remove_vfork_catchpoint, t);
632       /* Do not inherit to_follow_fork.  */
633       INHERIT (to_insert_exec_catchpoint, t);
634       INHERIT (to_remove_exec_catchpoint, t);
635       INHERIT (to_set_syscall_catchpoint, t);
636       INHERIT (to_has_exited, t);
637       /* Do not inherit to_mourn_inferior.  */
638       INHERIT (to_can_run, t);
639       /* Do not inherit to_pass_signals.  */
640       /* Do not inherit to_thread_alive.  */
641       /* Do not inherit to_find_new_threads.  */
642       /* Do not inherit to_pid_to_str.  */
643       INHERIT (to_extra_thread_info, t);
644       INHERIT (to_thread_name, t);
645       INHERIT (to_stop, t);
646       /* Do not inherit to_xfer_partial.  */
647       INHERIT (to_rcmd, t);
648       INHERIT (to_pid_to_exec_file, t);
649       INHERIT (to_log_command, t);
650       INHERIT (to_stratum, t);
651       /* Do not inherit to_has_all_memory.  */
652       /* Do not inherit to_has_memory.  */
653       /* Do not inherit to_has_stack.  */
654       /* Do not inherit to_has_registers.  */
655       /* Do not inherit to_has_execution.  */
656       INHERIT (to_has_thread_control, t);
657       INHERIT (to_can_async_p, t);
658       INHERIT (to_is_async_p, t);
659       INHERIT (to_async, t);
660       INHERIT (to_find_memory_regions, t);
661       INHERIT (to_make_corefile_notes, t);
662       INHERIT (to_get_bookmark, t);
663       INHERIT (to_goto_bookmark, t);
664       /* Do not inherit to_get_thread_local_address.  */
665       INHERIT (to_can_execute_reverse, t);
666       INHERIT (to_execution_direction, t);
667       INHERIT (to_thread_architecture, t);
668       /* Do not inherit to_read_description.  */
669       INHERIT (to_get_ada_task_ptid, t);
670       /* Do not inherit to_search_memory.  */
671       INHERIT (to_supports_multi_process, t);
672       INHERIT (to_supports_enable_disable_tracepoint, t);
673       INHERIT (to_supports_string_tracing, t);
674       INHERIT (to_trace_init, t);
675       INHERIT (to_download_tracepoint, t);
676       INHERIT (to_can_download_tracepoint, t);
677       INHERIT (to_download_trace_state_variable, t);
678       INHERIT (to_enable_tracepoint, t);
679       INHERIT (to_disable_tracepoint, t);
680       INHERIT (to_trace_set_readonly_regions, t);
681       INHERIT (to_trace_start, t);
682       INHERIT (to_get_trace_status, t);
683       INHERIT (to_get_tracepoint_status, t);
684       INHERIT (to_trace_stop, t);
685       INHERIT (to_trace_find, t);
686       INHERIT (to_get_trace_state_variable_value, t);
687       INHERIT (to_save_trace_data, t);
688       INHERIT (to_upload_tracepoints, t);
689       INHERIT (to_upload_trace_state_variables, t);
690       INHERIT (to_get_raw_trace_data, t);
691       INHERIT (to_get_min_fast_tracepoint_insn_len, t);
692       INHERIT (to_set_disconnected_tracing, t);
693       INHERIT (to_set_circular_trace_buffer, t);
694       INHERIT (to_set_trace_notes, t);
695       INHERIT (to_get_tib_address, t);
696       INHERIT (to_set_permissions, t);
697       INHERIT (to_static_tracepoint_marker_at, t);
698       INHERIT (to_static_tracepoint_markers_by_strid, t);
699       INHERIT (to_traceframe_info, t);
700       INHERIT (to_magic, t);
701       /* Do not inherit to_memory_map.  */
702       /* Do not inherit to_flash_erase.  */
703       /* Do not inherit to_flash_done.  */
704     }
705 #undef INHERIT
706 
707   /* Clean up a target struct so it no longer has any zero pointers in
708      it.  Some entries are defaulted to a method that print an error,
709      others are hard-wired to a standard recursive default.  */
710 
711 #define de_fault(field, value) \
712   if (!current_target.field)               \
713     current_target.field = value
714 
715   de_fault (to_open,
716 	    (void (*) (char *, int))
717 	    tcomplain);
718   de_fault (to_close,
719 	    (void (*) (int))
720 	    target_ignore);
721   de_fault (to_post_attach,
722 	    (void (*) (int))
723 	    target_ignore);
724   de_fault (to_prepare_to_store,
725 	    (void (*) (struct regcache *))
726 	    noprocess);
727   de_fault (deprecated_xfer_memory,
728 	    (int (*) (CORE_ADDR, gdb_byte *, int, int,
729 		      struct mem_attrib *, struct target_ops *))
730 	    nomemory);
731   de_fault (to_files_info,
732 	    (void (*) (struct target_ops *))
733 	    target_ignore);
734   de_fault (to_insert_breakpoint,
735 	    memory_insert_breakpoint);
736   de_fault (to_remove_breakpoint,
737 	    memory_remove_breakpoint);
738   de_fault (to_can_use_hw_breakpoint,
739 	    (int (*) (int, int, int))
740 	    return_zero);
741   de_fault (to_insert_hw_breakpoint,
742 	    (int (*) (struct gdbarch *, struct bp_target_info *))
743 	    return_minus_one);
744   de_fault (to_remove_hw_breakpoint,
745 	    (int (*) (struct gdbarch *, struct bp_target_info *))
746 	    return_minus_one);
747   de_fault (to_insert_watchpoint,
748 	    (int (*) (CORE_ADDR, int, int, struct expression *))
749 	    return_minus_one);
750   de_fault (to_remove_watchpoint,
751 	    (int (*) (CORE_ADDR, int, int, struct expression *))
752 	    return_minus_one);
753   de_fault (to_stopped_by_watchpoint,
754 	    (int (*) (void))
755 	    return_zero);
756   de_fault (to_stopped_data_address,
757 	    (int (*) (struct target_ops *, CORE_ADDR *))
758 	    return_zero);
759   de_fault (to_watchpoint_addr_within_range,
760 	    default_watchpoint_addr_within_range);
761   de_fault (to_region_ok_for_hw_watchpoint,
762 	    default_region_ok_for_hw_watchpoint);
763   de_fault (to_can_accel_watchpoint_condition,
764             (int (*) (CORE_ADDR, int, int, struct expression *))
765             return_zero);
766   de_fault (to_terminal_init,
767 	    (void (*) (void))
768 	    target_ignore);
769   de_fault (to_terminal_inferior,
770 	    (void (*) (void))
771 	    target_ignore);
772   de_fault (to_terminal_ours_for_output,
773 	    (void (*) (void))
774 	    target_ignore);
775   de_fault (to_terminal_ours,
776 	    (void (*) (void))
777 	    target_ignore);
778   de_fault (to_terminal_save_ours,
779 	    (void (*) (void))
780 	    target_ignore);
781   de_fault (to_terminal_info,
782 	    default_terminal_info);
783   de_fault (to_load,
784 	    (void (*) (char *, int))
785 	    tcomplain);
786   de_fault (to_post_startup_inferior,
787 	    (void (*) (ptid_t))
788 	    target_ignore);
789   de_fault (to_insert_fork_catchpoint,
790 	    (int (*) (int))
791 	    return_one);
792   de_fault (to_remove_fork_catchpoint,
793 	    (int (*) (int))
794 	    return_one);
795   de_fault (to_insert_vfork_catchpoint,
796 	    (int (*) (int))
797 	    return_one);
798   de_fault (to_remove_vfork_catchpoint,
799 	    (int (*) (int))
800 	    return_one);
801   de_fault (to_insert_exec_catchpoint,
802 	    (int (*) (int))
803 	    return_one);
804   de_fault (to_remove_exec_catchpoint,
805 	    (int (*) (int))
806 	    return_one);
807   de_fault (to_set_syscall_catchpoint,
808 	    (int (*) (int, int, int, int, int *))
809 	    return_one);
810   de_fault (to_has_exited,
811 	    (int (*) (int, int, int *))
812 	    return_zero);
813   de_fault (to_can_run,
814 	    return_zero);
815   de_fault (to_extra_thread_info,
816 	    (char *(*) (struct thread_info *))
817 	    return_zero);
818   de_fault (to_thread_name,
819 	    (char *(*) (struct thread_info *))
820 	    return_zero);
821   de_fault (to_stop,
822 	    (void (*) (ptid_t))
823 	    target_ignore);
824   current_target.to_xfer_partial = current_xfer_partial;
825   de_fault (to_rcmd,
826 	    (void (*) (char *, struct ui_file *))
827 	    tcomplain);
828   de_fault (to_pid_to_exec_file,
829 	    (char *(*) (int))
830 	    return_zero);
831   de_fault (to_async,
832 	    (void (*) (void (*) (enum inferior_event_type, void*), void*))
833 	    tcomplain);
834   de_fault (to_thread_architecture,
835 	    default_thread_architecture);
836   current_target.to_read_description = NULL;
837   de_fault (to_get_ada_task_ptid,
838             (ptid_t (*) (long, long))
839             default_get_ada_task_ptid);
840   de_fault (to_supports_multi_process,
841 	    (int (*) (void))
842 	    return_zero);
843   de_fault (to_supports_enable_disable_tracepoint,
844 	    (int (*) (void))
845 	    return_zero);
846   de_fault (to_supports_string_tracing,
847 	    (int (*) (void))
848 	    return_zero);
849   de_fault (to_trace_init,
850 	    (void (*) (void))
851 	    tcomplain);
852   de_fault (to_download_tracepoint,
853 	    (void (*) (struct bp_location *))
854 	    tcomplain);
855   de_fault (to_can_download_tracepoint,
856 	    (int (*) (void))
857 	    return_zero);
858   de_fault (to_download_trace_state_variable,
859 	    (void (*) (struct trace_state_variable *))
860 	    tcomplain);
861   de_fault (to_enable_tracepoint,
862 	    (void (*) (struct bp_location *))
863 	    tcomplain);
864   de_fault (to_disable_tracepoint,
865 	    (void (*) (struct bp_location *))
866 	    tcomplain);
867   de_fault (to_trace_set_readonly_regions,
868 	    (void (*) (void))
869 	    tcomplain);
870   de_fault (to_trace_start,
871 	    (void (*) (void))
872 	    tcomplain);
873   de_fault (to_get_trace_status,
874 	    (int (*) (struct trace_status *))
875 	    return_minus_one);
876   de_fault (to_get_tracepoint_status,
877 	    (void (*) (struct breakpoint *, struct uploaded_tp *))
878 	    tcomplain);
879   de_fault (to_trace_stop,
880 	    (void (*) (void))
881 	    tcomplain);
882   de_fault (to_trace_find,
883 	    (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
884 	    return_minus_one);
885   de_fault (to_get_trace_state_variable_value,
886 	    (int (*) (int, LONGEST *))
887 	    return_zero);
888   de_fault (to_save_trace_data,
889 	    (int (*) (const char *))
890 	    tcomplain);
891   de_fault (to_upload_tracepoints,
892 	    (int (*) (struct uploaded_tp **))
893 	    return_zero);
894   de_fault (to_upload_trace_state_variables,
895 	    (int (*) (struct uploaded_tsv **))
896 	    return_zero);
897   de_fault (to_get_raw_trace_data,
898 	    (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
899 	    tcomplain);
900   de_fault (to_get_min_fast_tracepoint_insn_len,
901 	    (int (*) (void))
902 	    return_minus_one);
903   de_fault (to_set_disconnected_tracing,
904 	    (void (*) (int))
905 	    target_ignore);
906   de_fault (to_set_circular_trace_buffer,
907 	    (void (*) (int))
908 	    target_ignore);
909   de_fault (to_set_trace_notes,
910 	    (int (*) (char *, char *, char *))
911 	    return_zero);
912   de_fault (to_get_tib_address,
913 	    (int (*) (ptid_t, CORE_ADDR *))
914 	    tcomplain);
915   de_fault (to_set_permissions,
916 	    (void (*) (void))
917 	    target_ignore);
918   de_fault (to_static_tracepoint_marker_at,
919 	    (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
920 	    return_zero);
921   de_fault (to_static_tracepoint_markers_by_strid,
922 	    (VEC(static_tracepoint_marker_p) * (*) (const char *))
923 	    tcomplain);
924   de_fault (to_traceframe_info,
925 	    (struct traceframe_info * (*) (void))
926 	    tcomplain);
927   de_fault (to_execution_direction, default_execution_direction);
928 
929 #undef de_fault
930 
931   /* Finally, position the target-stack beneath the squashed
932      "current_target".  That way code looking for a non-inherited
933      target method can quickly and simply find it.  */
934   current_target.beneath = target_stack;
935 
936   if (targetdebug)
937     setup_target_debug ();
938 }
939 
940 /* Push a new target type into the stack of the existing target accessors,
941    possibly superseding some of the existing accessors.
942 
943    Rather than allow an empty stack, we always have the dummy target at
944    the bottom stratum, so we can call the function vectors without
945    checking them.  */
946 
947 void
948 push_target (struct target_ops *t)
949 {
950   struct target_ops **cur;
951 
952   /* Check magic number.  If wrong, it probably means someone changed
953      the struct definition, but not all the places that initialize one.  */
954   if (t->to_magic != OPS_MAGIC)
955     {
956       fprintf_unfiltered (gdb_stderr,
957 			  "Magic number of %s target struct wrong\n",
958 			  t->to_shortname);
959       internal_error (__FILE__, __LINE__,
960 		      _("failed internal consistency check"));
961     }
962 
963   /* Find the proper stratum to install this target in.  */
964   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
965     {
966       if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
967 	break;
968     }
969 
970   /* If there's already targets at this stratum, remove them.  */
971   /* FIXME: cagney/2003-10-15: I think this should be popping all
972      targets to CUR, and not just those at this stratum level.  */
973   while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
974     {
975       /* There's already something at this stratum level.  Close it,
976          and un-hook it from the stack.  */
977       struct target_ops *tmp = (*cur);
978 
979       (*cur) = (*cur)->beneath;
980       tmp->beneath = NULL;
981       target_close (tmp, 0);
982     }
983 
984   /* We have removed all targets in our stratum, now add the new one.  */
985   t->beneath = (*cur);
986   (*cur) = t;
987 
988   update_current_target ();
989 }
990 
991 /* Remove a target_ops vector from the stack, wherever it may be.
992    Return how many times it was removed (0 or 1).  */
993 
994 int
995 unpush_target (struct target_ops *t)
996 {
997   struct target_ops **cur;
998   struct target_ops *tmp;
999 
1000   if (t->to_stratum == dummy_stratum)
1001     internal_error (__FILE__, __LINE__,
1002 		    _("Attempt to unpush the dummy target"));
1003 
1004   /* Look for the specified target.  Note that we assume that a target
1005      can only occur once in the target stack.  */
1006 
1007   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1008     {
1009       if ((*cur) == t)
1010 	break;
1011     }
1012 
1013   if ((*cur) == NULL)
1014     return 0;			/* Didn't find target_ops, quit now.  */
1015 
1016   /* NOTE: cagney/2003-12-06: In '94 the close call was made
1017      unconditional by moving it to before the above check that the
1018      target was in the target stack (something about "Change the way
1019      pushing and popping of targets work to support target overlays
1020      and inheritance").  This doesn't make much sense - only open
1021      targets should be closed.  */
1022   target_close (t, 0);
1023 
1024   /* Unchain the target.  */
1025   tmp = (*cur);
1026   (*cur) = (*cur)->beneath;
1027   tmp->beneath = NULL;
1028 
1029   update_current_target ();
1030 
1031   return 1;
1032 }
1033 
1034 void
1035 pop_target (void)
1036 {
1037   target_close (target_stack, 0);	/* Let it clean up.  */
1038   if (unpush_target (target_stack) == 1)
1039     return;
1040 
1041   fprintf_unfiltered (gdb_stderr,
1042 		      "pop_target couldn't find target %s\n",
1043 		      current_target.to_shortname);
1044   internal_error (__FILE__, __LINE__,
1045 		  _("failed internal consistency check"));
1046 }
1047 
1048 void
1049 pop_all_targets_above (enum strata above_stratum, int quitting)
1050 {
1051   while ((int) (current_target.to_stratum) > (int) above_stratum)
1052     {
1053       target_close (target_stack, quitting);
1054       if (!unpush_target (target_stack))
1055 	{
1056 	  fprintf_unfiltered (gdb_stderr,
1057 			      "pop_all_targets couldn't find target %s\n",
1058 			      target_stack->to_shortname);
1059 	  internal_error (__FILE__, __LINE__,
1060 			  _("failed internal consistency check"));
1061 	  break;
1062 	}
1063     }
1064 }
1065 
1066 void
1067 pop_all_targets (int quitting)
1068 {
1069   pop_all_targets_above (dummy_stratum, quitting);
1070 }
1071 
1072 /* Return 1 if T is now pushed in the target stack.  Return 0 otherwise.  */
1073 
1074 int
1075 target_is_pushed (struct target_ops *t)
1076 {
1077   struct target_ops **cur;
1078 
1079   /* Check magic number.  If wrong, it probably means someone changed
1080      the struct definition, but not all the places that initialize one.  */
1081   if (t->to_magic != OPS_MAGIC)
1082     {
1083       fprintf_unfiltered (gdb_stderr,
1084 			  "Magic number of %s target struct wrong\n",
1085 			  t->to_shortname);
1086       internal_error (__FILE__, __LINE__,
1087 		      _("failed internal consistency check"));
1088     }
1089 
1090   for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1091     if (*cur == t)
1092       return 1;
1093 
1094   return 0;
1095 }
1096 
1097 /* Using the objfile specified in OBJFILE, find the address for the
1098    current thread's thread-local storage with offset OFFSET.  */
1099 CORE_ADDR
1100 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1101 {
1102   volatile CORE_ADDR addr = 0;
1103   struct target_ops *target;
1104 
1105   for (target = current_target.beneath;
1106        target != NULL;
1107        target = target->beneath)
1108     {
1109       if (target->to_get_thread_local_address != NULL)
1110 	break;
1111     }
1112 
1113   if (target != NULL
1114       && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1115     {
1116       ptid_t ptid = inferior_ptid;
1117       volatile struct gdb_exception ex;
1118 
1119       TRY_CATCH (ex, RETURN_MASK_ALL)
1120 	{
1121 	  CORE_ADDR lm_addr;
1122 
1123 	  /* Fetch the load module address for this objfile.  */
1124 	  lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1125 	                                                   objfile);
1126 	  /* If it's 0, throw the appropriate exception.  */
1127 	  if (lm_addr == 0)
1128 	    throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1129 			 _("TLS load module not found"));
1130 
1131 	  addr = target->to_get_thread_local_address (target, ptid,
1132 						      lm_addr, offset);
1133 	}
1134       /* If an error occurred, print TLS related messages here.  Otherwise,
1135          throw the error to some higher catcher.  */
1136       if (ex.reason < 0)
1137 	{
1138 	  int objfile_is_library = (objfile->flags & OBJF_SHARED);
1139 
1140 	  switch (ex.error)
1141 	    {
1142 	    case TLS_NO_LIBRARY_SUPPORT_ERROR:
1143 	      error (_("Cannot find thread-local variables "
1144 		       "in this thread library."));
1145 	      break;
1146 	    case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1147 	      if (objfile_is_library)
1148 		error (_("Cannot find shared library `%s' in dynamic"
1149 		         " linker's load module list"), objfile->name);
1150 	      else
1151 		error (_("Cannot find executable file `%s' in dynamic"
1152 		         " linker's load module list"), objfile->name);
1153 	      break;
1154 	    case TLS_NOT_ALLOCATED_YET_ERROR:
1155 	      if (objfile_is_library)
1156 		error (_("The inferior has not yet allocated storage for"
1157 		         " thread-local variables in\n"
1158 		         "the shared library `%s'\n"
1159 		         "for %s"),
1160 		       objfile->name, target_pid_to_str (ptid));
1161 	      else
1162 		error (_("The inferior has not yet allocated storage for"
1163 		         " thread-local variables in\n"
1164 		         "the executable `%s'\n"
1165 		         "for %s"),
1166 		       objfile->name, target_pid_to_str (ptid));
1167 	      break;
1168 	    case TLS_GENERIC_ERROR:
1169 	      if (objfile_is_library)
1170 		error (_("Cannot find thread-local storage for %s, "
1171 		         "shared library %s:\n%s"),
1172 		       target_pid_to_str (ptid),
1173 		       objfile->name, ex.message);
1174 	      else
1175 		error (_("Cannot find thread-local storage for %s, "
1176 		         "executable file %s:\n%s"),
1177 		       target_pid_to_str (ptid),
1178 		       objfile->name, ex.message);
1179 	      break;
1180 	    default:
1181 	      throw_exception (ex);
1182 	      break;
1183 	    }
1184 	}
1185     }
1186   /* It wouldn't be wrong here to try a gdbarch method, too; finding
1187      TLS is an ABI-specific thing.  But we don't do that yet.  */
1188   else
1189     error (_("Cannot find thread-local variables on this target"));
1190 
1191   return addr;
1192 }
1193 
1194 #undef	MIN
1195 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1196 
1197 /* target_read_string -- read a null terminated string, up to LEN bytes,
1198    from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
1199    Set *STRING to a pointer to malloc'd memory containing the data; the caller
1200    is responsible for freeing it.  Return the number of bytes successfully
1201    read.  */
1202 
1203 int
1204 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1205 {
1206   int tlen, origlen, offset, i;
1207   gdb_byte buf[4];
1208   int errcode = 0;
1209   char *buffer;
1210   int buffer_allocated;
1211   char *bufptr;
1212   unsigned int nbytes_read = 0;
1213 
1214   gdb_assert (string);
1215 
1216   /* Small for testing.  */
1217   buffer_allocated = 4;
1218   buffer = xmalloc (buffer_allocated);
1219   bufptr = buffer;
1220 
1221   origlen = len;
1222 
1223   while (len > 0)
1224     {
1225       tlen = MIN (len, 4 - (memaddr & 3));
1226       offset = memaddr & 3;
1227 
1228       errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1229       if (errcode != 0)
1230 	{
1231 	  /* The transfer request might have crossed the boundary to an
1232 	     unallocated region of memory.  Retry the transfer, requesting
1233 	     a single byte.  */
1234 	  tlen = 1;
1235 	  offset = 0;
1236 	  errcode = target_read_memory (memaddr, buf, 1);
1237 	  if (errcode != 0)
1238 	    goto done;
1239 	}
1240 
1241       if (bufptr - buffer + tlen > buffer_allocated)
1242 	{
1243 	  unsigned int bytes;
1244 
1245 	  bytes = bufptr - buffer;
1246 	  buffer_allocated *= 2;
1247 	  buffer = xrealloc (buffer, buffer_allocated);
1248 	  bufptr = buffer + bytes;
1249 	}
1250 
1251       for (i = 0; i < tlen; i++)
1252 	{
1253 	  *bufptr++ = buf[i + offset];
1254 	  if (buf[i + offset] == '\000')
1255 	    {
1256 	      nbytes_read += i + 1;
1257 	      goto done;
1258 	    }
1259 	}
1260 
1261       memaddr += tlen;
1262       len -= tlen;
1263       nbytes_read += tlen;
1264     }
1265 done:
1266   *string = buffer;
1267   if (errnop != NULL)
1268     *errnop = errcode;
1269   return nbytes_read;
1270 }
1271 
1272 struct target_section_table *
1273 target_get_section_table (struct target_ops *target)
1274 {
1275   struct target_ops *t;
1276 
1277   if (targetdebug)
1278     fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1279 
1280   for (t = target; t != NULL; t = t->beneath)
1281     if (t->to_get_section_table != NULL)
1282       return (*t->to_get_section_table) (t);
1283 
1284   return NULL;
1285 }
1286 
1287 /* Find a section containing ADDR.  */
1288 
1289 struct target_section *
1290 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1291 {
1292   struct target_section_table *table = target_get_section_table (target);
1293   struct target_section *secp;
1294 
1295   if (table == NULL)
1296     return NULL;
1297 
1298   for (secp = table->sections; secp < table->sections_end; secp++)
1299     {
1300       if (addr >= secp->addr && addr < secp->endaddr)
1301 	return secp;
1302     }
1303   return NULL;
1304 }
1305 
1306 /* Read memory from the live target, even if currently inspecting a
1307    traceframe.  The return is the same as that of target_read.  */
1308 
1309 static LONGEST
1310 target_read_live_memory (enum target_object object,
1311 			 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1312 {
1313   int ret;
1314   struct cleanup *cleanup;
1315 
1316   /* Switch momentarily out of tfind mode so to access live memory.
1317      Note that this must not clear global state, such as the frame
1318      cache, which must still remain valid for the previous traceframe.
1319      We may be _building_ the frame cache at this point.  */
1320   cleanup = make_cleanup_restore_traceframe_number ();
1321   set_traceframe_number (-1);
1322 
1323   ret = target_read (current_target.beneath, object, NULL,
1324 		     myaddr, memaddr, len);
1325 
1326   do_cleanups (cleanup);
1327   return ret;
1328 }
1329 
1330 /* Using the set of read-only target sections of OPS, read live
1331    read-only memory.  Note that the actual reads start from the
1332    top-most target again.
1333 
1334    For interface/parameters/return description see target.h,
1335    to_xfer_partial.  */
1336 
1337 static LONGEST
1338 memory_xfer_live_readonly_partial (struct target_ops *ops,
1339 				   enum target_object object,
1340 				   gdb_byte *readbuf, ULONGEST memaddr,
1341 				   LONGEST len)
1342 {
1343   struct target_section *secp;
1344   struct target_section_table *table;
1345 
1346   secp = target_section_by_addr (ops, memaddr);
1347   if (secp != NULL
1348       && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1349 	  & SEC_READONLY))
1350     {
1351       struct target_section *p;
1352       ULONGEST memend = memaddr + len;
1353 
1354       table = target_get_section_table (ops);
1355 
1356       for (p = table->sections; p < table->sections_end; p++)
1357 	{
1358 	  if (memaddr >= p->addr)
1359 	    {
1360 	      if (memend <= p->endaddr)
1361 		{
1362 		  /* Entire transfer is within this section.  */
1363 		  return target_read_live_memory (object, memaddr,
1364 						  readbuf, len);
1365 		}
1366 	      else if (memaddr >= p->endaddr)
1367 		{
1368 		  /* This section ends before the transfer starts.  */
1369 		  continue;
1370 		}
1371 	      else
1372 		{
1373 		  /* This section overlaps the transfer.  Just do half.  */
1374 		  len = p->endaddr - memaddr;
1375 		  return target_read_live_memory (object, memaddr,
1376 						  readbuf, len);
1377 		}
1378 	    }
1379 	}
1380     }
1381 
1382   return 0;
1383 }
1384 
1385 /* Perform a partial memory transfer.
1386    For docs see target.h, to_xfer_partial.  */
1387 
1388 static LONGEST
1389 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1390 		       void *readbuf, const void *writebuf, ULONGEST memaddr,
1391 		       LONGEST len)
1392 {
1393   LONGEST res;
1394   int reg_len;
1395   struct mem_region *region;
1396   struct inferior *inf;
1397 
1398   /* For accesses to unmapped overlay sections, read directly from
1399      files.  Must do this first, as MEMADDR may need adjustment.  */
1400   if (readbuf != NULL && overlay_debugging)
1401     {
1402       struct obj_section *section = find_pc_overlay (memaddr);
1403 
1404       if (pc_in_unmapped_range (memaddr, section))
1405 	{
1406 	  struct target_section_table *table
1407 	    = target_get_section_table (ops);
1408 	  const char *section_name = section->the_bfd_section->name;
1409 
1410 	  memaddr = overlay_mapped_address (memaddr, section);
1411 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1412 						    memaddr, len,
1413 						    table->sections,
1414 						    table->sections_end,
1415 						    section_name);
1416 	}
1417     }
1418 
1419   /* Try the executable files, if "trust-readonly-sections" is set.  */
1420   if (readbuf != NULL && trust_readonly)
1421     {
1422       struct target_section *secp;
1423       struct target_section_table *table;
1424 
1425       secp = target_section_by_addr (ops, memaddr);
1426       if (secp != NULL
1427 	  && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1428 	      & SEC_READONLY))
1429 	{
1430 	  table = target_get_section_table (ops);
1431 	  return section_table_xfer_memory_partial (readbuf, writebuf,
1432 						    memaddr, len,
1433 						    table->sections,
1434 						    table->sections_end,
1435 						    NULL);
1436 	}
1437     }
1438 
1439   /* If reading unavailable memory in the context of traceframes, and
1440      this address falls within a read-only section, fallback to
1441      reading from live memory.  */
1442   if (readbuf != NULL && get_traceframe_number () != -1)
1443     {
1444       VEC(mem_range_s) *available;
1445 
1446       /* If we fail to get the set of available memory, then the
1447 	 target does not support querying traceframe info, and so we
1448 	 attempt reading from the traceframe anyway (assuming the
1449 	 target implements the old QTro packet then).  */
1450       if (traceframe_available_memory (&available, memaddr, len))
1451 	{
1452 	  struct cleanup *old_chain;
1453 
1454 	  old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1455 
1456 	  if (VEC_empty (mem_range_s, available)
1457 	      || VEC_index (mem_range_s, available, 0)->start != memaddr)
1458 	    {
1459 	      /* Don't read into the traceframe's available
1460 		 memory.  */
1461 	      if (!VEC_empty (mem_range_s, available))
1462 		{
1463 		  LONGEST oldlen = len;
1464 
1465 		  len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1466 		  gdb_assert (len <= oldlen);
1467 		}
1468 
1469 	      do_cleanups (old_chain);
1470 
1471 	      /* This goes through the topmost target again.  */
1472 	      res = memory_xfer_live_readonly_partial (ops, object,
1473 						       readbuf, memaddr, len);
1474 	      if (res > 0)
1475 		return res;
1476 
1477 	      /* No use trying further, we know some memory starting
1478 		 at MEMADDR isn't available.  */
1479 	      return -1;
1480 	    }
1481 
1482 	  /* Don't try to read more than how much is available, in
1483 	     case the target implements the deprecated QTro packet to
1484 	     cater for older GDBs (the target's knowledge of read-only
1485 	     sections may be outdated by now).  */
1486 	  len = VEC_index (mem_range_s, available, 0)->length;
1487 
1488 	  do_cleanups (old_chain);
1489 	}
1490     }
1491 
1492   /* Try GDB's internal data cache.  */
1493   region = lookup_mem_region (memaddr);
1494   /* region->hi == 0 means there's no upper bound.  */
1495   if (memaddr + len < region->hi || region->hi == 0)
1496     reg_len = len;
1497   else
1498     reg_len = region->hi - memaddr;
1499 
1500   switch (region->attrib.mode)
1501     {
1502     case MEM_RO:
1503       if (writebuf != NULL)
1504 	return -1;
1505       break;
1506 
1507     case MEM_WO:
1508       if (readbuf != NULL)
1509 	return -1;
1510       break;
1511 
1512     case MEM_FLASH:
1513       /* We only support writing to flash during "load" for now.  */
1514       if (writebuf != NULL)
1515 	error (_("Writing to flash memory forbidden in this context"));
1516       break;
1517 
1518     case MEM_NONE:
1519       return -1;
1520     }
1521 
1522   if (!ptid_equal (inferior_ptid, null_ptid))
1523     inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1524   else
1525     inf = NULL;
1526 
1527   if (inf != NULL
1528       /* The dcache reads whole cache lines; that doesn't play well
1529 	 with reading from a trace buffer, because reading outside of
1530 	 the collected memory range fails.  */
1531       && get_traceframe_number () == -1
1532       && (region->attrib.cache
1533 	  || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1534     {
1535       if (readbuf != NULL)
1536 	res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1537 				  reg_len, 0);
1538       else
1539 	/* FIXME drow/2006-08-09: If we're going to preserve const
1540 	   correctness dcache_xfer_memory should take readbuf and
1541 	   writebuf.  */
1542 	res = dcache_xfer_memory (ops, target_dcache, memaddr,
1543 				  (void *) writebuf,
1544 				  reg_len, 1);
1545       if (res <= 0)
1546 	return -1;
1547       else
1548 	return res;
1549     }
1550 
1551   /* If none of those methods found the memory we wanted, fall back
1552      to a target partial transfer.  Normally a single call to
1553      to_xfer_partial is enough; if it doesn't recognize an object
1554      it will call the to_xfer_partial of the next target down.
1555      But for memory this won't do.  Memory is the only target
1556      object which can be read from more than one valid target.
1557      A core file, for instance, could have some of memory but
1558      delegate other bits to the target below it.  So, we must
1559      manually try all targets.  */
1560 
1561   do
1562     {
1563       res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1564 				  readbuf, writebuf, memaddr, reg_len);
1565       if (res > 0)
1566 	break;
1567 
1568       /* We want to continue past core files to executables, but not
1569 	 past a running target's memory.  */
1570       if (ops->to_has_all_memory (ops))
1571 	break;
1572 
1573       ops = ops->beneath;
1574     }
1575   while (ops != NULL);
1576 
1577   /* Make sure the cache gets updated no matter what - if we are writing
1578      to the stack.  Even if this write is not tagged as such, we still need
1579      to update the cache.  */
1580 
1581   if (res > 0
1582       && inf != NULL
1583       && writebuf != NULL
1584       && !region->attrib.cache
1585       && stack_cache_enabled_p
1586       && object != TARGET_OBJECT_STACK_MEMORY)
1587     {
1588       dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1589     }
1590 
1591   /* If we still haven't got anything, return the last error.  We
1592      give up.  */
1593   return res;
1594 }
1595 
1596 /* Perform a partial memory transfer.  For docs see target.h,
1597    to_xfer_partial.  */
1598 
1599 static LONGEST
1600 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1601 		     void *readbuf, const void *writebuf, ULONGEST memaddr,
1602 		     LONGEST len)
1603 {
1604   int res;
1605 
1606   /* Zero length requests are ok and require no work.  */
1607   if (len == 0)
1608     return 0;
1609 
1610   /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1611      breakpoint insns, thus hiding out from higher layers whether
1612      there are software breakpoints inserted in the code stream.  */
1613   if (readbuf != NULL)
1614     {
1615       res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1616 
1617       if (res > 0 && !show_memory_breakpoints)
1618 	breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1619     }
1620   else
1621     {
1622       void *buf;
1623       struct cleanup *old_chain;
1624 
1625       buf = xmalloc (len);
1626       old_chain = make_cleanup (xfree, buf);
1627       memcpy (buf, writebuf, len);
1628 
1629       breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1630       res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1631 
1632       do_cleanups (old_chain);
1633     }
1634 
1635   return res;
1636 }
1637 
1638 static void
1639 restore_show_memory_breakpoints (void *arg)
1640 {
1641   show_memory_breakpoints = (uintptr_t) arg;
1642 }
1643 
1644 struct cleanup *
1645 make_show_memory_breakpoints_cleanup (int show)
1646 {
1647   int current = show_memory_breakpoints;
1648 
1649   show_memory_breakpoints = show;
1650   return make_cleanup (restore_show_memory_breakpoints,
1651 		       (void *) (uintptr_t) current);
1652 }
1653 
1654 /* For docs see target.h, to_xfer_partial.  */
1655 
1656 static LONGEST
1657 target_xfer_partial (struct target_ops *ops,
1658 		     enum target_object object, const char *annex,
1659 		     void *readbuf, const void *writebuf,
1660 		     ULONGEST offset, LONGEST len)
1661 {
1662   LONGEST retval;
1663 
1664   gdb_assert (ops->to_xfer_partial != NULL);
1665 
1666   if (writebuf && !may_write_memory)
1667     error (_("Writing to memory is not allowed (addr %s, len %s)"),
1668 	   core_addr_to_string_nz (offset), plongest (len));
1669 
1670   /* If this is a memory transfer, let the memory-specific code
1671      have a look at it instead.  Memory transfers are more
1672      complicated.  */
1673   if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1674     retval = memory_xfer_partial (ops, object, readbuf,
1675 				  writebuf, offset, len);
1676   else
1677     {
1678       enum target_object raw_object = object;
1679 
1680       /* If this is a raw memory transfer, request the normal
1681 	 memory object from other layers.  */
1682       if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1683 	raw_object = TARGET_OBJECT_MEMORY;
1684 
1685       retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1686 				     writebuf, offset, len);
1687     }
1688 
1689   if (targetdebug)
1690     {
1691       const unsigned char *myaddr = NULL;
1692 
1693       fprintf_unfiltered (gdb_stdlog,
1694 			  "%s:target_xfer_partial "
1695 			  "(%d, %s, %s, %s, %s, %s) = %s",
1696 			  ops->to_shortname,
1697 			  (int) object,
1698 			  (annex ? annex : "(null)"),
1699 			  host_address_to_string (readbuf),
1700 			  host_address_to_string (writebuf),
1701 			  core_addr_to_string_nz (offset),
1702 			  plongest (len), plongest (retval));
1703 
1704       if (readbuf)
1705 	myaddr = readbuf;
1706       if (writebuf)
1707 	myaddr = writebuf;
1708       if (retval > 0 && myaddr != NULL)
1709 	{
1710 	  int i;
1711 
1712 	  fputs_unfiltered (", bytes =", gdb_stdlog);
1713 	  for (i = 0; i < retval; i++)
1714 	    {
1715 	      if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1716 		{
1717 		  if (targetdebug < 2 && i > 0)
1718 		    {
1719 		      fprintf_unfiltered (gdb_stdlog, " ...");
1720 		      break;
1721 		    }
1722 		  fprintf_unfiltered (gdb_stdlog, "\n");
1723 		}
1724 
1725 	      fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1726 	    }
1727 	}
1728 
1729       fputc_unfiltered ('\n', gdb_stdlog);
1730     }
1731   return retval;
1732 }
1733 
1734 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1735    GDB's memory at MYADDR.  Returns either 0 for success or an errno value
1736    if any error occurs.
1737 
1738    If an error occurs, no guarantee is made about the contents of the data at
1739    MYADDR.  In particular, the caller should not depend upon partial reads
1740    filling the buffer with good data.  There is no way for the caller to know
1741    how much good data might have been transfered anyway.  Callers that can
1742    deal with partial reads should call target_read (which will retry until
1743    it makes no progress, and then return how much was transferred).  */
1744 
1745 int
1746 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1747 {
1748   /* Dispatch to the topmost target, not the flattened current_target.
1749      Memory accesses check target->to_has_(all_)memory, and the
1750      flattened target doesn't inherit those.  */
1751   if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1752 		   myaddr, memaddr, len) == len)
1753     return 0;
1754   else
1755     return EIO;
1756 }
1757 
1758 /* Like target_read_memory, but specify explicitly that this is a read from
1759    the target's stack.  This may trigger different cache behavior.  */
1760 
1761 int
1762 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1763 {
1764   /* Dispatch to the topmost target, not the flattened current_target.
1765      Memory accesses check target->to_has_(all_)memory, and the
1766      flattened target doesn't inherit those.  */
1767 
1768   if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1769 		   myaddr, memaddr, len) == len)
1770     return 0;
1771   else
1772     return EIO;
1773 }
1774 
1775 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1776    Returns either 0 for success or an errno value if any error occurs.
1777    If an error occurs, no guarantee is made about how much data got written.
1778    Callers that can deal with partial writes should call target_write.  */
1779 
1780 int
1781 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1782 {
1783   /* Dispatch to the topmost target, not the flattened current_target.
1784      Memory accesses check target->to_has_(all_)memory, and the
1785      flattened target doesn't inherit those.  */
1786   if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1787 		    myaddr, memaddr, len) == len)
1788     return 0;
1789   else
1790     return EIO;
1791 }
1792 
1793 /* Write LEN bytes from MYADDR to target raw memory at address
1794    MEMADDR.  Returns either 0 for success or an errno value if any
1795    error occurs.  If an error occurs, no guarantee is made about how
1796    much data got written.  Callers that can deal with partial writes
1797    should call target_write.  */
1798 
1799 int
1800 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1801 {
1802   /* Dispatch to the topmost target, not the flattened current_target.
1803      Memory accesses check target->to_has_(all_)memory, and the
1804      flattened target doesn't inherit those.  */
1805   if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1806 		    myaddr, memaddr, len) == len)
1807     return 0;
1808   else
1809     return EIO;
1810 }
1811 
1812 /* Fetch the target's memory map.  */
1813 
1814 VEC(mem_region_s) *
1815 target_memory_map (void)
1816 {
1817   VEC(mem_region_s) *result;
1818   struct mem_region *last_one, *this_one;
1819   int ix;
1820   struct target_ops *t;
1821 
1822   if (targetdebug)
1823     fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1824 
1825   for (t = current_target.beneath; t != NULL; t = t->beneath)
1826     if (t->to_memory_map != NULL)
1827       break;
1828 
1829   if (t == NULL)
1830     return NULL;
1831 
1832   result = t->to_memory_map (t);
1833   if (result == NULL)
1834     return NULL;
1835 
1836   qsort (VEC_address (mem_region_s, result),
1837 	 VEC_length (mem_region_s, result),
1838 	 sizeof (struct mem_region), mem_region_cmp);
1839 
1840   /* Check that regions do not overlap.  Simultaneously assign
1841      a numbering for the "mem" commands to use to refer to
1842      each region.  */
1843   last_one = NULL;
1844   for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1845     {
1846       this_one->number = ix;
1847 
1848       if (last_one && last_one->hi > this_one->lo)
1849 	{
1850 	  warning (_("Overlapping regions in memory map: ignoring"));
1851 	  VEC_free (mem_region_s, result);
1852 	  return NULL;
1853 	}
1854       last_one = this_one;
1855     }
1856 
1857   return result;
1858 }
1859 
1860 void
1861 target_flash_erase (ULONGEST address, LONGEST length)
1862 {
1863   struct target_ops *t;
1864 
1865   for (t = current_target.beneath; t != NULL; t = t->beneath)
1866     if (t->to_flash_erase != NULL)
1867       {
1868 	if (targetdebug)
1869 	  fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1870 			      hex_string (address), phex (length, 0));
1871 	t->to_flash_erase (t, address, length);
1872 	return;
1873       }
1874 
1875   tcomplain ();
1876 }
1877 
1878 void
1879 target_flash_done (void)
1880 {
1881   struct target_ops *t;
1882 
1883   for (t = current_target.beneath; t != NULL; t = t->beneath)
1884     if (t->to_flash_done != NULL)
1885       {
1886 	if (targetdebug)
1887 	  fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1888 	t->to_flash_done (t);
1889 	return;
1890       }
1891 
1892   tcomplain ();
1893 }
1894 
1895 static void
1896 show_trust_readonly (struct ui_file *file, int from_tty,
1897 		     struct cmd_list_element *c, const char *value)
1898 {
1899   fprintf_filtered (file,
1900 		    _("Mode for reading from readonly sections is %s.\n"),
1901 		    value);
1902 }
1903 
1904 /* More generic transfers.  */
1905 
1906 static LONGEST
1907 default_xfer_partial (struct target_ops *ops, enum target_object object,
1908 		      const char *annex, gdb_byte *readbuf,
1909 		      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1910 {
1911   if (object == TARGET_OBJECT_MEMORY
1912       && ops->deprecated_xfer_memory != NULL)
1913     /* If available, fall back to the target's
1914        "deprecated_xfer_memory" method.  */
1915     {
1916       int xfered = -1;
1917 
1918       errno = 0;
1919       if (writebuf != NULL)
1920 	{
1921 	  void *buffer = xmalloc (len);
1922 	  struct cleanup *cleanup = make_cleanup (xfree, buffer);
1923 
1924 	  memcpy (buffer, writebuf, len);
1925 	  xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1926 						1/*write*/, NULL, ops);
1927 	  do_cleanups (cleanup);
1928 	}
1929       if (readbuf != NULL)
1930 	xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1931 					      0/*read*/, NULL, ops);
1932       if (xfered > 0)
1933 	return xfered;
1934       else if (xfered == 0 && errno == 0)
1935 	/* "deprecated_xfer_memory" uses 0, cross checked against
1936            ERRNO as one indication of an error.  */
1937 	return 0;
1938       else
1939 	return -1;
1940     }
1941   else if (ops->beneath != NULL)
1942     return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1943 					  readbuf, writebuf, offset, len);
1944   else
1945     return -1;
1946 }
1947 
1948 /* The xfer_partial handler for the topmost target.  Unlike the default,
1949    it does not need to handle memory specially; it just passes all
1950    requests down the stack.  */
1951 
1952 static LONGEST
1953 current_xfer_partial (struct target_ops *ops, enum target_object object,
1954 		      const char *annex, gdb_byte *readbuf,
1955 		      const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1956 {
1957   if (ops->beneath != NULL)
1958     return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1959 					  readbuf, writebuf, offset, len);
1960   else
1961     return -1;
1962 }
1963 
1964 /* Target vector read/write partial wrapper functions.  */
1965 
1966 static LONGEST
1967 target_read_partial (struct target_ops *ops,
1968 		     enum target_object object,
1969 		     const char *annex, gdb_byte *buf,
1970 		     ULONGEST offset, LONGEST len)
1971 {
1972   return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1973 }
1974 
1975 static LONGEST
1976 target_write_partial (struct target_ops *ops,
1977 		      enum target_object object,
1978 		      const char *annex, const gdb_byte *buf,
1979 		      ULONGEST offset, LONGEST len)
1980 {
1981   return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1982 }
1983 
1984 /* Wrappers to perform the full transfer.  */
1985 
1986 /* For docs on target_read see target.h.  */
1987 
1988 LONGEST
1989 target_read (struct target_ops *ops,
1990 	     enum target_object object,
1991 	     const char *annex, gdb_byte *buf,
1992 	     ULONGEST offset, LONGEST len)
1993 {
1994   LONGEST xfered = 0;
1995 
1996   while (xfered < len)
1997     {
1998       LONGEST xfer = target_read_partial (ops, object, annex,
1999 					  (gdb_byte *) buf + xfered,
2000 					  offset + xfered, len - xfered);
2001 
2002       /* Call an observer, notifying them of the xfer progress?  */
2003       if (xfer == 0)
2004 	return xfered;
2005       if (xfer < 0)
2006 	return -1;
2007       xfered += xfer;
2008       QUIT;
2009     }
2010   return len;
2011 }
2012 
2013 /* Assuming that the entire [begin, end) range of memory cannot be
2014    read, try to read whatever subrange is possible to read.
2015 
2016    The function returns, in RESULT, either zero or one memory block.
2017    If there's a readable subrange at the beginning, it is completely
2018    read and returned.  Any further readable subrange will not be read.
2019    Otherwise, if there's a readable subrange at the end, it will be
2020    completely read and returned.  Any readable subranges before it
2021    (obviously, not starting at the beginning), will be ignored.  In
2022    other cases -- either no readable subrange, or readable subrange(s)
2023    that is neither at the beginning, or end, nothing is returned.
2024 
2025    The purpose of this function is to handle a read across a boundary
2026    of accessible memory in a case when memory map is not available.
2027    The above restrictions are fine for this case, but will give
2028    incorrect results if the memory is 'patchy'.  However, supporting
2029    'patchy' memory would require trying to read every single byte,
2030    and it seems unacceptable solution.  Explicit memory map is
2031    recommended for this case -- and target_read_memory_robust will
2032    take care of reading multiple ranges then.  */
2033 
2034 static void
2035 read_whatever_is_readable (struct target_ops *ops,
2036 			   ULONGEST begin, ULONGEST end,
2037 			   VEC(memory_read_result_s) **result)
2038 {
2039   gdb_byte *buf = xmalloc (end - begin);
2040   ULONGEST current_begin = begin;
2041   ULONGEST current_end = end;
2042   int forward;
2043   memory_read_result_s r;
2044 
2045   /* If we previously failed to read 1 byte, nothing can be done here.  */
2046   if (end - begin <= 1)
2047     {
2048       xfree (buf);
2049       return;
2050     }
2051 
2052   /* Check that either first or the last byte is readable, and give up
2053      if not.  This heuristic is meant to permit reading accessible memory
2054      at the boundary of accessible region.  */
2055   if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2056 			   buf, begin, 1) == 1)
2057     {
2058       forward = 1;
2059       ++current_begin;
2060     }
2061   else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2062 				buf + (end-begin) - 1, end - 1, 1) == 1)
2063     {
2064       forward = 0;
2065       --current_end;
2066     }
2067   else
2068     {
2069       xfree (buf);
2070       return;
2071     }
2072 
2073   /* Loop invariant is that the [current_begin, current_end) was previously
2074      found to be not readable as a whole.
2075 
2076      Note loop condition -- if the range has 1 byte, we can't divide the range
2077      so there's no point trying further.  */
2078   while (current_end - current_begin > 1)
2079     {
2080       ULONGEST first_half_begin, first_half_end;
2081       ULONGEST second_half_begin, second_half_end;
2082       LONGEST xfer;
2083       ULONGEST middle = current_begin + (current_end - current_begin)/2;
2084 
2085       if (forward)
2086 	{
2087 	  first_half_begin = current_begin;
2088 	  first_half_end = middle;
2089 	  second_half_begin = middle;
2090 	  second_half_end = current_end;
2091 	}
2092       else
2093 	{
2094 	  first_half_begin = middle;
2095 	  first_half_end = current_end;
2096 	  second_half_begin = current_begin;
2097 	  second_half_end = middle;
2098 	}
2099 
2100       xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2101 			  buf + (first_half_begin - begin),
2102 			  first_half_begin,
2103 			  first_half_end - first_half_begin);
2104 
2105       if (xfer == first_half_end - first_half_begin)
2106 	{
2107 	  /* This half reads up fine.  So, the error must be in the
2108 	     other half.  */
2109 	  current_begin = second_half_begin;
2110 	  current_end = second_half_end;
2111 	}
2112       else
2113 	{
2114 	  /* This half is not readable.  Because we've tried one byte, we
2115 	     know some part of this half if actually redable.  Go to the next
2116 	     iteration to divide again and try to read.
2117 
2118 	     We don't handle the other half, because this function only tries
2119 	     to read a single readable subrange.  */
2120 	  current_begin = first_half_begin;
2121 	  current_end = first_half_end;
2122 	}
2123     }
2124 
2125   if (forward)
2126     {
2127       /* The [begin, current_begin) range has been read.  */
2128       r.begin = begin;
2129       r.end = current_begin;
2130       r.data = buf;
2131     }
2132   else
2133     {
2134       /* The [current_end, end) range has been read.  */
2135       LONGEST rlen = end - current_end;
2136 
2137       r.data = xmalloc (rlen);
2138       memcpy (r.data, buf + current_end - begin, rlen);
2139       r.begin = current_end;
2140       r.end = end;
2141       xfree (buf);
2142     }
2143   VEC_safe_push(memory_read_result_s, (*result), &r);
2144 }
2145 
2146 void
2147 free_memory_read_result_vector (void *x)
2148 {
2149   VEC(memory_read_result_s) *v = x;
2150   memory_read_result_s *current;
2151   int ix;
2152 
2153   for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2154     {
2155       xfree (current->data);
2156     }
2157   VEC_free (memory_read_result_s, v);
2158 }
2159 
2160 VEC(memory_read_result_s) *
2161 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2162 {
2163   VEC(memory_read_result_s) *result = 0;
2164 
2165   LONGEST xfered = 0;
2166   while (xfered < len)
2167     {
2168       struct mem_region *region = lookup_mem_region (offset + xfered);
2169       LONGEST rlen;
2170 
2171       /* If there is no explicit region, a fake one should be created.  */
2172       gdb_assert (region);
2173 
2174       if (region->hi == 0)
2175 	rlen = len - xfered;
2176       else
2177 	rlen = region->hi - offset;
2178 
2179       if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2180 	{
2181 	  /* Cannot read this region.  Note that we can end up here only
2182 	     if the region is explicitly marked inaccessible, or
2183 	     'inaccessible-by-default' is in effect.  */
2184 	  xfered += rlen;
2185 	}
2186       else
2187 	{
2188 	  LONGEST to_read = min (len - xfered, rlen);
2189 	  gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2190 
2191 	  LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2192 				      (gdb_byte *) buffer,
2193 				      offset + xfered, to_read);
2194 	  /* Call an observer, notifying them of the xfer progress?  */
2195 	  if (xfer <= 0)
2196 	    {
2197 	      /* Got an error reading full chunk.  See if maybe we can read
2198 		 some subrange.  */
2199 	      xfree (buffer);
2200 	      read_whatever_is_readable (ops, offset + xfered,
2201 					 offset + xfered + to_read, &result);
2202 	      xfered += to_read;
2203 	    }
2204 	  else
2205 	    {
2206 	      struct memory_read_result r;
2207 	      r.data = buffer;
2208 	      r.begin = offset + xfered;
2209 	      r.end = r.begin + xfer;
2210 	      VEC_safe_push (memory_read_result_s, result, &r);
2211 	      xfered += xfer;
2212 	    }
2213 	  QUIT;
2214 	}
2215     }
2216   return result;
2217 }
2218 
2219 
2220 /* An alternative to target_write with progress callbacks.  */
2221 
2222 LONGEST
2223 target_write_with_progress (struct target_ops *ops,
2224 			    enum target_object object,
2225 			    const char *annex, const gdb_byte *buf,
2226 			    ULONGEST offset, LONGEST len,
2227 			    void (*progress) (ULONGEST, void *), void *baton)
2228 {
2229   LONGEST xfered = 0;
2230 
2231   /* Give the progress callback a chance to set up.  */
2232   if (progress)
2233     (*progress) (0, baton);
2234 
2235   while (xfered < len)
2236     {
2237       LONGEST xfer = target_write_partial (ops, object, annex,
2238 					   (gdb_byte *) buf + xfered,
2239 					   offset + xfered, len - xfered);
2240 
2241       if (xfer == 0)
2242 	return xfered;
2243       if (xfer < 0)
2244 	return -1;
2245 
2246       if (progress)
2247 	(*progress) (xfer, baton);
2248 
2249       xfered += xfer;
2250       QUIT;
2251     }
2252   return len;
2253 }
2254 
2255 /* For docs on target_write see target.h.  */
2256 
2257 LONGEST
2258 target_write (struct target_ops *ops,
2259 	      enum target_object object,
2260 	      const char *annex, const gdb_byte *buf,
2261 	      ULONGEST offset, LONGEST len)
2262 {
2263   return target_write_with_progress (ops, object, annex, buf, offset, len,
2264 				     NULL, NULL);
2265 }
2266 
2267 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
2268    the size of the transferred data.  PADDING additional bytes are
2269    available in *BUF_P.  This is a helper function for
2270    target_read_alloc; see the declaration of that function for more
2271    information.  */
2272 
2273 static LONGEST
2274 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2275 		     const char *annex, gdb_byte **buf_p, int padding)
2276 {
2277   size_t buf_alloc, buf_pos;
2278   gdb_byte *buf;
2279   LONGEST n;
2280 
2281   /* This function does not have a length parameter; it reads the
2282      entire OBJECT).  Also, it doesn't support objects fetched partly
2283      from one target and partly from another (in a different stratum,
2284      e.g. a core file and an executable).  Both reasons make it
2285      unsuitable for reading memory.  */
2286   gdb_assert (object != TARGET_OBJECT_MEMORY);
2287 
2288   /* Start by reading up to 4K at a time.  The target will throttle
2289      this number down if necessary.  */
2290   buf_alloc = 4096;
2291   buf = xmalloc (buf_alloc);
2292   buf_pos = 0;
2293   while (1)
2294     {
2295       n = target_read_partial (ops, object, annex, &buf[buf_pos],
2296 			       buf_pos, buf_alloc - buf_pos - padding);
2297       if (n < 0)
2298 	{
2299 	  /* An error occurred.  */
2300 	  xfree (buf);
2301 	  return -1;
2302 	}
2303       else if (n == 0)
2304 	{
2305 	  /* Read all there was.  */
2306 	  if (buf_pos == 0)
2307 	    xfree (buf);
2308 	  else
2309 	    *buf_p = buf;
2310 	  return buf_pos;
2311 	}
2312 
2313       buf_pos += n;
2314 
2315       /* If the buffer is filling up, expand it.  */
2316       if (buf_alloc < buf_pos * 2)
2317 	{
2318 	  buf_alloc *= 2;
2319 	  buf = xrealloc (buf, buf_alloc);
2320 	}
2321 
2322       QUIT;
2323     }
2324 }
2325 
2326 /* Read OBJECT/ANNEX using OPS.  Store the result in *BUF_P and return
2327    the size of the transferred data.  See the declaration in "target.h"
2328    function for more information about the return value.  */
2329 
2330 LONGEST
2331 target_read_alloc (struct target_ops *ops, enum target_object object,
2332 		   const char *annex, gdb_byte **buf_p)
2333 {
2334   return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2335 }
2336 
2337 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
2338    returned as a string, allocated using xmalloc.  If an error occurs
2339    or the transfer is unsupported, NULL is returned.  Empty objects
2340    are returned as allocated but empty strings.  A warning is issued
2341    if the result contains any embedded NUL bytes.  */
2342 
2343 char *
2344 target_read_stralloc (struct target_ops *ops, enum target_object object,
2345 		      const char *annex)
2346 {
2347   gdb_byte *buffer;
2348   LONGEST transferred;
2349 
2350   transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2351 
2352   if (transferred < 0)
2353     return NULL;
2354 
2355   if (transferred == 0)
2356     return xstrdup ("");
2357 
2358   buffer[transferred] = 0;
2359   if (strlen (buffer) < transferred)
2360     warning (_("target object %d, annex %s, "
2361 	       "contained unexpected null characters"),
2362 	     (int) object, annex ? annex : "(none)");
2363 
2364   return (char *) buffer;
2365 }
2366 
2367 /* Memory transfer methods.  */
2368 
2369 void
2370 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2371 		   LONGEST len)
2372 {
2373   /* This method is used to read from an alternate, non-current
2374      target.  This read must bypass the overlay support (as symbols
2375      don't match this target), and GDB's internal cache (wrong cache
2376      for this target).  */
2377   if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2378       != len)
2379     memory_error (EIO, addr);
2380 }
2381 
2382 ULONGEST
2383 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2384 			    int len, enum bfd_endian byte_order)
2385 {
2386   gdb_byte buf[sizeof (ULONGEST)];
2387 
2388   gdb_assert (len <= sizeof (buf));
2389   get_target_memory (ops, addr, buf, len);
2390   return extract_unsigned_integer (buf, len, byte_order);
2391 }
2392 
2393 int
2394 target_insert_breakpoint (struct gdbarch *gdbarch,
2395 			  struct bp_target_info *bp_tgt)
2396 {
2397   if (!may_insert_breakpoints)
2398     {
2399       warning (_("May not insert breakpoints"));
2400       return 1;
2401     }
2402 
2403   return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2404 }
2405 
2406 int
2407 target_remove_breakpoint (struct gdbarch *gdbarch,
2408 			  struct bp_target_info *bp_tgt)
2409 {
2410   /* This is kind of a weird case to handle, but the permission might
2411      have been changed after breakpoints were inserted - in which case
2412      we should just take the user literally and assume that any
2413      breakpoints should be left in place.  */
2414   if (!may_insert_breakpoints)
2415     {
2416       warning (_("May not remove breakpoints"));
2417       return 1;
2418     }
2419 
2420   return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2421 }
2422 
2423 static void
2424 target_info (char *args, int from_tty)
2425 {
2426   struct target_ops *t;
2427   int has_all_mem = 0;
2428 
2429   if (symfile_objfile != NULL)
2430     printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2431 
2432   for (t = target_stack; t != NULL; t = t->beneath)
2433     {
2434       if (!(*t->to_has_memory) (t))
2435 	continue;
2436 
2437       if ((int) (t->to_stratum) <= (int) dummy_stratum)
2438 	continue;
2439       if (has_all_mem)
2440 	printf_unfiltered (_("\tWhile running this, "
2441 			     "GDB does not access memory from...\n"));
2442       printf_unfiltered ("%s:\n", t->to_longname);
2443       (t->to_files_info) (t);
2444       has_all_mem = (*t->to_has_all_memory) (t);
2445     }
2446 }
2447 
2448 /* This function is called before any new inferior is created, e.g.
2449    by running a program, attaching, or connecting to a target.
2450    It cleans up any state from previous invocations which might
2451    change between runs.  This is a subset of what target_preopen
2452    resets (things which might change between targets).  */
2453 
2454 void
2455 target_pre_inferior (int from_tty)
2456 {
2457   /* Clear out solib state.  Otherwise the solib state of the previous
2458      inferior might have survived and is entirely wrong for the new
2459      target.  This has been observed on GNU/Linux using glibc 2.3.  How
2460      to reproduce:
2461 
2462      bash$ ./foo&
2463      [1] 4711
2464      bash$ ./foo&
2465      [1] 4712
2466      bash$ gdb ./foo
2467      [...]
2468      (gdb) attach 4711
2469      (gdb) detach
2470      (gdb) attach 4712
2471      Cannot access memory at address 0xdeadbeef
2472   */
2473 
2474   /* In some OSs, the shared library list is the same/global/shared
2475      across inferiors.  If code is shared between processes, so are
2476      memory regions and features.  */
2477   if (!gdbarch_has_global_solist (target_gdbarch))
2478     {
2479       no_shared_libraries (NULL, from_tty);
2480 
2481       invalidate_target_mem_regions ();
2482 
2483       target_clear_description ();
2484     }
2485 }
2486 
2487 /* Callback for iterate_over_inferiors.  Gets rid of the given
2488    inferior.  */
2489 
2490 static int
2491 dispose_inferior (struct inferior *inf, void *args)
2492 {
2493   struct thread_info *thread;
2494 
2495   thread = any_thread_of_process (inf->pid);
2496   if (thread)
2497     {
2498       switch_to_thread (thread->ptid);
2499 
2500       /* Core inferiors actually should be detached, not killed.  */
2501       if (target_has_execution)
2502 	target_kill ();
2503       else
2504 	target_detach (NULL, 0);
2505     }
2506 
2507   return 0;
2508 }
2509 
2510 /* This is to be called by the open routine before it does
2511    anything.  */
2512 
2513 void
2514 target_preopen (int from_tty)
2515 {
2516   dont_repeat ();
2517 
2518   if (have_inferiors ())
2519     {
2520       if (!from_tty
2521 	  || !have_live_inferiors ()
2522 	  || query (_("A program is being debugged already.  Kill it? ")))
2523 	iterate_over_inferiors (dispose_inferior, NULL);
2524       else
2525 	error (_("Program not killed."));
2526     }
2527 
2528   /* Calling target_kill may remove the target from the stack.  But if
2529      it doesn't (which seems like a win for UDI), remove it now.  */
2530   /* Leave the exec target, though.  The user may be switching from a
2531      live process to a core of the same program.  */
2532   pop_all_targets_above (file_stratum, 0);
2533 
2534   target_pre_inferior (from_tty);
2535 }
2536 
2537 /* Detach a target after doing deferred register stores.  */
2538 
2539 void
2540 target_detach (char *args, int from_tty)
2541 {
2542   struct target_ops* t;
2543 
2544   if (gdbarch_has_global_breakpoints (target_gdbarch))
2545     /* Don't remove global breakpoints here.  They're removed on
2546        disconnection from the target.  */
2547     ;
2548   else
2549     /* If we're in breakpoints-always-inserted mode, have to remove
2550        them before detaching.  */
2551     remove_breakpoints_pid (PIDGET (inferior_ptid));
2552 
2553   prepare_for_detach ();
2554 
2555   for (t = current_target.beneath; t != NULL; t = t->beneath)
2556     {
2557       if (t->to_detach != NULL)
2558 	{
2559 	  t->to_detach (t, args, from_tty);
2560 	  if (targetdebug)
2561 	    fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2562 				args, from_tty);
2563 	  return;
2564 	}
2565     }
2566 
2567   internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2568 }
2569 
2570 void
2571 target_disconnect (char *args, int from_tty)
2572 {
2573   struct target_ops *t;
2574 
2575   /* If we're in breakpoints-always-inserted mode or if breakpoints
2576      are global across processes, we have to remove them before
2577      disconnecting.  */
2578   remove_breakpoints ();
2579 
2580   for (t = current_target.beneath; t != NULL; t = t->beneath)
2581     if (t->to_disconnect != NULL)
2582 	{
2583 	  if (targetdebug)
2584 	    fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2585 				args, from_tty);
2586 	  t->to_disconnect (t, args, from_tty);
2587 	  return;
2588 	}
2589 
2590   tcomplain ();
2591 }
2592 
2593 ptid_t
2594 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2595 {
2596   struct target_ops *t;
2597 
2598   for (t = current_target.beneath; t != NULL; t = t->beneath)
2599     {
2600       if (t->to_wait != NULL)
2601 	{
2602 	  ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2603 
2604 	  if (targetdebug)
2605 	    {
2606 	      char *status_string;
2607 
2608 	      status_string = target_waitstatus_to_string (status);
2609 	      fprintf_unfiltered (gdb_stdlog,
2610 				  "target_wait (%d, status) = %d,   %s\n",
2611 				  PIDGET (ptid), PIDGET (retval),
2612 				  status_string);
2613 	      xfree (status_string);
2614 	    }
2615 
2616 	  return retval;
2617 	}
2618     }
2619 
2620   noprocess ();
2621 }
2622 
2623 char *
2624 target_pid_to_str (ptid_t ptid)
2625 {
2626   struct target_ops *t;
2627 
2628   for (t = current_target.beneath; t != NULL; t = t->beneath)
2629     {
2630       if (t->to_pid_to_str != NULL)
2631 	return (*t->to_pid_to_str) (t, ptid);
2632     }
2633 
2634   return normal_pid_to_str (ptid);
2635 }
2636 
2637 char *
2638 target_thread_name (struct thread_info *info)
2639 {
2640   struct target_ops *t;
2641 
2642   for (t = current_target.beneath; t != NULL; t = t->beneath)
2643     {
2644       if (t->to_thread_name != NULL)
2645 	return (*t->to_thread_name) (info);
2646     }
2647 
2648   return NULL;
2649 }
2650 
2651 void
2652 target_resume (ptid_t ptid, int step, enum target_signal signal)
2653 {
2654   struct target_ops *t;
2655 
2656   target_dcache_invalidate ();
2657 
2658   for (t = current_target.beneath; t != NULL; t = t->beneath)
2659     {
2660       if (t->to_resume != NULL)
2661 	{
2662 	  t->to_resume (t, ptid, step, signal);
2663 	  if (targetdebug)
2664 	    fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2665 				PIDGET (ptid),
2666 				step ? "step" : "continue",
2667 				target_signal_to_name (signal));
2668 
2669 	  registers_changed_ptid (ptid);
2670 	  set_executing (ptid, 1);
2671 	  set_running (ptid, 1);
2672 	  clear_inline_frame_state (ptid);
2673 	  return;
2674 	}
2675     }
2676 
2677   noprocess ();
2678 }
2679 
2680 void
2681 target_pass_signals (int numsigs, unsigned char *pass_signals)
2682 {
2683   struct target_ops *t;
2684 
2685   for (t = current_target.beneath; t != NULL; t = t->beneath)
2686     {
2687       if (t->to_pass_signals != NULL)
2688 	{
2689 	  if (targetdebug)
2690 	    {
2691 	      int i;
2692 
2693 	      fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2694 				  numsigs);
2695 
2696 	      for (i = 0; i < numsigs; i++)
2697 		if (pass_signals[i])
2698 		  fprintf_unfiltered (gdb_stdlog, " %s",
2699 				      target_signal_to_name (i));
2700 
2701 	      fprintf_unfiltered (gdb_stdlog, " })\n");
2702 	    }
2703 
2704 	  (*t->to_pass_signals) (numsigs, pass_signals);
2705 	  return;
2706 	}
2707     }
2708 }
2709 
2710 /* Look through the list of possible targets for a target that can
2711    follow forks.  */
2712 
2713 int
2714 target_follow_fork (int follow_child)
2715 {
2716   struct target_ops *t;
2717 
2718   for (t = current_target.beneath; t != NULL; t = t->beneath)
2719     {
2720       if (t->to_follow_fork != NULL)
2721 	{
2722 	  int retval = t->to_follow_fork (t, follow_child);
2723 
2724 	  if (targetdebug)
2725 	    fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2726 				follow_child, retval);
2727 	  return retval;
2728 	}
2729     }
2730 
2731   /* Some target returned a fork event, but did not know how to follow it.  */
2732   internal_error (__FILE__, __LINE__,
2733 		  _("could not find a target to follow fork"));
2734 }
2735 
2736 void
2737 target_mourn_inferior (void)
2738 {
2739   struct target_ops *t;
2740 
2741   for (t = current_target.beneath; t != NULL; t = t->beneath)
2742     {
2743       if (t->to_mourn_inferior != NULL)
2744 	{
2745 	  t->to_mourn_inferior (t);
2746 	  if (targetdebug)
2747 	    fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2748 
2749           /* We no longer need to keep handles on any of the object files.
2750              Make sure to release them to avoid unnecessarily locking any
2751              of them while we're not actually debugging.  */
2752           bfd_cache_close_all ();
2753 
2754 	  return;
2755 	}
2756     }
2757 
2758   internal_error (__FILE__, __LINE__,
2759 		  _("could not find a target to follow mourn inferior"));
2760 }
2761 
2762 /* Look for a target which can describe architectural features, starting
2763    from TARGET.  If we find one, return its description.  */
2764 
2765 const struct target_desc *
2766 target_read_description (struct target_ops *target)
2767 {
2768   struct target_ops *t;
2769 
2770   for (t = target; t != NULL; t = t->beneath)
2771     if (t->to_read_description != NULL)
2772       {
2773 	const struct target_desc *tdesc;
2774 
2775 	tdesc = t->to_read_description (t);
2776 	if (tdesc)
2777 	  return tdesc;
2778       }
2779 
2780   return NULL;
2781 }
2782 
2783 /* The default implementation of to_search_memory.
2784    This implements a basic search of memory, reading target memory and
2785    performing the search here (as opposed to performing the search in on the
2786    target side with, for example, gdbserver).  */
2787 
2788 int
2789 simple_search_memory (struct target_ops *ops,
2790 		      CORE_ADDR start_addr, ULONGEST search_space_len,
2791 		      const gdb_byte *pattern, ULONGEST pattern_len,
2792 		      CORE_ADDR *found_addrp)
2793 {
2794   /* NOTE: also defined in find.c testcase.  */
2795 #define SEARCH_CHUNK_SIZE 16000
2796   const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2797   /* Buffer to hold memory contents for searching.  */
2798   gdb_byte *search_buf;
2799   unsigned search_buf_size;
2800   struct cleanup *old_cleanups;
2801 
2802   search_buf_size = chunk_size + pattern_len - 1;
2803 
2804   /* No point in trying to allocate a buffer larger than the search space.  */
2805   if (search_space_len < search_buf_size)
2806     search_buf_size = search_space_len;
2807 
2808   search_buf = malloc (search_buf_size);
2809   if (search_buf == NULL)
2810     error (_("Unable to allocate memory to perform the search."));
2811   old_cleanups = make_cleanup (free_current_contents, &search_buf);
2812 
2813   /* Prime the search buffer.  */
2814 
2815   if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2816 		   search_buf, start_addr, search_buf_size) != search_buf_size)
2817     {
2818       warning (_("Unable to access target memory at %s, halting search."),
2819 	       hex_string (start_addr));
2820       do_cleanups (old_cleanups);
2821       return -1;
2822     }
2823 
2824   /* Perform the search.
2825 
2826      The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2827      When we've scanned N bytes we copy the trailing bytes to the start and
2828      read in another N bytes.  */
2829 
2830   while (search_space_len >= pattern_len)
2831     {
2832       gdb_byte *found_ptr;
2833       unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2834 
2835       found_ptr = memmem (search_buf, nr_search_bytes,
2836 			  pattern, pattern_len);
2837 
2838       if (found_ptr != NULL)
2839 	{
2840 	  CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2841 
2842 	  *found_addrp = found_addr;
2843 	  do_cleanups (old_cleanups);
2844 	  return 1;
2845 	}
2846 
2847       /* Not found in this chunk, skip to next chunk.  */
2848 
2849       /* Don't let search_space_len wrap here, it's unsigned.  */
2850       if (search_space_len >= chunk_size)
2851 	search_space_len -= chunk_size;
2852       else
2853 	search_space_len = 0;
2854 
2855       if (search_space_len >= pattern_len)
2856 	{
2857 	  unsigned keep_len = search_buf_size - chunk_size;
2858 	  CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2859 	  int nr_to_read;
2860 
2861 	  /* Copy the trailing part of the previous iteration to the front
2862 	     of the buffer for the next iteration.  */
2863 	  gdb_assert (keep_len == pattern_len - 1);
2864 	  memcpy (search_buf, search_buf + chunk_size, keep_len);
2865 
2866 	  nr_to_read = min (search_space_len - keep_len, chunk_size);
2867 
2868 	  if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2869 			   search_buf + keep_len, read_addr,
2870 			   nr_to_read) != nr_to_read)
2871 	    {
2872 	      warning (_("Unable to access target "
2873 			 "memory at %s, halting search."),
2874 		       hex_string (read_addr));
2875 	      do_cleanups (old_cleanups);
2876 	      return -1;
2877 	    }
2878 
2879 	  start_addr += chunk_size;
2880 	}
2881     }
2882 
2883   /* Not found.  */
2884 
2885   do_cleanups (old_cleanups);
2886   return 0;
2887 }
2888 
2889 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2890    sequence of bytes in PATTERN with length PATTERN_LEN.
2891 
2892    The result is 1 if found, 0 if not found, and -1 if there was an error
2893    requiring halting of the search (e.g. memory read error).
2894    If the pattern is found the address is recorded in FOUND_ADDRP.  */
2895 
2896 int
2897 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2898 		      const gdb_byte *pattern, ULONGEST pattern_len,
2899 		      CORE_ADDR *found_addrp)
2900 {
2901   struct target_ops *t;
2902   int found;
2903 
2904   /* We don't use INHERIT to set current_target.to_search_memory,
2905      so we have to scan the target stack and handle targetdebug
2906      ourselves.  */
2907 
2908   if (targetdebug)
2909     fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2910 			hex_string (start_addr));
2911 
2912   for (t = current_target.beneath; t != NULL; t = t->beneath)
2913     if (t->to_search_memory != NULL)
2914       break;
2915 
2916   if (t != NULL)
2917     {
2918       found = t->to_search_memory (t, start_addr, search_space_len,
2919 				   pattern, pattern_len, found_addrp);
2920     }
2921   else
2922     {
2923       /* If a special version of to_search_memory isn't available, use the
2924 	 simple version.  */
2925       found = simple_search_memory (current_target.beneath,
2926 				    start_addr, search_space_len,
2927 				    pattern, pattern_len, found_addrp);
2928     }
2929 
2930   if (targetdebug)
2931     fprintf_unfiltered (gdb_stdlog, "  = %d\n", found);
2932 
2933   return found;
2934 }
2935 
2936 /* Look through the currently pushed targets.  If none of them will
2937    be able to restart the currently running process, issue an error
2938    message.  */
2939 
2940 void
2941 target_require_runnable (void)
2942 {
2943   struct target_ops *t;
2944 
2945   for (t = target_stack; t != NULL; t = t->beneath)
2946     {
2947       /* If this target knows how to create a new program, then
2948 	 assume we will still be able to after killing the current
2949 	 one.  Either killing and mourning will not pop T, or else
2950 	 find_default_run_target will find it again.  */
2951       if (t->to_create_inferior != NULL)
2952 	return;
2953 
2954       /* Do not worry about thread_stratum targets that can not
2955 	 create inferiors.  Assume they will be pushed again if
2956 	 necessary, and continue to the process_stratum.  */
2957       if (t->to_stratum == thread_stratum
2958 	  || t->to_stratum == arch_stratum)
2959 	continue;
2960 
2961       error (_("The \"%s\" target does not support \"run\".  "
2962 	       "Try \"help target\" or \"continue\"."),
2963 	     t->to_shortname);
2964     }
2965 
2966   /* This function is only called if the target is running.  In that
2967      case there should have been a process_stratum target and it
2968      should either know how to create inferiors, or not...  */
2969   internal_error (__FILE__, __LINE__, _("No targets found"));
2970 }
2971 
2972 /* Look through the list of possible targets for a target that can
2973    execute a run or attach command without any other data.  This is
2974    used to locate the default process stratum.
2975 
2976    If DO_MESG is not NULL, the result is always valid (error() is
2977    called for errors); else, return NULL on error.  */
2978 
2979 static struct target_ops *
2980 find_default_run_target (char *do_mesg)
2981 {
2982   struct target_ops **t;
2983   struct target_ops *runable = NULL;
2984   int count;
2985 
2986   count = 0;
2987 
2988   for (t = target_structs; t < target_structs + target_struct_size;
2989        ++t)
2990     {
2991       if ((*t)->to_can_run && target_can_run (*t))
2992 	{
2993 	  runable = *t;
2994 	  ++count;
2995 	}
2996     }
2997 
2998   if (count != 1)
2999     {
3000       if (do_mesg)
3001 	error (_("Don't know how to %s.  Try \"help target\"."), do_mesg);
3002       else
3003 	return NULL;
3004     }
3005 
3006   return runable;
3007 }
3008 
3009 void
3010 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3011 {
3012   struct target_ops *t;
3013 
3014   t = find_default_run_target ("attach");
3015   (t->to_attach) (t, args, from_tty);
3016   return;
3017 }
3018 
3019 void
3020 find_default_create_inferior (struct target_ops *ops,
3021 			      char *exec_file, char *allargs, char **env,
3022 			      int from_tty)
3023 {
3024   struct target_ops *t;
3025 
3026   t = find_default_run_target ("run");
3027   (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3028   return;
3029 }
3030 
3031 static int
3032 find_default_can_async_p (void)
3033 {
3034   struct target_ops *t;
3035 
3036   /* This may be called before the target is pushed on the stack;
3037      look for the default process stratum.  If there's none, gdb isn't
3038      configured with a native debugger, and target remote isn't
3039      connected yet.  */
3040   t = find_default_run_target (NULL);
3041   if (t && t->to_can_async_p)
3042     return (t->to_can_async_p) ();
3043   return 0;
3044 }
3045 
3046 static int
3047 find_default_is_async_p (void)
3048 {
3049   struct target_ops *t;
3050 
3051   /* This may be called before the target is pushed on the stack;
3052      look for the default process stratum.  If there's none, gdb isn't
3053      configured with a native debugger, and target remote isn't
3054      connected yet.  */
3055   t = find_default_run_target (NULL);
3056   if (t && t->to_is_async_p)
3057     return (t->to_is_async_p) ();
3058   return 0;
3059 }
3060 
3061 static int
3062 find_default_supports_non_stop (void)
3063 {
3064   struct target_ops *t;
3065 
3066   t = find_default_run_target (NULL);
3067   if (t && t->to_supports_non_stop)
3068     return (t->to_supports_non_stop) ();
3069   return 0;
3070 }
3071 
3072 int
3073 target_supports_non_stop (void)
3074 {
3075   struct target_ops *t;
3076 
3077   for (t = &current_target; t != NULL; t = t->beneath)
3078     if (t->to_supports_non_stop)
3079       return t->to_supports_non_stop ();
3080 
3081   return 0;
3082 }
3083 
3084 static int
3085 find_default_supports_disable_randomization (void)
3086 {
3087   struct target_ops *t;
3088 
3089   t = find_default_run_target (NULL);
3090   if (t && t->to_supports_disable_randomization)
3091     return (t->to_supports_disable_randomization) ();
3092   return 0;
3093 }
3094 
3095 int
3096 target_supports_disable_randomization (void)
3097 {
3098   struct target_ops *t;
3099 
3100   for (t = &current_target; t != NULL; t = t->beneath)
3101     if (t->to_supports_disable_randomization)
3102       return t->to_supports_disable_randomization ();
3103 
3104   return 0;
3105 }
3106 
3107 char *
3108 target_get_osdata (const char *type)
3109 {
3110   struct target_ops *t;
3111 
3112   /* If we're already connected to something that can get us OS
3113      related data, use it.  Otherwise, try using the native
3114      target.  */
3115   if (current_target.to_stratum >= process_stratum)
3116     t = current_target.beneath;
3117   else
3118     t = find_default_run_target ("get OS data");
3119 
3120   if (!t)
3121     return NULL;
3122 
3123   return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3124 }
3125 
3126 /* Determine the current address space of thread PTID.  */
3127 
3128 struct address_space *
3129 target_thread_address_space (ptid_t ptid)
3130 {
3131   struct address_space *aspace;
3132   struct inferior *inf;
3133   struct target_ops *t;
3134 
3135   for (t = current_target.beneath; t != NULL; t = t->beneath)
3136     {
3137       if (t->to_thread_address_space != NULL)
3138 	{
3139 	  aspace = t->to_thread_address_space (t, ptid);
3140 	  gdb_assert (aspace);
3141 
3142 	  if (targetdebug)
3143 	    fprintf_unfiltered (gdb_stdlog,
3144 				"target_thread_address_space (%s) = %d\n",
3145 				target_pid_to_str (ptid),
3146 				address_space_num (aspace));
3147 	  return aspace;
3148 	}
3149     }
3150 
3151   /* Fall-back to the "main" address space of the inferior.  */
3152   inf = find_inferior_pid (ptid_get_pid (ptid));
3153 
3154   if (inf == NULL || inf->aspace == NULL)
3155     internal_error (__FILE__, __LINE__,
3156 		    _("Can't determine the current "
3157 		      "address space of thread %s\n"),
3158 		    target_pid_to_str (ptid));
3159 
3160   return inf->aspace;
3161 }
3162 
3163 static int
3164 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3165 {
3166   return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3167 }
3168 
3169 static int
3170 default_watchpoint_addr_within_range (struct target_ops *target,
3171 				      CORE_ADDR addr,
3172 				      CORE_ADDR start, int length)
3173 {
3174   return addr >= start && addr < start + length;
3175 }
3176 
3177 static struct gdbarch *
3178 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3179 {
3180   return target_gdbarch;
3181 }
3182 
3183 static int
3184 return_zero (void)
3185 {
3186   return 0;
3187 }
3188 
3189 static int
3190 return_one (void)
3191 {
3192   return 1;
3193 }
3194 
3195 static int
3196 return_minus_one (void)
3197 {
3198   return -1;
3199 }
3200 
3201 /* Find a single runnable target in the stack and return it.  If for
3202    some reason there is more than one, return NULL.  */
3203 
3204 struct target_ops *
3205 find_run_target (void)
3206 {
3207   struct target_ops **t;
3208   struct target_ops *runable = NULL;
3209   int count;
3210 
3211   count = 0;
3212 
3213   for (t = target_structs; t < target_structs + target_struct_size; ++t)
3214     {
3215       if ((*t)->to_can_run && target_can_run (*t))
3216 	{
3217 	  runable = *t;
3218 	  ++count;
3219 	}
3220     }
3221 
3222   return (count == 1 ? runable : NULL);
3223 }
3224 
3225 /*
3226  * Find the next target down the stack from the specified target.
3227  */
3228 
3229 struct target_ops *
3230 find_target_beneath (struct target_ops *t)
3231 {
3232   return t->beneath;
3233 }
3234 
3235 
3236 /* The inferior process has died.  Long live the inferior!  */
3237 
3238 void
3239 generic_mourn_inferior (void)
3240 {
3241   ptid_t ptid;
3242 
3243   ptid = inferior_ptid;
3244   inferior_ptid = null_ptid;
3245 
3246   if (!ptid_equal (ptid, null_ptid))
3247     {
3248       int pid = ptid_get_pid (ptid);
3249       exit_inferior (pid);
3250     }
3251 
3252   breakpoint_init_inferior (inf_exited);
3253   registers_changed ();
3254 
3255   reopen_exec_file ();
3256   reinit_frame_cache ();
3257 
3258   if (deprecated_detach_hook)
3259     deprecated_detach_hook ();
3260 }
3261 
3262 /* Helper function for child_wait and the derivatives of child_wait.
3263    HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3264    translation of that in OURSTATUS.  */
3265 void
3266 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3267 {
3268   if (WIFEXITED (hoststatus))
3269     {
3270       ourstatus->kind = TARGET_WAITKIND_EXITED;
3271       ourstatus->value.integer = WEXITSTATUS (hoststatus);
3272     }
3273   else if (!WIFSTOPPED (hoststatus))
3274     {
3275       ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3276       ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3277     }
3278   else
3279     {
3280       ourstatus->kind = TARGET_WAITKIND_STOPPED;
3281       ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3282     }
3283 }
3284 
3285 /* Convert a normal process ID to a string.  Returns the string in a
3286    static buffer.  */
3287 
3288 char *
3289 normal_pid_to_str (ptid_t ptid)
3290 {
3291   static char buf[32];
3292 
3293   xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3294   return buf;
3295 }
3296 
3297 static char *
3298 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3299 {
3300   return normal_pid_to_str (ptid);
3301 }
3302 
3303 /* Error-catcher for target_find_memory_regions.  */
3304 static int
3305 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3306 {
3307   error (_("Command not implemented for this target."));
3308   return 0;
3309 }
3310 
3311 /* Error-catcher for target_make_corefile_notes.  */
3312 static char *
3313 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3314 {
3315   error (_("Command not implemented for this target."));
3316   return NULL;
3317 }
3318 
3319 /* Error-catcher for target_get_bookmark.  */
3320 static gdb_byte *
3321 dummy_get_bookmark (char *ignore1, int ignore2)
3322 {
3323   tcomplain ();
3324   return NULL;
3325 }
3326 
3327 /* Error-catcher for target_goto_bookmark.  */
3328 static void
3329 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3330 {
3331   tcomplain ();
3332 }
3333 
3334 /* Set up the handful of non-empty slots needed by the dummy target
3335    vector.  */
3336 
3337 static void
3338 init_dummy_target (void)
3339 {
3340   dummy_target.to_shortname = "None";
3341   dummy_target.to_longname = "None";
3342   dummy_target.to_doc = "";
3343   dummy_target.to_attach = find_default_attach;
3344   dummy_target.to_detach =
3345     (void (*)(struct target_ops *, char *, int))target_ignore;
3346   dummy_target.to_create_inferior = find_default_create_inferior;
3347   dummy_target.to_can_async_p = find_default_can_async_p;
3348   dummy_target.to_is_async_p = find_default_is_async_p;
3349   dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3350   dummy_target.to_supports_disable_randomization
3351     = find_default_supports_disable_randomization;
3352   dummy_target.to_pid_to_str = dummy_pid_to_str;
3353   dummy_target.to_stratum = dummy_stratum;
3354   dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3355   dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3356   dummy_target.to_get_bookmark = dummy_get_bookmark;
3357   dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3358   dummy_target.to_xfer_partial = default_xfer_partial;
3359   dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3360   dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3361   dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3362   dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3363   dummy_target.to_has_execution
3364     = (int (*) (struct target_ops *, ptid_t)) return_zero;
3365   dummy_target.to_stopped_by_watchpoint = return_zero;
3366   dummy_target.to_stopped_data_address =
3367     (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3368   dummy_target.to_magic = OPS_MAGIC;
3369 }
3370 
3371 static void
3372 debug_to_open (char *args, int from_tty)
3373 {
3374   debug_target.to_open (args, from_tty);
3375 
3376   fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3377 }
3378 
3379 void
3380 target_close (struct target_ops *targ, int quitting)
3381 {
3382   if (targ->to_xclose != NULL)
3383     targ->to_xclose (targ, quitting);
3384   else if (targ->to_close != NULL)
3385     targ->to_close (quitting);
3386 
3387   if (targetdebug)
3388     fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3389 }
3390 
3391 void
3392 target_attach (char *args, int from_tty)
3393 {
3394   struct target_ops *t;
3395 
3396   for (t = current_target.beneath; t != NULL; t = t->beneath)
3397     {
3398       if (t->to_attach != NULL)
3399 	{
3400 	  t->to_attach (t, args, from_tty);
3401 	  if (targetdebug)
3402 	    fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3403 				args, from_tty);
3404 	  return;
3405 	}
3406     }
3407 
3408   internal_error (__FILE__, __LINE__,
3409 		  _("could not find a target to attach"));
3410 }
3411 
3412 int
3413 target_thread_alive (ptid_t ptid)
3414 {
3415   struct target_ops *t;
3416 
3417   for (t = current_target.beneath; t != NULL; t = t->beneath)
3418     {
3419       if (t->to_thread_alive != NULL)
3420 	{
3421 	  int retval;
3422 
3423 	  retval = t->to_thread_alive (t, ptid);
3424 	  if (targetdebug)
3425 	    fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3426 				PIDGET (ptid), retval);
3427 
3428 	  return retval;
3429 	}
3430     }
3431 
3432   return 0;
3433 }
3434 
3435 void
3436 target_find_new_threads (void)
3437 {
3438   struct target_ops *t;
3439 
3440   for (t = current_target.beneath; t != NULL; t = t->beneath)
3441     {
3442       if (t->to_find_new_threads != NULL)
3443 	{
3444 	  t->to_find_new_threads (t);
3445 	  if (targetdebug)
3446 	    fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3447 
3448 	  return;
3449 	}
3450     }
3451 }
3452 
3453 void
3454 target_stop (ptid_t ptid)
3455 {
3456   if (!may_stop)
3457     {
3458       warning (_("May not interrupt or stop the target, ignoring attempt"));
3459       return;
3460     }
3461 
3462   (*current_target.to_stop) (ptid);
3463 }
3464 
3465 static void
3466 debug_to_post_attach (int pid)
3467 {
3468   debug_target.to_post_attach (pid);
3469 
3470   fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3471 }
3472 
3473 /* Return a pretty printed form of target_waitstatus.
3474    Space for the result is malloc'd, caller must free.  */
3475 
3476 char *
3477 target_waitstatus_to_string (const struct target_waitstatus *ws)
3478 {
3479   const char *kind_str = "status->kind = ";
3480 
3481   switch (ws->kind)
3482     {
3483     case TARGET_WAITKIND_EXITED:
3484       return xstrprintf ("%sexited, status = %d",
3485 			 kind_str, ws->value.integer);
3486     case TARGET_WAITKIND_STOPPED:
3487       return xstrprintf ("%sstopped, signal = %s",
3488 			 kind_str, target_signal_to_name (ws->value.sig));
3489     case TARGET_WAITKIND_SIGNALLED:
3490       return xstrprintf ("%ssignalled, signal = %s",
3491 			 kind_str, target_signal_to_name (ws->value.sig));
3492     case TARGET_WAITKIND_LOADED:
3493       return xstrprintf ("%sloaded", kind_str);
3494     case TARGET_WAITKIND_FORKED:
3495       return xstrprintf ("%sforked", kind_str);
3496     case TARGET_WAITKIND_VFORKED:
3497       return xstrprintf ("%svforked", kind_str);
3498     case TARGET_WAITKIND_EXECD:
3499       return xstrprintf ("%sexecd", kind_str);
3500     case TARGET_WAITKIND_SYSCALL_ENTRY:
3501       return xstrprintf ("%sentered syscall", kind_str);
3502     case TARGET_WAITKIND_SYSCALL_RETURN:
3503       return xstrprintf ("%sexited syscall", kind_str);
3504     case TARGET_WAITKIND_SPURIOUS:
3505       return xstrprintf ("%sspurious", kind_str);
3506     case TARGET_WAITKIND_IGNORE:
3507       return xstrprintf ("%signore", kind_str);
3508     case TARGET_WAITKIND_NO_HISTORY:
3509       return xstrprintf ("%sno-history", kind_str);
3510     case TARGET_WAITKIND_NO_RESUMED:
3511       return xstrprintf ("%sno-resumed", kind_str);
3512     default:
3513       return xstrprintf ("%sunknown???", kind_str);
3514     }
3515 }
3516 
3517 static void
3518 debug_print_register (const char * func,
3519 		      struct regcache *regcache, int regno)
3520 {
3521   struct gdbarch *gdbarch = get_regcache_arch (regcache);
3522 
3523   fprintf_unfiltered (gdb_stdlog, "%s ", func);
3524   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3525       && gdbarch_register_name (gdbarch, regno) != NULL
3526       && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3527     fprintf_unfiltered (gdb_stdlog, "(%s)",
3528 			gdbarch_register_name (gdbarch, regno));
3529   else
3530     fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3531   if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3532     {
3533       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3534       int i, size = register_size (gdbarch, regno);
3535       unsigned char buf[MAX_REGISTER_SIZE];
3536 
3537       regcache_raw_collect (regcache, regno, buf);
3538       fprintf_unfiltered (gdb_stdlog, " = ");
3539       for (i = 0; i < size; i++)
3540 	{
3541 	  fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3542 	}
3543       if (size <= sizeof (LONGEST))
3544 	{
3545 	  ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3546 
3547 	  fprintf_unfiltered (gdb_stdlog, " %s %s",
3548 			      core_addr_to_string_nz (val), plongest (val));
3549 	}
3550     }
3551   fprintf_unfiltered (gdb_stdlog, "\n");
3552 }
3553 
3554 void
3555 target_fetch_registers (struct regcache *regcache, int regno)
3556 {
3557   struct target_ops *t;
3558 
3559   for (t = current_target.beneath; t != NULL; t = t->beneath)
3560     {
3561       if (t->to_fetch_registers != NULL)
3562 	{
3563 	  t->to_fetch_registers (t, regcache, regno);
3564 	  if (targetdebug)
3565 	    debug_print_register ("target_fetch_registers", regcache, regno);
3566 	  return;
3567 	}
3568     }
3569 }
3570 
3571 void
3572 target_store_registers (struct regcache *regcache, int regno)
3573 {
3574   struct target_ops *t;
3575 
3576   if (!may_write_registers)
3577     error (_("Writing to registers is not allowed (regno %d)"), regno);
3578 
3579   for (t = current_target.beneath; t != NULL; t = t->beneath)
3580     {
3581       if (t->to_store_registers != NULL)
3582 	{
3583 	  t->to_store_registers (t, regcache, regno);
3584 	  if (targetdebug)
3585 	    {
3586 	      debug_print_register ("target_store_registers", regcache, regno);
3587 	    }
3588 	  return;
3589 	}
3590     }
3591 
3592   noprocess ();
3593 }
3594 
3595 int
3596 target_core_of_thread (ptid_t ptid)
3597 {
3598   struct target_ops *t;
3599 
3600   for (t = current_target.beneath; t != NULL; t = t->beneath)
3601     {
3602       if (t->to_core_of_thread != NULL)
3603 	{
3604 	  int retval = t->to_core_of_thread (t, ptid);
3605 
3606 	  if (targetdebug)
3607 	    fprintf_unfiltered (gdb_stdlog,
3608 				"target_core_of_thread (%d) = %d\n",
3609 				PIDGET (ptid), retval);
3610 	  return retval;
3611 	}
3612     }
3613 
3614   return -1;
3615 }
3616 
3617 int
3618 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3619 {
3620   struct target_ops *t;
3621 
3622   for (t = current_target.beneath; t != NULL; t = t->beneath)
3623     {
3624       if (t->to_verify_memory != NULL)
3625 	{
3626 	  int retval = t->to_verify_memory (t, data, memaddr, size);
3627 
3628 	  if (targetdebug)
3629 	    fprintf_unfiltered (gdb_stdlog,
3630 				"target_verify_memory (%s, %s) = %d\n",
3631 				paddress (target_gdbarch, memaddr),
3632 				pulongest (size),
3633 				retval);
3634 	  return retval;
3635 	}
3636     }
3637 
3638   tcomplain ();
3639 }
3640 
3641 /* The documentation for this function is in its prototype declaration in
3642    target.h.  */
3643 
3644 int
3645 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3646 {
3647   struct target_ops *t;
3648 
3649   for (t = current_target.beneath; t != NULL; t = t->beneath)
3650     if (t->to_insert_mask_watchpoint != NULL)
3651       {
3652 	int ret;
3653 
3654 	ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3655 
3656 	if (targetdebug)
3657 	  fprintf_unfiltered (gdb_stdlog, "\
3658 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3659 			      core_addr_to_string (addr),
3660 			      core_addr_to_string (mask), rw, ret);
3661 
3662 	return ret;
3663       }
3664 
3665   return 1;
3666 }
3667 
3668 /* The documentation for this function is in its prototype declaration in
3669    target.h.  */
3670 
3671 int
3672 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3673 {
3674   struct target_ops *t;
3675 
3676   for (t = current_target.beneath; t != NULL; t = t->beneath)
3677     if (t->to_remove_mask_watchpoint != NULL)
3678       {
3679 	int ret;
3680 
3681 	ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3682 
3683 	if (targetdebug)
3684 	  fprintf_unfiltered (gdb_stdlog, "\
3685 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3686 			      core_addr_to_string (addr),
3687 			      core_addr_to_string (mask), rw, ret);
3688 
3689 	return ret;
3690       }
3691 
3692   return 1;
3693 }
3694 
3695 /* The documentation for this function is in its prototype declaration
3696    in target.h.  */
3697 
3698 int
3699 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3700 {
3701   struct target_ops *t;
3702 
3703   for (t = current_target.beneath; t != NULL; t = t->beneath)
3704     if (t->to_masked_watch_num_registers != NULL)
3705       return t->to_masked_watch_num_registers (t, addr, mask);
3706 
3707   return -1;
3708 }
3709 
3710 /* The documentation for this function is in its prototype declaration
3711    in target.h.  */
3712 
3713 int
3714 target_ranged_break_num_registers (void)
3715 {
3716   struct target_ops *t;
3717 
3718   for (t = current_target.beneath; t != NULL; t = t->beneath)
3719     if (t->to_ranged_break_num_registers != NULL)
3720       return t->to_ranged_break_num_registers (t);
3721 
3722   return -1;
3723 }
3724 
3725 static void
3726 debug_to_prepare_to_store (struct regcache *regcache)
3727 {
3728   debug_target.to_prepare_to_store (regcache);
3729 
3730   fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3731 }
3732 
3733 static int
3734 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3735 			      int write, struct mem_attrib *attrib,
3736 			      struct target_ops *target)
3737 {
3738   int retval;
3739 
3740   retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3741 						attrib, target);
3742 
3743   fprintf_unfiltered (gdb_stdlog,
3744 		      "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3745 		      paddress (target_gdbarch, memaddr), len,
3746 		      write ? "write" : "read", retval);
3747 
3748   if (retval > 0)
3749     {
3750       int i;
3751 
3752       fputs_unfiltered (", bytes =", gdb_stdlog);
3753       for (i = 0; i < retval; i++)
3754 	{
3755 	  if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3756 	    {
3757 	      if (targetdebug < 2 && i > 0)
3758 		{
3759 		  fprintf_unfiltered (gdb_stdlog, " ...");
3760 		  break;
3761 		}
3762 	      fprintf_unfiltered (gdb_stdlog, "\n");
3763 	    }
3764 
3765 	  fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3766 	}
3767     }
3768 
3769   fputc_unfiltered ('\n', gdb_stdlog);
3770 
3771   return retval;
3772 }
3773 
3774 static void
3775 debug_to_files_info (struct target_ops *target)
3776 {
3777   debug_target.to_files_info (target);
3778 
3779   fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3780 }
3781 
3782 static int
3783 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3784 			    struct bp_target_info *bp_tgt)
3785 {
3786   int retval;
3787 
3788   retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3789 
3790   fprintf_unfiltered (gdb_stdlog,
3791 		      "target_insert_breakpoint (%s, xxx) = %ld\n",
3792 		      core_addr_to_string (bp_tgt->placed_address),
3793 		      (unsigned long) retval);
3794   return retval;
3795 }
3796 
3797 static int
3798 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3799 			    struct bp_target_info *bp_tgt)
3800 {
3801   int retval;
3802 
3803   retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3804 
3805   fprintf_unfiltered (gdb_stdlog,
3806 		      "target_remove_breakpoint (%s, xxx) = %ld\n",
3807 		      core_addr_to_string (bp_tgt->placed_address),
3808 		      (unsigned long) retval);
3809   return retval;
3810 }
3811 
3812 static int
3813 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3814 {
3815   int retval;
3816 
3817   retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3818 
3819   fprintf_unfiltered (gdb_stdlog,
3820 		      "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3821 		      (unsigned long) type,
3822 		      (unsigned long) cnt,
3823 		      (unsigned long) from_tty,
3824 		      (unsigned long) retval);
3825   return retval;
3826 }
3827 
3828 static int
3829 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3830 {
3831   CORE_ADDR retval;
3832 
3833   retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3834 
3835   fprintf_unfiltered (gdb_stdlog,
3836 		      "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3837 		      core_addr_to_string (addr), (unsigned long) len,
3838 		      core_addr_to_string (retval));
3839   return retval;
3840 }
3841 
3842 static int
3843 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3844 					 struct expression *cond)
3845 {
3846   int retval;
3847 
3848   retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3849 							   rw, cond);
3850 
3851   fprintf_unfiltered (gdb_stdlog,
3852 		      "target_can_accel_watchpoint_condition "
3853 		      "(%s, %d, %d, %s) = %ld\n",
3854 		      core_addr_to_string (addr), len, rw,
3855 		      host_address_to_string (cond), (unsigned long) retval);
3856   return retval;
3857 }
3858 
3859 static int
3860 debug_to_stopped_by_watchpoint (void)
3861 {
3862   int retval;
3863 
3864   retval = debug_target.to_stopped_by_watchpoint ();
3865 
3866   fprintf_unfiltered (gdb_stdlog,
3867 		      "target_stopped_by_watchpoint () = %ld\n",
3868 		      (unsigned long) retval);
3869   return retval;
3870 }
3871 
3872 static int
3873 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3874 {
3875   int retval;
3876 
3877   retval = debug_target.to_stopped_data_address (target, addr);
3878 
3879   fprintf_unfiltered (gdb_stdlog,
3880 		      "target_stopped_data_address ([%s]) = %ld\n",
3881 		      core_addr_to_string (*addr),
3882 		      (unsigned long)retval);
3883   return retval;
3884 }
3885 
3886 static int
3887 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3888 				       CORE_ADDR addr,
3889 				       CORE_ADDR start, int length)
3890 {
3891   int retval;
3892 
3893   retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3894 							 start, length);
3895 
3896   fprintf_filtered (gdb_stdlog,
3897 		    "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3898 		    core_addr_to_string (addr), core_addr_to_string (start),
3899 		    length, retval);
3900   return retval;
3901 }
3902 
3903 static int
3904 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3905 			       struct bp_target_info *bp_tgt)
3906 {
3907   int retval;
3908 
3909   retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3910 
3911   fprintf_unfiltered (gdb_stdlog,
3912 		      "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3913 		      core_addr_to_string (bp_tgt->placed_address),
3914 		      (unsigned long) retval);
3915   return retval;
3916 }
3917 
3918 static int
3919 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3920 			       struct bp_target_info *bp_tgt)
3921 {
3922   int retval;
3923 
3924   retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3925 
3926   fprintf_unfiltered (gdb_stdlog,
3927 		      "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3928 		      core_addr_to_string (bp_tgt->placed_address),
3929 		      (unsigned long) retval);
3930   return retval;
3931 }
3932 
3933 static int
3934 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3935 			    struct expression *cond)
3936 {
3937   int retval;
3938 
3939   retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3940 
3941   fprintf_unfiltered (gdb_stdlog,
3942 		      "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3943 		      core_addr_to_string (addr), len, type,
3944 		      host_address_to_string (cond), (unsigned long) retval);
3945   return retval;
3946 }
3947 
3948 static int
3949 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3950 			    struct expression *cond)
3951 {
3952   int retval;
3953 
3954   retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3955 
3956   fprintf_unfiltered (gdb_stdlog,
3957 		      "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3958 		      core_addr_to_string (addr), len, type,
3959 		      host_address_to_string (cond), (unsigned long) retval);
3960   return retval;
3961 }
3962 
3963 static void
3964 debug_to_terminal_init (void)
3965 {
3966   debug_target.to_terminal_init ();
3967 
3968   fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3969 }
3970 
3971 static void
3972 debug_to_terminal_inferior (void)
3973 {
3974   debug_target.to_terminal_inferior ();
3975 
3976   fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3977 }
3978 
3979 static void
3980 debug_to_terminal_ours_for_output (void)
3981 {
3982   debug_target.to_terminal_ours_for_output ();
3983 
3984   fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3985 }
3986 
3987 static void
3988 debug_to_terminal_ours (void)
3989 {
3990   debug_target.to_terminal_ours ();
3991 
3992   fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3993 }
3994 
3995 static void
3996 debug_to_terminal_save_ours (void)
3997 {
3998   debug_target.to_terminal_save_ours ();
3999 
4000   fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4001 }
4002 
4003 static void
4004 debug_to_terminal_info (char *arg, int from_tty)
4005 {
4006   debug_target.to_terminal_info (arg, from_tty);
4007 
4008   fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4009 		      from_tty);
4010 }
4011 
4012 static void
4013 debug_to_load (char *args, int from_tty)
4014 {
4015   debug_target.to_load (args, from_tty);
4016 
4017   fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4018 }
4019 
4020 static void
4021 debug_to_post_startup_inferior (ptid_t ptid)
4022 {
4023   debug_target.to_post_startup_inferior (ptid);
4024 
4025   fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4026 		      PIDGET (ptid));
4027 }
4028 
4029 static int
4030 debug_to_insert_fork_catchpoint (int pid)
4031 {
4032   int retval;
4033 
4034   retval = debug_target.to_insert_fork_catchpoint (pid);
4035 
4036   fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4037 		      pid, retval);
4038 
4039   return retval;
4040 }
4041 
4042 static int
4043 debug_to_remove_fork_catchpoint (int pid)
4044 {
4045   int retval;
4046 
4047   retval = debug_target.to_remove_fork_catchpoint (pid);
4048 
4049   fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4050 		      pid, retval);
4051 
4052   return retval;
4053 }
4054 
4055 static int
4056 debug_to_insert_vfork_catchpoint (int pid)
4057 {
4058   int retval;
4059 
4060   retval = debug_target.to_insert_vfork_catchpoint (pid);
4061 
4062   fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4063 		      pid, retval);
4064 
4065   return retval;
4066 }
4067 
4068 static int
4069 debug_to_remove_vfork_catchpoint (int pid)
4070 {
4071   int retval;
4072 
4073   retval = debug_target.to_remove_vfork_catchpoint (pid);
4074 
4075   fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4076 		      pid, retval);
4077 
4078   return retval;
4079 }
4080 
4081 static int
4082 debug_to_insert_exec_catchpoint (int pid)
4083 {
4084   int retval;
4085 
4086   retval = debug_target.to_insert_exec_catchpoint (pid);
4087 
4088   fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4089 		      pid, retval);
4090 
4091   return retval;
4092 }
4093 
4094 static int
4095 debug_to_remove_exec_catchpoint (int pid)
4096 {
4097   int retval;
4098 
4099   retval = debug_target.to_remove_exec_catchpoint (pid);
4100 
4101   fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4102 		      pid, retval);
4103 
4104   return retval;
4105 }
4106 
4107 static int
4108 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4109 {
4110   int has_exited;
4111 
4112   has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4113 
4114   fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4115 		      pid, wait_status, *exit_status, has_exited);
4116 
4117   return has_exited;
4118 }
4119 
4120 static int
4121 debug_to_can_run (void)
4122 {
4123   int retval;
4124 
4125   retval = debug_target.to_can_run ();
4126 
4127   fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4128 
4129   return retval;
4130 }
4131 
4132 static struct gdbarch *
4133 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4134 {
4135   struct gdbarch *retval;
4136 
4137   retval = debug_target.to_thread_architecture (ops, ptid);
4138 
4139   fprintf_unfiltered (gdb_stdlog,
4140 		      "target_thread_architecture (%s) = %s [%s]\n",
4141 		      target_pid_to_str (ptid),
4142 		      host_address_to_string (retval),
4143 		      gdbarch_bfd_arch_info (retval)->printable_name);
4144   return retval;
4145 }
4146 
4147 static void
4148 debug_to_stop (ptid_t ptid)
4149 {
4150   debug_target.to_stop (ptid);
4151 
4152   fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4153 		      target_pid_to_str (ptid));
4154 }
4155 
4156 static void
4157 debug_to_rcmd (char *command,
4158 	       struct ui_file *outbuf)
4159 {
4160   debug_target.to_rcmd (command, outbuf);
4161   fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4162 }
4163 
4164 static char *
4165 debug_to_pid_to_exec_file (int pid)
4166 {
4167   char *exec_file;
4168 
4169   exec_file = debug_target.to_pid_to_exec_file (pid);
4170 
4171   fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4172 		      pid, exec_file);
4173 
4174   return exec_file;
4175 }
4176 
4177 static void
4178 setup_target_debug (void)
4179 {
4180   memcpy (&debug_target, &current_target, sizeof debug_target);
4181 
4182   current_target.to_open = debug_to_open;
4183   current_target.to_post_attach = debug_to_post_attach;
4184   current_target.to_prepare_to_store = debug_to_prepare_to_store;
4185   current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4186   current_target.to_files_info = debug_to_files_info;
4187   current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4188   current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4189   current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4190   current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4191   current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4192   current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4193   current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4194   current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4195   current_target.to_stopped_data_address = debug_to_stopped_data_address;
4196   current_target.to_watchpoint_addr_within_range
4197     = debug_to_watchpoint_addr_within_range;
4198   current_target.to_region_ok_for_hw_watchpoint
4199     = debug_to_region_ok_for_hw_watchpoint;
4200   current_target.to_can_accel_watchpoint_condition
4201     = debug_to_can_accel_watchpoint_condition;
4202   current_target.to_terminal_init = debug_to_terminal_init;
4203   current_target.to_terminal_inferior = debug_to_terminal_inferior;
4204   current_target.to_terminal_ours_for_output
4205     = debug_to_terminal_ours_for_output;
4206   current_target.to_terminal_ours = debug_to_terminal_ours;
4207   current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4208   current_target.to_terminal_info = debug_to_terminal_info;
4209   current_target.to_load = debug_to_load;
4210   current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4211   current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4212   current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4213   current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4214   current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4215   current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4216   current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4217   current_target.to_has_exited = debug_to_has_exited;
4218   current_target.to_can_run = debug_to_can_run;
4219   current_target.to_stop = debug_to_stop;
4220   current_target.to_rcmd = debug_to_rcmd;
4221   current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4222   current_target.to_thread_architecture = debug_to_thread_architecture;
4223 }
4224 
4225 
4226 static char targ_desc[] =
4227 "Names of targets and files being debugged.\nShows the entire \
4228 stack of targets currently in use (including the exec-file,\n\
4229 core-file, and process, if any), as well as the symbol file name.";
4230 
4231 static void
4232 do_monitor_command (char *cmd,
4233 		 int from_tty)
4234 {
4235   if ((current_target.to_rcmd
4236        == (void (*) (char *, struct ui_file *)) tcomplain)
4237       || (current_target.to_rcmd == debug_to_rcmd
4238 	  && (debug_target.to_rcmd
4239 	      == (void (*) (char *, struct ui_file *)) tcomplain)))
4240     error (_("\"monitor\" command not supported by this target."));
4241   target_rcmd (cmd, gdb_stdtarg);
4242 }
4243 
4244 /* Print the name of each layers of our target stack.  */
4245 
4246 static void
4247 maintenance_print_target_stack (char *cmd, int from_tty)
4248 {
4249   struct target_ops *t;
4250 
4251   printf_filtered (_("The current target stack is:\n"));
4252 
4253   for (t = target_stack; t != NULL; t = t->beneath)
4254     {
4255       printf_filtered ("  - %s (%s)\n", t->to_shortname, t->to_longname);
4256     }
4257 }
4258 
4259 /* Controls if async mode is permitted.  */
4260 int target_async_permitted = 0;
4261 
4262 /* The set command writes to this variable.  If the inferior is
4263    executing, linux_nat_async_permitted is *not* updated.  */
4264 static int target_async_permitted_1 = 0;
4265 
4266 static void
4267 set_maintenance_target_async_permitted (char *args, int from_tty,
4268 					struct cmd_list_element *c)
4269 {
4270   if (have_live_inferiors ())
4271     {
4272       target_async_permitted_1 = target_async_permitted;
4273       error (_("Cannot change this setting while the inferior is running."));
4274     }
4275 
4276   target_async_permitted = target_async_permitted_1;
4277 }
4278 
4279 static void
4280 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4281 					 struct cmd_list_element *c,
4282 					 const char *value)
4283 {
4284   fprintf_filtered (file,
4285 		    _("Controlling the inferior in "
4286 		      "asynchronous mode is %s.\n"), value);
4287 }
4288 
4289 /* Temporary copies of permission settings.  */
4290 
4291 static int may_write_registers_1 = 1;
4292 static int may_write_memory_1 = 1;
4293 static int may_insert_breakpoints_1 = 1;
4294 static int may_insert_tracepoints_1 = 1;
4295 static int may_insert_fast_tracepoints_1 = 1;
4296 static int may_stop_1 = 1;
4297 
4298 /* Make the user-set values match the real values again.  */
4299 
4300 void
4301 update_target_permissions (void)
4302 {
4303   may_write_registers_1 = may_write_registers;
4304   may_write_memory_1 = may_write_memory;
4305   may_insert_breakpoints_1 = may_insert_breakpoints;
4306   may_insert_tracepoints_1 = may_insert_tracepoints;
4307   may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4308   may_stop_1 = may_stop;
4309 }
4310 
4311 /* The one function handles (most of) the permission flags in the same
4312    way.  */
4313 
4314 static void
4315 set_target_permissions (char *args, int from_tty,
4316 			struct cmd_list_element *c)
4317 {
4318   if (target_has_execution)
4319     {
4320       update_target_permissions ();
4321       error (_("Cannot change this setting while the inferior is running."));
4322     }
4323 
4324   /* Make the real values match the user-changed values.  */
4325   may_write_registers = may_write_registers_1;
4326   may_insert_breakpoints = may_insert_breakpoints_1;
4327   may_insert_tracepoints = may_insert_tracepoints_1;
4328   may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4329   may_stop = may_stop_1;
4330   update_observer_mode ();
4331 }
4332 
4333 /* Set memory write permission independently of observer mode.  */
4334 
4335 static void
4336 set_write_memory_permission (char *args, int from_tty,
4337 			struct cmd_list_element *c)
4338 {
4339   /* Make the real values match the user-changed values.  */
4340   may_write_memory = may_write_memory_1;
4341   update_observer_mode ();
4342 }
4343 
4344 
4345 void
4346 initialize_targets (void)
4347 {
4348   init_dummy_target ();
4349   push_target (&dummy_target);
4350 
4351   add_info ("target", target_info, targ_desc);
4352   add_info ("files", target_info, targ_desc);
4353 
4354   add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4355 Set target debugging."), _("\
4356 Show target debugging."), _("\
4357 When non-zero, target debugging is enabled.  Higher numbers are more\n\
4358 verbose.  Changes do not take effect until the next \"run\" or \"target\"\n\
4359 command."),
4360 			    NULL,
4361 			    show_targetdebug,
4362 			    &setdebuglist, &showdebuglist);
4363 
4364   add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4365 			   &trust_readonly, _("\
4366 Set mode for reading from readonly sections."), _("\
4367 Show mode for reading from readonly sections."), _("\
4368 When this mode is on, memory reads from readonly sections (such as .text)\n\
4369 will be read from the object file instead of from the target.  This will\n\
4370 result in significant performance improvement for remote targets."),
4371 			   NULL,
4372 			   show_trust_readonly,
4373 			   &setlist, &showlist);
4374 
4375   add_com ("monitor", class_obscure, do_monitor_command,
4376 	   _("Send a command to the remote monitor (remote targets only)."));
4377 
4378   add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4379            _("Print the name of each layer of the internal target stack."),
4380            &maintenanceprintlist);
4381 
4382   add_setshow_boolean_cmd ("target-async", no_class,
4383 			   &target_async_permitted_1, _("\
4384 Set whether gdb controls the inferior in asynchronous mode."), _("\
4385 Show whether gdb controls the inferior in asynchronous mode."), _("\
4386 Tells gdb whether to control the inferior in asynchronous mode."),
4387 			   set_maintenance_target_async_permitted,
4388 			   show_maintenance_target_async_permitted,
4389 			   &setlist,
4390 			   &showlist);
4391 
4392   add_setshow_boolean_cmd ("stack-cache", class_support,
4393 			   &stack_cache_enabled_p_1, _("\
4394 Set cache use for stack access."), _("\
4395 Show cache use for stack access."), _("\
4396 When on, use the data cache for all stack access, regardless of any\n\
4397 configured memory regions.  This improves remote performance significantly.\n\
4398 By default, caching for stack access is on."),
4399 			   set_stack_cache_enabled_p,
4400 			   show_stack_cache_enabled_p,
4401 			   &setlist, &showlist);
4402 
4403   add_setshow_boolean_cmd ("may-write-registers", class_support,
4404 			   &may_write_registers_1, _("\
4405 Set permission to write into registers."), _("\
4406 Show permission to write into registers."), _("\
4407 When this permission is on, GDB may write into the target's registers.\n\
4408 Otherwise, any sort of write attempt will result in an error."),
4409 			   set_target_permissions, NULL,
4410 			   &setlist, &showlist);
4411 
4412   add_setshow_boolean_cmd ("may-write-memory", class_support,
4413 			   &may_write_memory_1, _("\
4414 Set permission to write into target memory."), _("\
4415 Show permission to write into target memory."), _("\
4416 When this permission is on, GDB may write into the target's memory.\n\
4417 Otherwise, any sort of write attempt will result in an error."),
4418 			   set_write_memory_permission, NULL,
4419 			   &setlist, &showlist);
4420 
4421   add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4422 			   &may_insert_breakpoints_1, _("\
4423 Set permission to insert breakpoints in the target."), _("\
4424 Show permission to insert breakpoints in the target."), _("\
4425 When this permission is on, GDB may insert breakpoints in the program.\n\
4426 Otherwise, any sort of insertion attempt will result in an error."),
4427 			   set_target_permissions, NULL,
4428 			   &setlist, &showlist);
4429 
4430   add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4431 			   &may_insert_tracepoints_1, _("\
4432 Set permission to insert tracepoints in the target."), _("\
4433 Show permission to insert tracepoints in the target."), _("\
4434 When this permission is on, GDB may insert tracepoints in the program.\n\
4435 Otherwise, any sort of insertion attempt will result in an error."),
4436 			   set_target_permissions, NULL,
4437 			   &setlist, &showlist);
4438 
4439   add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4440 			   &may_insert_fast_tracepoints_1, _("\
4441 Set permission to insert fast tracepoints in the target."), _("\
4442 Show permission to insert fast tracepoints in the target."), _("\
4443 When this permission is on, GDB may insert fast tracepoints.\n\
4444 Otherwise, any sort of insertion attempt will result in an error."),
4445 			   set_target_permissions, NULL,
4446 			   &setlist, &showlist);
4447 
4448   add_setshow_boolean_cmd ("may-interrupt", class_support,
4449 			   &may_stop_1, _("\
4450 Set permission to interrupt or signal the target."), _("\
4451 Show permission to interrupt or signal the target."), _("\
4452 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4453 Otherwise, any attempt to interrupt or stop will be ignored."),
4454 			   set_target_permissions, NULL,
4455 			   &setlist, &showlist);
4456 
4457 
4458   target_dcache = dcache_init ();
4459 }
4460