xref: /dragonfly/contrib/gdb-7/gdb/valops.c (revision 25a2db75)
1 /* Perform non-arithmetic operations on values, for GDB.
2 
3    Copyright (C) 1986-2012 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48 
49 extern int overload_debug;
50 /* Local functions.  */
51 
52 static int typecmp (int staticp, int varargs, int nargs,
53 		    struct field t1[], struct value *t2[]);
54 
55 static struct value *search_struct_field (const char *, struct value *,
56 					  int, struct type *, int);
57 
58 static struct value *search_struct_method (const char *, struct value **,
59 					   struct value **,
60 					   int, int *, struct type *);
61 
62 static int find_oload_champ_namespace (struct value **, int,
63 				       const char *, const char *,
64 				       struct symbol ***,
65 				       struct badness_vector **,
66 				       const int no_adl);
67 
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 				     const char *, const char *,
71 				     int, struct symbol ***,
72 				     struct badness_vector **, int *,
73 				     const int no_adl);
74 
75 static int find_oload_champ (struct value **, int, int, int,
76 			     struct fn_field *, struct symbol **,
77 			     struct badness_vector **);
78 
79 static int oload_method_static (int, struct fn_field *, int);
80 
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82 
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 					   int, int);
86 
87 static struct value *value_struct_elt_for_reference (struct type *,
88 						     int, struct type *,
89 						     char *,
90 						     struct type *,
91 						     int, enum noside);
92 
93 static struct value *value_namespace_elt (const struct type *,
94 					  char *, int , enum noside);
95 
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 						char *, int,
98 						enum noside);
99 
100 static CORE_ADDR allocate_space_in_inferior (int);
101 
102 static struct value *cast_into_complex (struct type *, struct value *);
103 
104 static struct fn_field *find_method_list (struct value **, const char *,
105 					  int, struct type *, int *,
106 					  struct type **, int *);
107 
108 void _initialize_valops (void);
109 
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112    default.  */
113 
114 static int auto_abandon = 0;
115 #endif
116 
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 			  struct cmd_list_element *c,
121 			  const char *value)
122 {
123   fprintf_filtered (file, _("Overload resolution in evaluating "
124 			    "C++ functions is %s.\n"),
125 		    value);
126 }
127 
128 /* Find the address of function name NAME in the inferior.  If OBJF_P
129    is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130    is defined.  */
131 
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135   struct symbol *sym;
136 
137   sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138   if (sym != NULL)
139     {
140       if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 	{
142 	  error (_("\"%s\" exists in this program but is not a function."),
143 		 name);
144 	}
145 
146       if (objf_p)
147 	*objf_p = SYMBOL_SYMTAB (sym)->objfile;
148 
149       return value_of_variable (sym, NULL);
150     }
151   else
152     {
153       struct minimal_symbol *msymbol =
154 	lookup_minimal_symbol (name, NULL, NULL);
155 
156       if (msymbol != NULL)
157 	{
158 	  struct objfile *objfile = msymbol_objfile (msymbol);
159 	  struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 
161 	  struct type *type;
162 	  CORE_ADDR maddr;
163 	  type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 	  type = lookup_function_type (type);
165 	  type = lookup_pointer_type (type);
166 	  maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167 
168 	  if (objf_p)
169 	    *objf_p = objfile;
170 
171 	  return value_from_pointer (type, maddr);
172 	}
173       else
174 	{
175 	  if (!target_has_execution)
176 	    error (_("evaluation of this expression "
177 		     "requires the target program to be active"));
178 	  else
179 	    error (_("evaluation of this expression requires the "
180 		     "program to have a function \"%s\"."),
181 		   name);
182 	}
183     }
184 }
185 
186 /* Allocate NBYTES of space in the inferior using the inferior's
187    malloc and return a value that is a pointer to the allocated
188    space.  */
189 
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193   struct objfile *objf;
194   struct value *val = find_function_in_inferior ("malloc", &objf);
195   struct gdbarch *gdbarch = get_objfile_arch (objf);
196   struct value *blocklen;
197 
198   blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199   val = call_function_by_hand (val, 1, &blocklen);
200   if (value_logical_not (val))
201     {
202       if (!target_has_execution)
203 	error (_("No memory available to program now: "
204 		 "you need to start the target first"));
205       else
206 	error (_("No memory available to program: call to malloc failed"));
207     }
208   return val;
209 }
210 
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214   return value_as_long (value_allocate_space_in_inferior (len));
215 }
216 
217 /* Cast struct value VAL to type TYPE and return as a value.
218    Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219    for this to work.  Typedef to one of the codes is permitted.
220    Returns NULL if the cast is neither an upcast nor a downcast.  */
221 
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225   struct type *t1;
226   struct type *t2;
227   struct value *v;
228 
229   gdb_assert (type != NULL && v2 != NULL);
230 
231   t1 = check_typedef (type);
232   t2 = check_typedef (value_type (v2));
233 
234   /* Check preconditions.  */
235   gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 	       || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 	      && !!"Precondition is that type is of STRUCT or UNION kind.");
238   gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 	       || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 	      && !!"Precondition is that value is of STRUCT or UNION kind");
241 
242   if (TYPE_NAME (t1) != NULL
243       && TYPE_NAME (t2) != NULL
244       && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245     return NULL;
246 
247   /* Upcasting: look in the type of the source to see if it contains the
248      type of the target as a superclass.  If so, we'll need to
249      offset the pointer rather than just change its type.  */
250   if (TYPE_NAME (t1) != NULL)
251     {
252       v = search_struct_field (type_name_no_tag (t1),
253 			       v2, 0, t2, 1);
254       if (v)
255 	return v;
256     }
257 
258   /* Downcasting: look in the type of the target to see if it contains the
259      type of the source as a superclass.  If so, we'll need to
260      offset the pointer rather than just change its type.  */
261   if (TYPE_NAME (t2) != NULL)
262     {
263       /* Try downcasting using the run-time type of the value.  */
264       int full, top, using_enc;
265       struct type *real_type;
266 
267       real_type = value_rtti_type (v2, &full, &top, &using_enc);
268       if (real_type)
269 	{
270 	  v = value_full_object (v2, real_type, full, top, using_enc);
271 	  v = value_at_lazy (real_type, value_address (v));
272 
273 	  /* We might be trying to cast to the outermost enclosing
274 	     type, in which case search_struct_field won't work.  */
275 	  if (TYPE_NAME (real_type) != NULL
276 	      && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 	    return v;
278 
279 	  v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 	  if (v)
281 	    return v;
282 	}
283 
284       /* Try downcasting using information from the destination type
285 	 T2.  This wouldn't work properly for classes with virtual
286 	 bases, but those were handled above.  */
287       v = search_struct_field (type_name_no_tag (t2),
288 			       value_zero (t1, not_lval), 0, t1, 1);
289       if (v)
290 	{
291 	  /* Downcasting is possible (t1 is superclass of v2).  */
292 	  CORE_ADDR addr2 = value_address (v2);
293 
294 	  addr2 -= value_address (v) + value_embedded_offset (v);
295 	  return value_at (type, addr2);
296 	}
297     }
298 
299   return NULL;
300 }
301 
302 /* Cast one pointer or reference type to another.  Both TYPE and
303    the type of ARG2 should be pointer types, or else both should be
304    reference types.  Returns the new pointer or reference.  */
305 
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2)
308 {
309   struct type *type1 = check_typedef (type);
310   struct type *type2 = check_typedef (value_type (arg2));
311   struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312   struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313 
314   if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315       && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316       && !value_logical_not (arg2))
317     {
318       struct value *v2;
319 
320       if (TYPE_CODE (type2) == TYPE_CODE_REF)
321 	v2 = coerce_ref (arg2);
322       else
323 	v2 = value_ind (arg2);
324       gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 		  == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326       v2 = value_cast_structs (t1, v2);
327       /* At this point we have what we can have, un-dereference if needed.  */
328       if (v2)
329 	{
330 	  struct value *v = value_addr (v2);
331 
332 	  deprecated_set_value_type (v, type);
333 	  return v;
334 	}
335    }
336 
337   /* No superclass found, just change the pointer type.  */
338   arg2 = value_copy (arg2);
339   deprecated_set_value_type (arg2, type);
340   set_value_enclosing_type (arg2, type);
341   set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
342   return arg2;
343 }
344 
345 /* Cast value ARG2 to type TYPE and return as a value.
346    More general than a C cast: accepts any two types of the same length,
347    and if ARG2 is an lvalue it can be cast into anything at all.  */
348 /* In C++, casts may change pointer or object representations.  */
349 
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353   enum type_code code1;
354   enum type_code code2;
355   int scalar;
356   struct type *type2;
357 
358   int convert_to_boolean = 0;
359 
360   if (value_type (arg2) == type)
361     return arg2;
362 
363   code1 = TYPE_CODE (check_typedef (type));
364 
365   /* Check if we are casting struct reference to struct reference.  */
366   if (code1 == TYPE_CODE_REF)
367     {
368       /* We dereference type; then we recurse and finally
369          we generate value of the given reference.  Nothing wrong with
370 	 that.  */
371       struct type *t1 = check_typedef (type);
372       struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
373       struct value *val =  value_cast (dereftype, arg2);
374 
375       return value_ref (val);
376     }
377 
378   code2 = TYPE_CODE (check_typedef (value_type (arg2)));
379 
380   if (code2 == TYPE_CODE_REF)
381     /* We deref the value and then do the cast.  */
382     return value_cast (type, coerce_ref (arg2));
383 
384   CHECK_TYPEDEF (type);
385   code1 = TYPE_CODE (type);
386   arg2 = coerce_ref (arg2);
387   type2 = check_typedef (value_type (arg2));
388 
389   /* You can't cast to a reference type.  See value_cast_pointers
390      instead.  */
391   gdb_assert (code1 != TYPE_CODE_REF);
392 
393   /* A cast to an undetermined-length array_type, such as
394      (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
395      where N is sizeof(OBJECT)/sizeof(TYPE).  */
396   if (code1 == TYPE_CODE_ARRAY)
397     {
398       struct type *element_type = TYPE_TARGET_TYPE (type);
399       unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
400 
401       if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
402 	{
403 	  struct type *range_type = TYPE_INDEX_TYPE (type);
404 	  int val_length = TYPE_LENGTH (type2);
405 	  LONGEST low_bound, high_bound, new_length;
406 
407 	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
408 	    low_bound = 0, high_bound = 0;
409 	  new_length = val_length / element_length;
410 	  if (val_length % element_length != 0)
411 	    warning (_("array element type size does not "
412 		       "divide object size in cast"));
413 	  /* FIXME-type-allocation: need a way to free this type when
414 	     we are done with it.  */
415 	  range_type = create_range_type ((struct type *) NULL,
416 					  TYPE_TARGET_TYPE (range_type),
417 					  low_bound,
418 					  new_length + low_bound - 1);
419 	  deprecated_set_value_type (arg2,
420 				     create_array_type ((struct type *) NULL,
421 							element_type,
422 							range_type));
423 	  return arg2;
424 	}
425     }
426 
427   if (current_language->c_style_arrays
428       && TYPE_CODE (type2) == TYPE_CODE_ARRAY
429       && !TYPE_VECTOR (type2))
430     arg2 = value_coerce_array (arg2);
431 
432   if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
433     arg2 = value_coerce_function (arg2);
434 
435   type2 = check_typedef (value_type (arg2));
436   code2 = TYPE_CODE (type2);
437 
438   if (code1 == TYPE_CODE_COMPLEX)
439     return cast_into_complex (type, arg2);
440   if (code1 == TYPE_CODE_BOOL)
441     {
442       code1 = TYPE_CODE_INT;
443       convert_to_boolean = 1;
444     }
445   if (code1 == TYPE_CODE_CHAR)
446     code1 = TYPE_CODE_INT;
447   if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
448     code2 = TYPE_CODE_INT;
449 
450   scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
451 	    || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
452 	    || code2 == TYPE_CODE_RANGE);
453 
454   if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
455       && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
456       && TYPE_NAME (type) != 0)
457     {
458       struct value *v = value_cast_structs (type, arg2);
459 
460       if (v)
461 	return v;
462     }
463 
464   if (code1 == TYPE_CODE_FLT && scalar)
465     return value_from_double (type, value_as_double (arg2));
466   else if (code1 == TYPE_CODE_DECFLOAT && scalar)
467     {
468       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
469       int dec_len = TYPE_LENGTH (type);
470       gdb_byte dec[16];
471 
472       if (code2 == TYPE_CODE_FLT)
473 	decimal_from_floating (arg2, dec, dec_len, byte_order);
474       else if (code2 == TYPE_CODE_DECFLOAT)
475 	decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
476 			 byte_order, dec, dec_len, byte_order);
477       else
478 	/* The only option left is an integral type.  */
479 	decimal_from_integral (arg2, dec, dec_len, byte_order);
480 
481       return value_from_decfloat (type, dec);
482     }
483   else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
484 	    || code1 == TYPE_CODE_RANGE)
485 	   && (scalar || code2 == TYPE_CODE_PTR
486 	       || code2 == TYPE_CODE_MEMBERPTR))
487     {
488       LONGEST longest;
489 
490       /* When we cast pointers to integers, we mustn't use
491          gdbarch_pointer_to_address to find the address the pointer
492          represents, as value_as_long would.  GDB should evaluate
493          expressions just as the compiler would --- and the compiler
494          sees a cast as a simple reinterpretation of the pointer's
495          bits.  */
496       if (code2 == TYPE_CODE_PTR)
497         longest = extract_unsigned_integer
498 		    (value_contents (arg2), TYPE_LENGTH (type2),
499 		     gdbarch_byte_order (get_type_arch (type2)));
500       else
501         longest = value_as_long (arg2);
502       return value_from_longest (type, convert_to_boolean ?
503 				 (LONGEST) (longest ? 1 : 0) : longest);
504     }
505   else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
506 				      || code2 == TYPE_CODE_ENUM
507 				      || code2 == TYPE_CODE_RANGE))
508     {
509       /* TYPE_LENGTH (type) is the length of a pointer, but we really
510 	 want the length of an address! -- we are really dealing with
511 	 addresses (i.e., gdb representations) not pointers (i.e.,
512 	 target representations) here.
513 
514 	 This allows things like "print *(int *)0x01000234" to work
515 	 without printing a misleading message -- which would
516 	 otherwise occur when dealing with a target having two byte
517 	 pointers and four byte addresses.  */
518 
519       int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
520       LONGEST longest = value_as_long (arg2);
521 
522       if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
523 	{
524 	  if (longest >= ((LONGEST) 1 << addr_bit)
525 	      || longest <= -((LONGEST) 1 << addr_bit))
526 	    warning (_("value truncated"));
527 	}
528       return value_from_longest (type, longest);
529     }
530   else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
531 	   && value_as_long (arg2) == 0)
532     {
533       struct value *result = allocate_value (type);
534 
535       cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
536       return result;
537     }
538   else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
539 	   && value_as_long (arg2) == 0)
540     {
541       /* The Itanium C++ ABI represents NULL pointers to members as
542 	 minus one, instead of biasing the normal case.  */
543       return value_from_longest (type, -1);
544     }
545   else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
546     {
547       /* Widen the scalar to a vector.  */
548       struct type *eltype;
549       struct value *val;
550       LONGEST low_bound, high_bound;
551       int i;
552 
553       if (!get_array_bounds (type, &low_bound, &high_bound))
554 	error (_("Could not determine the vector bounds"));
555 
556       eltype = check_typedef (TYPE_TARGET_TYPE (type));
557       arg2 = value_cast (eltype, arg2);
558       val = allocate_value (type);
559 
560       for (i = 0; i < high_bound - low_bound + 1; i++)
561 	{
562 	  /* Duplicate the contents of arg2 into the destination vector.  */
563 	  memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
564 		  value_contents_all (arg2), TYPE_LENGTH (eltype));
565 	}
566       return val;
567     }
568   else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
569     {
570       if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
571 	return value_cast_pointers (type, arg2);
572 
573       arg2 = value_copy (arg2);
574       deprecated_set_value_type (arg2, type);
575       set_value_enclosing_type (arg2, type);
576       set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
577       return arg2;
578     }
579   else if (VALUE_LVAL (arg2) == lval_memory)
580     return value_at_lazy (type, value_address (arg2));
581   else if (code1 == TYPE_CODE_VOID)
582     {
583       return value_zero (type, not_lval);
584     }
585   else
586     {
587       error (_("Invalid cast."));
588       return 0;
589     }
590 }
591 
592 /* The C++ reinterpret_cast operator.  */
593 
594 struct value *
595 value_reinterpret_cast (struct type *type, struct value *arg)
596 {
597   struct value *result;
598   struct type *real_type = check_typedef (type);
599   struct type *arg_type, *dest_type;
600   int is_ref = 0;
601   enum type_code dest_code, arg_code;
602 
603   /* Do reference, function, and array conversion.  */
604   arg = coerce_array (arg);
605 
606   /* Attempt to preserve the type the user asked for.  */
607   dest_type = type;
608 
609   /* If we are casting to a reference type, transform
610      reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V).  */
611   if (TYPE_CODE (real_type) == TYPE_CODE_REF)
612     {
613       is_ref = 1;
614       arg = value_addr (arg);
615       dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
616       real_type = lookup_pointer_type (real_type);
617     }
618 
619   arg_type = value_type (arg);
620 
621   dest_code = TYPE_CODE (real_type);
622   arg_code = TYPE_CODE (arg_type);
623 
624   /* We can convert pointer types, or any pointer type to int, or int
625      type to pointer.  */
626   if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
627       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
628       || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
629       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
630       || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
631       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
632       || (dest_code == arg_code
633 	  && (dest_code == TYPE_CODE_PTR
634 	      || dest_code == TYPE_CODE_METHODPTR
635 	      || dest_code == TYPE_CODE_MEMBERPTR)))
636     result = value_cast (dest_type, arg);
637   else
638     error (_("Invalid reinterpret_cast"));
639 
640   if (is_ref)
641     result = value_cast (type, value_ref (value_ind (result)));
642 
643   return result;
644 }
645 
646 /* A helper for value_dynamic_cast.  This implements the first of two
647    runtime checks: we iterate over all the base classes of the value's
648    class which are equal to the desired class; if only one of these
649    holds the value, then it is the answer.  */
650 
651 static int
652 dynamic_cast_check_1 (struct type *desired_type,
653 		      const gdb_byte *valaddr,
654 		      int embedded_offset,
655 		      CORE_ADDR address,
656 		      struct value *val,
657 		      struct type *search_type,
658 		      CORE_ADDR arg_addr,
659 		      struct type *arg_type,
660 		      struct value **result)
661 {
662   int i, result_count = 0;
663 
664   for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
665     {
666       int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
667 				     address, val);
668 
669       if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
670 	{
671 	  if (address + embedded_offset + offset >= arg_addr
672 	      && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
673 	    {
674 	      ++result_count;
675 	      if (!*result)
676 		*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
677 					 address + embedded_offset + offset);
678 	    }
679 	}
680       else
681 	result_count += dynamic_cast_check_1 (desired_type,
682 					      valaddr,
683 					      embedded_offset + offset,
684 					      address, val,
685 					      TYPE_BASECLASS (search_type, i),
686 					      arg_addr,
687 					      arg_type,
688 					      result);
689     }
690 
691   return result_count;
692 }
693 
694 /* A helper for value_dynamic_cast.  This implements the second of two
695    runtime checks: we look for a unique public sibling class of the
696    argument's declared class.  */
697 
698 static int
699 dynamic_cast_check_2 (struct type *desired_type,
700 		      const gdb_byte *valaddr,
701 		      int embedded_offset,
702 		      CORE_ADDR address,
703 		      struct value *val,
704 		      struct type *search_type,
705 		      struct value **result)
706 {
707   int i, result_count = 0;
708 
709   for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
710     {
711       int offset;
712 
713       if (! BASETYPE_VIA_PUBLIC (search_type, i))
714 	continue;
715 
716       offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
717 				 address, val);
718       if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
719 	{
720 	  ++result_count;
721 	  if (*result == NULL)
722 	    *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
723 				     address + embedded_offset + offset);
724 	}
725       else
726 	result_count += dynamic_cast_check_2 (desired_type,
727 					      valaddr,
728 					      embedded_offset + offset,
729 					      address, val,
730 					      TYPE_BASECLASS (search_type, i),
731 					      result);
732     }
733 
734   return result_count;
735 }
736 
737 /* The C++ dynamic_cast operator.  */
738 
739 struct value *
740 value_dynamic_cast (struct type *type, struct value *arg)
741 {
742   int full, top, using_enc;
743   struct type *resolved_type = check_typedef (type);
744   struct type *arg_type = check_typedef (value_type (arg));
745   struct type *class_type, *rtti_type;
746   struct value *result, *tem, *original_arg = arg;
747   CORE_ADDR addr;
748   int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
749 
750   if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
751       && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
752     error (_("Argument to dynamic_cast must be a pointer or reference type"));
753   if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
754       && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
755     error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
756 
757   class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
758   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
759     {
760       if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
761 	  && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
762 		&& value_as_long (arg) == 0))
763 	error (_("Argument to dynamic_cast does not have pointer type"));
764       if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
765 	{
766 	  arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
767 	  if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 	    error (_("Argument to dynamic_cast does "
769 		     "not have pointer to class type"));
770 	}
771 
772       /* Handle NULL pointers.  */
773       if (value_as_long (arg) == 0)
774 	return value_zero (type, not_lval);
775 
776       arg = value_ind (arg);
777     }
778   else
779     {
780       if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
781 	error (_("Argument to dynamic_cast does not have class type"));
782     }
783 
784   /* If the classes are the same, just return the argument.  */
785   if (class_types_same_p (class_type, arg_type))
786     return value_cast (type, arg);
787 
788   /* If the target type is a unique base class of the argument's
789      declared type, just cast it.  */
790   if (is_ancestor (class_type, arg_type))
791     {
792       if (is_unique_ancestor (class_type, arg))
793 	return value_cast (type, original_arg);
794       error (_("Ambiguous dynamic_cast"));
795     }
796 
797   rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
798   if (! rtti_type)
799     error (_("Couldn't determine value's most derived type for dynamic_cast"));
800 
801   /* Compute the most derived object's address.  */
802   addr = value_address (arg);
803   if (full)
804     {
805       /* Done.  */
806     }
807   else if (using_enc)
808     addr += top;
809   else
810     addr += top + value_embedded_offset (arg);
811 
812   /* dynamic_cast<void *> means to return a pointer to the
813      most-derived object.  */
814   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
815       && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
816     return value_at_lazy (type, addr);
817 
818   tem = value_at (type, addr);
819 
820   /* The first dynamic check specified in 5.2.7.  */
821   if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
822     {
823       if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
824 	return tem;
825       result = NULL;
826       if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
827 				value_contents_for_printing (tem),
828 				value_embedded_offset (tem),
829 				value_address (tem), tem,
830 				rtti_type, addr,
831 				arg_type,
832 				&result) == 1)
833 	return value_cast (type,
834 			   is_ref ? value_ref (result) : value_addr (result));
835     }
836 
837   /* The second dynamic check specified in 5.2.7.  */
838   result = NULL;
839   if (is_public_ancestor (arg_type, rtti_type)
840       && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
841 			       value_contents_for_printing (tem),
842 			       value_embedded_offset (tem),
843 			       value_address (tem), tem,
844 			       rtti_type, &result) == 1)
845     return value_cast (type,
846 		       is_ref ? value_ref (result) : value_addr (result));
847 
848   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
849     return value_zero (type, not_lval);
850 
851   error (_("dynamic_cast failed"));
852 }
853 
854 /* Create a value of type TYPE that is zero, and return it.  */
855 
856 struct value *
857 value_zero (struct type *type, enum lval_type lv)
858 {
859   struct value *val = allocate_value (type);
860 
861   VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
862   return val;
863 }
864 
865 /* Create a not_lval value of numeric type TYPE that is one, and return it.  */
866 
867 struct value *
868 value_one (struct type *type)
869 {
870   struct type *type1 = check_typedef (type);
871   struct value *val;
872 
873   if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
874     {
875       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
876       gdb_byte v[16];
877 
878       decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
879       val = value_from_decfloat (type, v);
880     }
881   else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
882     {
883       val = value_from_double (type, (DOUBLEST) 1);
884     }
885   else if (is_integral_type (type1))
886     {
887       val = value_from_longest (type, (LONGEST) 1);
888     }
889   else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
890     {
891       struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
892       int i;
893       LONGEST low_bound, high_bound;
894       struct value *tmp;
895 
896       if (!get_array_bounds (type1, &low_bound, &high_bound))
897 	error (_("Could not determine the vector bounds"));
898 
899       val = allocate_value (type);
900       for (i = 0; i < high_bound - low_bound + 1; i++)
901 	{
902 	  tmp = value_one (eltype);
903 	  memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
904 		  value_contents_all (tmp), TYPE_LENGTH (eltype));
905 	}
906     }
907   else
908     {
909       error (_("Not a numeric type."));
910     }
911 
912   /* value_one result is never used for assignments to.  */
913   gdb_assert (VALUE_LVAL (val) == not_lval);
914 
915   return val;
916 }
917 
918 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.  */
919 
920 static struct value *
921 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
922 {
923   struct value *val;
924 
925   if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
926     error (_("Attempt to dereference a generic pointer."));
927 
928   val = value_from_contents_and_address (type, NULL, addr);
929 
930   if (!lazy)
931     value_fetch_lazy (val);
932 
933   return val;
934 }
935 
936 /* Return a value with type TYPE located at ADDR.
937 
938    Call value_at only if the data needs to be fetched immediately;
939    if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940    value_at_lazy instead.  value_at_lazy simply records the address of
941    the data and sets the lazy-evaluation-required flag.  The lazy flag
942    is tested in the value_contents macro, which is used if and when
943    the contents are actually required.
944 
945    Note: value_at does *NOT* handle embedded offsets; perform such
946    adjustments before or after calling it.  */
947 
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951   return get_value_at (type, addr, 0);
952 }
953 
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
955 
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959   return get_value_at (type, addr, 1);
960 }
961 
962 /* Called only from the value_contents and value_contents_all()
963    macros, if the current data for a variable needs to be loaded into
964    value_contents(VAL).  Fetches the data from the user's process, and
965    clears the lazy flag to indicate that the data in the buffer is
966    valid.
967 
968    If the value is zero-length, we avoid calling read_memory, which
969    would abort.  We mark the value as fetched anyway -- all 0 bytes of
970    it.
971 
972    This function returns a value because it is used in the
973    value_contents macro as part of an expression, where a void would
974    not work.  The value is ignored.  */
975 
976 int
977 value_fetch_lazy (struct value *val)
978 {
979   gdb_assert (value_lazy (val));
980   allocate_value_contents (val);
981   if (value_bitsize (val))
982     {
983       /* To read a lazy bitfield, read the entire enclosing value.  This
984 	 prevents reading the same block of (possibly volatile) memory once
985          per bitfield.  It would be even better to read only the containing
986          word, but we have no way to record that just specific bits of a
987          value have been fetched.  */
988       struct type *type = check_typedef (value_type (val));
989       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990       struct value *parent = value_parent (val);
991       LONGEST offset = value_offset (val);
992       LONGEST num;
993       int length = TYPE_LENGTH (type);
994 
995       if (!value_bits_valid (val,
996 			     TARGET_CHAR_BIT * offset + value_bitpos (val),
997 			     value_bitsize (val)))
998 	error (_("value has been optimized out"));
999 
1000       if (!unpack_value_bits_as_long (value_type (val),
1001 				      value_contents_for_printing (parent),
1002 				      offset,
1003 				      value_bitpos (val),
1004 				      value_bitsize (val), parent, &num))
1005 	mark_value_bytes_unavailable (val,
1006 				      value_embedded_offset (val),
1007 				      length);
1008       else
1009 	store_signed_integer (value_contents_raw (val), length,
1010 			      byte_order, num);
1011     }
1012   else if (VALUE_LVAL (val) == lval_memory)
1013     {
1014       CORE_ADDR addr = value_address (val);
1015       int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016 
1017       if (length)
1018 	read_value_memory (val, 0, value_stack (val),
1019 			   addr, value_contents_all_raw (val), length);
1020     }
1021   else if (VALUE_LVAL (val) == lval_register)
1022     {
1023       struct frame_info *frame;
1024       int regnum;
1025       struct type *type = check_typedef (value_type (val));
1026       struct value *new_val = val, *mark = value_mark ();
1027 
1028       /* Offsets are not supported here; lazy register values must
1029 	 refer to the entire register.  */
1030       gdb_assert (value_offset (val) == 0);
1031 
1032       while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 	{
1034 	  frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 	  regnum = VALUE_REGNUM (new_val);
1036 
1037 	  gdb_assert (frame != NULL);
1038 
1039 	  /* Convertible register routines are used for multi-register
1040 	     values and for interpretation in different types
1041 	     (e.g. float or int from a double register).  Lazy
1042 	     register values should have the register's natural type,
1043 	     so they do not apply.  */
1044 	  gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 						   regnum, type));
1046 
1047 	  new_val = get_frame_register_value (frame, regnum);
1048 	}
1049 
1050       /* If it's still lazy (for instance, a saved register on the
1051 	 stack), fetch it.  */
1052       if (value_lazy (new_val))
1053 	value_fetch_lazy (new_val);
1054 
1055       /* If the register was not saved, mark it optimized out.  */
1056       if (value_optimized_out (new_val))
1057 	set_value_optimized_out (val, 1);
1058       else
1059 	{
1060 	  set_value_lazy (val, 0);
1061 	  value_contents_copy (val, value_embedded_offset (val),
1062 			       new_val, value_embedded_offset (new_val),
1063 			       TYPE_LENGTH (type));
1064 	}
1065 
1066       if (frame_debug)
1067 	{
1068 	  struct gdbarch *gdbarch;
1069 	  frame = frame_find_by_id (VALUE_FRAME_ID (val));
1070 	  regnum = VALUE_REGNUM (val);
1071 	  gdbarch = get_frame_arch (frame);
1072 
1073 	  fprintf_unfiltered (gdb_stdlog,
1074 			      "{ value_fetch_lazy "
1075 			      "(frame=%d,regnum=%d(%s),...) ",
1076 			      frame_relative_level (frame), regnum,
1077 			      user_reg_map_regnum_to_name (gdbarch, regnum));
1078 
1079 	  fprintf_unfiltered (gdb_stdlog, "->");
1080 	  if (value_optimized_out (new_val))
1081 	    fprintf_unfiltered (gdb_stdlog, " optimized out");
1082 	  else
1083 	    {
1084 	      int i;
1085 	      const gdb_byte *buf = value_contents (new_val);
1086 
1087 	      if (VALUE_LVAL (new_val) == lval_register)
1088 		fprintf_unfiltered (gdb_stdlog, " register=%d",
1089 				    VALUE_REGNUM (new_val));
1090 	      else if (VALUE_LVAL (new_val) == lval_memory)
1091 		fprintf_unfiltered (gdb_stdlog, " address=%s",
1092 				    paddress (gdbarch,
1093 					      value_address (new_val)));
1094 	      else
1095 		fprintf_unfiltered (gdb_stdlog, " computed");
1096 
1097 	      fprintf_unfiltered (gdb_stdlog, " bytes=");
1098 	      fprintf_unfiltered (gdb_stdlog, "[");
1099 	      for (i = 0; i < register_size (gdbarch, regnum); i++)
1100 		fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1101 	      fprintf_unfiltered (gdb_stdlog, "]");
1102 	    }
1103 
1104 	  fprintf_unfiltered (gdb_stdlog, " }\n");
1105 	}
1106 
1107       /* Dispose of the intermediate values.  This prevents
1108 	 watchpoints from trying to watch the saved frame pointer.  */
1109       value_free_to_mark (mark);
1110     }
1111   else if (VALUE_LVAL (val) == lval_computed
1112 	   && value_computed_funcs (val)->read != NULL)
1113     value_computed_funcs (val)->read (val);
1114   else if (value_optimized_out (val))
1115     /* Keep it optimized out.  */;
1116   else
1117     internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1118 
1119   set_value_lazy (val, 0);
1120   return 0;
1121 }
1122 
1123 void
1124 read_value_memory (struct value *val, int embedded_offset,
1125 		   int stack, CORE_ADDR memaddr,
1126 		   gdb_byte *buffer, size_t length)
1127 {
1128   if (length)
1129     {
1130       VEC(mem_range_s) *available_memory;
1131 
1132       if (get_traceframe_number () < 0
1133 	  || !traceframe_available_memory (&available_memory, memaddr, length))
1134 	{
1135 	  if (stack)
1136 	    read_stack (memaddr, buffer, length);
1137 	  else
1138 	    read_memory (memaddr, buffer, length);
1139 	}
1140       else
1141 	{
1142 	  struct target_section_table *table;
1143 	  struct cleanup *old_chain;
1144 	  CORE_ADDR unavail;
1145 	  mem_range_s *r;
1146 	  int i;
1147 
1148 	  /* Fallback to reading from read-only sections.  */
1149 	  table = target_get_section_table (&exec_ops);
1150 	  available_memory =
1151 	    section_table_available_memory (available_memory,
1152 					    memaddr, length,
1153 					    table->sections,
1154 					    table->sections_end);
1155 
1156 	  old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1157 				    &available_memory);
1158 
1159 	  normalize_mem_ranges (available_memory);
1160 
1161 	  /* Mark which bytes are unavailable, and read those which
1162 	     are available.  */
1163 
1164 	  unavail = memaddr;
1165 
1166 	  for (i = 0;
1167 	       VEC_iterate (mem_range_s, available_memory, i, r);
1168 	       i++)
1169 	    {
1170 	      if (mem_ranges_overlap (r->start, r->length,
1171 				      memaddr, length))
1172 		{
1173 		  CORE_ADDR lo1, hi1, lo2, hi2;
1174 		  CORE_ADDR start, end;
1175 
1176 		  /* Get the intersection window.  */
1177 		  lo1 = memaddr;
1178 		  hi1 = memaddr + length;
1179 		  lo2 = r->start;
1180 		  hi2 = r->start + r->length;
1181 		  start = max (lo1, lo2);
1182 		  end = min (hi1, hi2);
1183 
1184 		  gdb_assert (end - memaddr <= length);
1185 
1186 		  if (start > unavail)
1187 		    mark_value_bytes_unavailable (val,
1188 						  (embedded_offset
1189 						   + unavail - memaddr),
1190 						  start - unavail);
1191 		  unavail = end;
1192 
1193 		  read_memory (start, buffer + start - memaddr, end - start);
1194 		}
1195 	    }
1196 
1197 	  if (unavail != memaddr + length)
1198 	    mark_value_bytes_unavailable (val,
1199 					  embedded_offset + unavail - memaddr,
1200 					  (memaddr + length) - unavail);
1201 
1202 	  do_cleanups (old_chain);
1203 	}
1204     }
1205 }
1206 
1207 /* Store the contents of FROMVAL into the location of TOVAL.
1208    Return a new value with the location of TOVAL and contents of FROMVAL.  */
1209 
1210 struct value *
1211 value_assign (struct value *toval, struct value *fromval)
1212 {
1213   struct type *type;
1214   struct value *val;
1215   struct frame_id old_frame;
1216 
1217   if (!deprecated_value_modifiable (toval))
1218     error (_("Left operand of assignment is not a modifiable lvalue."));
1219 
1220   toval = coerce_ref (toval);
1221 
1222   type = value_type (toval);
1223   if (VALUE_LVAL (toval) != lval_internalvar)
1224     fromval = value_cast (type, fromval);
1225   else
1226     {
1227       /* Coerce arrays and functions to pointers, except for arrays
1228 	 which only live in GDB's storage.  */
1229       if (!value_must_coerce_to_target (fromval))
1230 	fromval = coerce_array (fromval);
1231     }
1232 
1233   CHECK_TYPEDEF (type);
1234 
1235   /* Since modifying a register can trash the frame chain, and
1236      modifying memory can trash the frame cache, we save the old frame
1237      and then restore the new frame afterwards.  */
1238   old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1239 
1240   switch (VALUE_LVAL (toval))
1241     {
1242     case lval_internalvar:
1243       set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1244       return value_of_internalvar (get_type_arch (type),
1245 				   VALUE_INTERNALVAR (toval));
1246 
1247     case lval_internalvar_component:
1248       set_internalvar_component (VALUE_INTERNALVAR (toval),
1249 				 value_offset (toval),
1250 				 value_bitpos (toval),
1251 				 value_bitsize (toval),
1252 				 fromval);
1253       break;
1254 
1255     case lval_memory:
1256       {
1257 	const gdb_byte *dest_buffer;
1258 	CORE_ADDR changed_addr;
1259 	int changed_len;
1260         gdb_byte buffer[sizeof (LONGEST)];
1261 
1262 	if (value_bitsize (toval))
1263 	  {
1264 	    struct value *parent = value_parent (toval);
1265 
1266 	    changed_addr = value_address (parent) + value_offset (toval);
1267 	    changed_len = (value_bitpos (toval)
1268 			   + value_bitsize (toval)
1269 			   + HOST_CHAR_BIT - 1)
1270 	      / HOST_CHAR_BIT;
1271 
1272 	    /* If we can read-modify-write exactly the size of the
1273 	       containing type (e.g. short or int) then do so.  This
1274 	       is safer for volatile bitfields mapped to hardware
1275 	       registers.  */
1276 	    if (changed_len < TYPE_LENGTH (type)
1277 		&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1278 		&& ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1279 	      changed_len = TYPE_LENGTH (type);
1280 
1281 	    if (changed_len > (int) sizeof (LONGEST))
1282 	      error (_("Can't handle bitfields which "
1283 		       "don't fit in a %d bit word."),
1284 		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1285 
1286 	    read_memory (changed_addr, buffer, changed_len);
1287 	    modify_field (type, buffer, value_as_long (fromval),
1288 			  value_bitpos (toval), value_bitsize (toval));
1289 	    dest_buffer = buffer;
1290 	  }
1291 	else
1292 	  {
1293 	    changed_addr = value_address (toval);
1294 	    changed_len = TYPE_LENGTH (type);
1295 	    dest_buffer = value_contents (fromval);
1296 	  }
1297 
1298 	write_memory (changed_addr, dest_buffer, changed_len);
1299 	observer_notify_memory_changed (changed_addr, changed_len,
1300 					dest_buffer);
1301       }
1302       break;
1303 
1304     case lval_register:
1305       {
1306 	struct frame_info *frame;
1307 	struct gdbarch *gdbarch;
1308 	int value_reg;
1309 
1310 	/* Figure out which frame this is in currently.  */
1311 	frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1312 	value_reg = VALUE_REGNUM (toval);
1313 
1314 	if (!frame)
1315 	  error (_("Value being assigned to is no longer active."));
1316 
1317 	gdbarch = get_frame_arch (frame);
1318 	if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1319 	  {
1320 	    /* If TOVAL is a special machine register requiring
1321 	       conversion of program values to a special raw
1322 	       format.  */
1323 	    gdbarch_value_to_register (gdbarch, frame,
1324 				       VALUE_REGNUM (toval), type,
1325 				       value_contents (fromval));
1326 	  }
1327 	else
1328 	  {
1329 	    if (value_bitsize (toval))
1330 	      {
1331 		struct value *parent = value_parent (toval);
1332 		int offset = value_offset (parent) + value_offset (toval);
1333 		int changed_len;
1334 		gdb_byte buffer[sizeof (LONGEST)];
1335 		int optim, unavail;
1336 
1337 		changed_len = (value_bitpos (toval)
1338 			       + value_bitsize (toval)
1339 			       + HOST_CHAR_BIT - 1)
1340 		  / HOST_CHAR_BIT;
1341 
1342 		if (changed_len > (int) sizeof (LONGEST))
1343 		  error (_("Can't handle bitfields which "
1344 			   "don't fit in a %d bit word."),
1345 			 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1346 
1347 		if (!get_frame_register_bytes (frame, value_reg, offset,
1348 					       changed_len, buffer,
1349 					       &optim, &unavail))
1350 		  {
1351 		    if (optim)
1352 		      error (_("value has been optimized out"));
1353 		    if (unavail)
1354 		      throw_error (NOT_AVAILABLE_ERROR,
1355 				   _("value is not available"));
1356 		  }
1357 
1358 		modify_field (type, buffer, value_as_long (fromval),
1359 			      value_bitpos (toval), value_bitsize (toval));
1360 
1361 		put_frame_register_bytes (frame, value_reg, offset,
1362 					  changed_len, buffer);
1363 	      }
1364 	    else
1365 	      {
1366 		put_frame_register_bytes (frame, value_reg,
1367 					  value_offset (toval),
1368 					  TYPE_LENGTH (type),
1369 					  value_contents (fromval));
1370 	      }
1371 	  }
1372 
1373 	if (deprecated_register_changed_hook)
1374 	  deprecated_register_changed_hook (-1);
1375 	observer_notify_target_changed (&current_target);
1376 	break;
1377       }
1378 
1379     case lval_computed:
1380       {
1381 	const struct lval_funcs *funcs = value_computed_funcs (toval);
1382 
1383 	if (funcs->write != NULL)
1384 	  {
1385 	    funcs->write (toval, fromval);
1386 	    break;
1387 	  }
1388       }
1389       /* Fall through.  */
1390 
1391     default:
1392       error (_("Left operand of assignment is not an lvalue."));
1393     }
1394 
1395   /* Assigning to the stack pointer, frame pointer, and other
1396      (architecture and calling convention specific) registers may
1397      cause the frame cache to be out of date.  Assigning to memory
1398      also can.  We just do this on all assignments to registers or
1399      memory, for simplicity's sake; I doubt the slowdown matters.  */
1400   switch (VALUE_LVAL (toval))
1401     {
1402     case lval_memory:
1403     case lval_register:
1404     case lval_computed:
1405 
1406       reinit_frame_cache ();
1407 
1408       /* Having destroyed the frame cache, restore the selected
1409 	 frame.  */
1410 
1411       /* FIXME: cagney/2002-11-02: There has to be a better way of
1412 	 doing this.  Instead of constantly saving/restoring the
1413 	 frame.  Why not create a get_selected_frame() function that,
1414 	 having saved the selected frame's ID can automatically
1415 	 re-find the previously selected frame automatically.  */
1416 
1417       {
1418 	struct frame_info *fi = frame_find_by_id (old_frame);
1419 
1420 	if (fi != NULL)
1421 	  select_frame (fi);
1422       }
1423 
1424       break;
1425     default:
1426       break;
1427     }
1428 
1429   /* If the field does not entirely fill a LONGEST, then zero the sign
1430      bits.  If the field is signed, and is negative, then sign
1431      extend.  */
1432   if ((value_bitsize (toval) > 0)
1433       && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1434     {
1435       LONGEST fieldval = value_as_long (fromval);
1436       LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1437 
1438       fieldval &= valmask;
1439       if (!TYPE_UNSIGNED (type)
1440 	  && (fieldval & (valmask ^ (valmask >> 1))))
1441 	fieldval |= ~valmask;
1442 
1443       fromval = value_from_longest (type, fieldval);
1444     }
1445 
1446   /* The return value is a copy of TOVAL so it shares its location
1447      information, but its contents are updated from FROMVAL.  This
1448      implies the returned value is not lazy, even if TOVAL was.  */
1449   val = value_copy (toval);
1450   set_value_lazy (val, 0);
1451   memcpy (value_contents_raw (val), value_contents (fromval),
1452 	  TYPE_LENGTH (type));
1453 
1454   /* We copy over the enclosing type and pointed-to offset from FROMVAL
1455      in the case of pointer types.  For object types, the enclosing type
1456      and embedded offset must *not* be copied: the target object refered
1457      to by TOVAL retains its original dynamic type after assignment.  */
1458   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459     {
1460       set_value_enclosing_type (val, value_enclosing_type (fromval));
1461       set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1462     }
1463 
1464   return val;
1465 }
1466 
1467 /* Extend a value VAL to COUNT repetitions of its type.  */
1468 
1469 struct value *
1470 value_repeat (struct value *arg1, int count)
1471 {
1472   struct value *val;
1473 
1474   if (VALUE_LVAL (arg1) != lval_memory)
1475     error (_("Only values in memory can be extended with '@'."));
1476   if (count < 1)
1477     error (_("Invalid number %d of repetitions."), count);
1478 
1479   val = allocate_repeat_value (value_enclosing_type (arg1), count);
1480 
1481   VALUE_LVAL (val) = lval_memory;
1482   set_value_address (val, value_address (arg1));
1483 
1484   read_value_memory (val, 0, value_stack (val), value_address (val),
1485 		     value_contents_all_raw (val),
1486 		     TYPE_LENGTH (value_enclosing_type (val)));
1487 
1488   return val;
1489 }
1490 
1491 struct value *
1492 value_of_variable (struct symbol *var, const struct block *b)
1493 {
1494   struct frame_info *frame;
1495 
1496   if (!symbol_read_needs_frame (var))
1497     frame = NULL;
1498   else if (!b)
1499     frame = get_selected_frame (_("No frame selected."));
1500   else
1501     {
1502       frame = block_innermost_frame (b);
1503       if (!frame)
1504 	{
1505 	  if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1506 	      && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1507 	    error (_("No frame is currently executing in block %s."),
1508 		   SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1509 	  else
1510 	    error (_("No frame is currently executing in specified block"));
1511 	}
1512     }
1513 
1514   return read_var_value (var, frame);
1515 }
1516 
1517 struct value *
1518 address_of_variable (struct symbol *var, struct block *b)
1519 {
1520   struct type *type = SYMBOL_TYPE (var);
1521   struct value *val;
1522 
1523   /* Evaluate it first; if the result is a memory address, we're fine.
1524      Lazy evaluation pays off here.  */
1525 
1526   val = value_of_variable (var, b);
1527 
1528   if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1529       || TYPE_CODE (type) == TYPE_CODE_FUNC)
1530     {
1531       CORE_ADDR addr = value_address (val);
1532 
1533       return value_from_pointer (lookup_pointer_type (type), addr);
1534     }
1535 
1536   /* Not a memory address; check what the problem was.  */
1537   switch (VALUE_LVAL (val))
1538     {
1539     case lval_register:
1540       {
1541 	struct frame_info *frame;
1542 	const char *regname;
1543 
1544 	frame = frame_find_by_id (VALUE_FRAME_ID (val));
1545 	gdb_assert (frame);
1546 
1547 	regname = gdbarch_register_name (get_frame_arch (frame),
1548 					 VALUE_REGNUM (val));
1549 	gdb_assert (regname && *regname);
1550 
1551 	error (_("Address requested for identifier "
1552 		 "\"%s\" which is in register $%s"),
1553 	       SYMBOL_PRINT_NAME (var), regname);
1554 	break;
1555       }
1556 
1557     default:
1558       error (_("Can't take address of \"%s\" which isn't an lvalue."),
1559 	     SYMBOL_PRINT_NAME (var));
1560       break;
1561     }
1562 
1563   return val;
1564 }
1565 
1566 /* Return one if VAL does not live in target memory, but should in order
1567    to operate on it.  Otherwise return zero.  */
1568 
1569 int
1570 value_must_coerce_to_target (struct value *val)
1571 {
1572   struct type *valtype;
1573 
1574   /* The only lval kinds which do not live in target memory.  */
1575   if (VALUE_LVAL (val) != not_lval
1576       && VALUE_LVAL (val) != lval_internalvar)
1577     return 0;
1578 
1579   valtype = check_typedef (value_type (val));
1580 
1581   switch (TYPE_CODE (valtype))
1582     {
1583     case TYPE_CODE_ARRAY:
1584       return TYPE_VECTOR (valtype) ? 0 : 1;
1585     case TYPE_CODE_STRING:
1586       return 1;
1587     default:
1588       return 0;
1589     }
1590 }
1591 
1592 /* Make sure that VAL lives in target memory if it's supposed to.  For
1593    instance, strings are constructed as character arrays in GDB's
1594    storage, and this function copies them to the target.  */
1595 
1596 struct value *
1597 value_coerce_to_target (struct value *val)
1598 {
1599   LONGEST length;
1600   CORE_ADDR addr;
1601 
1602   if (!value_must_coerce_to_target (val))
1603     return val;
1604 
1605   length = TYPE_LENGTH (check_typedef (value_type (val)));
1606   addr = allocate_space_in_inferior (length);
1607   write_memory (addr, value_contents (val), length);
1608   return value_at_lazy (value_type (val), addr);
1609 }
1610 
1611 /* Given a value which is an array, return a value which is a pointer
1612    to its first element, regardless of whether or not the array has a
1613    nonzero lower bound.
1614 
1615    FIXME: A previous comment here indicated that this routine should
1616    be substracting the array's lower bound.  It's not clear to me that
1617    this is correct.  Given an array subscripting operation, it would
1618    certainly work to do the adjustment here, essentially computing:
1619 
1620    (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1621 
1622    However I believe a more appropriate and logical place to account
1623    for the lower bound is to do so in value_subscript, essentially
1624    computing:
1625 
1626    (&array[0] + ((index - lowerbound) * sizeof array[0]))
1627 
1628    As further evidence consider what would happen with operations
1629    other than array subscripting, where the caller would get back a
1630    value that had an address somewhere before the actual first element
1631    of the array, and the information about the lower bound would be
1632    lost because of the coercion to pointer type.  */
1633 
1634 struct value *
1635 value_coerce_array (struct value *arg1)
1636 {
1637   struct type *type = check_typedef (value_type (arg1));
1638 
1639   /* If the user tries to do something requiring a pointer with an
1640      array that has not yet been pushed to the target, then this would
1641      be a good time to do so.  */
1642   arg1 = value_coerce_to_target (arg1);
1643 
1644   if (VALUE_LVAL (arg1) != lval_memory)
1645     error (_("Attempt to take address of value not located in memory."));
1646 
1647   return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1648 			     value_address (arg1));
1649 }
1650 
1651 /* Given a value which is a function, return a value which is a pointer
1652    to it.  */
1653 
1654 struct value *
1655 value_coerce_function (struct value *arg1)
1656 {
1657   struct value *retval;
1658 
1659   if (VALUE_LVAL (arg1) != lval_memory)
1660     error (_("Attempt to take address of value not located in memory."));
1661 
1662   retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1663 			       value_address (arg1));
1664   return retval;
1665 }
1666 
1667 /* Return a pointer value for the object for which ARG1 is the
1668    contents.  */
1669 
1670 struct value *
1671 value_addr (struct value *arg1)
1672 {
1673   struct value *arg2;
1674   struct type *type = check_typedef (value_type (arg1));
1675 
1676   if (TYPE_CODE (type) == TYPE_CODE_REF)
1677     {
1678       /* Copy the value, but change the type from (T&) to (T*).  We
1679          keep the same location information, which is efficient, and
1680          allows &(&X) to get the location containing the reference.  */
1681       arg2 = value_copy (arg1);
1682       deprecated_set_value_type (arg2,
1683 				 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1684       return arg2;
1685     }
1686   if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1687     return value_coerce_function (arg1);
1688 
1689   /* If this is an array that has not yet been pushed to the target,
1690      then this would be a good time to force it to memory.  */
1691   arg1 = value_coerce_to_target (arg1);
1692 
1693   if (VALUE_LVAL (arg1) != lval_memory)
1694     error (_("Attempt to take address of value not located in memory."));
1695 
1696   /* Get target memory address.  */
1697   arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1698 			     (value_address (arg1)
1699 			      + value_embedded_offset (arg1)));
1700 
1701   /* This may be a pointer to a base subobject; so remember the
1702      full derived object's type ...  */
1703   set_value_enclosing_type (arg2,
1704 			    lookup_pointer_type (value_enclosing_type (arg1)));
1705   /* ... and also the relative position of the subobject in the full
1706      object.  */
1707   set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1708   return arg2;
1709 }
1710 
1711 /* Return a reference value for the object for which ARG1 is the
1712    contents.  */
1713 
1714 struct value *
1715 value_ref (struct value *arg1)
1716 {
1717   struct value *arg2;
1718   struct type *type = check_typedef (value_type (arg1));
1719 
1720   if (TYPE_CODE (type) == TYPE_CODE_REF)
1721     return arg1;
1722 
1723   arg2 = value_addr (arg1);
1724   deprecated_set_value_type (arg2, lookup_reference_type (type));
1725   return arg2;
1726 }
1727 
1728 /* Given a value of a pointer type, apply the C unary * operator to
1729    it.  */
1730 
1731 struct value *
1732 value_ind (struct value *arg1)
1733 {
1734   struct type *base_type;
1735   struct value *arg2;
1736 
1737   arg1 = coerce_array (arg1);
1738 
1739   base_type = check_typedef (value_type (arg1));
1740 
1741   if (VALUE_LVAL (arg1) == lval_computed)
1742     {
1743       const struct lval_funcs *funcs = value_computed_funcs (arg1);
1744 
1745       if (funcs->indirect)
1746 	{
1747 	  struct value *result = funcs->indirect (arg1);
1748 
1749 	  if (result)
1750 	    return result;
1751 	}
1752     }
1753 
1754   if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1755     {
1756       struct type *enc_type;
1757 
1758       /* We may be pointing to something embedded in a larger object.
1759          Get the real type of the enclosing object.  */
1760       enc_type = check_typedef (value_enclosing_type (arg1));
1761       enc_type = TYPE_TARGET_TYPE (enc_type);
1762 
1763       if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1764 	  || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1765 	/* For functions, go through find_function_addr, which knows
1766 	   how to handle function descriptors.  */
1767 	arg2 = value_at_lazy (enc_type,
1768 			      find_function_addr (arg1, NULL));
1769       else
1770 	/* Retrieve the enclosing object pointed to.  */
1771 	arg2 = value_at_lazy (enc_type,
1772 			      (value_as_address (arg1)
1773 			       - value_pointed_to_offset (arg1)));
1774 
1775       /* Re-adjust type.  */
1776       deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1777       /* Add embedding info.  */
1778       set_value_enclosing_type (arg2, enc_type);
1779       set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1780 
1781       /* We may be pointing to an object of some derived type.  */
1782       arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1783       return arg2;
1784     }
1785 
1786   error (_("Attempt to take contents of a non-pointer value."));
1787   return 0;			/* For lint -- never reached.  */
1788 }
1789 
1790 /* Create a value for an array by allocating space in GDB, copying the
1791    data into that space, and then setting up an array value.
1792 
1793    The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1794    is populated from the values passed in ELEMVEC.
1795 
1796    The element type of the array is inherited from the type of the
1797    first element, and all elements must have the same size (though we
1798    don't currently enforce any restriction on their types).  */
1799 
1800 struct value *
1801 value_array (int lowbound, int highbound, struct value **elemvec)
1802 {
1803   int nelem;
1804   int idx;
1805   unsigned int typelength;
1806   struct value *val;
1807   struct type *arraytype;
1808 
1809   /* Validate that the bounds are reasonable and that each of the
1810      elements have the same size.  */
1811 
1812   nelem = highbound - lowbound + 1;
1813   if (nelem <= 0)
1814     {
1815       error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1816     }
1817   typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1818   for (idx = 1; idx < nelem; idx++)
1819     {
1820       if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1821 	{
1822 	  error (_("array elements must all be the same size"));
1823 	}
1824     }
1825 
1826   arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1827 				       lowbound, highbound);
1828 
1829   if (!current_language->c_style_arrays)
1830     {
1831       val = allocate_value (arraytype);
1832       for (idx = 0; idx < nelem; idx++)
1833 	value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1834 			     typelength);
1835       return val;
1836     }
1837 
1838   /* Allocate space to store the array, and then initialize it by
1839      copying in each element.  */
1840 
1841   val = allocate_value (arraytype);
1842   for (idx = 0; idx < nelem; idx++)
1843     value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1844   return val;
1845 }
1846 
1847 struct value *
1848 value_cstring (char *ptr, int len, struct type *char_type)
1849 {
1850   struct value *val;
1851   int lowbound = current_language->string_lower_bound;
1852   int highbound = len / TYPE_LENGTH (char_type);
1853   struct type *stringtype
1854     = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1855 
1856   val = allocate_value (stringtype);
1857   memcpy (value_contents_raw (val), ptr, len);
1858   return val;
1859 }
1860 
1861 /* Create a value for a string constant by allocating space in the
1862    inferior, copying the data into that space, and returning the
1863    address with type TYPE_CODE_STRING.  PTR points to the string
1864    constant data; LEN is number of characters.
1865 
1866    Note that string types are like array of char types with a lower
1867    bound of zero and an upper bound of LEN - 1.  Also note that the
1868    string may contain embedded null bytes.  */
1869 
1870 struct value *
1871 value_string (char *ptr, int len, struct type *char_type)
1872 {
1873   struct value *val;
1874   int lowbound = current_language->string_lower_bound;
1875   int highbound = len / TYPE_LENGTH (char_type);
1876   struct type *stringtype
1877     = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1878 
1879   val = allocate_value (stringtype);
1880   memcpy (value_contents_raw (val), ptr, len);
1881   return val;
1882 }
1883 
1884 struct value *
1885 value_bitstring (char *ptr, int len, struct type *index_type)
1886 {
1887   struct value *val;
1888   struct type *domain_type
1889     = create_range_type (NULL, index_type, 0, len - 1);
1890   struct type *type = create_set_type (NULL, domain_type);
1891 
1892   TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1893   val = allocate_value (type);
1894   memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1895   return val;
1896 }
1897 
1898 /* See if we can pass arguments in T2 to a function which takes
1899    arguments of types T1.  T1 is a list of NARGS arguments, and T2 is
1900    a NULL-terminated vector.  If some arguments need coercion of some
1901    sort, then the coerced values are written into T2.  Return value is
1902    0 if the arguments could be matched, or the position at which they
1903    differ if not.
1904 
1905    STATICP is nonzero if the T1 argument list came from a static
1906    member function.  T2 will still include the ``this'' pointer, but
1907    it will be skipped.
1908 
1909    For non-static member functions, we ignore the first argument,
1910    which is the type of the instance variable.  This is because we
1911    want to handle calls with objects from derived classes.  This is
1912    not entirely correct: we should actually check to make sure that a
1913    requested operation is type secure, shouldn't we?  FIXME.  */
1914 
1915 static int
1916 typecmp (int staticp, int varargs, int nargs,
1917 	 struct field t1[], struct value *t2[])
1918 {
1919   int i;
1920 
1921   if (t2 == 0)
1922     internal_error (__FILE__, __LINE__,
1923 		    _("typecmp: no argument list"));
1924 
1925   /* Skip ``this'' argument if applicable.  T2 will always include
1926      THIS.  */
1927   if (staticp)
1928     t2 ++;
1929 
1930   for (i = 0;
1931        (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1932        i++)
1933     {
1934       struct type *tt1, *tt2;
1935 
1936       if (!t2[i])
1937 	return i + 1;
1938 
1939       tt1 = check_typedef (t1[i].type);
1940       tt2 = check_typedef (value_type (t2[i]));
1941 
1942       if (TYPE_CODE (tt1) == TYPE_CODE_REF
1943       /* We should be doing hairy argument matching, as below.  */
1944 	  && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1945 	      == TYPE_CODE (tt2)))
1946 	{
1947 	  if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1948 	    t2[i] = value_coerce_array (t2[i]);
1949 	  else
1950 	    t2[i] = value_ref (t2[i]);
1951 	  continue;
1952 	}
1953 
1954       /* djb - 20000715 - Until the new type structure is in the
1955 	 place, and we can attempt things like implicit conversions,
1956 	 we need to do this so you can take something like a map<const
1957 	 char *>, and properly access map["hello"], because the
1958 	 argument to [] will be a reference to a pointer to a char,
1959 	 and the argument will be a pointer to a char.  */
1960       while (TYPE_CODE(tt1) == TYPE_CODE_REF
1961 	     || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1962 	{
1963 	  tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1964 	}
1965       while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1966 	     || TYPE_CODE(tt2) == TYPE_CODE_PTR
1967 	     || TYPE_CODE(tt2) == TYPE_CODE_REF)
1968 	{
1969 	  tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1970 	}
1971       if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1972 	continue;
1973       /* Array to pointer is a `trivial conversion' according to the
1974 	 ARM.  */
1975 
1976       /* We should be doing much hairier argument matching (see
1977          section 13.2 of the ARM), but as a quick kludge, just check
1978          for the same type code.  */
1979       if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1980 	return i + 1;
1981     }
1982   if (varargs || t2[i] == NULL)
1983     return 0;
1984   return i + 1;
1985 }
1986 
1987 /* Helper function used by value_struct_elt to recurse through
1988    baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
1989    ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1990    TYPE.  If found, return value, else return NULL.
1991 
1992    If LOOKING_FOR_BASECLASS, then instead of looking for struct
1993    fields, look for a baseclass named NAME.  */
1994 
1995 static struct value *
1996 search_struct_field (const char *name, struct value *arg1, int offset,
1997 		     struct type *type, int looking_for_baseclass)
1998 {
1999   int i;
2000   int nbases;
2001 
2002   CHECK_TYPEDEF (type);
2003   nbases = TYPE_N_BASECLASSES (type);
2004 
2005   if (!looking_for_baseclass)
2006     for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2007       {
2008 	char *t_field_name = TYPE_FIELD_NAME (type, i);
2009 
2010 	if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2011 	  {
2012 	    struct value *v;
2013 
2014 	    if (field_is_static (&TYPE_FIELD (type, i)))
2015 	      {
2016 		v = value_static_field (type, i);
2017 		if (v == 0)
2018 		  error (_("field %s is nonexistent or "
2019 			   "has been optimized out"),
2020 			 name);
2021 	      }
2022 	    else
2023 	      {
2024 		v = value_primitive_field (arg1, offset, i, type);
2025 		if (v == 0)
2026 		  error (_("there is no field named %s"), name);
2027 	      }
2028 	    return v;
2029 	  }
2030 
2031 	if (t_field_name
2032 	    && (t_field_name[0] == '\0'
2033 		|| (TYPE_CODE (type) == TYPE_CODE_UNION
2034 		    && (strcmp_iw (t_field_name, "else") == 0))))
2035 	  {
2036 	    struct type *field_type = TYPE_FIELD_TYPE (type, i);
2037 
2038 	    if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2039 		|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2040 	      {
2041 		/* Look for a match through the fields of an anonymous
2042 		   union, or anonymous struct.  C++ provides anonymous
2043 		   unions.
2044 
2045 		   In the GNU Chill (now deleted from GDB)
2046 		   implementation of variant record types, each
2047 		   <alternative field> has an (anonymous) union type,
2048 		   each member of the union represents a <variant
2049 		   alternative>.  Each <variant alternative> is
2050 		   represented as a struct, with a member for each
2051 		   <variant field>.  */
2052 
2053 		struct value *v;
2054 		int new_offset = offset;
2055 
2056 		/* This is pretty gross.  In G++, the offset in an
2057 		   anonymous union is relative to the beginning of the
2058 		   enclosing struct.  In the GNU Chill (now deleted
2059 		   from GDB) implementation of variant records, the
2060 		   bitpos is zero in an anonymous union field, so we
2061 		   have to add the offset of the union here.  */
2062 		if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2063 		    || (TYPE_NFIELDS (field_type) > 0
2064 			&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
2065 		  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2066 
2067 		v = search_struct_field (name, arg1, new_offset,
2068 					 field_type,
2069 					 looking_for_baseclass);
2070 		if (v)
2071 		  return v;
2072 	      }
2073 	  }
2074       }
2075 
2076   for (i = 0; i < nbases; i++)
2077     {
2078       struct value *v;
2079       struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2080       /* If we are looking for baseclasses, this is what we get when
2081          we hit them.  But it could happen that the base part's member
2082          name is not yet filled in.  */
2083       int found_baseclass = (looking_for_baseclass
2084 			     && TYPE_BASECLASS_NAME (type, i) != NULL
2085 			     && (strcmp_iw (name,
2086 					    TYPE_BASECLASS_NAME (type,
2087 								 i)) == 0));
2088 
2089       if (BASETYPE_VIA_VIRTUAL (type, i))
2090 	{
2091 	  int boffset;
2092 	  struct value *v2;
2093 
2094 	  boffset = baseclass_offset (type, i,
2095 				      value_contents_for_printing (arg1),
2096 				      value_embedded_offset (arg1) + offset,
2097 				      value_address (arg1),
2098 				      arg1);
2099 
2100 	  /* The virtual base class pointer might have been clobbered
2101 	     by the user program.  Make sure that it still points to a
2102 	     valid memory location.  */
2103 
2104 	  boffset += value_embedded_offset (arg1) + offset;
2105 	  if (boffset < 0
2106 	      || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2107 	    {
2108 	      CORE_ADDR base_addr;
2109 
2110 	      v2  = allocate_value (basetype);
2111 	      base_addr = value_address (arg1) + boffset;
2112 	      if (target_read_memory (base_addr,
2113 				      value_contents_raw (v2),
2114 				      TYPE_LENGTH (basetype)) != 0)
2115 		error (_("virtual baseclass botch"));
2116 	      VALUE_LVAL (v2) = lval_memory;
2117 	      set_value_address (v2, base_addr);
2118 	    }
2119 	  else
2120 	    {
2121 	      v2 = value_copy (arg1);
2122 	      deprecated_set_value_type (v2, basetype);
2123 	      set_value_embedded_offset (v2, boffset);
2124 	    }
2125 
2126 	  if (found_baseclass)
2127 	    return v2;
2128 	  v = search_struct_field (name, v2, 0,
2129 				   TYPE_BASECLASS (type, i),
2130 				   looking_for_baseclass);
2131 	}
2132       else if (found_baseclass)
2133 	v = value_primitive_field (arg1, offset, i, type);
2134       else
2135 	v = search_struct_field (name, arg1,
2136 				 offset + TYPE_BASECLASS_BITPOS (type,
2137 								 i) / 8,
2138 				 basetype, looking_for_baseclass);
2139       if (v)
2140 	return v;
2141     }
2142   return NULL;
2143 }
2144 
2145 /* Helper function used by value_struct_elt to recurse through
2146    baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
2147    ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2148    TYPE.
2149 
2150    If found, return value, else if name matched and args not return
2151    (value) -1, else return NULL.  */
2152 
2153 static struct value *
2154 search_struct_method (const char *name, struct value **arg1p,
2155 		      struct value **args, int offset,
2156 		      int *static_memfuncp, struct type *type)
2157 {
2158   int i;
2159   struct value *v;
2160   int name_matched = 0;
2161   char dem_opname[64];
2162 
2163   CHECK_TYPEDEF (type);
2164   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2165     {
2166       char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2167 
2168       /* FIXME!  May need to check for ARM demangling here.  */
2169       if (strncmp (t_field_name, "__", 2) == 0 ||
2170 	  strncmp (t_field_name, "op", 2) == 0 ||
2171 	  strncmp (t_field_name, "type", 4) == 0)
2172 	{
2173 	  if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2174 	    t_field_name = dem_opname;
2175 	  else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2176 	    t_field_name = dem_opname;
2177 	}
2178       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2179 	{
2180 	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2181 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2182 
2183 	  name_matched = 1;
2184 	  check_stub_method_group (type, i);
2185 	  if (j > 0 && args == 0)
2186 	    error (_("cannot resolve overloaded method "
2187 		     "`%s': no arguments supplied"), name);
2188 	  else if (j == 0 && args == 0)
2189 	    {
2190 	      v = value_fn_field (arg1p, f, j, type, offset);
2191 	      if (v != NULL)
2192 		return v;
2193 	    }
2194 	  else
2195 	    while (j >= 0)
2196 	      {
2197 		if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2198 			      TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2199 			      TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2200 			      TYPE_FN_FIELD_ARGS (f, j), args))
2201 		  {
2202 		    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2203 		      return value_virtual_fn_field (arg1p, f, j,
2204 						     type, offset);
2205 		    if (TYPE_FN_FIELD_STATIC_P (f, j)
2206 			&& static_memfuncp)
2207 		      *static_memfuncp = 1;
2208 		    v = value_fn_field (arg1p, f, j, type, offset);
2209 		    if (v != NULL)
2210 		      return v;
2211 		  }
2212 		j--;
2213 	      }
2214 	}
2215     }
2216 
2217   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2218     {
2219       int base_offset;
2220       int skip = 0;
2221       int this_offset;
2222 
2223       if (BASETYPE_VIA_VIRTUAL (type, i))
2224 	{
2225 	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2226 	  struct value *base_val;
2227 	  const gdb_byte *base_valaddr;
2228 
2229 	  /* The virtual base class pointer might have been
2230 	     clobbered by the user program.  Make sure that it
2231 	    still points to a valid memory location.  */
2232 
2233 	  if (offset < 0 || offset >= TYPE_LENGTH (type))
2234 	    {
2235 	      gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2236 	      CORE_ADDR address = value_address (*arg1p);
2237 
2238 	      if (target_read_memory (address + offset,
2239 				      tmp, TYPE_LENGTH (baseclass)) != 0)
2240 		error (_("virtual baseclass botch"));
2241 
2242 	      base_val = value_from_contents_and_address (baseclass,
2243 							  tmp,
2244 							  address + offset);
2245 	      base_valaddr = value_contents_for_printing (base_val);
2246 	      this_offset = 0;
2247 	    }
2248 	  else
2249 	    {
2250 	      base_val = *arg1p;
2251 	      base_valaddr = value_contents_for_printing (*arg1p);
2252 	      this_offset = offset;
2253 	    }
2254 
2255 	  base_offset = baseclass_offset (type, i, base_valaddr,
2256 					  this_offset, value_address (base_val),
2257 					  base_val);
2258 	}
2259       else
2260 	{
2261 	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2262 	}
2263       v = search_struct_method (name, arg1p, args, base_offset + offset,
2264 				static_memfuncp, TYPE_BASECLASS (type, i));
2265       if (v == (struct value *) - 1)
2266 	{
2267 	  name_matched = 1;
2268 	}
2269       else if (v)
2270 	{
2271 	  /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
2272 	  /* *arg1p = arg1_tmp; */
2273 	  return v;
2274 	}
2275     }
2276   if (name_matched)
2277     return (struct value *) - 1;
2278   else
2279     return NULL;
2280 }
2281 
2282 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2283    extract the component named NAME from the ultimate target
2284    structure/union and return it as a value with its appropriate type.
2285    ERR is used in the error message if *ARGP's type is wrong.
2286 
2287    C++: ARGS is a list of argument types to aid in the selection of
2288    an appropriate method.  Also, handle derived types.
2289 
2290    STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2291    where the truthvalue of whether the function that was resolved was
2292    a static member function or not is stored.
2293 
2294    ERR is an error message to be printed in case the field is not
2295    found.  */
2296 
2297 struct value *
2298 value_struct_elt (struct value **argp, struct value **args,
2299 		  const char *name, int *static_memfuncp, const char *err)
2300 {
2301   struct type *t;
2302   struct value *v;
2303 
2304   *argp = coerce_array (*argp);
2305 
2306   t = check_typedef (value_type (*argp));
2307 
2308   /* Follow pointers until we get to a non-pointer.  */
2309 
2310   while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2311     {
2312       *argp = value_ind (*argp);
2313       /* Don't coerce fn pointer to fn and then back again!  */
2314       if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2315 	*argp = coerce_array (*argp);
2316       t = check_typedef (value_type (*argp));
2317     }
2318 
2319   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2320       && TYPE_CODE (t) != TYPE_CODE_UNION)
2321     error (_("Attempt to extract a component of a value that is not a %s."),
2322 	   err);
2323 
2324   /* Assume it's not, unless we see that it is.  */
2325   if (static_memfuncp)
2326     *static_memfuncp = 0;
2327 
2328   if (!args)
2329     {
2330       /* if there are no arguments ...do this...  */
2331 
2332       /* Try as a field first, because if we succeed, there is less
2333          work to be done.  */
2334       v = search_struct_field (name, *argp, 0, t, 0);
2335       if (v)
2336 	return v;
2337 
2338       /* C++: If it was not found as a data field, then try to
2339          return it as a pointer to a method.  */
2340       v = search_struct_method (name, argp, args, 0,
2341 				static_memfuncp, t);
2342 
2343       if (v == (struct value *) - 1)
2344 	error (_("Cannot take address of method %s."), name);
2345       else if (v == 0)
2346 	{
2347 	  if (TYPE_NFN_FIELDS (t))
2348 	    error (_("There is no member or method named %s."), name);
2349 	  else
2350 	    error (_("There is no member named %s."), name);
2351 	}
2352       return v;
2353     }
2354 
2355     v = search_struct_method (name, argp, args, 0,
2356 			      static_memfuncp, t);
2357 
2358   if (v == (struct value *) - 1)
2359     {
2360       error (_("One of the arguments you tried to pass to %s could not "
2361 	       "be converted to what the function wants."), name);
2362     }
2363   else if (v == 0)
2364     {
2365       /* See if user tried to invoke data as function.  If so, hand it
2366          back.  If it's not callable (i.e., a pointer to function),
2367          gdb should give an error.  */
2368       v = search_struct_field (name, *argp, 0, t, 0);
2369       /* If we found an ordinary field, then it is not a method call.
2370 	 So, treat it as if it were a static member function.  */
2371       if (v && static_memfuncp)
2372 	*static_memfuncp = 1;
2373     }
2374 
2375   if (!v)
2376     throw_error (NOT_FOUND_ERROR,
2377                  _("Structure has no component named %s."), name);
2378   return v;
2379 }
2380 
2381 /* Search through the methods of an object (and its bases) to find a
2382    specified method.  Return the pointer to the fn_field list of
2383    overloaded instances.
2384 
2385    Helper function for value_find_oload_list.
2386    ARGP is a pointer to a pointer to a value (the object).
2387    METHOD is a string containing the method name.
2388    OFFSET is the offset within the value.
2389    TYPE is the assumed type of the object.
2390    NUM_FNS is the number of overloaded instances.
2391    BASETYPE is set to the actual type of the subobject where the
2392       method is found.
2393    BOFFSET is the offset of the base subobject where the method is found.  */
2394 
2395 static struct fn_field *
2396 find_method_list (struct value **argp, const char *method,
2397 		  int offset, struct type *type, int *num_fns,
2398 		  struct type **basetype, int *boffset)
2399 {
2400   int i;
2401   struct fn_field *f;
2402   CHECK_TYPEDEF (type);
2403 
2404   *num_fns = 0;
2405 
2406   /* First check in object itself.  */
2407   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2408     {
2409       /* pai: FIXME What about operators and type conversions?  */
2410       char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2411 
2412       if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2413 	{
2414 	  int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2415 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2416 
2417 	  *num_fns = len;
2418 	  *basetype = type;
2419 	  *boffset = offset;
2420 
2421 	  /* Resolve any stub methods.  */
2422 	  check_stub_method_group (type, i);
2423 
2424 	  return f;
2425 	}
2426     }
2427 
2428   /* Not found in object, check in base subobjects.  */
2429   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2430     {
2431       int base_offset;
2432 
2433       if (BASETYPE_VIA_VIRTUAL (type, i))
2434 	{
2435 	  base_offset = baseclass_offset (type, i,
2436 					  value_contents_for_printing (*argp),
2437 					  value_offset (*argp) + offset,
2438 					  value_address (*argp), *argp);
2439 	}
2440       else /* Non-virtual base, simply use bit position from debug
2441 	      info.  */
2442 	{
2443 	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2444 	}
2445       f = find_method_list (argp, method, base_offset + offset,
2446 			    TYPE_BASECLASS (type, i), num_fns,
2447 			    basetype, boffset);
2448       if (f)
2449 	return f;
2450     }
2451   return NULL;
2452 }
2453 
2454 /* Return the list of overloaded methods of a specified name.
2455 
2456    ARGP is a pointer to a pointer to a value (the object).
2457    METHOD is the method name.
2458    OFFSET is the offset within the value contents.
2459    NUM_FNS is the number of overloaded instances.
2460    BASETYPE is set to the type of the base subobject that defines the
2461       method.
2462    BOFFSET is the offset of the base subobject which defines the method.  */
2463 
2464 struct fn_field *
2465 value_find_oload_method_list (struct value **argp, const char *method,
2466 			      int offset, int *num_fns,
2467 			      struct type **basetype, int *boffset)
2468 {
2469   struct type *t;
2470 
2471   t = check_typedef (value_type (*argp));
2472 
2473   /* Code snarfed from value_struct_elt.  */
2474   while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2475     {
2476       *argp = value_ind (*argp);
2477       /* Don't coerce fn pointer to fn and then back again!  */
2478       if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2479 	*argp = coerce_array (*argp);
2480       t = check_typedef (value_type (*argp));
2481     }
2482 
2483   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2484       && TYPE_CODE (t) != TYPE_CODE_UNION)
2485     error (_("Attempt to extract a component of a "
2486 	     "value that is not a struct or union"));
2487 
2488   return find_method_list (argp, method, 0, t, num_fns,
2489 			   basetype, boffset);
2490 }
2491 
2492 /* Given an array of arguments (ARGS) (which includes an
2493    entry for "this" in the case of C++ methods), the number of
2494    arguments NARGS, the NAME of a function whether it's a method or
2495    not (METHOD), and the degree of laxness (LAX) in conforming to
2496    overload resolution rules in ANSI C++, find the best function that
2497    matches on the argument types according to the overload resolution
2498    rules.
2499 
2500    METHOD can be one of three values:
2501      NON_METHOD for non-member functions.
2502      METHOD: for member functions.
2503      BOTH: used for overload resolution of operators where the
2504        candidates are expected to be either member or non member
2505        functions.  In this case the first argument ARGTYPES
2506        (representing 'this') is expected to be a reference to the
2507        target object, and will be dereferenced when attempting the
2508        non-member search.
2509 
2510    In the case of class methods, the parameter OBJ is an object value
2511    in which to search for overloaded methods.
2512 
2513    In the case of non-method functions, the parameter FSYM is a symbol
2514    corresponding to one of the overloaded functions.
2515 
2516    Return value is an integer: 0 -> good match, 10 -> debugger applied
2517    non-standard coercions, 100 -> incompatible.
2518 
2519    If a method is being searched for, VALP will hold the value.
2520    If a non-method is being searched for, SYMP will hold the symbol
2521    for it.
2522 
2523    If a method is being searched for, and it is a static method,
2524    then STATICP will point to a non-zero value.
2525 
2526    If NO_ADL argument dependent lookup is disabled.  This is used to prevent
2527    ADL overload candidates when performing overload resolution for a fully
2528    qualified name.
2529 
2530    Note: This function does *not* check the value of
2531    overload_resolution.  Caller must check it to see whether overload
2532    resolution is permitted.  */
2533 
2534 int
2535 find_overload_match (struct value **args, int nargs,
2536 		     const char *name, enum oload_search_type method,
2537 		     int lax, struct value **objp, struct symbol *fsym,
2538 		     struct value **valp, struct symbol **symp,
2539 		     int *staticp, const int no_adl)
2540 {
2541   struct value *obj = (objp ? *objp : NULL);
2542   struct type *obj_type = obj ? value_type (obj) : NULL;
2543   /* Index of best overloaded function.  */
2544   int func_oload_champ = -1;
2545   int method_oload_champ = -1;
2546 
2547   /* The measure for the current best match.  */
2548   struct badness_vector *method_badness = NULL;
2549   struct badness_vector *func_badness = NULL;
2550 
2551   struct value *temp = obj;
2552   /* For methods, the list of overloaded methods.  */
2553   struct fn_field *fns_ptr = NULL;
2554   /* For non-methods, the list of overloaded function symbols.  */
2555   struct symbol **oload_syms = NULL;
2556   /* Number of overloaded instances being considered.  */
2557   int num_fns = 0;
2558   struct type *basetype = NULL;
2559   int boffset;
2560 
2561   struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2562 
2563   const char *obj_type_name = NULL;
2564   const char *func_name = NULL;
2565   enum oload_classification match_quality;
2566   enum oload_classification method_match_quality = INCOMPATIBLE;
2567   enum oload_classification func_match_quality = INCOMPATIBLE;
2568 
2569   /* Get the list of overloaded methods or functions.  */
2570   if (method == METHOD || method == BOTH)
2571     {
2572       gdb_assert (obj);
2573 
2574       /* OBJ may be a pointer value rather than the object itself.  */
2575       obj = coerce_ref (obj);
2576       while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2577 	obj = coerce_ref (value_ind (obj));
2578       obj_type_name = TYPE_NAME (value_type (obj));
2579 
2580       /* First check whether this is a data member, e.g. a pointer to
2581 	 a function.  */
2582       if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2583 	{
2584 	  *valp = search_struct_field (name, obj, 0,
2585 				       check_typedef (value_type (obj)), 0);
2586 	  if (*valp)
2587 	    {
2588 	      *staticp = 1;
2589 	      do_cleanups (all_cleanups);
2590 	      return 0;
2591 	    }
2592 	}
2593 
2594       /* Retrieve the list of methods with the name NAME.  */
2595       fns_ptr = value_find_oload_method_list (&temp, name,
2596 					      0, &num_fns,
2597 					      &basetype, &boffset);
2598       /* If this is a method only search, and no methods were found
2599          the search has faild.  */
2600       if (method == METHOD && (!fns_ptr || !num_fns))
2601 	error (_("Couldn't find method %s%s%s"),
2602 	       obj_type_name,
2603 	       (obj_type_name && *obj_type_name) ? "::" : "",
2604 	       name);
2605       /* If we are dealing with stub method types, they should have
2606 	 been resolved by find_method_list via
2607 	 value_find_oload_method_list above.  */
2608       if (fns_ptr)
2609 	{
2610 	  gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2611 	  method_oload_champ = find_oload_champ (args, nargs, method,
2612 	                                         num_fns, fns_ptr,
2613 	                                         oload_syms, &method_badness);
2614 
2615 	  method_match_quality =
2616 	      classify_oload_match (method_badness, nargs,
2617 	                            oload_method_static (method, fns_ptr,
2618 	                                                 method_oload_champ));
2619 
2620 	  make_cleanup (xfree, method_badness);
2621 	}
2622 
2623     }
2624 
2625   if (method == NON_METHOD || method == BOTH)
2626     {
2627       const char *qualified_name = NULL;
2628 
2629       /* If the overload match is being search for both as a method
2630          and non member function, the first argument must now be
2631          dereferenced.  */
2632       if (method == BOTH)
2633 	deprecated_set_value_type (args[0],
2634 				   TYPE_TARGET_TYPE (value_type (args[0])));
2635 
2636       if (fsym)
2637         {
2638           qualified_name = SYMBOL_NATURAL_NAME (fsym);
2639 
2640           /* If we have a function with a C++ name, try to extract just
2641 	     the function part.  Do not try this for non-functions (e.g.
2642 	     function pointers).  */
2643           if (qualified_name
2644               && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2645 	      == TYPE_CODE_FUNC)
2646             {
2647 	      char *temp;
2648 
2649 	      temp = cp_func_name (qualified_name);
2650 
2651 	      /* If cp_func_name did not remove anything, the name of the
2652 	         symbol did not include scope or argument types - it was
2653 	         probably a C-style function.  */
2654 	      if (temp)
2655 		{
2656 		  make_cleanup (xfree, temp);
2657 		  if (strcmp (temp, qualified_name) == 0)
2658 		    func_name = NULL;
2659 		  else
2660 		    func_name = temp;
2661 		}
2662             }
2663         }
2664       else
2665 	{
2666 	  func_name = name;
2667 	  qualified_name = name;
2668 	}
2669 
2670       /* If there was no C++ name, this must be a C-style function or
2671 	 not a function at all.  Just return the same symbol.  Do the
2672 	 same if cp_func_name fails for some reason.  */
2673       if (func_name == NULL)
2674         {
2675 	  *symp = fsym;
2676 	  do_cleanups (all_cleanups);
2677           return 0;
2678         }
2679 
2680       func_oload_champ = find_oload_champ_namespace (args, nargs,
2681                                                      func_name,
2682                                                      qualified_name,
2683                                                      &oload_syms,
2684                                                      &func_badness,
2685                                                      no_adl);
2686 
2687       if (func_oload_champ >= 0)
2688 	func_match_quality = classify_oload_match (func_badness, nargs, 0);
2689 
2690       make_cleanup (xfree, oload_syms);
2691       make_cleanup (xfree, func_badness);
2692     }
2693 
2694   /* Did we find a match ?  */
2695   if (method_oload_champ == -1 && func_oload_champ == -1)
2696     throw_error (NOT_FOUND_ERROR,
2697                  _("No symbol \"%s\" in current context."),
2698                  name);
2699 
2700   /* If we have found both a method match and a function
2701      match, find out which one is better, and calculate match
2702      quality.  */
2703   if (method_oload_champ >= 0 && func_oload_champ >= 0)
2704     {
2705       switch (compare_badness (func_badness, method_badness))
2706         {
2707 	  case 0: /* Top two contenders are equally good.  */
2708 	    /* FIXME: GDB does not support the general ambiguous case.
2709 	     All candidates should be collected and presented the
2710 	     user.  */
2711 	    error (_("Ambiguous overload resolution"));
2712 	    break;
2713 	  case 1: /* Incomparable top contenders.  */
2714 	    /* This is an error incompatible candidates
2715 	       should not have been proposed.  */
2716 	    error (_("Internal error: incompatible "
2717 		     "overload candidates proposed"));
2718 	    break;
2719 	  case 2: /* Function champion.  */
2720 	    method_oload_champ = -1;
2721 	    match_quality = func_match_quality;
2722 	    break;
2723 	  case 3: /* Method champion.  */
2724 	    func_oload_champ = -1;
2725 	    match_quality = method_match_quality;
2726 	    break;
2727 	  default:
2728 	    error (_("Internal error: unexpected overload comparison result"));
2729 	    break;
2730         }
2731     }
2732   else
2733     {
2734       /* We have either a method match or a function match.  */
2735       if (method_oload_champ >= 0)
2736 	match_quality = method_match_quality;
2737       else
2738 	match_quality = func_match_quality;
2739     }
2740 
2741   if (match_quality == INCOMPATIBLE)
2742     {
2743       if (method == METHOD)
2744 	error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2745 	       obj_type_name,
2746 	       (obj_type_name && *obj_type_name) ? "::" : "",
2747 	       name);
2748       else
2749 	error (_("Cannot resolve function %s to any overloaded instance"),
2750 	       func_name);
2751     }
2752   else if (match_quality == NON_STANDARD)
2753     {
2754       if (method == METHOD)
2755 	warning (_("Using non-standard conversion to match "
2756 		   "method %s%s%s to supplied arguments"),
2757 		 obj_type_name,
2758 		 (obj_type_name && *obj_type_name) ? "::" : "",
2759 		 name);
2760       else
2761 	warning (_("Using non-standard conversion to match "
2762 		   "function %s to supplied arguments"),
2763 		 func_name);
2764     }
2765 
2766   if (staticp != NULL)
2767     *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2768 
2769   if (method_oload_champ >= 0)
2770     {
2771       if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2772 	*valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2773 					basetype, boffset);
2774       else
2775 	*valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2776 				basetype, boffset);
2777     }
2778   else
2779     *symp = oload_syms[func_oload_champ];
2780 
2781   if (objp)
2782     {
2783       struct type *temp_type = check_typedef (value_type (temp));
2784       struct type *objtype = check_typedef (obj_type);
2785 
2786       if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2787 	  && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2788 	      || TYPE_CODE (objtype) == TYPE_CODE_REF))
2789 	{
2790 	  temp = value_addr (temp);
2791 	}
2792       *objp = temp;
2793     }
2794 
2795   do_cleanups (all_cleanups);
2796 
2797   switch (match_quality)
2798     {
2799     case INCOMPATIBLE:
2800       return 100;
2801     case NON_STANDARD:
2802       return 10;
2803     default:				/* STANDARD */
2804       return 0;
2805     }
2806 }
2807 
2808 /* Find the best overload match, searching for FUNC_NAME in namespaces
2809    contained in QUALIFIED_NAME until it either finds a good match or
2810    runs out of namespaces.  It stores the overloaded functions in
2811    *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  The
2812    calling function is responsible for freeing *OLOAD_SYMS and
2813    *OLOAD_CHAMP_BV.  If NO_ADL, argument dependent lookup is not
2814    performned.  */
2815 
2816 static int
2817 find_oload_champ_namespace (struct value **args, int nargs,
2818 			    const char *func_name,
2819 			    const char *qualified_name,
2820 			    struct symbol ***oload_syms,
2821 			    struct badness_vector **oload_champ_bv,
2822 			    const int no_adl)
2823 {
2824   int oload_champ;
2825 
2826   find_oload_champ_namespace_loop (args, nargs,
2827 				   func_name,
2828 				   qualified_name, 0,
2829 				   oload_syms, oload_champ_bv,
2830 				   &oload_champ,
2831 				   no_adl);
2832 
2833   return oload_champ;
2834 }
2835 
2836 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2837    how deep we've looked for namespaces, and the champ is stored in
2838    OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
2839    if it isn't.  Other arguments are the same as in
2840    find_oload_champ_namespace
2841 
2842    It is the caller's responsibility to free *OLOAD_SYMS and
2843    *OLOAD_CHAMP_BV.  */
2844 
2845 static int
2846 find_oload_champ_namespace_loop (struct value **args, int nargs,
2847 				 const char *func_name,
2848 				 const char *qualified_name,
2849 				 int namespace_len,
2850 				 struct symbol ***oload_syms,
2851 				 struct badness_vector **oload_champ_bv,
2852 				 int *oload_champ,
2853 				 const int no_adl)
2854 {
2855   int next_namespace_len = namespace_len;
2856   int searched_deeper = 0;
2857   int num_fns = 0;
2858   struct cleanup *old_cleanups;
2859   int new_oload_champ;
2860   struct symbol **new_oload_syms;
2861   struct badness_vector *new_oload_champ_bv;
2862   char *new_namespace;
2863 
2864   if (next_namespace_len != 0)
2865     {
2866       gdb_assert (qualified_name[next_namespace_len] == ':');
2867       next_namespace_len +=  2;
2868     }
2869   next_namespace_len +=
2870     cp_find_first_component (qualified_name + next_namespace_len);
2871 
2872   /* Initialize these to values that can safely be xfree'd.  */
2873   *oload_syms = NULL;
2874   *oload_champ_bv = NULL;
2875 
2876   /* First, see if we have a deeper namespace we can search in.
2877      If we get a good match there, use it.  */
2878 
2879   if (qualified_name[next_namespace_len] == ':')
2880     {
2881       searched_deeper = 1;
2882 
2883       if (find_oload_champ_namespace_loop (args, nargs,
2884 					   func_name, qualified_name,
2885 					   next_namespace_len,
2886 					   oload_syms, oload_champ_bv,
2887 					   oload_champ, no_adl))
2888 	{
2889 	  return 1;
2890 	}
2891     };
2892 
2893   /* If we reach here, either we're in the deepest namespace or we
2894      didn't find a good match in a deeper namespace.  But, in the
2895      latter case, we still have a bad match in a deeper namespace;
2896      note that we might not find any match at all in the current
2897      namespace.  (There's always a match in the deepest namespace,
2898      because this overload mechanism only gets called if there's a
2899      function symbol to start off with.)  */
2900 
2901   old_cleanups = make_cleanup (xfree, *oload_syms);
2902   make_cleanup (xfree, *oload_champ_bv);
2903   new_namespace = alloca (namespace_len + 1);
2904   strncpy (new_namespace, qualified_name, namespace_len);
2905   new_namespace[namespace_len] = '\0';
2906   new_oload_syms = make_symbol_overload_list (func_name,
2907 					      new_namespace);
2908 
2909   /* If we have reached the deepest level perform argument
2910      determined lookup.  */
2911   if (!searched_deeper && !no_adl)
2912     {
2913       int ix;
2914       struct type **arg_types;
2915 
2916       /* Prepare list of argument types for overload resolution.  */
2917       arg_types = (struct type **)
2918 	alloca (nargs * (sizeof (struct type *)));
2919       for (ix = 0; ix < nargs; ix++)
2920 	arg_types[ix] = value_type (args[ix]);
2921       make_symbol_overload_list_adl (arg_types, nargs, func_name);
2922     }
2923 
2924   while (new_oload_syms[num_fns])
2925     ++num_fns;
2926 
2927   new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2928 				      NULL, new_oload_syms,
2929 				      &new_oload_champ_bv);
2930 
2931   /* Case 1: We found a good match.  Free earlier matches (if any),
2932      and return it.  Case 2: We didn't find a good match, but we're
2933      not the deepest function.  Then go with the bad match that the
2934      deeper function found.  Case 3: We found a bad match, and we're
2935      the deepest function.  Then return what we found, even though
2936      it's a bad match.  */
2937 
2938   if (new_oload_champ != -1
2939       && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2940     {
2941       *oload_syms = new_oload_syms;
2942       *oload_champ = new_oload_champ;
2943       *oload_champ_bv = new_oload_champ_bv;
2944       do_cleanups (old_cleanups);
2945       return 1;
2946     }
2947   else if (searched_deeper)
2948     {
2949       xfree (new_oload_syms);
2950       xfree (new_oload_champ_bv);
2951       discard_cleanups (old_cleanups);
2952       return 0;
2953     }
2954   else
2955     {
2956       *oload_syms = new_oload_syms;
2957       *oload_champ = new_oload_champ;
2958       *oload_champ_bv = new_oload_champ_bv;
2959       do_cleanups (old_cleanups);
2960       return 0;
2961     }
2962 }
2963 
2964 /* Look for a function to take NARGS args of ARGS.  Find
2965    the best match from among the overloaded methods or functions
2966    (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2967    The number of methods/functions in the list is given by NUM_FNS.
2968    Return the index of the best match; store an indication of the
2969    quality of the match in OLOAD_CHAMP_BV.
2970 
2971    It is the caller's responsibility to free *OLOAD_CHAMP_BV.  */
2972 
2973 static int
2974 find_oload_champ (struct value **args, int nargs, int method,
2975 		  int num_fns, struct fn_field *fns_ptr,
2976 		  struct symbol **oload_syms,
2977 		  struct badness_vector **oload_champ_bv)
2978 {
2979   int ix;
2980   /* A measure of how good an overloaded instance is.  */
2981   struct badness_vector *bv;
2982   /* Index of best overloaded function.  */
2983   int oload_champ = -1;
2984   /* Current ambiguity state for overload resolution.  */
2985   int oload_ambiguous = 0;
2986   /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */
2987 
2988   *oload_champ_bv = NULL;
2989 
2990   /* Consider each candidate in turn.  */
2991   for (ix = 0; ix < num_fns; ix++)
2992     {
2993       int jj;
2994       int static_offset = oload_method_static (method, fns_ptr, ix);
2995       int nparms;
2996       struct type **parm_types;
2997 
2998       if (method)
2999 	{
3000 	  nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3001 	}
3002       else
3003 	{
3004 	  /* If it's not a method, this is the proper place.  */
3005 	  nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3006 	}
3007 
3008       /* Prepare array of parameter types.  */
3009       parm_types = (struct type **)
3010 	xmalloc (nparms * (sizeof (struct type *)));
3011       for (jj = 0; jj < nparms; jj++)
3012 	parm_types[jj] = (method
3013 			  ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3014 			  : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3015 					     jj));
3016 
3017       /* Compare parameter types to supplied argument types.  Skip
3018          THIS for static methods.  */
3019       bv = rank_function (parm_types, nparms,
3020 			  args + static_offset,
3021 			  nargs - static_offset);
3022 
3023       if (!*oload_champ_bv)
3024 	{
3025 	  *oload_champ_bv = bv;
3026 	  oload_champ = 0;
3027 	}
3028       else /* See whether current candidate is better or worse than
3029 	      previous best.  */
3030 	switch (compare_badness (bv, *oload_champ_bv))
3031 	  {
3032 	  case 0:		/* Top two contenders are equally good.  */
3033 	    oload_ambiguous = 1;
3034 	    break;
3035 	  case 1:		/* Incomparable top contenders.  */
3036 	    oload_ambiguous = 2;
3037 	    break;
3038 	  case 2:		/* New champion, record details.  */
3039 	    *oload_champ_bv = bv;
3040 	    oload_ambiguous = 0;
3041 	    oload_champ = ix;
3042 	    break;
3043 	  case 3:
3044 	  default:
3045 	    break;
3046 	  }
3047       xfree (parm_types);
3048       if (overload_debug)
3049 	{
3050 	  if (method)
3051 	    fprintf_filtered (gdb_stderr,
3052 			      "Overloaded method instance %s, # of parms %d\n",
3053 			      fns_ptr[ix].physname, nparms);
3054 	  else
3055 	    fprintf_filtered (gdb_stderr,
3056 			      "Overloaded function instance "
3057 			      "%s # of parms %d\n",
3058 			      SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3059 			      nparms);
3060 	  for (jj = 0; jj < nargs - static_offset; jj++)
3061 	    fprintf_filtered (gdb_stderr,
3062 			      "...Badness @ %d : %d\n",
3063 			      jj, bv->rank[jj].rank);
3064 	  fprintf_filtered (gdb_stderr, "Overload resolution "
3065 			    "champion is %d, ambiguous? %d\n",
3066 			    oload_champ, oload_ambiguous);
3067 	}
3068     }
3069 
3070   return oload_champ;
3071 }
3072 
3073 /* Return 1 if we're looking at a static method, 0 if we're looking at
3074    a non-static method or a function that isn't a method.  */
3075 
3076 static int
3077 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3078 {
3079   if (method && fns_ptr && index >= 0
3080       && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3081     return 1;
3082   else
3083     return 0;
3084 }
3085 
3086 /* Check how good an overload match OLOAD_CHAMP_BV represents.  */
3087 
3088 static enum oload_classification
3089 classify_oload_match (struct badness_vector *oload_champ_bv,
3090 		      int nargs,
3091 		      int static_offset)
3092 {
3093   int ix;
3094   enum oload_classification worst = STANDARD;
3095 
3096   for (ix = 1; ix <= nargs - static_offset; ix++)
3097     {
3098       /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3099          or worse return INCOMPATIBLE.  */
3100       if (compare_ranks (oload_champ_bv->rank[ix],
3101                          INCOMPATIBLE_TYPE_BADNESS) <= 0)
3102 	return INCOMPATIBLE;	/* Truly mismatched types.  */
3103       /* Otherwise If this conversion is as bad as
3104          NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD.  */
3105       else if (compare_ranks (oload_champ_bv->rank[ix],
3106                               NS_POINTER_CONVERSION_BADNESS) <= 0)
3107 	worst = NON_STANDARD;	/* Non-standard type conversions
3108 				   needed.  */
3109     }
3110 
3111   /* If no INCOMPATIBLE classification was found, return the worst one
3112      that was found (if any).  */
3113   return worst;
3114 }
3115 
3116 /* C++: return 1 is NAME is a legitimate name for the destructor of
3117    type TYPE.  If TYPE does not have a destructor, or if NAME is
3118    inappropriate for TYPE, an error is signaled.  Parameter TYPE should not yet
3119    have CHECK_TYPEDEF applied, this function will apply it itself.  */
3120 
3121 int
3122 destructor_name_p (const char *name, struct type *type)
3123 {
3124   if (name[0] == '~')
3125     {
3126       const char *dname = type_name_no_tag_or_error (type);
3127       const char *cp = strchr (dname, '<');
3128       unsigned int len;
3129 
3130       /* Do not compare the template part for template classes.  */
3131       if (cp == NULL)
3132 	len = strlen (dname);
3133       else
3134 	len = cp - dname;
3135       if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3136 	error (_("name of destructor must equal name of class"));
3137       else
3138 	return 1;
3139     }
3140   return 0;
3141 }
3142 
3143 /* Given TYPE, a structure/union,
3144    return 1 if the component named NAME from the ultimate target
3145    structure/union is defined, otherwise, return 0.  */
3146 
3147 int
3148 check_field (struct type *type, const char *name)
3149 {
3150   int i;
3151 
3152   /* The type may be a stub.  */
3153   CHECK_TYPEDEF (type);
3154 
3155   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3156     {
3157       char *t_field_name = TYPE_FIELD_NAME (type, i);
3158 
3159       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3160 	return 1;
3161     }
3162 
3163   /* C++: If it was not found as a data field, then try to return it
3164      as a pointer to a method.  */
3165 
3166   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3167     {
3168       if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3169 	return 1;
3170     }
3171 
3172   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3173     if (check_field (TYPE_BASECLASS (type, i), name))
3174       return 1;
3175 
3176   return 0;
3177 }
3178 
3179 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3180    return the appropriate member (or the address of the member, if
3181    WANT_ADDRESS).  This function is used to resolve user expressions
3182    of the form "DOMAIN::NAME".  For more details on what happens, see
3183    the comment before value_struct_elt_for_reference.  */
3184 
3185 struct value *
3186 value_aggregate_elt (struct type *curtype, char *name,
3187 		     struct type *expect_type, int want_address,
3188 		     enum noside noside)
3189 {
3190   switch (TYPE_CODE (curtype))
3191     {
3192     case TYPE_CODE_STRUCT:
3193     case TYPE_CODE_UNION:
3194       return value_struct_elt_for_reference (curtype, 0, curtype,
3195 					     name, expect_type,
3196 					     want_address, noside);
3197     case TYPE_CODE_NAMESPACE:
3198       return value_namespace_elt (curtype, name,
3199 				  want_address, noside);
3200     default:
3201       internal_error (__FILE__, __LINE__,
3202 		      _("non-aggregate type in value_aggregate_elt"));
3203     }
3204 }
3205 
3206 /* Compares the two method/function types T1 and T2 for "equality"
3207    with respect to the methods' parameters.  If the types of the
3208    two parameter lists are the same, returns 1; 0 otherwise.  This
3209    comparison may ignore any artificial parameters in T1 if
3210    SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
3211    the first artificial parameter in T1, assumed to be a 'this' pointer.
3212 
3213    The type T2 is expected to have come from make_params (in eval.c).  */
3214 
3215 static int
3216 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3217 {
3218   int start = 0;
3219 
3220   if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3221     ++start;
3222 
3223   /* If skipping artificial fields, find the first real field
3224      in T1.  */
3225   if (skip_artificial)
3226     {
3227       while (start < TYPE_NFIELDS (t1)
3228 	     && TYPE_FIELD_ARTIFICIAL (t1, start))
3229 	++start;
3230     }
3231 
3232   /* Now compare parameters.  */
3233 
3234   /* Special case: a method taking void.  T1 will contain no
3235      non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
3236   if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3237       && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3238     return 1;
3239 
3240   if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3241     {
3242       int i;
3243 
3244       for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3245 	{
3246 	  if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3247 					    TYPE_FIELD_TYPE (t2, i), NULL),
3248 	                     EXACT_MATCH_BADNESS) != 0)
3249 	    return 0;
3250 	}
3251 
3252       return 1;
3253     }
3254 
3255   return 0;
3256 }
3257 
3258 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3259    return the address of this member as a "pointer to member" type.
3260    If INTYPE is non-null, then it will be the type of the member we
3261    are looking for.  This will help us resolve "pointers to member
3262    functions".  This function is used to resolve user expressions of
3263    the form "DOMAIN::NAME".  */
3264 
3265 static struct value *
3266 value_struct_elt_for_reference (struct type *domain, int offset,
3267 				struct type *curtype, char *name,
3268 				struct type *intype,
3269 				int want_address,
3270 				enum noside noside)
3271 {
3272   struct type *t = curtype;
3273   int i;
3274   struct value *v, *result;
3275 
3276   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3277       && TYPE_CODE (t) != TYPE_CODE_UNION)
3278     error (_("Internal error: non-aggregate type "
3279 	     "to value_struct_elt_for_reference"));
3280 
3281   for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3282     {
3283       char *t_field_name = TYPE_FIELD_NAME (t, i);
3284 
3285       if (t_field_name && strcmp (t_field_name, name) == 0)
3286 	{
3287 	  if (field_is_static (&TYPE_FIELD (t, i)))
3288 	    {
3289 	      v = value_static_field (t, i);
3290 	      if (v == NULL)
3291 		error (_("static field %s has been optimized out"),
3292 		       name);
3293 	      if (want_address)
3294 		v = value_addr (v);
3295 	      return v;
3296 	    }
3297 	  if (TYPE_FIELD_PACKED (t, i))
3298 	    error (_("pointers to bitfield members not allowed"));
3299 
3300 	  if (want_address)
3301 	    return value_from_longest
3302 	      (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3303 	       offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3304 	  else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3305 	    return allocate_value (TYPE_FIELD_TYPE (t, i));
3306 	  else
3307 	    error (_("Cannot reference non-static field \"%s\""), name);
3308 	}
3309     }
3310 
3311   /* C++: If it was not found as a data field, then try to return it
3312      as a pointer to a method.  */
3313 
3314   /* Perform all necessary dereferencing.  */
3315   while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3316     intype = TYPE_TARGET_TYPE (intype);
3317 
3318   for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3319     {
3320       char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3321       char dem_opname[64];
3322 
3323       if (strncmp (t_field_name, "__", 2) == 0
3324 	  || strncmp (t_field_name, "op", 2) == 0
3325 	  || strncmp (t_field_name, "type", 4) == 0)
3326 	{
3327 	  if (cplus_demangle_opname (t_field_name,
3328 				     dem_opname, DMGL_ANSI))
3329 	    t_field_name = dem_opname;
3330 	  else if (cplus_demangle_opname (t_field_name,
3331 					  dem_opname, 0))
3332 	    t_field_name = dem_opname;
3333 	}
3334       if (t_field_name && strcmp (t_field_name, name) == 0)
3335 	{
3336 	  int j;
3337 	  int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3338 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3339 
3340 	  check_stub_method_group (t, i);
3341 
3342 	  if (intype)
3343 	    {
3344 	      for (j = 0; j < len; ++j)
3345 		{
3346 		  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3347 		      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3348 					     intype, 1))
3349 		    break;
3350 		}
3351 
3352 	      if (j == len)
3353 		error (_("no member function matches "
3354 			 "that type instantiation"));
3355 	    }
3356 	  else
3357 	    {
3358 	      int ii;
3359 
3360 	      j = -1;
3361 	      for (ii = 0; ii < len; ++ii)
3362 		{
3363 		  /* Skip artificial methods.  This is necessary if,
3364 		     for example, the user wants to "print
3365 		     subclass::subclass" with only one user-defined
3366 		     constructor.  There is no ambiguity in this case.
3367 		     We are careful here to allow artificial methods
3368 		     if they are the unique result.  */
3369 		  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3370 		    {
3371 		      if (j == -1)
3372 			j = ii;
3373 		      continue;
3374 		    }
3375 
3376 		  /* Desired method is ambiguous if more than one
3377 		     method is defined.  */
3378 		  if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3379 		    error (_("non-unique member `%s' requires "
3380 			     "type instantiation"), name);
3381 
3382 		  j = ii;
3383 		}
3384 
3385 	      if (j == -1)
3386 		error (_("no matching member function"));
3387 	    }
3388 
3389 	  if (TYPE_FN_FIELD_STATIC_P (f, j))
3390 	    {
3391 	      struct symbol *s =
3392 		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3393 			       0, VAR_DOMAIN, 0);
3394 
3395 	      if (s == NULL)
3396 		return NULL;
3397 
3398 	      if (want_address)
3399 		return value_addr (read_var_value (s, 0));
3400 	      else
3401 		return read_var_value (s, 0);
3402 	    }
3403 
3404 	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3405 	    {
3406 	      if (want_address)
3407 		{
3408 		  result = allocate_value
3409 		    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3410 		  cplus_make_method_ptr (value_type (result),
3411 					 value_contents_writeable (result),
3412 					 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3413 		}
3414 	      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3415 		return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3416 	      else
3417 		error (_("Cannot reference virtual member function \"%s\""),
3418 		       name);
3419 	    }
3420 	  else
3421 	    {
3422 	      struct symbol *s =
3423 		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3424 			       0, VAR_DOMAIN, 0);
3425 
3426 	      if (s == NULL)
3427 		return NULL;
3428 
3429 	      v = read_var_value (s, 0);
3430 	      if (!want_address)
3431 		result = v;
3432 	      else
3433 		{
3434 		  result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3435 		  cplus_make_method_ptr (value_type (result),
3436 					 value_contents_writeable (result),
3437 					 value_address (v), 0);
3438 		}
3439 	    }
3440 	  return result;
3441 	}
3442     }
3443   for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3444     {
3445       struct value *v;
3446       int base_offset;
3447 
3448       if (BASETYPE_VIA_VIRTUAL (t, i))
3449 	base_offset = 0;
3450       else
3451 	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3452       v = value_struct_elt_for_reference (domain,
3453 					  offset + base_offset,
3454 					  TYPE_BASECLASS (t, i),
3455 					  name, intype,
3456 					  want_address, noside);
3457       if (v)
3458 	return v;
3459     }
3460 
3461   /* As a last chance, pretend that CURTYPE is a namespace, and look
3462      it up that way; this (frequently) works for types nested inside
3463      classes.  */
3464 
3465   return value_maybe_namespace_elt (curtype, name,
3466 				    want_address, noside);
3467 }
3468 
3469 /* C++: Return the member NAME of the namespace given by the type
3470    CURTYPE.  */
3471 
3472 static struct value *
3473 value_namespace_elt (const struct type *curtype,
3474 		     char *name, int want_address,
3475 		     enum noside noside)
3476 {
3477   struct value *retval = value_maybe_namespace_elt (curtype, name,
3478 						    want_address,
3479 						    noside);
3480 
3481   if (retval == NULL)
3482     error (_("No symbol \"%s\" in namespace \"%s\"."),
3483 	   name, TYPE_TAG_NAME (curtype));
3484 
3485   return retval;
3486 }
3487 
3488 /* A helper function used by value_namespace_elt and
3489    value_struct_elt_for_reference.  It looks up NAME inside the
3490    context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3491    is a class and NAME refers to a type in CURTYPE itself (as opposed
3492    to, say, some base class of CURTYPE).  */
3493 
3494 static struct value *
3495 value_maybe_namespace_elt (const struct type *curtype,
3496 			   char *name, int want_address,
3497 			   enum noside noside)
3498 {
3499   const char *namespace_name = TYPE_TAG_NAME (curtype);
3500   struct symbol *sym;
3501   struct value *result;
3502 
3503   sym = cp_lookup_symbol_namespace (namespace_name, name,
3504 				    get_selected_block (0), VAR_DOMAIN);
3505 
3506   if (sym == NULL)
3507     {
3508       char *concatenated_name = alloca (strlen (namespace_name) + 2
3509 					+ strlen (name) + 1);
3510 
3511       sprintf (concatenated_name, "%s::%s", namespace_name, name);
3512       sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3513     }
3514 
3515   if (sym == NULL)
3516     return NULL;
3517   else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3518 	   && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3519     result = allocate_value (SYMBOL_TYPE (sym));
3520   else
3521     result = value_of_variable (sym, get_selected_block (0));
3522 
3523   if (result && want_address)
3524     result = value_addr (result);
3525 
3526   return result;
3527 }
3528 
3529 /* Given a pointer value V, find the real (RTTI) type of the object it
3530    points to.
3531 
3532    Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3533    and refer to the values computed for the object pointed to.  */
3534 
3535 struct type *
3536 value_rtti_target_type (struct value *v, int *full,
3537 			int *top, int *using_enc)
3538 {
3539   struct value *target;
3540 
3541   target = value_ind (v);
3542 
3543   return value_rtti_type (target, full, top, using_enc);
3544 }
3545 
3546 /* Given a value pointed to by ARGP, check its real run-time type, and
3547    if that is different from the enclosing type, create a new value
3548    using the real run-time type as the enclosing type (and of the same
3549    type as ARGP) and return it, with the embedded offset adjusted to
3550    be the correct offset to the enclosed object.  RTYPE is the type,
3551    and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3552    by value_rtti_type().  If these are available, they can be supplied
3553    and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
3554    NULL if they're not available.  */
3555 
3556 struct value *
3557 value_full_object (struct value *argp,
3558 		   struct type *rtype,
3559 		   int xfull, int xtop,
3560 		   int xusing_enc)
3561 {
3562   struct type *real_type;
3563   int full = 0;
3564   int top = -1;
3565   int using_enc = 0;
3566   struct value *new_val;
3567 
3568   if (rtype)
3569     {
3570       real_type = rtype;
3571       full = xfull;
3572       top = xtop;
3573       using_enc = xusing_enc;
3574     }
3575   else
3576     real_type = value_rtti_type (argp, &full, &top, &using_enc);
3577 
3578   /* If no RTTI data, or if object is already complete, do nothing.  */
3579   if (!real_type || real_type == value_enclosing_type (argp))
3580     return argp;
3581 
3582   /* In a destructor we might see a real type that is a superclass of
3583      the object's type.  In this case it is better to leave the object
3584      as-is.  */
3585   if (full
3586       && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3587     return argp;
3588 
3589   /* If we have the full object, but for some reason the enclosing
3590      type is wrong, set it.  */
3591   /* pai: FIXME -- sounds iffy */
3592   if (full)
3593     {
3594       argp = value_copy (argp);
3595       set_value_enclosing_type (argp, real_type);
3596       return argp;
3597     }
3598 
3599   /* Check if object is in memory.  */
3600   if (VALUE_LVAL (argp) != lval_memory)
3601     {
3602       warning (_("Couldn't retrieve complete object of RTTI "
3603 		 "type %s; object may be in register(s)."),
3604 	       TYPE_NAME (real_type));
3605 
3606       return argp;
3607     }
3608 
3609   /* All other cases -- retrieve the complete object.  */
3610   /* Go back by the computed top_offset from the beginning of the
3611      object, adjusting for the embedded offset of argp if that's what
3612      value_rtti_type used for its computation.  */
3613   new_val = value_at_lazy (real_type, value_address (argp) - top +
3614 			   (using_enc ? 0 : value_embedded_offset (argp)));
3615   deprecated_set_value_type (new_val, value_type (argp));
3616   set_value_embedded_offset (new_val, (using_enc
3617 				       ? top + value_embedded_offset (argp)
3618 				       : top));
3619   return new_val;
3620 }
3621 
3622 
3623 /* Return the value of the local variable, if one exists.  Throw error
3624    otherwise, such as if the request is made in an inappropriate context.  */
3625 
3626 struct value *
3627 value_of_this (const struct language_defn *lang)
3628 {
3629   struct symbol *sym;
3630   struct block *b;
3631   struct frame_info *frame;
3632 
3633   if (!lang->la_name_of_this)
3634     error (_("no `this' in current language"));
3635 
3636   frame = get_selected_frame (_("no frame selected"));
3637 
3638   b = get_frame_block (frame, NULL);
3639 
3640   sym = lookup_language_this (lang, b);
3641   if (sym == NULL)
3642     error (_("current stack frame does not contain a variable named `%s'"),
3643 	   lang->la_name_of_this);
3644 
3645   return read_var_value (sym, frame);
3646 }
3647 
3648 /* Return the value of the local variable, if one exists.  Return NULL
3649    otherwise.  Never throw error.  */
3650 
3651 struct value *
3652 value_of_this_silent (const struct language_defn *lang)
3653 {
3654   struct value *ret = NULL;
3655   volatile struct gdb_exception except;
3656 
3657   TRY_CATCH (except, RETURN_MASK_ERROR)
3658     {
3659       ret = value_of_this (lang);
3660     }
3661 
3662   return ret;
3663 }
3664 
3665 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3666    elements long, starting at LOWBOUND.  The result has the same lower
3667    bound as the original ARRAY.  */
3668 
3669 struct value *
3670 value_slice (struct value *array, int lowbound, int length)
3671 {
3672   struct type *slice_range_type, *slice_type, *range_type;
3673   LONGEST lowerbound, upperbound;
3674   struct value *slice;
3675   struct type *array_type;
3676 
3677   array_type = check_typedef (value_type (array));
3678   if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3679       && TYPE_CODE (array_type) != TYPE_CODE_STRING
3680       && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3681     error (_("cannot take slice of non-array"));
3682 
3683   range_type = TYPE_INDEX_TYPE (array_type);
3684   if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3685     error (_("slice from bad array or bitstring"));
3686 
3687   if (lowbound < lowerbound || length < 0
3688       || lowbound + length - 1 > upperbound)
3689     error (_("slice out of range"));
3690 
3691   /* FIXME-type-allocation: need a way to free this type when we are
3692      done with it.  */
3693   slice_range_type = create_range_type ((struct type *) NULL,
3694 					TYPE_TARGET_TYPE (range_type),
3695 					lowbound,
3696 					lowbound + length - 1);
3697   if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3698     {
3699       int i;
3700 
3701       slice_type = create_set_type ((struct type *) NULL,
3702 				    slice_range_type);
3703       TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3704       slice = value_zero (slice_type, not_lval);
3705 
3706       for (i = 0; i < length; i++)
3707 	{
3708 	  int element = value_bit_index (array_type,
3709 					 value_contents (array),
3710 					 lowbound + i);
3711 
3712 	  if (element < 0)
3713 	    error (_("internal error accessing bitstring"));
3714 	  else if (element > 0)
3715 	    {
3716 	      int j = i % TARGET_CHAR_BIT;
3717 
3718 	      if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3719 		j = TARGET_CHAR_BIT - 1 - j;
3720 	      value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3721 	    }
3722 	}
3723       /* We should set the address, bitssize, and bitspos, so the
3724          slice can be used on the LHS, but that may require extensions
3725          to value_assign.  For now, just leave as a non_lval.
3726          FIXME.  */
3727     }
3728   else
3729     {
3730       struct type *element_type = TYPE_TARGET_TYPE (array_type);
3731       LONGEST offset =
3732 	(lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3733 
3734       slice_type = create_array_type ((struct type *) NULL,
3735 				      element_type,
3736 				      slice_range_type);
3737       TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3738 
3739       if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3740 	slice = allocate_value_lazy (slice_type);
3741       else
3742 	{
3743 	  slice = allocate_value (slice_type);
3744 	  value_contents_copy (slice, 0, array, offset,
3745 			       TYPE_LENGTH (slice_type));
3746 	}
3747 
3748       set_value_component_location (slice, array);
3749       VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3750       set_value_offset (slice, value_offset (array) + offset);
3751     }
3752   return slice;
3753 }
3754 
3755 /* Create a value for a FORTRAN complex number.  Currently most of the
3756    time values are coerced to COMPLEX*16 (i.e. a complex number
3757    composed of 2 doubles.  This really should be a smarter routine
3758    that figures out precision inteligently as opposed to assuming
3759    doubles.  FIXME: fmb  */
3760 
3761 struct value *
3762 value_literal_complex (struct value *arg1,
3763 		       struct value *arg2,
3764 		       struct type *type)
3765 {
3766   struct value *val;
3767   struct type *real_type = TYPE_TARGET_TYPE (type);
3768 
3769   val = allocate_value (type);
3770   arg1 = value_cast (real_type, arg1);
3771   arg2 = value_cast (real_type, arg2);
3772 
3773   memcpy (value_contents_raw (val),
3774 	  value_contents (arg1), TYPE_LENGTH (real_type));
3775   memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3776 	  value_contents (arg2), TYPE_LENGTH (real_type));
3777   return val;
3778 }
3779 
3780 /* Cast a value into the appropriate complex data type.  */
3781 
3782 static struct value *
3783 cast_into_complex (struct type *type, struct value *val)
3784 {
3785   struct type *real_type = TYPE_TARGET_TYPE (type);
3786 
3787   if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3788     {
3789       struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3790       struct value *re_val = allocate_value (val_real_type);
3791       struct value *im_val = allocate_value (val_real_type);
3792 
3793       memcpy (value_contents_raw (re_val),
3794 	      value_contents (val), TYPE_LENGTH (val_real_type));
3795       memcpy (value_contents_raw (im_val),
3796 	      value_contents (val) + TYPE_LENGTH (val_real_type),
3797 	      TYPE_LENGTH (val_real_type));
3798 
3799       return value_literal_complex (re_val, im_val, type);
3800     }
3801   else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3802 	   || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3803     return value_literal_complex (val,
3804 				  value_zero (real_type, not_lval),
3805 				  type);
3806   else
3807     error (_("cannot cast non-number to complex"));
3808 }
3809 
3810 void
3811 _initialize_valops (void)
3812 {
3813   add_setshow_boolean_cmd ("overload-resolution", class_support,
3814 			   &overload_resolution, _("\
3815 Set overload resolution in evaluating C++ functions."), _("\
3816 Show overload resolution in evaluating C++ functions."),
3817 			   NULL, NULL,
3818 			   show_overload_resolution,
3819 			   &setlist, &showlist);
3820   overload_resolution = 1;
3821 }
3822