xref: /dragonfly/contrib/gdb-7/gdb/target.h (revision 10cbe914)
1 /* Interface between GDB and target environments, including files and processes
2 
3    Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5    Free Software Foundation, Inc.
6 
7    Contributed by Cygnus Support.  Written by John Gilmore.
8 
9    This file is part of GDB.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23 
24 #if !defined (TARGET_H)
25 #define TARGET_H
26 
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 
35 /* This include file defines the interface between the main part
36    of the debugger, and the part which is target-specific, or
37    specific to the communications interface between us and the
38    target.
39 
40    A TARGET is an interface between the debugger and a particular
41    kind of file or process.  Targets can be STACKED in STRATA,
42    so that more than one target can potentially respond to a request.
43    In particular, memory accesses will walk down the stack of targets
44    until they find a target that is interested in handling that particular
45    address.  STRATA are artificial boundaries on the stack, within
46    which particular kinds of targets live.  Strata exist so that
47    people don't get confused by pushing e.g. a process target and then
48    a file target, and wondering why they can't see the current values
49    of variables any more (the file target is handling them and they
50    never get to the process target).  So when you push a file target,
51    it goes into the file stratum, which is always below the process
52    stratum.  */
53 
54 #include "bfd.h"
55 #include "symtab.h"
56 #include "memattr.h"
57 #include "vec.h"
58 #include "gdb_signals.h"
59 
60 enum strata
61   {
62     dummy_stratum,		/* The lowest of the low */
63     file_stratum,		/* Executable files, etc */
64     core_stratum,		/* Core dump files */
65     process_stratum,		/* Executing processes */
66     thread_stratum,		/* Executing threads */
67     record_stratum,		/* Support record debugging */
68     arch_stratum		/* Architecture overrides */
69   };
70 
71 enum thread_control_capabilities
72   {
73     tc_none = 0,		/* Default: can't control thread execution.  */
74     tc_schedlock = 1,		/* Can lock the thread scheduler.  */
75   };
76 
77 /* Stuff for target_wait.  */
78 
79 /* Generally, what has the program done?  */
80 enum target_waitkind
81   {
82     /* The program has exited.  The exit status is in value.integer.  */
83     TARGET_WAITKIND_EXITED,
84 
85     /* The program has stopped with a signal.  Which signal is in
86        value.sig.  */
87     TARGET_WAITKIND_STOPPED,
88 
89     /* The program has terminated with a signal.  Which signal is in
90        value.sig.  */
91     TARGET_WAITKIND_SIGNALLED,
92 
93     /* The program is letting us know that it dynamically loaded something
94        (e.g. it called load(2) on AIX).  */
95     TARGET_WAITKIND_LOADED,
96 
97     /* The program has forked.  A "related" process' PTID is in
98        value.related_pid.  I.e., if the child forks, value.related_pid
99        is the parent's ID.  */
100 
101     TARGET_WAITKIND_FORKED,
102 
103     /* The program has vforked.  A "related" process's PTID is in
104        value.related_pid.  */
105 
106     TARGET_WAITKIND_VFORKED,
107 
108     /* The program has exec'ed a new executable file.  The new file's
109        pathname is pointed to by value.execd_pathname.  */
110 
111     TARGET_WAITKIND_EXECD,
112 
113     /* The program has entered or returned from a system call.  On
114        HP-UX, this is used in the hardware watchpoint implementation.
115        The syscall's unique integer ID number is in value.syscall_id */
116 
117     TARGET_WAITKIND_SYSCALL_ENTRY,
118     TARGET_WAITKIND_SYSCALL_RETURN,
119 
120     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
121        within target_wait, but I'm not sure target_wait should be resuming the
122        inferior.  */
123     TARGET_WAITKIND_SPURIOUS,
124 
125     /* An event has occured, but we should wait again.
126        Remote_async_wait() returns this when there is an event
127        on the inferior, but the rest of the world is not interested in
128        it. The inferior has not stopped, but has just sent some output
129        to the console, for instance. In this case, we want to go back
130        to the event loop and wait there for another event from the
131        inferior, rather than being stuck in the remote_async_wait()
132        function. This way the event loop is responsive to other events,
133        like for instance the user typing.  */
134     TARGET_WAITKIND_IGNORE,
135 
136     /* The target has run out of history information,
137        and cannot run backward any further.  */
138     TARGET_WAITKIND_NO_HISTORY
139   };
140 
141 struct target_waitstatus
142   {
143     enum target_waitkind kind;
144 
145     /* Forked child pid, execd pathname, exit status, signal number or
146        syscall number.  */
147     union
148       {
149 	int integer;
150 	enum target_signal sig;
151 	ptid_t related_pid;
152 	char *execd_pathname;
153 	int syscall_number;
154       }
155     value;
156   };
157 
158 /* Options that can be passed to target_wait.  */
159 
160 /* Return immediately if there's no event already queued.  If this
161    options is not requested, target_wait blocks waiting for an
162    event.  */
163 #define TARGET_WNOHANG 1
164 
165 /* The structure below stores information about a system call.
166    It is basically used in the "catch syscall" command, and in
167    every function that gives information about a system call.
168 
169    It's also good to mention that its fields represent everything
170    that we currently know about a syscall in GDB.  */
171 struct syscall
172   {
173     /* The syscall number.  */
174     int number;
175 
176     /* The syscall name.  */
177     const char *name;
178   };
179 
180 /* Return a pretty printed form of target_waitstatus.
181    Space for the result is malloc'd, caller must free.  */
182 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
183 
184 /* Possible types of events that the inferior handler will have to
185    deal with.  */
186 enum inferior_event_type
187   {
188     /* There is a request to quit the inferior, abandon it.  */
189     INF_QUIT_REQ,
190     /* Process a normal inferior event which will result in target_wait
191        being called.  */
192     INF_REG_EVENT,
193     /* Deal with an error on the inferior.  */
194     INF_ERROR,
195     /* We are called because a timer went off.  */
196     INF_TIMER,
197     /* We are called to do stuff after the inferior stops.  */
198     INF_EXEC_COMPLETE,
199     /* We are called to do some stuff after the inferior stops, but we
200        are expected to reenter the proceed() and
201        handle_inferior_event() functions. This is used only in case of
202        'step n' like commands.  */
203     INF_EXEC_CONTINUE
204   };
205 
206 /* Target objects which can be transfered using target_read,
207    target_write, et cetera.  */
208 
209 enum target_object
210 {
211   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
212   TARGET_OBJECT_AVR,
213   /* SPU target specific transfer.  See "spu-tdep.c".  */
214   TARGET_OBJECT_SPU,
215   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
216   TARGET_OBJECT_MEMORY,
217   /* Memory, avoiding GDB's data cache and trusting the executable.
218      Target implementations of to_xfer_partial never need to handle
219      this object, and most callers should not use it.  */
220   TARGET_OBJECT_RAW_MEMORY,
221   /* Memory known to be part of the target's stack.  This is cached even
222      if it is not in a region marked as such, since it is known to be
223      "normal" RAM.  */
224   TARGET_OBJECT_STACK_MEMORY,
225   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
226   TARGET_OBJECT_UNWIND_TABLE,
227   /* Transfer auxilliary vector.  */
228   TARGET_OBJECT_AUXV,
229   /* StackGhost cookie.  See "sparc-tdep.c".  */
230   TARGET_OBJECT_WCOOKIE,
231   /* Target memory map in XML format.  */
232   TARGET_OBJECT_MEMORY_MAP,
233   /* Flash memory.  This object can be used to write contents to
234      a previously erased flash memory.  Using it without erasing
235      flash can have unexpected results.  Addresses are physical
236      address on target, and not relative to flash start.  */
237   TARGET_OBJECT_FLASH,
238   /* Available target-specific features, e.g. registers and coprocessors.
239      See "target-descriptions.c".  ANNEX should never be empty.  */
240   TARGET_OBJECT_AVAILABLE_FEATURES,
241   /* Currently loaded libraries, in XML format.  */
242   TARGET_OBJECT_LIBRARIES,
243   /* Get OS specific data.  The ANNEX specifies the type (running
244      processes, etc.).  */
245   TARGET_OBJECT_OSDATA,
246   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
247      platforms.  */
248   TARGET_OBJECT_SIGNAL_INFO,
249   /* Possible future objects: TARGET_OBJECT_FILE, ... */
250 };
251 
252 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
253    OBJECT.  The OFFSET, for a seekable object, specifies the
254    starting point.  The ANNEX can be used to provide additional
255    data-specific information to the target.
256 
257    Return the number of bytes actually transfered, or -1 if the
258    transfer is not supported or otherwise fails.  Return of a positive
259    value less than LEN indicates that no further transfer is possible.
260    Unlike the raw to_xfer_partial interface, callers of these
261    functions do not need to retry partial transfers.  */
262 
263 extern LONGEST target_read (struct target_ops *ops,
264 			    enum target_object object,
265 			    const char *annex, gdb_byte *buf,
266 			    ULONGEST offset, LONGEST len);
267 
268 extern LONGEST target_read_until_error (struct target_ops *ops,
269 					enum target_object object,
270 					const char *annex, gdb_byte *buf,
271 					ULONGEST offset, LONGEST len);
272 
273 extern LONGEST target_write (struct target_ops *ops,
274 			     enum target_object object,
275 			     const char *annex, const gdb_byte *buf,
276 			     ULONGEST offset, LONGEST len);
277 
278 /* Similar to target_write, except that it also calls PROGRESS with
279    the number of bytes written and the opaque BATON after every
280    successful partial write (and before the first write).  This is
281    useful for progress reporting and user interaction while writing
282    data.  To abort the transfer, the progress callback can throw an
283    exception.  */
284 
285 LONGEST target_write_with_progress (struct target_ops *ops,
286 				    enum target_object object,
287 				    const char *annex, const gdb_byte *buf,
288 				    ULONGEST offset, LONGEST len,
289 				    void (*progress) (ULONGEST, void *),
290 				    void *baton);
291 
292 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
293    be read using OPS.  The return value will be -1 if the transfer
294    fails or is not supported; 0 if the object is empty; or the length
295    of the object otherwise.  If a positive value is returned, a
296    sufficiently large buffer will be allocated using xmalloc and
297    returned in *BUF_P containing the contents of the object.
298 
299    This method should be used for objects sufficiently small to store
300    in a single xmalloc'd buffer, when no fixed bound on the object's
301    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
302    through this function.  */
303 
304 extern LONGEST target_read_alloc (struct target_ops *ops,
305 				  enum target_object object,
306 				  const char *annex, gdb_byte **buf_p);
307 
308 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
309    returned as a string, allocated using xmalloc.  If an error occurs
310    or the transfer is unsupported, NULL is returned.  Empty objects
311    are returned as allocated but empty strings.  A warning is issued
312    if the result contains any embedded NUL bytes.  */
313 
314 extern char *target_read_stralloc (struct target_ops *ops,
315 				   enum target_object object,
316 				   const char *annex);
317 
318 /* Wrappers to target read/write that perform memory transfers.  They
319    throw an error if the memory transfer fails.
320 
321    NOTE: cagney/2003-10-23: The naming schema is lifted from
322    "frame.h".  The parameter order is lifted from get_frame_memory,
323    which in turn lifted it from read_memory.  */
324 
325 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
326 			       gdb_byte *buf, LONGEST len);
327 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
328 					    CORE_ADDR addr, int len,
329 					    enum bfd_endian byte_order);
330 
331 struct thread_info;		/* fwd decl for parameter list below: */
332 
333 struct target_ops
334   {
335     struct target_ops *beneath;	/* To the target under this one.  */
336     char *to_shortname;		/* Name this target type */
337     char *to_longname;		/* Name for printing */
338     char *to_doc;		/* Documentation.  Does not include trailing
339 				   newline, and starts with a one-line descrip-
340 				   tion (probably similar to to_longname).  */
341     /* Per-target scratch pad.  */
342     void *to_data;
343     /* The open routine takes the rest of the parameters from the
344        command, and (if successful) pushes a new target onto the
345        stack.  Targets should supply this routine, if only to provide
346        an error message.  */
347     void (*to_open) (char *, int);
348     /* Old targets with a static target vector provide "to_close".
349        New re-entrant targets provide "to_xclose" and that is expected
350        to xfree everything (including the "struct target_ops").  */
351     void (*to_xclose) (struct target_ops *targ, int quitting);
352     void (*to_close) (int);
353     void (*to_attach) (struct target_ops *ops, char *, int);
354     void (*to_post_attach) (int);
355     void (*to_detach) (struct target_ops *ops, char *, int);
356     void (*to_disconnect) (struct target_ops *, char *, int);
357     void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
358     ptid_t (*to_wait) (struct target_ops *,
359 		       ptid_t, struct target_waitstatus *, int);
360     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
361     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
362     void (*to_prepare_to_store) (struct regcache *);
363 
364     /* Transfer LEN bytes of memory between GDB address MYADDR and
365        target address MEMADDR.  If WRITE, transfer them to the target, else
366        transfer them from the target.  TARGET is the target from which we
367        get this function.
368 
369        Return value, N, is one of the following:
370 
371        0 means that we can't handle this.  If errno has been set, it is the
372        error which prevented us from doing it (FIXME: What about bfd_error?).
373 
374        positive (call it N) means that we have transferred N bytes
375        starting at MEMADDR.  We might be able to handle more bytes
376        beyond this length, but no promises.
377 
378        negative (call its absolute value N) means that we cannot
379        transfer right at MEMADDR, but we could transfer at least
380        something at MEMADDR + N.
381 
382        NOTE: cagney/2004-10-01: This has been entirely superseeded by
383        to_xfer_partial and inferior inheritance.  */
384 
385     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
386 				   int len, int write,
387 				   struct mem_attrib *attrib,
388 				   struct target_ops *target);
389 
390     void (*to_files_info) (struct target_ops *);
391     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
392     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
393     int (*to_can_use_hw_breakpoint) (int, int, int);
394     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
395     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
396     int (*to_remove_watchpoint) (CORE_ADDR, int, int);
397     int (*to_insert_watchpoint) (CORE_ADDR, int, int);
398     int (*to_stopped_by_watchpoint) (void);
399     int to_have_steppable_watchpoint;
400     int to_have_continuable_watchpoint;
401     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
402     int (*to_watchpoint_addr_within_range) (struct target_ops *,
403 					    CORE_ADDR, CORE_ADDR, int);
404     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
405     void (*to_terminal_init) (void);
406     void (*to_terminal_inferior) (void);
407     void (*to_terminal_ours_for_output) (void);
408     void (*to_terminal_ours) (void);
409     void (*to_terminal_save_ours) (void);
410     void (*to_terminal_info) (char *, int);
411     void (*to_kill) (struct target_ops *);
412     void (*to_load) (char *, int);
413     int (*to_lookup_symbol) (char *, CORE_ADDR *);
414     void (*to_create_inferior) (struct target_ops *,
415 				char *, char *, char **, int);
416     void (*to_post_startup_inferior) (ptid_t);
417     void (*to_acknowledge_created_inferior) (int);
418     void (*to_insert_fork_catchpoint) (int);
419     int (*to_remove_fork_catchpoint) (int);
420     void (*to_insert_vfork_catchpoint) (int);
421     int (*to_remove_vfork_catchpoint) (int);
422     int (*to_follow_fork) (struct target_ops *, int);
423     void (*to_insert_exec_catchpoint) (int);
424     int (*to_remove_exec_catchpoint) (int);
425     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
426     int (*to_has_exited) (int, int, int *);
427     void (*to_mourn_inferior) (struct target_ops *);
428     int (*to_can_run) (void);
429     void (*to_notice_signals) (ptid_t ptid);
430     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
431     void (*to_find_new_threads) (struct target_ops *);
432     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
433     char *(*to_extra_thread_info) (struct thread_info *);
434     void (*to_stop) (ptid_t);
435     void (*to_rcmd) (char *command, struct ui_file *output);
436     char *(*to_pid_to_exec_file) (int pid);
437     void (*to_log_command) (const char *);
438     struct target_section_table *(*to_get_section_table) (struct target_ops *);
439     enum strata to_stratum;
440     int (*to_has_all_memory) (struct target_ops *);
441     int (*to_has_memory) (struct target_ops *);
442     int (*to_has_stack) (struct target_ops *);
443     int (*to_has_registers) (struct target_ops *);
444     int (*to_has_execution) (struct target_ops *);
445     int to_has_thread_control;	/* control thread execution */
446     int to_attach_no_wait;
447     /* ASYNC target controls */
448     int (*to_can_async_p) (void);
449     int (*to_is_async_p) (void);
450     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
451     int (*to_async_mask) (int);
452     int (*to_supports_non_stop) (void);
453     int (*to_find_memory_regions) (int (*) (CORE_ADDR,
454 					    unsigned long,
455 					    int, int, int,
456 					    void *),
457 				   void *);
458     char * (*to_make_corefile_notes) (bfd *, int *);
459 
460     /* Return the thread-local address at OFFSET in the
461        thread-local storage for the thread PTID and the shared library
462        or executable file given by OBJFILE.  If that block of
463        thread-local storage hasn't been allocated yet, this function
464        may return an error.  */
465     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
466 					      ptid_t ptid,
467 					      CORE_ADDR load_module_addr,
468 					      CORE_ADDR offset);
469 
470     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
471        OBJECT.  The OFFSET, for a seekable object, specifies the
472        starting point.  The ANNEX can be used to provide additional
473        data-specific information to the target.
474 
475        Return the number of bytes actually transfered, zero when no
476        further transfer is possible, and -1 when the transfer is not
477        supported.  Return of a positive value smaller than LEN does
478        not indicate the end of the object, only the end of the
479        transfer; higher level code should continue transferring if
480        desired.  This is handled in target.c.
481 
482        The interface does not support a "retry" mechanism.  Instead it
483        assumes that at least one byte will be transfered on each
484        successful call.
485 
486        NOTE: cagney/2003-10-17: The current interface can lead to
487        fragmented transfers.  Lower target levels should not implement
488        hacks, such as enlarging the transfer, in an attempt to
489        compensate for this.  Instead, the target stack should be
490        extended so that it implements supply/collect methods and a
491        look-aside object cache.  With that available, the lowest
492        target can safely and freely "push" data up the stack.
493 
494        See target_read and target_write for more information.  One,
495        and only one, of readbuf or writebuf must be non-NULL.  */
496 
497     LONGEST (*to_xfer_partial) (struct target_ops *ops,
498 				enum target_object object, const char *annex,
499 				gdb_byte *readbuf, const gdb_byte *writebuf,
500 				ULONGEST offset, LONGEST len);
501 
502     /* Returns the memory map for the target.  A return value of NULL
503        means that no memory map is available.  If a memory address
504        does not fall within any returned regions, it's assumed to be
505        RAM.  The returned memory regions should not overlap.
506 
507        The order of regions does not matter; target_memory_map will
508        sort regions by starting address. For that reason, this
509        function should not be called directly except via
510        target_memory_map.
511 
512        This method should not cache data; if the memory map could
513        change unexpectedly, it should be invalidated, and higher
514        layers will re-fetch it.  */
515     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
516 
517     /* Erases the region of flash memory starting at ADDRESS, of
518        length LENGTH.
519 
520        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
521        on flash block boundaries, as reported by 'to_memory_map'.  */
522     void (*to_flash_erase) (struct target_ops *,
523                            ULONGEST address, LONGEST length);
524 
525     /* Finishes a flash memory write sequence.  After this operation
526        all flash memory should be available for writing and the result
527        of reading from areas written by 'to_flash_write' should be
528        equal to what was written.  */
529     void (*to_flash_done) (struct target_ops *);
530 
531     /* Describe the architecture-specific features of this target.
532        Returns the description found, or NULL if no description
533        was available.  */
534     const struct target_desc *(*to_read_description) (struct target_ops *ops);
535 
536     /* Build the PTID of the thread on which a given task is running,
537        based on LWP and THREAD.  These values are extracted from the
538        task Private_Data section of the Ada Task Control Block, and
539        their interpretation depends on the target.  */
540     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
541 
542     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
543        Return 0 if *READPTR is already at the end of the buffer.
544        Return -1 if there is insufficient buffer for a whole entry.
545        Return 1 if an entry was read into *TYPEP and *VALP.  */
546     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
547                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
548 
549     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
550        sequence of bytes in PATTERN with length PATTERN_LEN.
551 
552        The result is 1 if found, 0 if not found, and -1 if there was an error
553        requiring halting of the search (e.g. memory read error).
554        If the pattern is found the address is recorded in FOUND_ADDRP.  */
555     int (*to_search_memory) (struct target_ops *ops,
556 			     CORE_ADDR start_addr, ULONGEST search_space_len,
557 			     const gdb_byte *pattern, ULONGEST pattern_len,
558 			     CORE_ADDR *found_addrp);
559 
560     /* Can target execute in reverse?  */
561     int (*to_can_execute_reverse) (void);
562 
563     /* Does this target support debugging multiple processes
564        simultaneously?  */
565     int (*to_supports_multi_process) (void);
566 
567     /* Determine current architecture of thread PTID.
568 
569        The target is supposed to determine the architecture of the code where
570        the target is currently stopped at (on Cell, if a target is in spu_run,
571        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
572        This is architecture used to perform decr_pc_after_break adjustment,
573        and also determines the frame architecture of the innermost frame.
574        ptrace operations need to operate according to target_gdbarch.
575 
576        The default implementation always returns target_gdbarch.  */
577     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
578 
579     int to_magic;
580     /* Need sub-structure for target machine related rather than comm related?
581      */
582   };
583 
584 /* Magic number for checking ops size.  If a struct doesn't end with this
585    number, somebody changed the declaration but didn't change all the
586    places that initialize one.  */
587 
588 #define	OPS_MAGIC	3840
589 
590 /* The ops structure for our "current" target process.  This should
591    never be NULL.  If there is no target, it points to the dummy_target.  */
592 
593 extern struct target_ops current_target;
594 
595 /* Define easy words for doing these operations on our current target.  */
596 
597 #define	target_shortname	(current_target.to_shortname)
598 #define	target_longname		(current_target.to_longname)
599 
600 /* Does whatever cleanup is required for a target that we are no
601    longer going to be calling.  QUITTING indicates that GDB is exiting
602    and should not get hung on an error (otherwise it is important to
603    perform clean termination, even if it takes a while).  This routine
604    is automatically always called when popping the target off the
605    target stack (to_beneath is undefined).  Closing file descriptors
606    and freeing all memory allocated memory are typical things it
607    should do.  */
608 
609 void target_close (struct target_ops *targ, int quitting);
610 
611 /* Attaches to a process on the target side.  Arguments are as passed
612    to the `attach' command by the user.  This routine can be called
613    when the target is not on the target-stack, if the target_can_run
614    routine returns 1; in that case, it must push itself onto the stack.
615    Upon exit, the target should be ready for normal operations, and
616    should be ready to deliver the status of the process immediately
617    (without waiting) to an upcoming target_wait call.  */
618 
619 void target_attach (char *, int);
620 
621 /* Some targets don't generate traps when attaching to the inferior,
622    or their target_attach implementation takes care of the waiting.
623    These targets must set to_attach_no_wait.  */
624 
625 #define target_attach_no_wait \
626      (current_target.to_attach_no_wait)
627 
628 /* The target_attach operation places a process under debugger control,
629    and stops the process.
630 
631    This operation provides a target-specific hook that allows the
632    necessary bookkeeping to be performed after an attach completes.  */
633 #define target_post_attach(pid) \
634      (*current_target.to_post_attach) (pid)
635 
636 /* Takes a program previously attached to and detaches it.
637    The program may resume execution (some targets do, some don't) and will
638    no longer stop on signals, etc.  We better not have left any breakpoints
639    in the program or it'll die when it hits one.  ARGS is arguments
640    typed by the user (e.g. a signal to send the process).  FROM_TTY
641    says whether to be verbose or not.  */
642 
643 extern void target_detach (char *, int);
644 
645 /* Disconnect from the current target without resuming it (leaving it
646    waiting for a debugger).  */
647 
648 extern void target_disconnect (char *, int);
649 
650 /* Resume execution of the target process PTID.  STEP says whether to
651    single-step or to run free; SIGGNAL is the signal to be given to
652    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
653    pass TARGET_SIGNAL_DEFAULT.  */
654 
655 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
656 
657 /* Wait for process pid to do something.  PTID = -1 to wait for any
658    pid to do something.  Return pid of child, or -1 in case of error;
659    store status through argument pointer STATUS.  Note that it is
660    _NOT_ OK to throw_exception() out of target_wait() without popping
661    the debugging target from the stack; GDB isn't prepared to get back
662    to the prompt with a debugging target but without the frame cache,
663    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
664    options.  */
665 
666 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
667 			   int options);
668 
669 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
670 
671 extern void target_fetch_registers (struct regcache *regcache, int regno);
672 
673 /* Store at least register REGNO, or all regs if REGNO == -1.
674    It can store as many registers as it wants to, so target_prepare_to_store
675    must have been previously called.  Calls error() if there are problems.  */
676 
677 extern void target_store_registers (struct regcache *regcache, int regs);
678 
679 /* Get ready to modify the registers array.  On machines which store
680    individual registers, this doesn't need to do anything.  On machines
681    which store all the registers in one fell swoop, this makes sure
682    that REGISTERS contains all the registers from the program being
683    debugged.  */
684 
685 #define	target_prepare_to_store(regcache)	\
686      (*current_target.to_prepare_to_store) (regcache)
687 
688 /* Returns true if this target can debug multiple processes
689    simultaneously.  */
690 
691 #define	target_supports_multi_process()	\
692      (*current_target.to_supports_multi_process) ()
693 
694 /* Invalidate all target dcaches.  */
695 extern void target_dcache_invalidate (void);
696 
697 extern int target_read_string (CORE_ADDR, char **, int, int *);
698 
699 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
700 
701 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
702 
703 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
704 				int len);
705 
706 /* Fetches the target's memory map.  If one is found it is sorted
707    and returned, after some consistency checking.  Otherwise, NULL
708    is returned.  */
709 VEC(mem_region_s) *target_memory_map (void);
710 
711 /* Erase the specified flash region.  */
712 void target_flash_erase (ULONGEST address, LONGEST length);
713 
714 /* Finish a sequence of flash operations.  */
715 void target_flash_done (void);
716 
717 /* Describes a request for a memory write operation.  */
718 struct memory_write_request
719   {
720     /* Begining address that must be written. */
721     ULONGEST begin;
722     /* Past-the-end address. */
723     ULONGEST end;
724     /* The data to write. */
725     gdb_byte *data;
726     /* A callback baton for progress reporting for this request.  */
727     void *baton;
728   };
729 typedef struct memory_write_request memory_write_request_s;
730 DEF_VEC_O(memory_write_request_s);
731 
732 /* Enumeration specifying different flash preservation behaviour.  */
733 enum flash_preserve_mode
734   {
735     flash_preserve,
736     flash_discard
737   };
738 
739 /* Write several memory blocks at once.  This version can be more
740    efficient than making several calls to target_write_memory, in
741    particular because it can optimize accesses to flash memory.
742 
743    Moreover, this is currently the only memory access function in gdb
744    that supports writing to flash memory, and it should be used for
745    all cases where access to flash memory is desirable.
746 
747    REQUESTS is the vector (see vec.h) of memory_write_request.
748    PRESERVE_FLASH_P indicates what to do with blocks which must be
749      erased, but not completely rewritten.
750    PROGRESS_CB is a function that will be periodically called to provide
751      feedback to user.  It will be called with the baton corresponding
752      to the request currently being written.  It may also be called
753      with a NULL baton, when preserved flash sectors are being rewritten.
754 
755    The function returns 0 on success, and error otherwise.  */
756 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
757 				enum flash_preserve_mode preserve_flash_p,
758 				void (*progress_cb) (ULONGEST, void *));
759 
760 /* From infrun.c.  */
761 
762 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
763 
764 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
765 
766 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
767 
768 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
769 
770 /* Print a line about the current target.  */
771 
772 #define	target_files_info()	\
773      (*current_target.to_files_info) (&current_target)
774 
775 /* Insert a breakpoint at address BP_TGT->placed_address in the target
776    machine.  Result is 0 for success, or an errno value.  */
777 
778 #define	target_insert_breakpoint(gdbarch, bp_tgt)	\
779      (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
780 
781 /* Remove a breakpoint at address BP_TGT->placed_address in the target
782    machine.  Result is 0 for success, or an errno value.  */
783 
784 #define	target_remove_breakpoint(gdbarch, bp_tgt)	\
785      (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
786 
787 /* Initialize the terminal settings we record for the inferior,
788    before we actually run the inferior.  */
789 
790 #define target_terminal_init() \
791      (*current_target.to_terminal_init) ()
792 
793 /* Put the inferior's terminal settings into effect.
794    This is preparation for starting or resuming the inferior.  */
795 
796 extern void target_terminal_inferior (void);
797 
798 /* Put some of our terminal settings into effect,
799    enough to get proper results from our output,
800    but do not change into or out of RAW mode
801    so that no input is discarded.
802 
803    After doing this, either terminal_ours or terminal_inferior
804    should be called to get back to a normal state of affairs.  */
805 
806 #define target_terminal_ours_for_output() \
807      (*current_target.to_terminal_ours_for_output) ()
808 
809 /* Put our terminal settings into effect.
810    First record the inferior's terminal settings
811    so they can be restored properly later.  */
812 
813 #define target_terminal_ours() \
814      (*current_target.to_terminal_ours) ()
815 
816 /* Save our terminal settings.
817    This is called from TUI after entering or leaving the curses
818    mode.  Since curses modifies our terminal this call is here
819    to take this change into account.  */
820 
821 #define target_terminal_save_ours() \
822      (*current_target.to_terminal_save_ours) ()
823 
824 /* Print useful information about our terminal status, if such a thing
825    exists.  */
826 
827 #define target_terminal_info(arg, from_tty) \
828      (*current_target.to_terminal_info) (arg, from_tty)
829 
830 /* Kill the inferior process.   Make it go away.  */
831 
832 extern void target_kill (void);
833 
834 /* Load an executable file into the target process.  This is expected
835    to not only bring new code into the target process, but also to
836    update GDB's symbol tables to match.
837 
838    ARG contains command-line arguments, to be broken down with
839    buildargv ().  The first non-switch argument is the filename to
840    load, FILE; the second is a number (as parsed by strtoul (..., ...,
841    0)), which is an offset to apply to the load addresses of FILE's
842    sections.  The target may define switches, or other non-switch
843    arguments, as it pleases.  */
844 
845 extern void target_load (char *arg, int from_tty);
846 
847 /* Look up a symbol in the target's symbol table.  NAME is the symbol
848    name.  ADDRP is a CORE_ADDR * pointing to where the value of the
849    symbol should be returned.  The result is 0 if successful, nonzero
850    if the symbol does not exist in the target environment.  This
851    function should not call error() if communication with the target
852    is interrupted, since it is called from symbol reading, but should
853    return nonzero, possibly doing a complain().  */
854 
855 #define target_lookup_symbol(name, addrp) \
856      (*current_target.to_lookup_symbol) (name, addrp)
857 
858 /* Start an inferior process and set inferior_ptid to its pid.
859    EXEC_FILE is the file to run.
860    ALLARGS is a string containing the arguments to the program.
861    ENV is the environment vector to pass.  Errors reported with error().
862    On VxWorks and various standalone systems, we ignore exec_file.  */
863 
864 void target_create_inferior (char *exec_file, char *args,
865 			     char **env, int from_tty);
866 
867 /* Some targets (such as ttrace-based HPUX) don't allow us to request
868    notification of inferior events such as fork and vork immediately
869    after the inferior is created.  (This because of how gdb gets an
870    inferior created via invoking a shell to do it.  In such a scenario,
871    if the shell init file has commands in it, the shell will fork and
872    exec for each of those commands, and we will see each such fork
873    event.  Very bad.)
874 
875    Such targets will supply an appropriate definition for this function.  */
876 
877 #define target_post_startup_inferior(ptid) \
878      (*current_target.to_post_startup_inferior) (ptid)
879 
880 /* On some targets, the sequence of starting up an inferior requires
881    some synchronization between gdb and the new inferior process, PID.  */
882 
883 #define target_acknowledge_created_inferior(pid) \
884      (*current_target.to_acknowledge_created_inferior) (pid)
885 
886 /* On some targets, we can catch an inferior fork or vfork event when
887    it occurs.  These functions insert/remove an already-created
888    catchpoint for such events.  */
889 
890 #define target_insert_fork_catchpoint(pid) \
891      (*current_target.to_insert_fork_catchpoint) (pid)
892 
893 #define target_remove_fork_catchpoint(pid) \
894      (*current_target.to_remove_fork_catchpoint) (pid)
895 
896 #define target_insert_vfork_catchpoint(pid) \
897      (*current_target.to_insert_vfork_catchpoint) (pid)
898 
899 #define target_remove_vfork_catchpoint(pid) \
900      (*current_target.to_remove_vfork_catchpoint) (pid)
901 
902 /* If the inferior forks or vforks, this function will be called at
903    the next resume in order to perform any bookkeeping and fiddling
904    necessary to continue debugging either the parent or child, as
905    requested, and releasing the other.  Information about the fork
906    or vfork event is available via get_last_target_status ().
907    This function returns 1 if the inferior should not be resumed
908    (i.e. there is another event pending).  */
909 
910 int target_follow_fork (int follow_child);
911 
912 /* On some targets, we can catch an inferior exec event when it
913    occurs.  These functions insert/remove an already-created
914    catchpoint for such events.  */
915 
916 #define target_insert_exec_catchpoint(pid) \
917      (*current_target.to_insert_exec_catchpoint) (pid)
918 
919 #define target_remove_exec_catchpoint(pid) \
920      (*current_target.to_remove_exec_catchpoint) (pid)
921 
922 /* Syscall catch.
923 
924    NEEDED is nonzero if any syscall catch (of any kind) is requested.
925    If NEEDED is zero, it means the target can disable the mechanism to
926    catch system calls because there are no more catchpoints of this type.
927 
928    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
929    being requested.  In this case, both TABLE_SIZE and TABLE should
930    be ignored.
931 
932    TABLE_SIZE is the number of elements in TABLE.  It only matters if
933    ANY_COUNT is zero.
934 
935    TABLE is an array of ints, indexed by syscall number.  An element in
936    this array is nonzero if that syscall should be caught.  This argument
937    only matters if ANY_COUNT is zero.  */
938 
939 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
940      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
941 						  table_size, table)
942 
943 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
944    exit code of PID, if any.  */
945 
946 #define target_has_exited(pid,wait_status,exit_status) \
947      (*current_target.to_has_exited) (pid,wait_status,exit_status)
948 
949 /* The debugger has completed a blocking wait() call.  There is now
950    some process event that must be processed.  This function should
951    be defined by those targets that require the debugger to perform
952    cleanup or internal state changes in response to the process event.  */
953 
954 /* The inferior process has died.  Do what is right.  */
955 
956 void target_mourn_inferior (void);
957 
958 /* Does target have enough data to do a run or attach command? */
959 
960 #define target_can_run(t) \
961      ((t)->to_can_run) ()
962 
963 /* post process changes to signal handling in the inferior.  */
964 
965 #define target_notice_signals(ptid) \
966      (*current_target.to_notice_signals) (ptid)
967 
968 /* Check to see if a thread is still alive.  */
969 
970 extern int target_thread_alive (ptid_t ptid);
971 
972 /* Query for new threads and add them to the thread list.  */
973 
974 extern void target_find_new_threads (void);
975 
976 /* Make target stop in a continuable fashion.  (For instance, under
977    Unix, this should act like SIGSTOP).  This function is normally
978    used by GUIs to implement a stop button.  */
979 
980 #define target_stop(ptid) (*current_target.to_stop) (ptid)
981 
982 /* Send the specified COMMAND to the target's monitor
983    (shell,interpreter) for execution.  The result of the query is
984    placed in OUTBUF.  */
985 
986 #define target_rcmd(command, outbuf) \
987      (*current_target.to_rcmd) (command, outbuf)
988 
989 
990 /* Does the target include all of memory, or only part of it?  This
991    determines whether we look up the target chain for other parts of
992    memory if this target can't satisfy a request.  */
993 
994 extern int target_has_all_memory_1 (void);
995 #define target_has_all_memory target_has_all_memory_1 ()
996 
997 /* Does the target include memory?  (Dummy targets don't.)  */
998 
999 extern int target_has_memory_1 (void);
1000 #define target_has_memory target_has_memory_1 ()
1001 
1002 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1003    we start a process.)  */
1004 
1005 extern int target_has_stack_1 (void);
1006 #define target_has_stack target_has_stack_1 ()
1007 
1008 /* Does the target have registers?  (Exec files don't.)  */
1009 
1010 extern int target_has_registers_1 (void);
1011 #define target_has_registers target_has_registers_1 ()
1012 
1013 /* Does the target have execution?  Can we make it jump (through
1014    hoops), or pop its stack a few times?  This means that the current
1015    target is currently executing; for some targets, that's the same as
1016    whether or not the target is capable of execution, but there are
1017    also targets which can be current while not executing.  In that
1018    case this will become true after target_create_inferior or
1019    target_attach.  */
1020 
1021 extern int target_has_execution_1 (void);
1022 #define target_has_execution target_has_execution_1 ()
1023 
1024 /* Default implementations for process_stratum targets.  Return true
1025    if there's a selected inferior, false otherwise.  */
1026 
1027 extern int default_child_has_all_memory (struct target_ops *ops);
1028 extern int default_child_has_memory (struct target_ops *ops);
1029 extern int default_child_has_stack (struct target_ops *ops);
1030 extern int default_child_has_registers (struct target_ops *ops);
1031 extern int default_child_has_execution (struct target_ops *ops);
1032 
1033 /* Can the target support the debugger control of thread execution?
1034    Can it lock the thread scheduler?  */
1035 
1036 #define target_can_lock_scheduler \
1037      (current_target.to_has_thread_control & tc_schedlock)
1038 
1039 /* Should the target enable async mode if it is supported?  Temporary
1040    cludge until async mode is a strict superset of sync mode.  */
1041 extern int target_async_permitted;
1042 
1043 /* Can the target support asynchronous execution? */
1044 #define target_can_async_p() (current_target.to_can_async_p ())
1045 
1046 /* Is the target in asynchronous execution mode? */
1047 #define target_is_async_p() (current_target.to_is_async_p ())
1048 
1049 int target_supports_non_stop (void);
1050 
1051 /* Put the target in async mode with the specified callback function. */
1052 #define target_async(CALLBACK,CONTEXT) \
1053      (current_target.to_async ((CALLBACK), (CONTEXT)))
1054 
1055 /* This is to be used ONLY within call_function_by_hand(). It provides
1056    a workaround, to have inferior function calls done in sychronous
1057    mode, even though the target is asynchronous. After
1058    target_async_mask(0) is called, calls to target_can_async_p() will
1059    return FALSE , so that target_resume() will not try to start the
1060    target asynchronously. After the inferior stops, we IMMEDIATELY
1061    restore the previous nature of the target, by calling
1062    target_async_mask(1). After that, target_can_async_p() will return
1063    TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1064 
1065    FIXME ezannoni 1999-12-13: we won't need this once we move
1066    the turning async on and off to the single execution commands,
1067    from where it is done currently, in remote_resume().  */
1068 
1069 #define target_async_mask(MASK)	\
1070   (current_target.to_async_mask (MASK))
1071 
1072 /* Converts a process id to a string.  Usually, the string just contains
1073    `process xyz', but on some systems it may contain
1074    `process xyz thread abc'.  */
1075 
1076 extern char *target_pid_to_str (ptid_t ptid);
1077 
1078 extern char *normal_pid_to_str (ptid_t ptid);
1079 
1080 /* Return a short string describing extra information about PID,
1081    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1082    is okay.  */
1083 
1084 #define target_extra_thread_info(TP) \
1085      (current_target.to_extra_thread_info (TP))
1086 
1087 /* Attempts to find the pathname of the executable file
1088    that was run to create a specified process.
1089 
1090    The process PID must be stopped when this operation is used.
1091 
1092    If the executable file cannot be determined, NULL is returned.
1093 
1094    Else, a pointer to a character string containing the pathname
1095    is returned.  This string should be copied into a buffer by
1096    the client if the string will not be immediately used, or if
1097    it must persist.  */
1098 
1099 #define target_pid_to_exec_file(pid) \
1100      (current_target.to_pid_to_exec_file) (pid)
1101 
1102 /* See the to_thread_architecture description in struct target_ops.  */
1103 
1104 #define target_thread_architecture(ptid) \
1105      (current_target.to_thread_architecture (&current_target, ptid))
1106 
1107 /*
1108  * Iterator function for target memory regions.
1109  * Calls a callback function once for each memory region 'mapped'
1110  * in the child process.  Defined as a simple macro rather than
1111  * as a function macro so that it can be tested for nullity.
1112  */
1113 
1114 #define target_find_memory_regions(FUNC, DATA) \
1115      (current_target.to_find_memory_regions) (FUNC, DATA)
1116 
1117 /*
1118  * Compose corefile .note section.
1119  */
1120 
1121 #define target_make_corefile_notes(BFD, SIZE_P) \
1122      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1123 
1124 /* Hardware watchpoint interfaces.  */
1125 
1126 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1127    write).  */
1128 
1129 #define target_stopped_by_watchpoint \
1130    (*current_target.to_stopped_by_watchpoint)
1131 
1132 /* Non-zero if we have steppable watchpoints  */
1133 
1134 #define target_have_steppable_watchpoint \
1135    (current_target.to_have_steppable_watchpoint)
1136 
1137 /* Non-zero if we have continuable watchpoints  */
1138 
1139 #define target_have_continuable_watchpoint \
1140    (current_target.to_have_continuable_watchpoint)
1141 
1142 /* Provide defaults for hardware watchpoint functions.  */
1143 
1144 /* If the *_hw_beakpoint functions have not been defined
1145    elsewhere use the definitions in the target vector.  */
1146 
1147 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1148    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1149    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1150    (including this one?).  OTHERTYPE is who knows what...  */
1151 
1152 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1153  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1154 
1155 #define target_region_ok_for_hw_watchpoint(addr, len) \
1156     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1157 
1158 
1159 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1160    for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1161    success, non-zero for failure.  */
1162 
1163 #define	target_insert_watchpoint(addr, len, type)	\
1164      (*current_target.to_insert_watchpoint) (addr, len, type)
1165 
1166 #define	target_remove_watchpoint(addr, len, type)	\
1167      (*current_target.to_remove_watchpoint) (addr, len, type)
1168 
1169 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1170      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1171 
1172 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1173      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1174 
1175 #define target_stopped_data_address(target, x) \
1176     (*target.to_stopped_data_address) (target, x)
1177 
1178 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1179   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1180 
1181 /* Target can execute in reverse?  */
1182 #define target_can_execute_reverse \
1183      (current_target.to_can_execute_reverse ? \
1184       current_target.to_can_execute_reverse () : 0)
1185 
1186 extern const struct target_desc *target_read_description (struct target_ops *);
1187 
1188 #define target_get_ada_task_ptid(lwp, tid) \
1189      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1190 
1191 /* Utility implementation of searching memory.  */
1192 extern int simple_search_memory (struct target_ops* ops,
1193                                  CORE_ADDR start_addr,
1194                                  ULONGEST search_space_len,
1195                                  const gdb_byte *pattern,
1196                                  ULONGEST pattern_len,
1197                                  CORE_ADDR *found_addrp);
1198 
1199 /* Main entry point for searching memory.  */
1200 extern int target_search_memory (CORE_ADDR start_addr,
1201                                  ULONGEST search_space_len,
1202                                  const gdb_byte *pattern,
1203                                  ULONGEST pattern_len,
1204                                  CORE_ADDR *found_addrp);
1205 
1206 /* Command logging facility.  */
1207 
1208 #define target_log_command(p)						\
1209   do									\
1210     if (current_target.to_log_command)					\
1211       (*current_target.to_log_command) (p);				\
1212   while (0)
1213 
1214 /* Routines for maintenance of the target structures...
1215 
1216    add_target:   Add a target to the list of all possible targets.
1217 
1218    push_target:  Make this target the top of the stack of currently used
1219    targets, within its particular stratum of the stack.  Result
1220    is 0 if now atop the stack, nonzero if not on top (maybe
1221    should warn user).
1222 
1223    unpush_target: Remove this from the stack of currently used targets,
1224    no matter where it is on the list.  Returns 0 if no
1225    change, 1 if removed from stack.
1226 
1227    pop_target:   Remove the top thing on the stack of current targets.  */
1228 
1229 extern void add_target (struct target_ops *);
1230 
1231 extern int push_target (struct target_ops *);
1232 
1233 extern int unpush_target (struct target_ops *);
1234 
1235 extern void target_pre_inferior (int);
1236 
1237 extern void target_preopen (int);
1238 
1239 extern void pop_target (void);
1240 
1241 /* Does whatever cleanup is required to get rid of all pushed targets.
1242    QUITTING is propagated to target_close; it indicates that GDB is
1243    exiting and should not get hung on an error (otherwise it is
1244    important to perform clean termination, even if it takes a
1245    while).  */
1246 extern void pop_all_targets (int quitting);
1247 
1248 /* Like pop_all_targets, but pops only targets whose stratum is
1249    strictly above ABOVE_STRATUM.  */
1250 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1251 
1252 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1253 					       CORE_ADDR offset);
1254 
1255 /* Struct target_section maps address ranges to file sections.  It is
1256    mostly used with BFD files, but can be used without (e.g. for handling
1257    raw disks, or files not in formats handled by BFD).  */
1258 
1259 struct target_section
1260   {
1261     CORE_ADDR addr;		/* Lowest address in section */
1262     CORE_ADDR endaddr;		/* 1+highest address in section */
1263 
1264     struct bfd_section *the_bfd_section;
1265 
1266     bfd *bfd;			/* BFD file pointer */
1267   };
1268 
1269 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1270 
1271 struct target_section_table
1272 {
1273   struct target_section *sections;
1274   struct target_section *sections_end;
1275 };
1276 
1277 /* Return the "section" containing the specified address.  */
1278 struct target_section *target_section_by_addr (struct target_ops *target,
1279 					       CORE_ADDR addr);
1280 
1281 /* Return the target section table this target (or the targets
1282    beneath) currently manipulate.  */
1283 
1284 extern struct target_section_table *target_get_section_table
1285   (struct target_ops *target);
1286 
1287 /* From mem-break.c */
1288 
1289 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1290 
1291 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1292 
1293 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1294 
1295 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1296 
1297 
1298 /* From target.c */
1299 
1300 extern void initialize_targets (void);
1301 
1302 extern NORETURN void noprocess (void) ATTR_NORETURN;
1303 
1304 extern void target_require_runnable (void);
1305 
1306 extern void find_default_attach (struct target_ops *, char *, int);
1307 
1308 extern void find_default_create_inferior (struct target_ops *,
1309 					  char *, char *, char **, int);
1310 
1311 extern struct target_ops *find_run_target (void);
1312 
1313 extern struct target_ops *find_core_target (void);
1314 
1315 extern struct target_ops *find_target_beneath (struct target_ops *);
1316 
1317 /* Read OS data object of type TYPE from the target, and return it in
1318    XML format.  The result is NUL-terminated and returned as a string,
1319    allocated using xmalloc.  If an error occurs or the transfer is
1320    unsupported, NULL is returned.  Empty objects are returned as
1321    allocated but empty strings.  */
1322 
1323 extern char *target_get_osdata (const char *type);
1324 
1325 
1326 /* Stuff that should be shared among the various remote targets.  */
1327 
1328 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1329    information (higher values, more information).  */
1330 extern int remote_debug;
1331 
1332 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1333 extern int baud_rate;
1334 /* Timeout limit for response from target. */
1335 extern int remote_timeout;
1336 
1337 
1338 /* Functions for helping to write a native target.  */
1339 
1340 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1341 extern void store_waitstatus (struct target_waitstatus *, int);
1342 
1343 /* These are in common/signals.c, but they're only used by gdb.  */
1344 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1345 							   int);
1346 extern int default_target_signal_to_host (struct gdbarch *,
1347 					  enum target_signal);
1348 
1349 /* Convert from a number used in a GDB command to an enum target_signal.  */
1350 extern enum target_signal target_signal_from_command (int);
1351 /* End of files in common/signals.c.  */
1352 
1353 /* Set the show memory breakpoints mode to show, and installs a cleanup
1354    to restore it back to the current value.  */
1355 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1356 
1357 
1358 /* Imported from machine dependent code */
1359 
1360 /* Blank target vector entries are initialized to target_ignore. */
1361 void target_ignore (void);
1362 
1363 extern struct target_ops deprecated_child_ops;
1364 
1365 #endif /* !defined (TARGET_H) */
1366