xref: /dragonfly/contrib/gdb-7/gdb/valprint.c (revision a563ca70)
1 /* Print values for GDB, the GNU debugger.
2 
3    Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5    2009, 2010, 2011 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39 
40 #include <errno.h>
41 
42 /* Prototypes for local functions */
43 
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 				int len, int *errnoptr);
46 
47 static void show_print (char *, int);
48 
49 static void set_print (char *, int);
50 
51 static void set_radix (char *, int);
52 
53 static void show_radix (char *, int);
54 
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56 
57 static void set_input_radix_1 (int, unsigned);
58 
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60 
61 static void set_output_radix_1 (int, unsigned);
62 
63 void _initialize_valprint (void);
64 
65 #define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value.  */
66 
67 struct value_print_options user_print_options =
68 {
69   Val_pretty_default,		/* pretty */
70   0,				/* prettyprint_arrays */
71   0,				/* prettyprint_structs */
72   0,				/* vtblprint */
73   1,				/* unionprint */
74   1,				/* addressprint */
75   0,				/* objectprint */
76   PRINT_MAX_DEFAULT,		/* print_max */
77   10,				/* repeat_count_threshold */
78   0,				/* output_format */
79   0,				/* format */
80   0,				/* stop_print_at_null */
81   0,				/* inspect_it */
82   0,				/* print_array_indexes */
83   0,				/* deref_ref */
84   1,				/* static_field_print */
85   1,				/* pascal_static_field_print */
86   0,				/* raw */
87   0				/* summary */
88 };
89 
90 /* Initialize *OPTS to be a copy of the user print options.  */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94   *opts = user_print_options;
95 }
96 
97 /* Initialize *OPTS to be a copy of the user print options, but with
98    pretty-printing disabled.  */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102   *opts = user_print_options;
103   opts->pretty = Val_no_prettyprint;
104 }
105 
106 /* Initialize *OPTS to be a copy of the user print options, but using
107    FORMAT as the formatting option.  */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 			     char format)
111 {
112   *opts = user_print_options;
113   opts->format = format;
114 }
115 
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 		struct cmd_list_element *c, const char *value)
119 {
120   fprintf_filtered (file,
121 		    _("Limit on string chars or array "
122 		      "elements to print is %s.\n"),
123 		    value);
124 }
125 
126 
127 /* Default input and output radixes, and output format letter.  */
128 
129 unsigned input_radix = 10;
130 static void
131 show_input_radix (struct ui_file *file, int from_tty,
132 		  struct cmd_list_element *c, const char *value)
133 {
134   fprintf_filtered (file,
135 		    _("Default input radix for entering numbers is %s.\n"),
136 		    value);
137 }
138 
139 unsigned output_radix = 10;
140 static void
141 show_output_radix (struct ui_file *file, int from_tty,
142 		   struct cmd_list_element *c, const char *value)
143 {
144   fprintf_filtered (file,
145 		    _("Default output radix for printing of values is %s.\n"),
146 		    value);
147 }
148 
149 /* By default we print arrays without printing the index of each element in
150    the array.  This behavior can be changed by setting PRINT_ARRAY_INDEXES.  */
151 
152 static void
153 show_print_array_indexes (struct ui_file *file, int from_tty,
154 		          struct cmd_list_element *c, const char *value)
155 {
156   fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157 }
158 
159 /* Print repeat counts if there are more than this many repetitions of an
160    element in an array.  Referenced by the low level language dependent
161    print routines.  */
162 
163 static void
164 show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 			     struct cmd_list_element *c, const char *value)
166 {
167   fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 		    value);
169 }
170 
171 /* If nonzero, stops printing of char arrays at first null.  */
172 
173 static void
174 show_stop_print_at_null (struct ui_file *file, int from_tty,
175 			 struct cmd_list_element *c, const char *value)
176 {
177   fprintf_filtered (file,
178 		    _("Printing of char arrays to stop "
179 		      "at first null char is %s.\n"),
180 		    value);
181 }
182 
183 /* Controls pretty printing of structures.  */
184 
185 static void
186 show_prettyprint_structs (struct ui_file *file, int from_tty,
187 			  struct cmd_list_element *c, const char *value)
188 {
189   fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 }
191 
192 /* Controls pretty printing of arrays.  */
193 
194 static void
195 show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 			 struct cmd_list_element *c, const char *value)
197 {
198   fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 }
200 
201 /* If nonzero, causes unions inside structures or other unions to be
202    printed.  */
203 
204 static void
205 show_unionprint (struct ui_file *file, int from_tty,
206 		 struct cmd_list_element *c, const char *value)
207 {
208   fprintf_filtered (file,
209 		    _("Printing of unions interior to structures is %s.\n"),
210 		    value);
211 }
212 
213 /* If nonzero, causes machine addresses to be printed in certain contexts.  */
214 
215 static void
216 show_addressprint (struct ui_file *file, int from_tty,
217 		   struct cmd_list_element *c, const char *value)
218 {
219   fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220 }
221 
222 
223 /* A helper function for val_print.  When printing in "summary" mode,
224    we want to print scalar arguments, but not aggregate arguments.
225    This function distinguishes between the two.  */
226 
227 static int
228 scalar_type_p (struct type *type)
229 {
230   CHECK_TYPEDEF (type);
231   while (TYPE_CODE (type) == TYPE_CODE_REF)
232     {
233       type = TYPE_TARGET_TYPE (type);
234       CHECK_TYPEDEF (type);
235     }
236   switch (TYPE_CODE (type))
237     {
238     case TYPE_CODE_ARRAY:
239     case TYPE_CODE_STRUCT:
240     case TYPE_CODE_UNION:
241     case TYPE_CODE_SET:
242     case TYPE_CODE_STRING:
243     case TYPE_CODE_BITSTRING:
244       return 0;
245     default:
246       return 1;
247     }
248 }
249 
250 /* Helper function to check the validity of some bits of a value.
251 
252    If TYPE represents some aggregate type (e.g., a structure), return 1.
253 
254    Otherwise, any of the bytes starting at OFFSET and extending for
255    TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256    return 0.  The checking is done using FUNCS.
257 
258    Otherwise, return 1.  */
259 
260 static int
261 valprint_check_validity (struct ui_file *stream,
262 			 struct type *type,
263 			 int embedded_offset,
264 			 const struct value *val)
265 {
266   CHECK_TYPEDEF (type);
267 
268   if (TYPE_CODE (type) != TYPE_CODE_UNION
269       && TYPE_CODE (type) != TYPE_CODE_STRUCT
270       && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271     {
272       if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
273 			     TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 	{
275 	  val_print_optimized_out (stream);
276 	  return 0;
277 	}
278 
279       if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
280 					TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 	{
282 	  fputs_filtered (_("<synthetic pointer>"), stream);
283 	  return 0;
284 	}
285 
286       if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
287 	{
288 	  val_print_unavailable (stream);
289 	  return 0;
290 	}
291     }
292 
293   return 1;
294 }
295 
296 void
297 val_print_optimized_out (struct ui_file *stream)
298 {
299   fprintf_filtered (stream, _("<optimized out>"));
300 }
301 
302 void
303 val_print_unavailable (struct ui_file *stream)
304 {
305   fprintf_filtered (stream, _("<unavailable>"));
306 }
307 
308 void
309 val_print_invalid_address (struct ui_file *stream)
310 {
311   fprintf_filtered (stream, _("<invalid address>"));
312 }
313 
314 /* Print using the given LANGUAGE the data of type TYPE located at
315    VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
316    inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
317    STREAM according to OPTIONS.  VAL is the whole object that came
318    from ADDRESS.  VALADDR must point to the head of VAL's contents
319    buffer.
320 
321    The language printers will pass down an adjusted EMBEDDED_OFFSET to
322    further helper subroutines as subfields of TYPE are printed.  In
323    such cases, VALADDR is passed down unadjusted, as well as VAL, so
324    that VAL can be queried for metadata about the contents data being
325    printed, using EMBEDDED_OFFSET as an offset into VAL's contents
326    buffer.  For example: "has this field been optimized out", or "I'm
327    printing an object while inspecting a traceframe; has this
328    particular piece of data been collected?".
329 
330    RECURSE indicates the amount of indentation to supply before
331    continuation lines; this amount is roughly twice the value of
332    RECURSE.
333 
334    If the data is printed as a string, returns the number of string
335    characters printed.  */
336 
337 int
338 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
339 	   CORE_ADDR address, struct ui_file *stream, int recurse,
340 	   const struct value *val,
341 	   const struct value_print_options *options,
342 	   const struct language_defn *language)
343 {
344   volatile struct gdb_exception except;
345   int ret = 0;
346   struct value_print_options local_opts = *options;
347   struct type *real_type = check_typedef (type);
348 
349   if (local_opts.pretty == Val_pretty_default)
350     local_opts.pretty = (local_opts.prettyprint_structs
351 			 ? Val_prettyprint : Val_no_prettyprint);
352 
353   QUIT;
354 
355   /* Ensure that the type is complete and not just a stub.  If the type is
356      only a stub and we can't find and substitute its complete type, then
357      print appropriate string and return.  */
358 
359   if (TYPE_STUB (real_type))
360     {
361       fprintf_filtered (stream, _("<incomplete type>"));
362       gdb_flush (stream);
363       return (0);
364     }
365 
366   if (!valprint_check_validity (stream, real_type, embedded_offset, val))
367     return 0;
368 
369   if (!options->raw)
370     {
371       ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
372 				      address, stream, recurse,
373 				      val, options, language);
374       if (ret)
375 	return ret;
376     }
377 
378   /* Handle summary mode.  If the value is a scalar, print it;
379      otherwise, print an ellipsis.  */
380   if (options->summary && !scalar_type_p (type))
381     {
382       fprintf_filtered (stream, "...");
383       return 0;
384     }
385 
386   TRY_CATCH (except, RETURN_MASK_ERROR)
387     {
388       ret = language->la_val_print (type, valaddr, embedded_offset, address,
389 				    stream, recurse, val,
390 				    &local_opts);
391     }
392   if (except.reason < 0)
393     fprintf_filtered (stream, _("<error reading variable>"));
394 
395   return ret;
396 }
397 
398 /* Check whether the value VAL is printable.  Return 1 if it is;
399    return 0 and print an appropriate error message to STREAM if it
400    is not.  */
401 
402 static int
403 value_check_printable (struct value *val, struct ui_file *stream)
404 {
405   if (val == 0)
406     {
407       fprintf_filtered (stream, _("<address of value unknown>"));
408       return 0;
409     }
410 
411   if (value_entirely_optimized_out (val))
412     {
413       val_print_optimized_out (stream);
414       return 0;
415     }
416 
417   if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
418     {
419       fprintf_filtered (stream, _("<internal function %s>"),
420 			value_internal_function_name (val));
421       return 0;
422     }
423 
424   return 1;
425 }
426 
427 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
428    to OPTIONS.
429 
430    If the data are a string pointer, returns the number of string characters
431    printed.
432 
433    This is a preferable interface to val_print, above, because it uses
434    GDB's value mechanism.  */
435 
436 int
437 common_val_print (struct value *val, struct ui_file *stream, int recurse,
438 		  const struct value_print_options *options,
439 		  const struct language_defn *language)
440 {
441   if (!value_check_printable (val, stream))
442     return 0;
443 
444   if (language->la_language == language_ada)
445     /* The value might have a dynamic type, which would cause trouble
446        below when trying to extract the value contents (since the value
447        size is determined from the type size which is unknown).  So
448        get a fixed representation of our value.  */
449     val = ada_to_fixed_value (val);
450 
451   return val_print (value_type (val), value_contents_for_printing (val),
452 		    value_embedded_offset (val), value_address (val),
453 		    stream, recurse,
454 		    val, options, language);
455 }
456 
457 /* Print on stream STREAM the value VAL according to OPTIONS.  The value
458    is printed using the current_language syntax.
459 
460    If the object printed is a string pointer, return the number of string
461    bytes printed.  */
462 
463 int
464 value_print (struct value *val, struct ui_file *stream,
465 	     const struct value_print_options *options)
466 {
467   if (!value_check_printable (val, stream))
468     return 0;
469 
470   if (!options->raw)
471     {
472       int r = apply_val_pretty_printer (value_type (val),
473 					value_contents_for_printing (val),
474 					value_embedded_offset (val),
475 					value_address (val),
476 					stream, 0,
477 					val, options, current_language);
478 
479       if (r)
480 	return r;
481     }
482 
483   return LA_VALUE_PRINT (val, stream, options);
484 }
485 
486 /* Called by various <lang>_val_print routines to print
487    TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
488    value.  STREAM is where to print the value.  */
489 
490 void
491 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
492 			 struct ui_file *stream)
493 {
494   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
495 
496   if (TYPE_LENGTH (type) > sizeof (LONGEST))
497     {
498       LONGEST val;
499 
500       if (TYPE_UNSIGNED (type)
501 	  && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
502 					    byte_order, &val))
503 	{
504 	  print_longest (stream, 'u', 0, val);
505 	}
506       else
507 	{
508 	  /* Signed, or we couldn't turn an unsigned value into a
509 	     LONGEST.  For signed values, one could assume two's
510 	     complement (a reasonable assumption, I think) and do
511 	     better than this.  */
512 	  print_hex_chars (stream, (unsigned char *) valaddr,
513 			   TYPE_LENGTH (type), byte_order);
514 	}
515     }
516   else
517     {
518       print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
519 		     unpack_long (type, valaddr));
520     }
521 }
522 
523 void
524 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
525 			   struct ui_file *stream)
526 {
527   ULONGEST val = unpack_long (type, valaddr);
528   int bitpos, nfields = TYPE_NFIELDS (type);
529 
530   fputs_filtered ("[ ", stream);
531   for (bitpos = 0; bitpos < nfields; bitpos++)
532     {
533       if (TYPE_FIELD_BITPOS (type, bitpos) != -1
534 	  && (val & ((ULONGEST)1 << bitpos)))
535 	{
536 	  if (TYPE_FIELD_NAME (type, bitpos))
537 	    fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
538 	  else
539 	    fprintf_filtered (stream, "#%d ", bitpos);
540 	}
541     }
542   fputs_filtered ("]", stream);
543 
544 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
545    according to OPTIONS and SIZE on STREAM.  Format i is not supported
546    at this level.
547 
548    This is how the elements of an array or structure are printed
549    with a format.  */
550 }
551 
552 void
553 val_print_scalar_formatted (struct type *type,
554 			    const gdb_byte *valaddr, int embedded_offset,
555 			    const struct value *val,
556 			    const struct value_print_options *options,
557 			    int size,
558 			    struct ui_file *stream)
559 {
560   gdb_assert (val != NULL);
561   gdb_assert (valaddr == value_contents_for_printing_const (val));
562 
563   /* If we get here with a string format, try again without it.  Go
564      all the way back to the language printers, which may call us
565      again.  */
566   if (options->format == 's')
567     {
568       struct value_print_options opts = *options;
569       opts.format = 0;
570       opts.deref_ref = 0;
571       val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
572 		 current_language);
573       return;
574     }
575 
576   /* A scalar object that does not have all bits available can't be
577      printed, because all bits contribute to its representation.  */
578   if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
579 			      TARGET_CHAR_BIT * TYPE_LENGTH (type)))
580     val_print_optimized_out (stream);
581   else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
582     val_print_unavailable (stream);
583   else
584     print_scalar_formatted (valaddr + embedded_offset, type,
585 			    options, size, stream);
586 }
587 
588 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
589    The raison d'etre of this function is to consolidate printing of
590    LONG_LONG's into this one function.  The format chars b,h,w,g are
591    from print_scalar_formatted().  Numbers are printed using C
592    format.
593 
594    USE_C_FORMAT means to use C format in all cases.  Without it,
595    'o' and 'x' format do not include the standard C radix prefix
596    (leading 0 or 0x).
597 
598    Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
599    and was intended to request formating according to the current
600    language and would be used for most integers that GDB prints.  The
601    exceptional cases were things like protocols where the format of
602    the integer is a protocol thing, not a user-visible thing).  The
603    parameter remains to preserve the information of what things might
604    be printed with language-specific format, should we ever resurrect
605    that capability.  */
606 
607 void
608 print_longest (struct ui_file *stream, int format, int use_c_format,
609 	       LONGEST val_long)
610 {
611   const char *val;
612 
613   switch (format)
614     {
615     case 'd':
616       val = int_string (val_long, 10, 1, 0, 1); break;
617     case 'u':
618       val = int_string (val_long, 10, 0, 0, 1); break;
619     case 'x':
620       val = int_string (val_long, 16, 0, 0, use_c_format); break;
621     case 'b':
622       val = int_string (val_long, 16, 0, 2, 1); break;
623     case 'h':
624       val = int_string (val_long, 16, 0, 4, 1); break;
625     case 'w':
626       val = int_string (val_long, 16, 0, 8, 1); break;
627     case 'g':
628       val = int_string (val_long, 16, 0, 16, 1); break;
629       break;
630     case 'o':
631       val = int_string (val_long, 8, 0, 0, use_c_format); break;
632     default:
633       internal_error (__FILE__, __LINE__,
634 		      _("failed internal consistency check"));
635     }
636   fputs_filtered (val, stream);
637 }
638 
639 /* This used to be a macro, but I don't think it is called often enough
640    to merit such treatment.  */
641 /* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
642    arguments to a function, number in a value history, register number, etc.)
643    where the value must not be larger than can fit in an int.  */
644 
645 int
646 longest_to_int (LONGEST arg)
647 {
648   /* Let the compiler do the work.  */
649   int rtnval = (int) arg;
650 
651   /* Check for overflows or underflows.  */
652   if (sizeof (LONGEST) > sizeof (int))
653     {
654       if (rtnval != arg)
655 	{
656 	  error (_("Value out of range."));
657 	}
658     }
659   return (rtnval);
660 }
661 
662 /* Print a floating point value of type TYPE (not always a
663    TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
664 
665 void
666 print_floating (const gdb_byte *valaddr, struct type *type,
667 		struct ui_file *stream)
668 {
669   DOUBLEST doub;
670   int inv;
671   const struct floatformat *fmt = NULL;
672   unsigned len = TYPE_LENGTH (type);
673   enum float_kind kind;
674 
675   /* If it is a floating-point, check for obvious problems.  */
676   if (TYPE_CODE (type) == TYPE_CODE_FLT)
677     fmt = floatformat_from_type (type);
678   if (fmt != NULL)
679     {
680       kind = floatformat_classify (fmt, valaddr);
681       if (kind == float_nan)
682 	{
683 	  if (floatformat_is_negative (fmt, valaddr))
684 	    fprintf_filtered (stream, "-");
685 	  fprintf_filtered (stream, "nan(");
686 	  fputs_filtered ("0x", stream);
687 	  fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
688 	  fprintf_filtered (stream, ")");
689 	  return;
690 	}
691       else if (kind == float_infinite)
692 	{
693 	  if (floatformat_is_negative (fmt, valaddr))
694 	    fputs_filtered ("-", stream);
695 	  fputs_filtered ("inf", stream);
696 	  return;
697 	}
698     }
699 
700   /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
701      isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
702      needs to be used as that takes care of any necessary type
703      conversions.  Such conversions are of course direct to DOUBLEST
704      and disregard any possible target floating point limitations.
705      For instance, a u64 would be converted and displayed exactly on a
706      host with 80 bit DOUBLEST but with loss of information on a host
707      with 64 bit DOUBLEST.  */
708 
709   doub = unpack_double (type, valaddr, &inv);
710   if (inv)
711     {
712       fprintf_filtered (stream, "<invalid float value>");
713       return;
714     }
715 
716   /* FIXME: kettenis/2001-01-20: The following code makes too much
717      assumptions about the host and target floating point format.  */
718 
719   /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
720      not necessarily be a TYPE_CODE_FLT, the below ignores that and
721      instead uses the type's length to determine the precision of the
722      floating-point value being printed.  */
723 
724   if (len < sizeof (double))
725       fprintf_filtered (stream, "%.9g", (double) doub);
726   else if (len == sizeof (double))
727       fprintf_filtered (stream, "%.17g", (double) doub);
728   else
729 #ifdef PRINTF_HAS_LONG_DOUBLE
730     fprintf_filtered (stream, "%.35Lg", doub);
731 #else
732     /* This at least wins with values that are representable as
733        doubles.  */
734     fprintf_filtered (stream, "%.17g", (double) doub);
735 #endif
736 }
737 
738 void
739 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
740 			struct ui_file *stream)
741 {
742   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
743   char decstr[MAX_DECIMAL_STRING];
744   unsigned len = TYPE_LENGTH (type);
745 
746   decimal_to_string (valaddr, len, byte_order, decstr);
747   fputs_filtered (decstr, stream);
748   return;
749 }
750 
751 void
752 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
753 		    unsigned len, enum bfd_endian byte_order)
754 {
755 
756 #define BITS_IN_BYTES 8
757 
758   const gdb_byte *p;
759   unsigned int i;
760   int b;
761 
762   /* Declared "int" so it will be signed.
763      This ensures that right shift will shift in zeros.  */
764 
765   const int mask = 0x080;
766 
767   /* FIXME: We should be not printing leading zeroes in most cases.  */
768 
769   if (byte_order == BFD_ENDIAN_BIG)
770     {
771       for (p = valaddr;
772 	   p < valaddr + len;
773 	   p++)
774 	{
775 	  /* Every byte has 8 binary characters; peel off
776 	     and print from the MSB end.  */
777 
778 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
779 	    {
780 	      if (*p & (mask >> i))
781 		b = 1;
782 	      else
783 		b = 0;
784 
785 	      fprintf_filtered (stream, "%1d", b);
786 	    }
787 	}
788     }
789   else
790     {
791       for (p = valaddr + len - 1;
792 	   p >= valaddr;
793 	   p--)
794 	{
795 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
796 	    {
797 	      if (*p & (mask >> i))
798 		b = 1;
799 	      else
800 		b = 0;
801 
802 	      fprintf_filtered (stream, "%1d", b);
803 	    }
804 	}
805     }
806 }
807 
808 /* VALADDR points to an integer of LEN bytes.
809    Print it in octal on stream or format it in buf.  */
810 
811 void
812 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
813 		   unsigned len, enum bfd_endian byte_order)
814 {
815   const gdb_byte *p;
816   unsigned char octa1, octa2, octa3, carry;
817   int cycle;
818 
819   /* FIXME: We should be not printing leading zeroes in most cases.  */
820 
821 
822   /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
823    * the extra bits, which cycle every three bytes:
824    *
825    * Byte side:       0            1             2          3
826    *                         |             |            |            |
827    * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
828    *
829    * Octal side:   0   1   carry  3   4  carry ...
830    *
831    * Cycle number:    0             1            2
832    *
833    * But of course we are printing from the high side, so we have to
834    * figure out where in the cycle we are so that we end up with no
835    * left over bits at the end.
836    */
837 #define BITS_IN_OCTAL 3
838 #define HIGH_ZERO     0340
839 #define LOW_ZERO      0016
840 #define CARRY_ZERO    0003
841 #define HIGH_ONE      0200
842 #define MID_ONE       0160
843 #define LOW_ONE       0016
844 #define CARRY_ONE     0001
845 #define HIGH_TWO      0300
846 #define MID_TWO       0070
847 #define LOW_TWO       0007
848 
849   /* For 32 we start in cycle 2, with two bits and one bit carry;
850      for 64 in cycle in cycle 1, with one bit and a two bit carry.  */
851 
852   cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
853   carry = 0;
854 
855   fputs_filtered ("0", stream);
856   if (byte_order == BFD_ENDIAN_BIG)
857     {
858       for (p = valaddr;
859 	   p < valaddr + len;
860 	   p++)
861 	{
862 	  switch (cycle)
863 	    {
864 	    case 0:
865 	      /* No carry in, carry out two bits.  */
866 
867 	      octa1 = (HIGH_ZERO & *p) >> 5;
868 	      octa2 = (LOW_ZERO & *p) >> 2;
869 	      carry = (CARRY_ZERO & *p);
870 	      fprintf_filtered (stream, "%o", octa1);
871 	      fprintf_filtered (stream, "%o", octa2);
872 	      break;
873 
874 	    case 1:
875 	      /* Carry in two bits, carry out one bit.  */
876 
877 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
878 	      octa2 = (MID_ONE & *p) >> 4;
879 	      octa3 = (LOW_ONE & *p) >> 1;
880 	      carry = (CARRY_ONE & *p);
881 	      fprintf_filtered (stream, "%o", octa1);
882 	      fprintf_filtered (stream, "%o", octa2);
883 	      fprintf_filtered (stream, "%o", octa3);
884 	      break;
885 
886 	    case 2:
887 	      /* Carry in one bit, no carry out.  */
888 
889 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
890 	      octa2 = (MID_TWO & *p) >> 3;
891 	      octa3 = (LOW_TWO & *p);
892 	      carry = 0;
893 	      fprintf_filtered (stream, "%o", octa1);
894 	      fprintf_filtered (stream, "%o", octa2);
895 	      fprintf_filtered (stream, "%o", octa3);
896 	      break;
897 
898 	    default:
899 	      error (_("Internal error in octal conversion;"));
900 	    }
901 
902 	  cycle++;
903 	  cycle = cycle % BITS_IN_OCTAL;
904 	}
905     }
906   else
907     {
908       for (p = valaddr + len - 1;
909 	   p >= valaddr;
910 	   p--)
911 	{
912 	  switch (cycle)
913 	    {
914 	    case 0:
915 	      /* Carry out, no carry in */
916 
917 	      octa1 = (HIGH_ZERO & *p) >> 5;
918 	      octa2 = (LOW_ZERO & *p) >> 2;
919 	      carry = (CARRY_ZERO & *p);
920 	      fprintf_filtered (stream, "%o", octa1);
921 	      fprintf_filtered (stream, "%o", octa2);
922 	      break;
923 
924 	    case 1:
925 	      /* Carry in, carry out */
926 
927 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
928 	      octa2 = (MID_ONE & *p) >> 4;
929 	      octa3 = (LOW_ONE & *p) >> 1;
930 	      carry = (CARRY_ONE & *p);
931 	      fprintf_filtered (stream, "%o", octa1);
932 	      fprintf_filtered (stream, "%o", octa2);
933 	      fprintf_filtered (stream, "%o", octa3);
934 	      break;
935 
936 	    case 2:
937 	      /* Carry in, no carry out */
938 
939 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
940 	      octa2 = (MID_TWO & *p) >> 3;
941 	      octa3 = (LOW_TWO & *p);
942 	      carry = 0;
943 	      fprintf_filtered (stream, "%o", octa1);
944 	      fprintf_filtered (stream, "%o", octa2);
945 	      fprintf_filtered (stream, "%o", octa3);
946 	      break;
947 
948 	    default:
949 	      error (_("Internal error in octal conversion;"));
950 	    }
951 
952 	  cycle++;
953 	  cycle = cycle % BITS_IN_OCTAL;
954 	}
955     }
956 
957 }
958 
959 /* VALADDR points to an integer of LEN bytes.
960    Print it in decimal on stream or format it in buf.  */
961 
962 void
963 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
964 		     unsigned len, enum bfd_endian byte_order)
965 {
966 #define TEN             10
967 #define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
968 #define CARRY_LEFT( x ) ((x) % TEN)
969 #define SHIFT( x )      ((x) << 4)
970 #define LOW_NIBBLE(  x ) ( (x) & 0x00F)
971 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
972 
973   const gdb_byte *p;
974   unsigned char *digits;
975   int carry;
976   int decimal_len;
977   int i, j, decimal_digits;
978   int dummy;
979   int flip;
980 
981   /* Base-ten number is less than twice as many digits
982      as the base 16 number, which is 2 digits per byte.  */
983 
984   decimal_len = len * 2 * 2;
985   digits = xmalloc (decimal_len);
986 
987   for (i = 0; i < decimal_len; i++)
988     {
989       digits[i] = 0;
990     }
991 
992   /* Ok, we have an unknown number of bytes of data to be printed in
993    * decimal.
994    *
995    * Given a hex number (in nibbles) as XYZ, we start by taking X and
996    * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
997    * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
998    *
999    * The trick is that "digits" holds a base-10 number, but sometimes
1000    * the individual digits are > 10.
1001    *
1002    * Outer loop is per nibble (hex digit) of input, from MSD end to
1003    * LSD end.
1004    */
1005   decimal_digits = 0;		/* Number of decimal digits so far */
1006   p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1007   flip = 0;
1008   while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1009     {
1010       /*
1011        * Multiply current base-ten number by 16 in place.
1012        * Each digit was between 0 and 9, now is between
1013        * 0 and 144.
1014        */
1015       for (j = 0; j < decimal_digits; j++)
1016 	{
1017 	  digits[j] = SHIFT (digits[j]);
1018 	}
1019 
1020       /* Take the next nibble off the input and add it to what
1021        * we've got in the LSB position.  Bottom 'digit' is now
1022        * between 0 and 159.
1023        *
1024        * "flip" is used to run this loop twice for each byte.
1025        */
1026       if (flip == 0)
1027 	{
1028 	  /* Take top nibble.  */
1029 
1030 	  digits[0] += HIGH_NIBBLE (*p);
1031 	  flip = 1;
1032 	}
1033       else
1034 	{
1035 	  /* Take low nibble and bump our pointer "p".  */
1036 
1037 	  digits[0] += LOW_NIBBLE (*p);
1038           if (byte_order == BFD_ENDIAN_BIG)
1039 	    p++;
1040 	  else
1041 	    p--;
1042 	  flip = 0;
1043 	}
1044 
1045       /* Re-decimalize.  We have to do this often enough
1046        * that we don't overflow, but once per nibble is
1047        * overkill.  Easier this way, though.  Note that the
1048        * carry is often larger than 10 (e.g. max initial
1049        * carry out of lowest nibble is 15, could bubble all
1050        * the way up greater than 10).  So we have to do
1051        * the carrying beyond the last current digit.
1052        */
1053       carry = 0;
1054       for (j = 0; j < decimal_len - 1; j++)
1055 	{
1056 	  digits[j] += carry;
1057 
1058 	  /* "/" won't handle an unsigned char with
1059 	   * a value that if signed would be negative.
1060 	   * So extend to longword int via "dummy".
1061 	   */
1062 	  dummy = digits[j];
1063 	  carry = CARRY_OUT (dummy);
1064 	  digits[j] = CARRY_LEFT (dummy);
1065 
1066 	  if (j >= decimal_digits && carry == 0)
1067 	    {
1068 	      /*
1069 	       * All higher digits are 0 and we
1070 	       * no longer have a carry.
1071 	       *
1072 	       * Note: "j" is 0-based, "decimal_digits" is
1073 	       *       1-based.
1074 	       */
1075 	      decimal_digits = j + 1;
1076 	      break;
1077 	    }
1078 	}
1079     }
1080 
1081   /* Ok, now "digits" is the decimal representation, with
1082      the "decimal_digits" actual digits.  Print!  */
1083 
1084   for (i = decimal_digits - 1; i >= 0; i--)
1085     {
1086       fprintf_filtered (stream, "%1d", digits[i]);
1087     }
1088   xfree (digits);
1089 }
1090 
1091 /* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
1092 
1093 void
1094 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1095 		 unsigned len, enum bfd_endian byte_order)
1096 {
1097   const gdb_byte *p;
1098 
1099   /* FIXME: We should be not printing leading zeroes in most cases.  */
1100 
1101   fputs_filtered ("0x", stream);
1102   if (byte_order == BFD_ENDIAN_BIG)
1103     {
1104       for (p = valaddr;
1105 	   p < valaddr + len;
1106 	   p++)
1107 	{
1108 	  fprintf_filtered (stream, "%02x", *p);
1109 	}
1110     }
1111   else
1112     {
1113       for (p = valaddr + len - 1;
1114 	   p >= valaddr;
1115 	   p--)
1116 	{
1117 	  fprintf_filtered (stream, "%02x", *p);
1118 	}
1119     }
1120 }
1121 
1122 /* VALADDR points to a char integer of LEN bytes.
1123    Print it out in appropriate language form on stream.
1124    Omit any leading zero chars.  */
1125 
1126 void
1127 print_char_chars (struct ui_file *stream, struct type *type,
1128 		  const gdb_byte *valaddr,
1129 		  unsigned len, enum bfd_endian byte_order)
1130 {
1131   const gdb_byte *p;
1132 
1133   if (byte_order == BFD_ENDIAN_BIG)
1134     {
1135       p = valaddr;
1136       while (p < valaddr + len - 1 && *p == 0)
1137 	++p;
1138 
1139       while (p < valaddr + len)
1140 	{
1141 	  LA_EMIT_CHAR (*p, type, stream, '\'');
1142 	  ++p;
1143 	}
1144     }
1145   else
1146     {
1147       p = valaddr + len - 1;
1148       while (p > valaddr && *p == 0)
1149 	--p;
1150 
1151       while (p >= valaddr)
1152 	{
1153 	  LA_EMIT_CHAR (*p, type, stream, '\'');
1154 	  --p;
1155 	}
1156     }
1157 }
1158 
1159 /* Print on STREAM using the given OPTIONS the index for the element
1160    at INDEX of an array whose index type is INDEX_TYPE.  */
1161 
1162 void
1163 maybe_print_array_index (struct type *index_type, LONGEST index,
1164                          struct ui_file *stream,
1165 			 const struct value_print_options *options)
1166 {
1167   struct value *index_value;
1168 
1169   if (!options->print_array_indexes)
1170     return;
1171 
1172   index_value = value_from_longest (index_type, index);
1173 
1174   LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1175 }
1176 
1177 /*  Called by various <lang>_val_print routines to print elements of an
1178    array in the form "<elem1>, <elem2>, <elem3>, ...".
1179 
1180    (FIXME?)  Assumes array element separator is a comma, which is correct
1181    for all languages currently handled.
1182    (FIXME?)  Some languages have a notation for repeated array elements,
1183    perhaps we should try to use that notation when appropriate.  */
1184 
1185 void
1186 val_print_array_elements (struct type *type,
1187 			  const gdb_byte *valaddr, int embedded_offset,
1188 			  CORE_ADDR address, struct ui_file *stream,
1189 			  int recurse,
1190 			  const struct value *val,
1191 			  const struct value_print_options *options,
1192 			  unsigned int i)
1193 {
1194   unsigned int things_printed = 0;
1195   unsigned len;
1196   struct type *elttype, *index_type;
1197   unsigned eltlen;
1198   /* Position of the array element we are examining to see
1199      whether it is repeated.  */
1200   unsigned int rep1;
1201   /* Number of repetitions we have detected so far.  */
1202   unsigned int reps;
1203   LONGEST low_bound, high_bound;
1204 
1205   elttype = TYPE_TARGET_TYPE (type);
1206   eltlen = TYPE_LENGTH (check_typedef (elttype));
1207   index_type = TYPE_INDEX_TYPE (type);
1208 
1209   if (get_array_bounds (type, &low_bound, &high_bound))
1210     {
1211       /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1212          But we have to be a little extra careful, because some languages
1213 	 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1214 	 empty arrays.  In that situation, the array length is just zero,
1215 	 not negative!  */
1216       if (low_bound > high_bound)
1217 	len = 0;
1218       else
1219 	len = high_bound - low_bound + 1;
1220     }
1221   else
1222     {
1223       warning (_("unable to get bounds of array, assuming null array"));
1224       low_bound = 0;
1225       len = 0;
1226     }
1227 
1228   annotate_array_section_begin (i, elttype);
1229 
1230   for (; i < len && things_printed < options->print_max; i++)
1231     {
1232       if (i != 0)
1233 	{
1234 	  if (options->prettyprint_arrays)
1235 	    {
1236 	      fprintf_filtered (stream, ",\n");
1237 	      print_spaces_filtered (2 + 2 * recurse, stream);
1238 	    }
1239 	  else
1240 	    {
1241 	      fprintf_filtered (stream, ", ");
1242 	    }
1243 	}
1244       wrap_here (n_spaces (2 + 2 * recurse));
1245       maybe_print_array_index (index_type, i + low_bound,
1246                                stream, options);
1247 
1248       rep1 = i + 1;
1249       reps = 1;
1250       /* Only check for reps if repeat_count_threshold is not set to
1251 	 UINT_MAX (unlimited).  */
1252       if (options->repeat_count_threshold < UINT_MAX)
1253 	{
1254 	  while (rep1 < len
1255 		 && value_available_contents_eq (val,
1256 						 embedded_offset + i * eltlen,
1257 						 val,
1258 						 (embedded_offset
1259 						  + rep1 * eltlen),
1260 						 eltlen))
1261 	    {
1262 	      ++reps;
1263 	      ++rep1;
1264 	    }
1265 	}
1266 
1267       if (reps > options->repeat_count_threshold)
1268 	{
1269 	  val_print (elttype, valaddr, embedded_offset + i * eltlen,
1270 		     address, stream, recurse + 1, val, options,
1271 		     current_language);
1272 	  annotate_elt_rep (reps);
1273 	  fprintf_filtered (stream, " <repeats %u times>", reps);
1274 	  annotate_elt_rep_end ();
1275 
1276 	  i = rep1 - 1;
1277 	  things_printed += options->repeat_count_threshold;
1278 	}
1279       else
1280 	{
1281 	  val_print (elttype, valaddr, embedded_offset + i * eltlen,
1282 		     address,
1283 		     stream, recurse + 1, val, options, current_language);
1284 	  annotate_elt ();
1285 	  things_printed++;
1286 	}
1287     }
1288   annotate_array_section_end ();
1289   if (i < len)
1290     {
1291       fprintf_filtered (stream, "...");
1292     }
1293 }
1294 
1295 /* Read LEN bytes of target memory at address MEMADDR, placing the
1296    results in GDB's memory at MYADDR.  Returns a count of the bytes
1297    actually read, and optionally an errno value in the location
1298    pointed to by ERRNOPTR if ERRNOPTR is non-null.  */
1299 
1300 /* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
1301    function be eliminated.  */
1302 
1303 static int
1304 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1305 		     int len, int *errnoptr)
1306 {
1307   int nread;			/* Number of bytes actually read.  */
1308   int errcode;			/* Error from last read.  */
1309 
1310   /* First try a complete read.  */
1311   errcode = target_read_memory (memaddr, myaddr, len);
1312   if (errcode == 0)
1313     {
1314       /* Got it all.  */
1315       nread = len;
1316     }
1317   else
1318     {
1319       /* Loop, reading one byte at a time until we get as much as we can.  */
1320       for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1321 	{
1322 	  errcode = target_read_memory (memaddr++, myaddr++, 1);
1323 	}
1324       /* If an error, the last read was unsuccessful, so adjust count.  */
1325       if (errcode != 0)
1326 	{
1327 	  nread--;
1328 	}
1329     }
1330   if (errnoptr != NULL)
1331     {
1332       *errnoptr = errcode;
1333     }
1334   return (nread);
1335 }
1336 
1337 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1338    each.  Fetch at most FETCHLIMIT characters.  BUFFER will be set to a newly
1339    allocated buffer containing the string, which the caller is responsible to
1340    free, and BYTES_READ will be set to the number of bytes read.  Returns 0 on
1341    success, or errno on failure.
1342 
1343    If LEN > 0, reads exactly LEN characters (including eventual NULs in
1344    the middle or end of the string).  If LEN is -1, stops at the first
1345    null character (not necessarily the first null byte) up to a maximum
1346    of FETCHLIMIT characters.  Set FETCHLIMIT to UINT_MAX to read as many
1347    characters as possible from the string.
1348 
1349    Unless an exception is thrown, BUFFER will always be allocated, even on
1350    failure.  In this case, some characters might have been read before the
1351    failure happened.  Check BYTES_READ to recognize this situation.
1352 
1353    Note: There was a FIXME asking to make this code use target_read_string,
1354    but this function is more general (can read past null characters, up to
1355    given LEN).  Besides, it is used much more often than target_read_string
1356    so it is more tested.  Perhaps callers of target_read_string should use
1357    this function instead?  */
1358 
1359 int
1360 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1361 	     enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1362 {
1363   int found_nul;		/* Non-zero if we found the nul char.  */
1364   int errcode;			/* Errno returned from bad reads.  */
1365   unsigned int nfetch;		/* Chars to fetch / chars fetched.  */
1366   unsigned int chunksize;	/* Size of each fetch, in chars.  */
1367   gdb_byte *bufptr;		/* Pointer to next available byte in
1368 				   buffer.  */
1369   gdb_byte *limit;		/* First location past end of fetch buffer.  */
1370   struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain.  */
1371 
1372   /* Decide how large of chunks to try to read in one operation.  This
1373      is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
1374      so we might as well read them all in one operation.  If LEN is -1, we
1375      are looking for a NUL terminator to end the fetching, so we might as
1376      well read in blocks that are large enough to be efficient, but not so
1377      large as to be slow if fetchlimit happens to be large.  So we choose the
1378      minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
1379      200 is way too big for remote debugging over a serial line.  */
1380 
1381   chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1382 
1383   /* Loop until we either have all the characters, or we encounter
1384      some error, such as bumping into the end of the address space.  */
1385 
1386   found_nul = 0;
1387   *buffer = NULL;
1388 
1389   old_chain = make_cleanup (free_current_contents, buffer);
1390 
1391   if (len > 0)
1392     {
1393       *buffer = (gdb_byte *) xmalloc (len * width);
1394       bufptr = *buffer;
1395 
1396       nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1397 	/ width;
1398       addr += nfetch * width;
1399       bufptr += nfetch * width;
1400     }
1401   else if (len == -1)
1402     {
1403       unsigned long bufsize = 0;
1404 
1405       do
1406 	{
1407 	  QUIT;
1408 	  nfetch = min (chunksize, fetchlimit - bufsize);
1409 
1410 	  if (*buffer == NULL)
1411 	    *buffer = (gdb_byte *) xmalloc (nfetch * width);
1412 	  else
1413 	    *buffer = (gdb_byte *) xrealloc (*buffer,
1414 					     (nfetch + bufsize) * width);
1415 
1416 	  bufptr = *buffer + bufsize * width;
1417 	  bufsize += nfetch;
1418 
1419 	  /* Read as much as we can.  */
1420 	  nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1421 		    / width;
1422 
1423 	  /* Scan this chunk for the null character that terminates the string
1424 	     to print.  If found, we don't need to fetch any more.  Note
1425 	     that bufptr is explicitly left pointing at the next character
1426 	     after the null character, or at the next character after the end
1427 	     of the buffer.  */
1428 
1429 	  limit = bufptr + nfetch * width;
1430 	  while (bufptr < limit)
1431 	    {
1432 	      unsigned long c;
1433 
1434 	      c = extract_unsigned_integer (bufptr, width, byte_order);
1435 	      addr += width;
1436 	      bufptr += width;
1437 	      if (c == 0)
1438 		{
1439 		  /* We don't care about any error which happened after
1440 		     the NUL terminator.  */
1441 		  errcode = 0;
1442 		  found_nul = 1;
1443 		  break;
1444 		}
1445 	    }
1446 	}
1447       while (errcode == 0	/* no error */
1448 	     && bufptr - *buffer < fetchlimit * width	/* no overrun */
1449 	     && !found_nul);	/* haven't found NUL yet */
1450     }
1451   else
1452     {				/* Length of string is really 0!  */
1453       /* We always allocate *buffer.  */
1454       *buffer = bufptr = xmalloc (1);
1455       errcode = 0;
1456     }
1457 
1458   /* bufptr and addr now point immediately beyond the last byte which we
1459      consider part of the string (including a '\0' which ends the string).  */
1460   *bytes_read = bufptr - *buffer;
1461 
1462   QUIT;
1463 
1464   discard_cleanups (old_chain);
1465 
1466   return errcode;
1467 }
1468 
1469 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1470    characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
1471    stops at the first null byte, otherwise printing proceeds (including null
1472    bytes) until either print_max or LEN characters have been printed,
1473    whichever is smaller.  ENCODING is the name of the string's
1474    encoding.  It can be NULL, in which case the target encoding is
1475    assumed.  */
1476 
1477 int
1478 val_print_string (struct type *elttype, const char *encoding,
1479 		  CORE_ADDR addr, int len,
1480 		  struct ui_file *stream,
1481 		  const struct value_print_options *options)
1482 {
1483   int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero.  */
1484   int errcode;			/* Errno returned from bad reads.  */
1485   int found_nul;		/* Non-zero if we found the nul char.  */
1486   unsigned int fetchlimit;	/* Maximum number of chars to print.  */
1487   int bytes_read;
1488   gdb_byte *buffer = NULL;	/* Dynamically growable fetch buffer.  */
1489   struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain.  */
1490   struct gdbarch *gdbarch = get_type_arch (elttype);
1491   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1492   int width = TYPE_LENGTH (elttype);
1493 
1494   /* First we need to figure out the limit on the number of characters we are
1495      going to attempt to fetch and print.  This is actually pretty simple.  If
1496      LEN >= zero, then the limit is the minimum of LEN and print_max.  If
1497      LEN is -1, then the limit is print_max.  This is true regardless of
1498      whether print_max is zero, UINT_MAX (unlimited), or something in between,
1499      because finding the null byte (or available memory) is what actually
1500      limits the fetch.  */
1501 
1502   fetchlimit = (len == -1 ? options->print_max : min (len,
1503 						      options->print_max));
1504 
1505   errcode = read_string (addr, len, width, fetchlimit, byte_order,
1506 			 &buffer, &bytes_read);
1507   old_chain = make_cleanup (xfree, buffer);
1508 
1509   addr += bytes_read;
1510 
1511   /* We now have either successfully filled the buffer to fetchlimit,
1512      or terminated early due to an error or finding a null char when
1513      LEN is -1.  */
1514 
1515   /* Determine found_nul by looking at the last character read.  */
1516   found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1517 					byte_order) == 0;
1518   if (len == -1 && !found_nul)
1519     {
1520       gdb_byte *peekbuf;
1521 
1522       /* We didn't find a NUL terminator we were looking for.  Attempt
1523          to peek at the next character.  If not successful, or it is not
1524          a null byte, then force ellipsis to be printed.  */
1525 
1526       peekbuf = (gdb_byte *) alloca (width);
1527 
1528       if (target_read_memory (addr, peekbuf, width) == 0
1529 	  && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1530 	force_ellipsis = 1;
1531     }
1532   else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1533     {
1534       /* Getting an error when we have a requested length, or fetching less
1535          than the number of characters actually requested, always make us
1536          print ellipsis.  */
1537       force_ellipsis = 1;
1538     }
1539 
1540   /* If we get an error before fetching anything, don't print a string.
1541      But if we fetch something and then get an error, print the string
1542      and then the error message.  */
1543   if (errcode == 0 || bytes_read > 0)
1544     {
1545       if (options->addressprint)
1546 	{
1547 	  fputs_filtered (" ", stream);
1548 	}
1549       LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1550 		       encoding, force_ellipsis, options);
1551     }
1552 
1553   if (errcode != 0)
1554     {
1555       if (errcode == EIO)
1556 	{
1557 	  fprintf_filtered (stream, " <Address ");
1558 	  fputs_filtered (paddress (gdbarch, addr), stream);
1559 	  fprintf_filtered (stream, " out of bounds>");
1560 	}
1561       else
1562 	{
1563 	  fprintf_filtered (stream, " <Error reading address ");
1564 	  fputs_filtered (paddress (gdbarch, addr), stream);
1565 	  fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1566 	}
1567     }
1568 
1569   gdb_flush (stream);
1570   do_cleanups (old_chain);
1571 
1572   return (bytes_read / width);
1573 }
1574 
1575 
1576 /* The 'set input-radix' command writes to this auxiliary variable.
1577    If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1578    it is left unchanged.  */
1579 
1580 static unsigned input_radix_1 = 10;
1581 
1582 /* Validate an input or output radix setting, and make sure the user
1583    knows what they really did here.  Radix setting is confusing, e.g.
1584    setting the input radix to "10" never changes it!  */
1585 
1586 static void
1587 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1588 {
1589   set_input_radix_1 (from_tty, input_radix_1);
1590 }
1591 
1592 static void
1593 set_input_radix_1 (int from_tty, unsigned radix)
1594 {
1595   /* We don't currently disallow any input radix except 0 or 1, which don't
1596      make any mathematical sense.  In theory, we can deal with any input
1597      radix greater than 1, even if we don't have unique digits for every
1598      value from 0 to radix-1, but in practice we lose on large radix values.
1599      We should either fix the lossage or restrict the radix range more.
1600      (FIXME).  */
1601 
1602   if (radix < 2)
1603     {
1604       input_radix_1 = input_radix;
1605       error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1606 	     radix);
1607     }
1608   input_radix_1 = input_radix = radix;
1609   if (from_tty)
1610     {
1611       printf_filtered (_("Input radix now set to "
1612 			 "decimal %u, hex %x, octal %o.\n"),
1613 		       radix, radix, radix);
1614     }
1615 }
1616 
1617 /* The 'set output-radix' command writes to this auxiliary variable.
1618    If the requested radix is valid, OUTPUT_RADIX is updated,
1619    otherwise, it is left unchanged.  */
1620 
1621 static unsigned output_radix_1 = 10;
1622 
1623 static void
1624 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1625 {
1626   set_output_radix_1 (from_tty, output_radix_1);
1627 }
1628 
1629 static void
1630 set_output_radix_1 (int from_tty, unsigned radix)
1631 {
1632   /* Validate the radix and disallow ones that we aren't prepared to
1633      handle correctly, leaving the radix unchanged.  */
1634   switch (radix)
1635     {
1636     case 16:
1637       user_print_options.output_format = 'x';	/* hex */
1638       break;
1639     case 10:
1640       user_print_options.output_format = 0;	/* decimal */
1641       break;
1642     case 8:
1643       user_print_options.output_format = 'o';	/* octal */
1644       break;
1645     default:
1646       output_radix_1 = output_radix;
1647       error (_("Unsupported output radix ``decimal %u''; "
1648 	       "output radix unchanged."),
1649 	     radix);
1650     }
1651   output_radix_1 = output_radix = radix;
1652   if (from_tty)
1653     {
1654       printf_filtered (_("Output radix now set to "
1655 			 "decimal %u, hex %x, octal %o.\n"),
1656 		       radix, radix, radix);
1657     }
1658 }
1659 
1660 /* Set both the input and output radix at once.  Try to set the output radix
1661    first, since it has the most restrictive range.  An radix that is valid as
1662    an output radix is also valid as an input radix.
1663 
1664    It may be useful to have an unusual input radix.  If the user wishes to
1665    set an input radix that is not valid as an output radix, he needs to use
1666    the 'set input-radix' command.  */
1667 
1668 static void
1669 set_radix (char *arg, int from_tty)
1670 {
1671   unsigned radix;
1672 
1673   radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1674   set_output_radix_1 (0, radix);
1675   set_input_radix_1 (0, radix);
1676   if (from_tty)
1677     {
1678       printf_filtered (_("Input and output radices now set to "
1679 			 "decimal %u, hex %x, octal %o.\n"),
1680 		       radix, radix, radix);
1681     }
1682 }
1683 
1684 /* Show both the input and output radices.  */
1685 
1686 static void
1687 show_radix (char *arg, int from_tty)
1688 {
1689   if (from_tty)
1690     {
1691       if (input_radix == output_radix)
1692 	{
1693 	  printf_filtered (_("Input and output radices set to "
1694 			     "decimal %u, hex %x, octal %o.\n"),
1695 			   input_radix, input_radix, input_radix);
1696 	}
1697       else
1698 	{
1699 	  printf_filtered (_("Input radix set to decimal "
1700 			     "%u, hex %x, octal %o.\n"),
1701 			   input_radix, input_radix, input_radix);
1702 	  printf_filtered (_("Output radix set to decimal "
1703 			     "%u, hex %x, octal %o.\n"),
1704 			   output_radix, output_radix, output_radix);
1705 	}
1706     }
1707 }
1708 
1709 
1710 static void
1711 set_print (char *arg, int from_tty)
1712 {
1713   printf_unfiltered (
1714      "\"set print\" must be followed by the name of a print subcommand.\n");
1715   help_list (setprintlist, "set print ", -1, gdb_stdout);
1716 }
1717 
1718 static void
1719 show_print (char *args, int from_tty)
1720 {
1721   cmd_show_list (showprintlist, from_tty, "");
1722 }
1723 
1724 void
1725 _initialize_valprint (void)
1726 {
1727   add_prefix_cmd ("print", no_class, set_print,
1728 		  _("Generic command for setting how things print."),
1729 		  &setprintlist, "set print ", 0, &setlist);
1730   add_alias_cmd ("p", "print", no_class, 1, &setlist);
1731   /* Prefer set print to set prompt.  */
1732   add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1733 
1734   add_prefix_cmd ("print", no_class, show_print,
1735 		  _("Generic command for showing print settings."),
1736 		  &showprintlist, "show print ", 0, &showlist);
1737   add_alias_cmd ("p", "print", no_class, 1, &showlist);
1738   add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1739 
1740   add_setshow_uinteger_cmd ("elements", no_class,
1741 			    &user_print_options.print_max, _("\
1742 Set limit on string chars or array elements to print."), _("\
1743 Show limit on string chars or array elements to print."), _("\
1744 \"set print elements 0\" causes there to be no limit."),
1745 			    NULL,
1746 			    show_print_max,
1747 			    &setprintlist, &showprintlist);
1748 
1749   add_setshow_boolean_cmd ("null-stop", no_class,
1750 			   &user_print_options.stop_print_at_null, _("\
1751 Set printing of char arrays to stop at first null char."), _("\
1752 Show printing of char arrays to stop at first null char."), NULL,
1753 			   NULL,
1754 			   show_stop_print_at_null,
1755 			   &setprintlist, &showprintlist);
1756 
1757   add_setshow_uinteger_cmd ("repeats", no_class,
1758 			    &user_print_options.repeat_count_threshold, _("\
1759 Set threshold for repeated print elements."), _("\
1760 Show threshold for repeated print elements."), _("\
1761 \"set print repeats 0\" causes all elements to be individually printed."),
1762 			    NULL,
1763 			    show_repeat_count_threshold,
1764 			    &setprintlist, &showprintlist);
1765 
1766   add_setshow_boolean_cmd ("pretty", class_support,
1767 			   &user_print_options.prettyprint_structs, _("\
1768 Set prettyprinting of structures."), _("\
1769 Show prettyprinting of structures."), NULL,
1770 			   NULL,
1771 			   show_prettyprint_structs,
1772 			   &setprintlist, &showprintlist);
1773 
1774   add_setshow_boolean_cmd ("union", class_support,
1775 			   &user_print_options.unionprint, _("\
1776 Set printing of unions interior to structures."), _("\
1777 Show printing of unions interior to structures."), NULL,
1778 			   NULL,
1779 			   show_unionprint,
1780 			   &setprintlist, &showprintlist);
1781 
1782   add_setshow_boolean_cmd ("array", class_support,
1783 			   &user_print_options.prettyprint_arrays, _("\
1784 Set prettyprinting of arrays."), _("\
1785 Show prettyprinting of arrays."), NULL,
1786 			   NULL,
1787 			   show_prettyprint_arrays,
1788 			   &setprintlist, &showprintlist);
1789 
1790   add_setshow_boolean_cmd ("address", class_support,
1791 			   &user_print_options.addressprint, _("\
1792 Set printing of addresses."), _("\
1793 Show printing of addresses."), NULL,
1794 			   NULL,
1795 			   show_addressprint,
1796 			   &setprintlist, &showprintlist);
1797 
1798   add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1799 			     _("\
1800 Set default input radix for entering numbers."), _("\
1801 Show default input radix for entering numbers."), NULL,
1802 			     set_input_radix,
1803 			     show_input_radix,
1804 			     &setlist, &showlist);
1805 
1806   add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1807 			     _("\
1808 Set default output radix for printing of values."), _("\
1809 Show default output radix for printing of values."), NULL,
1810 			     set_output_radix,
1811 			     show_output_radix,
1812 			     &setlist, &showlist);
1813 
1814   /* The "set radix" and "show radix" commands are special in that
1815      they are like normal set and show commands but allow two normally
1816      independent variables to be either set or shown with a single
1817      command.  So the usual deprecated_add_set_cmd() and [deleted]
1818      add_show_from_set() commands aren't really appropriate.  */
1819   /* FIXME: i18n: With the new add_setshow_integer command, that is no
1820      longer true - show can display anything.  */
1821   add_cmd ("radix", class_support, set_radix, _("\
1822 Set default input and output number radices.\n\
1823 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1824 Without an argument, sets both radices back to the default value of 10."),
1825 	   &setlist);
1826   add_cmd ("radix", class_support, show_radix, _("\
1827 Show the default input and output number radices.\n\
1828 Use 'show input-radix' or 'show output-radix' to independently show each."),
1829 	   &showlist);
1830 
1831   add_setshow_boolean_cmd ("array-indexes", class_support,
1832                            &user_print_options.print_array_indexes, _("\
1833 Set printing of array indexes."), _("\
1834 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1835                            &setprintlist, &showprintlist);
1836 }
1837