xref: /dragonfly/contrib/gdb-7/gdb/valprint.c (revision f2c43266)
1 /* Print values for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "target.h"
28 #include "language.h"
29 #include "annotate.h"
30 #include "valprint.h"
31 #include "floatformat.h"
32 #include "doublest.h"
33 #include "exceptions.h"
34 #include "dfp.h"
35 #include "python/python.h"
36 #include "ada-lang.h"
37 #include "gdb_obstack.h"
38 #include "charset.h"
39 #include <ctype.h>
40 
41 #include <errno.h>
42 
43 /* Maximum number of wchars returned from wchar_iterate.  */
44 #define MAX_WCHARS 4
45 
46 /* A convenience macro to compute the size of a wchar_t buffer containing X
47    characters.  */
48 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
49 
50 /* Character buffer size saved while iterating over wchars.  */
51 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
52 
53 /* A structure to encapsulate state information from iterated
54    character conversions.  */
55 struct converted_character
56 {
57   /* The number of characters converted.  */
58   int num_chars;
59 
60   /* The result of the conversion.  See charset.h for more.  */
61   enum wchar_iterate_result result;
62 
63   /* The (saved) converted character(s).  */
64   gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
65 
66   /* The first converted target byte.  */
67   const gdb_byte *buf;
68 
69   /* The number of bytes converted.  */
70   size_t buflen;
71 
72   /* How many times this character(s) is repeated.  */
73   int repeat_count;
74 };
75 
76 typedef struct converted_character converted_character_d;
77 DEF_VEC_O (converted_character_d);
78 
79 
80 /* Prototypes for local functions */
81 
82 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
83 				int len, int *errnoptr);
84 
85 static void show_print (char *, int);
86 
87 static void set_print (char *, int);
88 
89 static void set_radix (char *, int);
90 
91 static void show_radix (char *, int);
92 
93 static void set_input_radix (char *, int, struct cmd_list_element *);
94 
95 static void set_input_radix_1 (int, unsigned);
96 
97 static void set_output_radix (char *, int, struct cmd_list_element *);
98 
99 static void set_output_radix_1 (int, unsigned);
100 
101 void _initialize_valprint (void);
102 
103 #define PRINT_MAX_DEFAULT 200	/* Start print_max off at this value.  */
104 
105 struct value_print_options user_print_options =
106 {
107   Val_pretty_default,		/* pretty */
108   0,				/* prettyprint_arrays */
109   0,				/* prettyprint_structs */
110   0,				/* vtblprint */
111   1,				/* unionprint */
112   1,				/* addressprint */
113   0,				/* objectprint */
114   PRINT_MAX_DEFAULT,		/* print_max */
115   10,				/* repeat_count_threshold */
116   0,				/* output_format */
117   0,				/* format */
118   0,				/* stop_print_at_null */
119   0,				/* print_array_indexes */
120   0,				/* deref_ref */
121   1,				/* static_field_print */
122   1,				/* pascal_static_field_print */
123   0,				/* raw */
124   0,				/* summary */
125   1				/* symbol_print */
126 };
127 
128 /* Initialize *OPTS to be a copy of the user print options.  */
129 void
130 get_user_print_options (struct value_print_options *opts)
131 {
132   *opts = user_print_options;
133 }
134 
135 /* Initialize *OPTS to be a copy of the user print options, but with
136    pretty-printing disabled.  */
137 void
138 get_raw_print_options (struct value_print_options *opts)
139 {
140   *opts = user_print_options;
141   opts->pretty = Val_no_prettyprint;
142 }
143 
144 /* Initialize *OPTS to be a copy of the user print options, but using
145    FORMAT as the formatting option.  */
146 void
147 get_formatted_print_options (struct value_print_options *opts,
148 			     char format)
149 {
150   *opts = user_print_options;
151   opts->format = format;
152 }
153 
154 static void
155 show_print_max (struct ui_file *file, int from_tty,
156 		struct cmd_list_element *c, const char *value)
157 {
158   fprintf_filtered (file,
159 		    _("Limit on string chars or array "
160 		      "elements to print is %s.\n"),
161 		    value);
162 }
163 
164 
165 /* Default input and output radixes, and output format letter.  */
166 
167 unsigned input_radix = 10;
168 static void
169 show_input_radix (struct ui_file *file, int from_tty,
170 		  struct cmd_list_element *c, const char *value)
171 {
172   fprintf_filtered (file,
173 		    _("Default input radix for entering numbers is %s.\n"),
174 		    value);
175 }
176 
177 unsigned output_radix = 10;
178 static void
179 show_output_radix (struct ui_file *file, int from_tty,
180 		   struct cmd_list_element *c, const char *value)
181 {
182   fprintf_filtered (file,
183 		    _("Default output radix for printing of values is %s.\n"),
184 		    value);
185 }
186 
187 /* By default we print arrays without printing the index of each element in
188    the array.  This behavior can be changed by setting PRINT_ARRAY_INDEXES.  */
189 
190 static void
191 show_print_array_indexes (struct ui_file *file, int from_tty,
192 		          struct cmd_list_element *c, const char *value)
193 {
194   fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
195 }
196 
197 /* Print repeat counts if there are more than this many repetitions of an
198    element in an array.  Referenced by the low level language dependent
199    print routines.  */
200 
201 static void
202 show_repeat_count_threshold (struct ui_file *file, int from_tty,
203 			     struct cmd_list_element *c, const char *value)
204 {
205   fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
206 		    value);
207 }
208 
209 /* If nonzero, stops printing of char arrays at first null.  */
210 
211 static void
212 show_stop_print_at_null (struct ui_file *file, int from_tty,
213 			 struct cmd_list_element *c, const char *value)
214 {
215   fprintf_filtered (file,
216 		    _("Printing of char arrays to stop "
217 		      "at first null char is %s.\n"),
218 		    value);
219 }
220 
221 /* Controls pretty printing of structures.  */
222 
223 static void
224 show_prettyprint_structs (struct ui_file *file, int from_tty,
225 			  struct cmd_list_element *c, const char *value)
226 {
227   fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
228 }
229 
230 /* Controls pretty printing of arrays.  */
231 
232 static void
233 show_prettyprint_arrays (struct ui_file *file, int from_tty,
234 			 struct cmd_list_element *c, const char *value)
235 {
236   fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
237 }
238 
239 /* If nonzero, causes unions inside structures or other unions to be
240    printed.  */
241 
242 static void
243 show_unionprint (struct ui_file *file, int from_tty,
244 		 struct cmd_list_element *c, const char *value)
245 {
246   fprintf_filtered (file,
247 		    _("Printing of unions interior to structures is %s.\n"),
248 		    value);
249 }
250 
251 /* If nonzero, causes machine addresses to be printed in certain contexts.  */
252 
253 static void
254 show_addressprint (struct ui_file *file, int from_tty,
255 		   struct cmd_list_element *c, const char *value)
256 {
257   fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
258 }
259 
260 static void
261 show_symbol_print (struct ui_file *file, int from_tty,
262 		   struct cmd_list_element *c, const char *value)
263 {
264   fprintf_filtered (file,
265 		    _("Printing of symbols when printing pointers is %s.\n"),
266 		    value);
267 }
268 
269 
270 
271 /* A helper function for val_print.  When printing in "summary" mode,
272    we want to print scalar arguments, but not aggregate arguments.
273    This function distinguishes between the two.  */
274 
275 static int
276 scalar_type_p (struct type *type)
277 {
278   CHECK_TYPEDEF (type);
279   while (TYPE_CODE (type) == TYPE_CODE_REF)
280     {
281       type = TYPE_TARGET_TYPE (type);
282       CHECK_TYPEDEF (type);
283     }
284   switch (TYPE_CODE (type))
285     {
286     case TYPE_CODE_ARRAY:
287     case TYPE_CODE_STRUCT:
288     case TYPE_CODE_UNION:
289     case TYPE_CODE_SET:
290     case TYPE_CODE_STRING:
291       return 0;
292     default:
293       return 1;
294     }
295 }
296 
297 /* See its definition in value.h.  */
298 
299 int
300 valprint_check_validity (struct ui_file *stream,
301 			 struct type *type,
302 			 int embedded_offset,
303 			 const struct value *val)
304 {
305   CHECK_TYPEDEF (type);
306 
307   if (TYPE_CODE (type) != TYPE_CODE_UNION
308       && TYPE_CODE (type) != TYPE_CODE_STRUCT
309       && TYPE_CODE (type) != TYPE_CODE_ARRAY)
310     {
311       if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
312 			     TARGET_CHAR_BIT * TYPE_LENGTH (type)))
313 	{
314 	  val_print_optimized_out (stream);
315 	  return 0;
316 	}
317 
318       if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
319 					TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 	{
321 	  fputs_filtered (_("<synthetic pointer>"), stream);
322 	  return 0;
323 	}
324 
325       if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 	{
327 	  val_print_unavailable (stream);
328 	  return 0;
329 	}
330     }
331 
332   return 1;
333 }
334 
335 void
336 val_print_optimized_out (struct ui_file *stream)
337 {
338   fprintf_filtered (stream, _("<optimized out>"));
339 }
340 
341 void
342 val_print_unavailable (struct ui_file *stream)
343 {
344   fprintf_filtered (stream, _("<unavailable>"));
345 }
346 
347 void
348 val_print_invalid_address (struct ui_file *stream)
349 {
350   fprintf_filtered (stream, _("<invalid address>"));
351 }
352 
353 /* A generic val_print that is suitable for use by language
354    implementations of the la_val_print method.  This function can
355    handle most type codes, though not all, notably exception
356    TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
357    the caller.
358 
359    Most arguments are as to val_print.
360 
361    The additional DECORATIONS argument can be used to customize the
362    output in some small, language-specific ways.  */
363 
364 void
365 generic_val_print (struct type *type, const gdb_byte *valaddr,
366 		   int embedded_offset, CORE_ADDR address,
367 		   struct ui_file *stream, int recurse,
368 		   const struct value *original_value,
369 		   const struct value_print_options *options,
370 		   const struct generic_val_print_decorations *decorations)
371 {
372   struct gdbarch *gdbarch = get_type_arch (type);
373   unsigned int i = 0;	/* Number of characters printed.  */
374   unsigned len;
375   struct type *elttype, *unresolved_elttype;
376   struct type *unresolved_type = type;
377   LONGEST val;
378   CORE_ADDR addr;
379 
380   CHECK_TYPEDEF (type);
381   switch (TYPE_CODE (type))
382     {
383     case TYPE_CODE_ARRAY:
384       unresolved_elttype = TYPE_TARGET_TYPE (type);
385       elttype = check_typedef (unresolved_elttype);
386       if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
387 	{
388           LONGEST low_bound, high_bound;
389 
390           if (!get_array_bounds (type, &low_bound, &high_bound))
391             error (_("Could not determine the array high bound"));
392 
393 	  if (options->prettyprint_arrays)
394 	    {
395 	      print_spaces_filtered (2 + 2 * recurse, stream);
396 	    }
397 
398 	  fprintf_filtered (stream, "{");
399 	  val_print_array_elements (type, valaddr, embedded_offset,
400 				    address, stream,
401 				    recurse, original_value, options, 0);
402 	  fprintf_filtered (stream, "}");
403 	  break;
404 	}
405       /* Array of unspecified length: treat like pointer to first
406 	 elt.  */
407       addr = address + embedded_offset;
408       goto print_unpacked_pointer;
409 
410     case TYPE_CODE_MEMBERPTR:
411       val_print_scalar_formatted (type, valaddr, embedded_offset,
412 				  original_value, options, 0, stream);
413       break;
414 
415     case TYPE_CODE_PTR:
416       if (options->format && options->format != 's')
417 	{
418 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
419 				      original_value, options, 0, stream);
420 	  break;
421 	}
422       unresolved_elttype = TYPE_TARGET_TYPE (type);
423       elttype = check_typedef (unresolved_elttype);
424 	{
425 	  addr = unpack_pointer (type, valaddr + embedded_offset);
426 	print_unpacked_pointer:
427 
428 	  if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
429 	    {
430 	      /* Try to print what function it points to.  */
431 	      print_function_pointer_address (options, gdbarch, addr, stream);
432 	      return;
433 	    }
434 
435 	  if (options->symbol_print)
436 	    print_address_demangle (options, gdbarch, addr, stream, demangle);
437 	  else if (options->addressprint)
438 	    fputs_filtered (paddress (gdbarch, addr), stream);
439 	}
440       break;
441 
442     case TYPE_CODE_REF:
443       elttype = check_typedef (TYPE_TARGET_TYPE (type));
444       if (options->addressprint)
445 	{
446 	  CORE_ADDR addr
447 	    = extract_typed_address (valaddr + embedded_offset, type);
448 
449 	  fprintf_filtered (stream, "@");
450 	  fputs_filtered (paddress (gdbarch, addr), stream);
451 	  if (options->deref_ref)
452 	    fputs_filtered (": ", stream);
453 	}
454       /* De-reference the reference.  */
455       if (options->deref_ref)
456 	{
457 	  if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
458 	    {
459 	      struct value *deref_val;
460 
461 	      deref_val = coerce_ref_if_computed (original_value);
462 	      if (deref_val != NULL)
463 		{
464 		  /* More complicated computed references are not supported.  */
465 		  gdb_assert (embedded_offset == 0);
466 		}
467 	      else
468 		deref_val = value_at (TYPE_TARGET_TYPE (type),
469 				      unpack_pointer (type,
470 						      (valaddr
471 						       + embedded_offset)));
472 
473 	      common_val_print (deref_val, stream, recurse, options,
474 				current_language);
475 	    }
476 	  else
477 	    fputs_filtered ("???", stream);
478 	}
479       break;
480 
481     case TYPE_CODE_ENUM:
482       if (options->format)
483 	{
484 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
485 				      original_value, options, 0, stream);
486 	  break;
487 	}
488       len = TYPE_NFIELDS (type);
489       val = unpack_long (type, valaddr + embedded_offset);
490       for (i = 0; i < len; i++)
491 	{
492 	  QUIT;
493 	  if (val == TYPE_FIELD_ENUMVAL (type, i))
494 	    {
495 	      break;
496 	    }
497 	}
498       if (i < len)
499 	{
500 	  fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
501 	}
502       else if (TYPE_FLAG_ENUM (type))
503 	{
504 	  int first = 1;
505 
506 	  /* We have a "flag" enum, so we try to decompose it into
507 	     pieces as appropriate.  A flag enum has disjoint
508 	     constants by definition.  */
509 	  fputs_filtered ("(", stream);
510 	  for (i = 0; i < len; ++i)
511 	    {
512 	      QUIT;
513 
514 	      if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
515 		{
516 		  if (!first)
517 		    fputs_filtered (" | ", stream);
518 		  first = 0;
519 
520 		  val &= ~TYPE_FIELD_ENUMVAL (type, i);
521 		  fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
522 		}
523 	    }
524 
525 	  if (first || val != 0)
526 	    {
527 	      if (!first)
528 		fputs_filtered (" | ", stream);
529 	      fputs_filtered ("unknown: ", stream);
530 	      print_longest (stream, 'd', 0, val);
531 	    }
532 
533 	  fputs_filtered (")", stream);
534 	}
535       else
536 	print_longest (stream, 'd', 0, val);
537       break;
538 
539     case TYPE_CODE_FLAGS:
540       if (options->format)
541 	val_print_scalar_formatted (type, valaddr, embedded_offset,
542 				    original_value, options, 0, stream);
543       else
544 	val_print_type_code_flags (type, valaddr + embedded_offset,
545 				   stream);
546       break;
547 
548     case TYPE_CODE_FUNC:
549     case TYPE_CODE_METHOD:
550       if (options->format)
551 	{
552 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
553 				      original_value, options, 0, stream);
554 	  break;
555 	}
556       /* FIXME, we should consider, at least for ANSI C language,
557          eliminating the distinction made between FUNCs and POINTERs
558          to FUNCs.  */
559       fprintf_filtered (stream, "{");
560       type_print (type, "", stream, -1);
561       fprintf_filtered (stream, "} ");
562       /* Try to print what function it points to, and its address.  */
563       print_address_demangle (options, gdbarch, address, stream, demangle);
564       break;
565 
566     case TYPE_CODE_BOOL:
567       if (options->format || options->output_format)
568 	{
569 	  struct value_print_options opts = *options;
570 	  opts.format = (options->format ? options->format
571 			 : options->output_format);
572 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
573 				      original_value, &opts, 0, stream);
574 	}
575       else
576 	{
577 	  val = unpack_long (type, valaddr + embedded_offset);
578 	  if (val == 0)
579 	    fputs_filtered (decorations->false_name, stream);
580 	  else if (val == 1)
581 	    fputs_filtered (decorations->true_name, stream);
582 	  else
583 	    print_longest (stream, 'd', 0, val);
584 	}
585       break;
586 
587     case TYPE_CODE_RANGE:
588       /* FIXME: create_range_type does not set the unsigned bit in a
589          range type (I think it probably should copy it from the
590          target type), so we won't print values which are too large to
591          fit in a signed integer correctly.  */
592       /* FIXME: Doesn't handle ranges of enums correctly.  (Can't just
593          print with the target type, though, because the size of our
594          type and the target type might differ).  */
595 
596       /* FALLTHROUGH */
597 
598     case TYPE_CODE_INT:
599       if (options->format || options->output_format)
600 	{
601 	  struct value_print_options opts = *options;
602 
603 	  opts.format = (options->format ? options->format
604 			 : options->output_format);
605 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
606 				      original_value, &opts, 0, stream);
607 	}
608       else
609 	val_print_type_code_int (type, valaddr + embedded_offset, stream);
610       break;
611 
612     case TYPE_CODE_CHAR:
613       if (options->format || options->output_format)
614 	{
615 	  struct value_print_options opts = *options;
616 
617 	  opts.format = (options->format ? options->format
618 			 : options->output_format);
619 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
620 				      original_value, &opts, 0, stream);
621 	}
622       else
623 	{
624 	  val = unpack_long (type, valaddr + embedded_offset);
625 	  if (TYPE_UNSIGNED (type))
626 	    fprintf_filtered (stream, "%u", (unsigned int) val);
627 	  else
628 	    fprintf_filtered (stream, "%d", (int) val);
629 	  fputs_filtered (" ", stream);
630 	  LA_PRINT_CHAR (val, unresolved_type, stream);
631 	}
632       break;
633 
634     case TYPE_CODE_FLT:
635       if (options->format)
636 	{
637 	  val_print_scalar_formatted (type, valaddr, embedded_offset,
638 				      original_value, options, 0, stream);
639 	}
640       else
641 	{
642 	  print_floating (valaddr + embedded_offset, type, stream);
643 	}
644       break;
645 
646     case TYPE_CODE_DECFLOAT:
647       if (options->format)
648 	val_print_scalar_formatted (type, valaddr, embedded_offset,
649 				    original_value, options, 0, stream);
650       else
651 	print_decimal_floating (valaddr + embedded_offset,
652 				type, stream);
653       break;
654 
655     case TYPE_CODE_VOID:
656       fputs_filtered (decorations->void_name, stream);
657       break;
658 
659     case TYPE_CODE_ERROR:
660       fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
661       break;
662 
663     case TYPE_CODE_UNDEF:
664       /* This happens (without TYPE_FLAG_STUB set) on systems which
665          don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
666          "struct foo *bar" and no complete type for struct foo in that
667          file.  */
668       fprintf_filtered (stream, _("<incomplete type>"));
669       break;
670 
671     case TYPE_CODE_COMPLEX:
672       fprintf_filtered (stream, "%s", decorations->complex_prefix);
673       if (options->format)
674 	val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
675 				    valaddr, embedded_offset,
676 				    original_value, options, 0, stream);
677       else
678 	print_floating (valaddr + embedded_offset,
679 			TYPE_TARGET_TYPE (type),
680 			stream);
681       fprintf_filtered (stream, "%s", decorations->complex_infix);
682       if (options->format)
683 	val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
684 				    valaddr,
685 				    embedded_offset
686 				    + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
687 				    original_value,
688 				    options, 0, stream);
689       else
690 	print_floating (valaddr + embedded_offset
691 			+ TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
692 			TYPE_TARGET_TYPE (type),
693 			stream);
694       fprintf_filtered (stream, "%s", decorations->complex_suffix);
695       break;
696 
697     case TYPE_CODE_UNION:
698     case TYPE_CODE_STRUCT:
699     case TYPE_CODE_METHODPTR:
700     default:
701       error (_("Unhandled type code %d in symbol table."),
702 	     TYPE_CODE (type));
703     }
704   gdb_flush (stream);
705 }
706 
707 /* Print using the given LANGUAGE the data of type TYPE located at
708    VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
709    inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
710    STREAM according to OPTIONS.  VAL is the whole object that came
711    from ADDRESS.  VALADDR must point to the head of VAL's contents
712    buffer.
713 
714    The language printers will pass down an adjusted EMBEDDED_OFFSET to
715    further helper subroutines as subfields of TYPE are printed.  In
716    such cases, VALADDR is passed down unadjusted, as well as VAL, so
717    that VAL can be queried for metadata about the contents data being
718    printed, using EMBEDDED_OFFSET as an offset into VAL's contents
719    buffer.  For example: "has this field been optimized out", or "I'm
720    printing an object while inspecting a traceframe; has this
721    particular piece of data been collected?".
722 
723    RECURSE indicates the amount of indentation to supply before
724    continuation lines; this amount is roughly twice the value of
725    RECURSE.  */
726 
727 void
728 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
729 	   CORE_ADDR address, struct ui_file *stream, int recurse,
730 	   const struct value *val,
731 	   const struct value_print_options *options,
732 	   const struct language_defn *language)
733 {
734   volatile struct gdb_exception except;
735   int ret = 0;
736   struct value_print_options local_opts = *options;
737   struct type *real_type = check_typedef (type);
738 
739   if (local_opts.pretty == Val_pretty_default)
740     local_opts.pretty = (local_opts.prettyprint_structs
741 			 ? Val_prettyprint : Val_no_prettyprint);
742 
743   QUIT;
744 
745   /* Ensure that the type is complete and not just a stub.  If the type is
746      only a stub and we can't find and substitute its complete type, then
747      print appropriate string and return.  */
748 
749   if (TYPE_STUB (real_type))
750     {
751       fprintf_filtered (stream, _("<incomplete type>"));
752       gdb_flush (stream);
753       return;
754     }
755 
756   if (!valprint_check_validity (stream, real_type, embedded_offset, val))
757     return;
758 
759   if (!options->raw)
760     {
761       ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
762 				      address, stream, recurse,
763 				      val, options, language);
764       if (ret)
765 	return;
766     }
767 
768   /* Handle summary mode.  If the value is a scalar, print it;
769      otherwise, print an ellipsis.  */
770   if (options->summary && !scalar_type_p (type))
771     {
772       fprintf_filtered (stream, "...");
773       return;
774     }
775 
776   TRY_CATCH (except, RETURN_MASK_ERROR)
777     {
778       language->la_val_print (type, valaddr, embedded_offset, address,
779 			      stream, recurse, val,
780 			      &local_opts);
781     }
782   if (except.reason < 0)
783     fprintf_filtered (stream, _("<error reading variable>"));
784 }
785 
786 /* Check whether the value VAL is printable.  Return 1 if it is;
787    return 0 and print an appropriate error message to STREAM according to
788    OPTIONS if it is not.  */
789 
790 static int
791 value_check_printable (struct value *val, struct ui_file *stream,
792 		       const struct value_print_options *options)
793 {
794   if (val == 0)
795     {
796       fprintf_filtered (stream, _("<address of value unknown>"));
797       return 0;
798     }
799 
800   if (value_entirely_optimized_out (val))
801     {
802       if (options->summary && !scalar_type_p (value_type (val)))
803 	fprintf_filtered (stream, "...");
804       else
805 	val_print_optimized_out (stream);
806       return 0;
807     }
808 
809   if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
810     {
811       fprintf_filtered (stream, _("<internal function %s>"),
812 			value_internal_function_name (val));
813       return 0;
814     }
815 
816   return 1;
817 }
818 
819 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
820    to OPTIONS.
821 
822    This is a preferable interface to val_print, above, because it uses
823    GDB's value mechanism.  */
824 
825 void
826 common_val_print (struct value *val, struct ui_file *stream, int recurse,
827 		  const struct value_print_options *options,
828 		  const struct language_defn *language)
829 {
830   if (!value_check_printable (val, stream, options))
831     return;
832 
833   if (language->la_language == language_ada)
834     /* The value might have a dynamic type, which would cause trouble
835        below when trying to extract the value contents (since the value
836        size is determined from the type size which is unknown).  So
837        get a fixed representation of our value.  */
838     val = ada_to_fixed_value (val);
839 
840   val_print (value_type (val), value_contents_for_printing (val),
841 	     value_embedded_offset (val), value_address (val),
842 	     stream, recurse,
843 	     val, options, language);
844 }
845 
846 /* Print on stream STREAM the value VAL according to OPTIONS.  The value
847    is printed using the current_language syntax.  */
848 
849 void
850 value_print (struct value *val, struct ui_file *stream,
851 	     const struct value_print_options *options)
852 {
853   if (!value_check_printable (val, stream, options))
854     return;
855 
856   if (!options->raw)
857     {
858       int r = apply_val_pretty_printer (value_type (val),
859 					value_contents_for_printing (val),
860 					value_embedded_offset (val),
861 					value_address (val),
862 					stream, 0,
863 					val, options, current_language);
864 
865       if (r)
866 	return;
867     }
868 
869   LA_VALUE_PRINT (val, stream, options);
870 }
871 
872 /* Called by various <lang>_val_print routines to print
873    TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
874    value.  STREAM is where to print the value.  */
875 
876 void
877 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
878 			 struct ui_file *stream)
879 {
880   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
881 
882   if (TYPE_LENGTH (type) > sizeof (LONGEST))
883     {
884       LONGEST val;
885 
886       if (TYPE_UNSIGNED (type)
887 	  && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
888 					    byte_order, &val))
889 	{
890 	  print_longest (stream, 'u', 0, val);
891 	}
892       else
893 	{
894 	  /* Signed, or we couldn't turn an unsigned value into a
895 	     LONGEST.  For signed values, one could assume two's
896 	     complement (a reasonable assumption, I think) and do
897 	     better than this.  */
898 	  print_hex_chars (stream, (unsigned char *) valaddr,
899 			   TYPE_LENGTH (type), byte_order);
900 	}
901     }
902   else
903     {
904       print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
905 		     unpack_long (type, valaddr));
906     }
907 }
908 
909 void
910 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
911 			   struct ui_file *stream)
912 {
913   ULONGEST val = unpack_long (type, valaddr);
914   int bitpos, nfields = TYPE_NFIELDS (type);
915 
916   fputs_filtered ("[ ", stream);
917   for (bitpos = 0; bitpos < nfields; bitpos++)
918     {
919       if (TYPE_FIELD_BITPOS (type, bitpos) != -1
920 	  && (val & ((ULONGEST)1 << bitpos)))
921 	{
922 	  if (TYPE_FIELD_NAME (type, bitpos))
923 	    fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
924 	  else
925 	    fprintf_filtered (stream, "#%d ", bitpos);
926 	}
927     }
928   fputs_filtered ("]", stream);
929 }
930 
931 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
932    according to OPTIONS and SIZE on STREAM.  Format i is not supported
933    at this level.
934 
935    This is how the elements of an array or structure are printed
936    with a format.  */
937 
938 void
939 val_print_scalar_formatted (struct type *type,
940 			    const gdb_byte *valaddr, int embedded_offset,
941 			    const struct value *val,
942 			    const struct value_print_options *options,
943 			    int size,
944 			    struct ui_file *stream)
945 {
946   gdb_assert (val != NULL);
947   gdb_assert (valaddr == value_contents_for_printing_const (val));
948 
949   /* If we get here with a string format, try again without it.  Go
950      all the way back to the language printers, which may call us
951      again.  */
952   if (options->format == 's')
953     {
954       struct value_print_options opts = *options;
955       opts.format = 0;
956       opts.deref_ref = 0;
957       val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
958 		 current_language);
959       return;
960     }
961 
962   /* A scalar object that does not have all bits available can't be
963      printed, because all bits contribute to its representation.  */
964   if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset,
965 			      TARGET_CHAR_BIT * TYPE_LENGTH (type)))
966     val_print_optimized_out (stream);
967   else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
968     val_print_unavailable (stream);
969   else
970     print_scalar_formatted (valaddr + embedded_offset, type,
971 			    options, size, stream);
972 }
973 
974 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
975    The raison d'etre of this function is to consolidate printing of
976    LONG_LONG's into this one function.  The format chars b,h,w,g are
977    from print_scalar_formatted().  Numbers are printed using C
978    format.
979 
980    USE_C_FORMAT means to use C format in all cases.  Without it,
981    'o' and 'x' format do not include the standard C radix prefix
982    (leading 0 or 0x).
983 
984    Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
985    and was intended to request formating according to the current
986    language and would be used for most integers that GDB prints.  The
987    exceptional cases were things like protocols where the format of
988    the integer is a protocol thing, not a user-visible thing).  The
989    parameter remains to preserve the information of what things might
990    be printed with language-specific format, should we ever resurrect
991    that capability.  */
992 
993 void
994 print_longest (struct ui_file *stream, int format, int use_c_format,
995 	       LONGEST val_long)
996 {
997   const char *val;
998 
999   switch (format)
1000     {
1001     case 'd':
1002       val = int_string (val_long, 10, 1, 0, 1); break;
1003     case 'u':
1004       val = int_string (val_long, 10, 0, 0, 1); break;
1005     case 'x':
1006       val = int_string (val_long, 16, 0, 0, use_c_format); break;
1007     case 'b':
1008       val = int_string (val_long, 16, 0, 2, 1); break;
1009     case 'h':
1010       val = int_string (val_long, 16, 0, 4, 1); break;
1011     case 'w':
1012       val = int_string (val_long, 16, 0, 8, 1); break;
1013     case 'g':
1014       val = int_string (val_long, 16, 0, 16, 1); break;
1015       break;
1016     case 'o':
1017       val = int_string (val_long, 8, 0, 0, use_c_format); break;
1018     default:
1019       internal_error (__FILE__, __LINE__,
1020 		      _("failed internal consistency check"));
1021     }
1022   fputs_filtered (val, stream);
1023 }
1024 
1025 /* This used to be a macro, but I don't think it is called often enough
1026    to merit such treatment.  */
1027 /* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
1028    arguments to a function, number in a value history, register number, etc.)
1029    where the value must not be larger than can fit in an int.  */
1030 
1031 int
1032 longest_to_int (LONGEST arg)
1033 {
1034   /* Let the compiler do the work.  */
1035   int rtnval = (int) arg;
1036 
1037   /* Check for overflows or underflows.  */
1038   if (sizeof (LONGEST) > sizeof (int))
1039     {
1040       if (rtnval != arg)
1041 	{
1042 	  error (_("Value out of range."));
1043 	}
1044     }
1045   return (rtnval);
1046 }
1047 
1048 /* Print a floating point value of type TYPE (not always a
1049    TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
1050 
1051 void
1052 print_floating (const gdb_byte *valaddr, struct type *type,
1053 		struct ui_file *stream)
1054 {
1055   DOUBLEST doub;
1056   int inv;
1057   const struct floatformat *fmt = NULL;
1058   unsigned len = TYPE_LENGTH (type);
1059   enum float_kind kind;
1060 
1061   /* If it is a floating-point, check for obvious problems.  */
1062   if (TYPE_CODE (type) == TYPE_CODE_FLT)
1063     fmt = floatformat_from_type (type);
1064   if (fmt != NULL)
1065     {
1066       kind = floatformat_classify (fmt, valaddr);
1067       if (kind == float_nan)
1068 	{
1069 	  if (floatformat_is_negative (fmt, valaddr))
1070 	    fprintf_filtered (stream, "-");
1071 	  fprintf_filtered (stream, "nan(");
1072 	  fputs_filtered ("0x", stream);
1073 	  fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1074 	  fprintf_filtered (stream, ")");
1075 	  return;
1076 	}
1077       else if (kind == float_infinite)
1078 	{
1079 	  if (floatformat_is_negative (fmt, valaddr))
1080 	    fputs_filtered ("-", stream);
1081 	  fputs_filtered ("inf", stream);
1082 	  return;
1083 	}
1084     }
1085 
1086   /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1087      isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
1088      needs to be used as that takes care of any necessary type
1089      conversions.  Such conversions are of course direct to DOUBLEST
1090      and disregard any possible target floating point limitations.
1091      For instance, a u64 would be converted and displayed exactly on a
1092      host with 80 bit DOUBLEST but with loss of information on a host
1093      with 64 bit DOUBLEST.  */
1094 
1095   doub = unpack_double (type, valaddr, &inv);
1096   if (inv)
1097     {
1098       fprintf_filtered (stream, "<invalid float value>");
1099       return;
1100     }
1101 
1102   /* FIXME: kettenis/2001-01-20: The following code makes too much
1103      assumptions about the host and target floating point format.  */
1104 
1105   /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
1106      not necessarily be a TYPE_CODE_FLT, the below ignores that and
1107      instead uses the type's length to determine the precision of the
1108      floating-point value being printed.  */
1109 
1110   if (len < sizeof (double))
1111       fprintf_filtered (stream, "%.9g", (double) doub);
1112   else if (len == sizeof (double))
1113       fprintf_filtered (stream, "%.17g", (double) doub);
1114   else
1115 #ifdef PRINTF_HAS_LONG_DOUBLE
1116     fprintf_filtered (stream, "%.35Lg", doub);
1117 #else
1118     /* This at least wins with values that are representable as
1119        doubles.  */
1120     fprintf_filtered (stream, "%.17g", (double) doub);
1121 #endif
1122 }
1123 
1124 void
1125 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1126 			struct ui_file *stream)
1127 {
1128   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1129   char decstr[MAX_DECIMAL_STRING];
1130   unsigned len = TYPE_LENGTH (type);
1131 
1132   decimal_to_string (valaddr, len, byte_order, decstr);
1133   fputs_filtered (decstr, stream);
1134   return;
1135 }
1136 
1137 void
1138 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1139 		    unsigned len, enum bfd_endian byte_order)
1140 {
1141 
1142 #define BITS_IN_BYTES 8
1143 
1144   const gdb_byte *p;
1145   unsigned int i;
1146   int b;
1147 
1148   /* Declared "int" so it will be signed.
1149      This ensures that right shift will shift in zeros.  */
1150 
1151   const int mask = 0x080;
1152 
1153   /* FIXME: We should be not printing leading zeroes in most cases.  */
1154 
1155   if (byte_order == BFD_ENDIAN_BIG)
1156     {
1157       for (p = valaddr;
1158 	   p < valaddr + len;
1159 	   p++)
1160 	{
1161 	  /* Every byte has 8 binary characters; peel off
1162 	     and print from the MSB end.  */
1163 
1164 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1165 	    {
1166 	      if (*p & (mask >> i))
1167 		b = 1;
1168 	      else
1169 		b = 0;
1170 
1171 	      fprintf_filtered (stream, "%1d", b);
1172 	    }
1173 	}
1174     }
1175   else
1176     {
1177       for (p = valaddr + len - 1;
1178 	   p >= valaddr;
1179 	   p--)
1180 	{
1181 	  for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1182 	    {
1183 	      if (*p & (mask >> i))
1184 		b = 1;
1185 	      else
1186 		b = 0;
1187 
1188 	      fprintf_filtered (stream, "%1d", b);
1189 	    }
1190 	}
1191     }
1192 }
1193 
1194 /* VALADDR points to an integer of LEN bytes.
1195    Print it in octal on stream or format it in buf.  */
1196 
1197 void
1198 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1199 		   unsigned len, enum bfd_endian byte_order)
1200 {
1201   const gdb_byte *p;
1202   unsigned char octa1, octa2, octa3, carry;
1203   int cycle;
1204 
1205   /* FIXME: We should be not printing leading zeroes in most cases.  */
1206 
1207 
1208   /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
1209    * the extra bits, which cycle every three bytes:
1210    *
1211    * Byte side:       0            1             2          3
1212    *                         |             |            |            |
1213    * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1214    *
1215    * Octal side:   0   1   carry  3   4  carry ...
1216    *
1217    * Cycle number:    0             1            2
1218    *
1219    * But of course we are printing from the high side, so we have to
1220    * figure out where in the cycle we are so that we end up with no
1221    * left over bits at the end.
1222    */
1223 #define BITS_IN_OCTAL 3
1224 #define HIGH_ZERO     0340
1225 #define LOW_ZERO      0016
1226 #define CARRY_ZERO    0003
1227 #define HIGH_ONE      0200
1228 #define MID_ONE       0160
1229 #define LOW_ONE       0016
1230 #define CARRY_ONE     0001
1231 #define HIGH_TWO      0300
1232 #define MID_TWO       0070
1233 #define LOW_TWO       0007
1234 
1235   /* For 32 we start in cycle 2, with two bits and one bit carry;
1236      for 64 in cycle in cycle 1, with one bit and a two bit carry.  */
1237 
1238   cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1239   carry = 0;
1240 
1241   fputs_filtered ("0", stream);
1242   if (byte_order == BFD_ENDIAN_BIG)
1243     {
1244       for (p = valaddr;
1245 	   p < valaddr + len;
1246 	   p++)
1247 	{
1248 	  switch (cycle)
1249 	    {
1250 	    case 0:
1251 	      /* No carry in, carry out two bits.  */
1252 
1253 	      octa1 = (HIGH_ZERO & *p) >> 5;
1254 	      octa2 = (LOW_ZERO & *p) >> 2;
1255 	      carry = (CARRY_ZERO & *p);
1256 	      fprintf_filtered (stream, "%o", octa1);
1257 	      fprintf_filtered (stream, "%o", octa2);
1258 	      break;
1259 
1260 	    case 1:
1261 	      /* Carry in two bits, carry out one bit.  */
1262 
1263 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1264 	      octa2 = (MID_ONE & *p) >> 4;
1265 	      octa3 = (LOW_ONE & *p) >> 1;
1266 	      carry = (CARRY_ONE & *p);
1267 	      fprintf_filtered (stream, "%o", octa1);
1268 	      fprintf_filtered (stream, "%o", octa2);
1269 	      fprintf_filtered (stream, "%o", octa3);
1270 	      break;
1271 
1272 	    case 2:
1273 	      /* Carry in one bit, no carry out.  */
1274 
1275 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1276 	      octa2 = (MID_TWO & *p) >> 3;
1277 	      octa3 = (LOW_TWO & *p);
1278 	      carry = 0;
1279 	      fprintf_filtered (stream, "%o", octa1);
1280 	      fprintf_filtered (stream, "%o", octa2);
1281 	      fprintf_filtered (stream, "%o", octa3);
1282 	      break;
1283 
1284 	    default:
1285 	      error (_("Internal error in octal conversion;"));
1286 	    }
1287 
1288 	  cycle++;
1289 	  cycle = cycle % BITS_IN_OCTAL;
1290 	}
1291     }
1292   else
1293     {
1294       for (p = valaddr + len - 1;
1295 	   p >= valaddr;
1296 	   p--)
1297 	{
1298 	  switch (cycle)
1299 	    {
1300 	    case 0:
1301 	      /* Carry out, no carry in */
1302 
1303 	      octa1 = (HIGH_ZERO & *p) >> 5;
1304 	      octa2 = (LOW_ZERO & *p) >> 2;
1305 	      carry = (CARRY_ZERO & *p);
1306 	      fprintf_filtered (stream, "%o", octa1);
1307 	      fprintf_filtered (stream, "%o", octa2);
1308 	      break;
1309 
1310 	    case 1:
1311 	      /* Carry in, carry out */
1312 
1313 	      octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1314 	      octa2 = (MID_ONE & *p) >> 4;
1315 	      octa3 = (LOW_ONE & *p) >> 1;
1316 	      carry = (CARRY_ONE & *p);
1317 	      fprintf_filtered (stream, "%o", octa1);
1318 	      fprintf_filtered (stream, "%o", octa2);
1319 	      fprintf_filtered (stream, "%o", octa3);
1320 	      break;
1321 
1322 	    case 2:
1323 	      /* Carry in, no carry out */
1324 
1325 	      octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1326 	      octa2 = (MID_TWO & *p) >> 3;
1327 	      octa3 = (LOW_TWO & *p);
1328 	      carry = 0;
1329 	      fprintf_filtered (stream, "%o", octa1);
1330 	      fprintf_filtered (stream, "%o", octa2);
1331 	      fprintf_filtered (stream, "%o", octa3);
1332 	      break;
1333 
1334 	    default:
1335 	      error (_("Internal error in octal conversion;"));
1336 	    }
1337 
1338 	  cycle++;
1339 	  cycle = cycle % BITS_IN_OCTAL;
1340 	}
1341     }
1342 
1343 }
1344 
1345 /* VALADDR points to an integer of LEN bytes.
1346    Print it in decimal on stream or format it in buf.  */
1347 
1348 void
1349 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1350 		     unsigned len, enum bfd_endian byte_order)
1351 {
1352 #define TEN             10
1353 #define CARRY_OUT(  x ) ((x) / TEN)	/* extend char to int */
1354 #define CARRY_LEFT( x ) ((x) % TEN)
1355 #define SHIFT( x )      ((x) << 4)
1356 #define LOW_NIBBLE(  x ) ( (x) & 0x00F)
1357 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1358 
1359   const gdb_byte *p;
1360   unsigned char *digits;
1361   int carry;
1362   int decimal_len;
1363   int i, j, decimal_digits;
1364   int dummy;
1365   int flip;
1366 
1367   /* Base-ten number is less than twice as many digits
1368      as the base 16 number, which is 2 digits per byte.  */
1369 
1370   decimal_len = len * 2 * 2;
1371   digits = xmalloc (decimal_len);
1372 
1373   for (i = 0; i < decimal_len; i++)
1374     {
1375       digits[i] = 0;
1376     }
1377 
1378   /* Ok, we have an unknown number of bytes of data to be printed in
1379    * decimal.
1380    *
1381    * Given a hex number (in nibbles) as XYZ, we start by taking X and
1382    * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
1383    * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
1384    *
1385    * The trick is that "digits" holds a base-10 number, but sometimes
1386    * the individual digits are > 10.
1387    *
1388    * Outer loop is per nibble (hex digit) of input, from MSD end to
1389    * LSD end.
1390    */
1391   decimal_digits = 0;		/* Number of decimal digits so far */
1392   p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1393   flip = 0;
1394   while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1395     {
1396       /*
1397        * Multiply current base-ten number by 16 in place.
1398        * Each digit was between 0 and 9, now is between
1399        * 0 and 144.
1400        */
1401       for (j = 0; j < decimal_digits; j++)
1402 	{
1403 	  digits[j] = SHIFT (digits[j]);
1404 	}
1405 
1406       /* Take the next nibble off the input and add it to what
1407        * we've got in the LSB position.  Bottom 'digit' is now
1408        * between 0 and 159.
1409        *
1410        * "flip" is used to run this loop twice for each byte.
1411        */
1412       if (flip == 0)
1413 	{
1414 	  /* Take top nibble.  */
1415 
1416 	  digits[0] += HIGH_NIBBLE (*p);
1417 	  flip = 1;
1418 	}
1419       else
1420 	{
1421 	  /* Take low nibble and bump our pointer "p".  */
1422 
1423 	  digits[0] += LOW_NIBBLE (*p);
1424           if (byte_order == BFD_ENDIAN_BIG)
1425 	    p++;
1426 	  else
1427 	    p--;
1428 	  flip = 0;
1429 	}
1430 
1431       /* Re-decimalize.  We have to do this often enough
1432        * that we don't overflow, but once per nibble is
1433        * overkill.  Easier this way, though.  Note that the
1434        * carry is often larger than 10 (e.g. max initial
1435        * carry out of lowest nibble is 15, could bubble all
1436        * the way up greater than 10).  So we have to do
1437        * the carrying beyond the last current digit.
1438        */
1439       carry = 0;
1440       for (j = 0; j < decimal_len - 1; j++)
1441 	{
1442 	  digits[j] += carry;
1443 
1444 	  /* "/" won't handle an unsigned char with
1445 	   * a value that if signed would be negative.
1446 	   * So extend to longword int via "dummy".
1447 	   */
1448 	  dummy = digits[j];
1449 	  carry = CARRY_OUT (dummy);
1450 	  digits[j] = CARRY_LEFT (dummy);
1451 
1452 	  if (j >= decimal_digits && carry == 0)
1453 	    {
1454 	      /*
1455 	       * All higher digits are 0 and we
1456 	       * no longer have a carry.
1457 	       *
1458 	       * Note: "j" is 0-based, "decimal_digits" is
1459 	       *       1-based.
1460 	       */
1461 	      decimal_digits = j + 1;
1462 	      break;
1463 	    }
1464 	}
1465     }
1466 
1467   /* Ok, now "digits" is the decimal representation, with
1468      the "decimal_digits" actual digits.  Print!  */
1469 
1470   for (i = decimal_digits - 1; i >= 0; i--)
1471     {
1472       fprintf_filtered (stream, "%1d", digits[i]);
1473     }
1474   xfree (digits);
1475 }
1476 
1477 /* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
1478 
1479 void
1480 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1481 		 unsigned len, enum bfd_endian byte_order)
1482 {
1483   const gdb_byte *p;
1484 
1485   /* FIXME: We should be not printing leading zeroes in most cases.  */
1486 
1487   fputs_filtered ("0x", stream);
1488   if (byte_order == BFD_ENDIAN_BIG)
1489     {
1490       for (p = valaddr;
1491 	   p < valaddr + len;
1492 	   p++)
1493 	{
1494 	  fprintf_filtered (stream, "%02x", *p);
1495 	}
1496     }
1497   else
1498     {
1499       for (p = valaddr + len - 1;
1500 	   p >= valaddr;
1501 	   p--)
1502 	{
1503 	  fprintf_filtered (stream, "%02x", *p);
1504 	}
1505     }
1506 }
1507 
1508 /* VALADDR points to a char integer of LEN bytes.
1509    Print it out in appropriate language form on stream.
1510    Omit any leading zero chars.  */
1511 
1512 void
1513 print_char_chars (struct ui_file *stream, struct type *type,
1514 		  const gdb_byte *valaddr,
1515 		  unsigned len, enum bfd_endian byte_order)
1516 {
1517   const gdb_byte *p;
1518 
1519   if (byte_order == BFD_ENDIAN_BIG)
1520     {
1521       p = valaddr;
1522       while (p < valaddr + len - 1 && *p == 0)
1523 	++p;
1524 
1525       while (p < valaddr + len)
1526 	{
1527 	  LA_EMIT_CHAR (*p, type, stream, '\'');
1528 	  ++p;
1529 	}
1530     }
1531   else
1532     {
1533       p = valaddr + len - 1;
1534       while (p > valaddr && *p == 0)
1535 	--p;
1536 
1537       while (p >= valaddr)
1538 	{
1539 	  LA_EMIT_CHAR (*p, type, stream, '\'');
1540 	  --p;
1541 	}
1542     }
1543 }
1544 
1545 /* Print function pointer with inferior address ADDRESS onto stdio
1546    stream STREAM.  */
1547 
1548 void
1549 print_function_pointer_address (const struct value_print_options *options,
1550 				struct gdbarch *gdbarch,
1551 				CORE_ADDR address,
1552 				struct ui_file *stream)
1553 {
1554   CORE_ADDR func_addr
1555     = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1556 					  &current_target);
1557 
1558   /* If the function pointer is represented by a description, print
1559      the address of the description.  */
1560   if (options->addressprint && func_addr != address)
1561     {
1562       fputs_filtered ("@", stream);
1563       fputs_filtered (paddress (gdbarch, address), stream);
1564       fputs_filtered (": ", stream);
1565     }
1566   print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1567 }
1568 
1569 
1570 /* Print on STREAM using the given OPTIONS the index for the element
1571    at INDEX of an array whose index type is INDEX_TYPE.  */
1572 
1573 void
1574 maybe_print_array_index (struct type *index_type, LONGEST index,
1575                          struct ui_file *stream,
1576 			 const struct value_print_options *options)
1577 {
1578   struct value *index_value;
1579 
1580   if (!options->print_array_indexes)
1581     return;
1582 
1583   index_value = value_from_longest (index_type, index);
1584 
1585   LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1586 }
1587 
1588 /*  Called by various <lang>_val_print routines to print elements of an
1589    array in the form "<elem1>, <elem2>, <elem3>, ...".
1590 
1591    (FIXME?)  Assumes array element separator is a comma, which is correct
1592    for all languages currently handled.
1593    (FIXME?)  Some languages have a notation for repeated array elements,
1594    perhaps we should try to use that notation when appropriate.  */
1595 
1596 void
1597 val_print_array_elements (struct type *type,
1598 			  const gdb_byte *valaddr, int embedded_offset,
1599 			  CORE_ADDR address, struct ui_file *stream,
1600 			  int recurse,
1601 			  const struct value *val,
1602 			  const struct value_print_options *options,
1603 			  unsigned int i)
1604 {
1605   unsigned int things_printed = 0;
1606   unsigned len;
1607   struct type *elttype, *index_type;
1608   unsigned eltlen;
1609   /* Position of the array element we are examining to see
1610      whether it is repeated.  */
1611   unsigned int rep1;
1612   /* Number of repetitions we have detected so far.  */
1613   unsigned int reps;
1614   LONGEST low_bound, high_bound;
1615 
1616   elttype = TYPE_TARGET_TYPE (type);
1617   eltlen = TYPE_LENGTH (check_typedef (elttype));
1618   index_type = TYPE_INDEX_TYPE (type);
1619 
1620   if (get_array_bounds (type, &low_bound, &high_bound))
1621     {
1622       /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1623          But we have to be a little extra careful, because some languages
1624 	 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1625 	 empty arrays.  In that situation, the array length is just zero,
1626 	 not negative!  */
1627       if (low_bound > high_bound)
1628 	len = 0;
1629       else
1630 	len = high_bound - low_bound + 1;
1631     }
1632   else
1633     {
1634       warning (_("unable to get bounds of array, assuming null array"));
1635       low_bound = 0;
1636       len = 0;
1637     }
1638 
1639   annotate_array_section_begin (i, elttype);
1640 
1641   for (; i < len && things_printed < options->print_max; i++)
1642     {
1643       if (i != 0)
1644 	{
1645 	  if (options->prettyprint_arrays)
1646 	    {
1647 	      fprintf_filtered (stream, ",\n");
1648 	      print_spaces_filtered (2 + 2 * recurse, stream);
1649 	    }
1650 	  else
1651 	    {
1652 	      fprintf_filtered (stream, ", ");
1653 	    }
1654 	}
1655       wrap_here (n_spaces (2 + 2 * recurse));
1656       maybe_print_array_index (index_type, i + low_bound,
1657                                stream, options);
1658 
1659       rep1 = i + 1;
1660       reps = 1;
1661       /* Only check for reps if repeat_count_threshold is not set to
1662 	 UINT_MAX (unlimited).  */
1663       if (options->repeat_count_threshold < UINT_MAX)
1664 	{
1665 	  while (rep1 < len
1666 		 && value_available_contents_eq (val,
1667 						 embedded_offset + i * eltlen,
1668 						 val,
1669 						 (embedded_offset
1670 						  + rep1 * eltlen),
1671 						 eltlen))
1672 	    {
1673 	      ++reps;
1674 	      ++rep1;
1675 	    }
1676 	}
1677 
1678       if (reps > options->repeat_count_threshold)
1679 	{
1680 	  val_print (elttype, valaddr, embedded_offset + i * eltlen,
1681 		     address, stream, recurse + 1, val, options,
1682 		     current_language);
1683 	  annotate_elt_rep (reps);
1684 	  fprintf_filtered (stream, " <repeats %u times>", reps);
1685 	  annotate_elt_rep_end ();
1686 
1687 	  i = rep1 - 1;
1688 	  things_printed += options->repeat_count_threshold;
1689 	}
1690       else
1691 	{
1692 	  val_print (elttype, valaddr, embedded_offset + i * eltlen,
1693 		     address,
1694 		     stream, recurse + 1, val, options, current_language);
1695 	  annotate_elt ();
1696 	  things_printed++;
1697 	}
1698     }
1699   annotate_array_section_end ();
1700   if (i < len)
1701     {
1702       fprintf_filtered (stream, "...");
1703     }
1704 }
1705 
1706 /* Read LEN bytes of target memory at address MEMADDR, placing the
1707    results in GDB's memory at MYADDR.  Returns a count of the bytes
1708    actually read, and optionally an errno value in the location
1709    pointed to by ERRNOPTR if ERRNOPTR is non-null.  */
1710 
1711 /* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
1712    function be eliminated.  */
1713 
1714 static int
1715 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1716 		     int len, int *errnoptr)
1717 {
1718   int nread;			/* Number of bytes actually read.  */
1719   int errcode;			/* Error from last read.  */
1720 
1721   /* First try a complete read.  */
1722   errcode = target_read_memory (memaddr, myaddr, len);
1723   if (errcode == 0)
1724     {
1725       /* Got it all.  */
1726       nread = len;
1727     }
1728   else
1729     {
1730       /* Loop, reading one byte at a time until we get as much as we can.  */
1731       for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1732 	{
1733 	  errcode = target_read_memory (memaddr++, myaddr++, 1);
1734 	}
1735       /* If an error, the last read was unsuccessful, so adjust count.  */
1736       if (errcode != 0)
1737 	{
1738 	  nread--;
1739 	}
1740     }
1741   if (errnoptr != NULL)
1742     {
1743       *errnoptr = errcode;
1744     }
1745   return (nread);
1746 }
1747 
1748 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1749    each.  Fetch at most FETCHLIMIT characters.  BUFFER will be set to a newly
1750    allocated buffer containing the string, which the caller is responsible to
1751    free, and BYTES_READ will be set to the number of bytes read.  Returns 0 on
1752    success, or errno on failure.
1753 
1754    If LEN > 0, reads exactly LEN characters (including eventual NULs in
1755    the middle or end of the string).  If LEN is -1, stops at the first
1756    null character (not necessarily the first null byte) up to a maximum
1757    of FETCHLIMIT characters.  Set FETCHLIMIT to UINT_MAX to read as many
1758    characters as possible from the string.
1759 
1760    Unless an exception is thrown, BUFFER will always be allocated, even on
1761    failure.  In this case, some characters might have been read before the
1762    failure happened.  Check BYTES_READ to recognize this situation.
1763 
1764    Note: There was a FIXME asking to make this code use target_read_string,
1765    but this function is more general (can read past null characters, up to
1766    given LEN).  Besides, it is used much more often than target_read_string
1767    so it is more tested.  Perhaps callers of target_read_string should use
1768    this function instead?  */
1769 
1770 int
1771 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1772 	     enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1773 {
1774   int found_nul;		/* Non-zero if we found the nul char.  */
1775   int errcode;			/* Errno returned from bad reads.  */
1776   unsigned int nfetch;		/* Chars to fetch / chars fetched.  */
1777   unsigned int chunksize;	/* Size of each fetch, in chars.  */
1778   gdb_byte *bufptr;		/* Pointer to next available byte in
1779 				   buffer.  */
1780   gdb_byte *limit;		/* First location past end of fetch buffer.  */
1781   struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain.  */
1782 
1783   /* Decide how large of chunks to try to read in one operation.  This
1784      is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
1785      so we might as well read them all in one operation.  If LEN is -1, we
1786      are looking for a NUL terminator to end the fetching, so we might as
1787      well read in blocks that are large enough to be efficient, but not so
1788      large as to be slow if fetchlimit happens to be large.  So we choose the
1789      minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
1790      200 is way too big for remote debugging over a serial line.  */
1791 
1792   chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1793 
1794   /* Loop until we either have all the characters, or we encounter
1795      some error, such as bumping into the end of the address space.  */
1796 
1797   found_nul = 0;
1798   *buffer = NULL;
1799 
1800   old_chain = make_cleanup (free_current_contents, buffer);
1801 
1802   if (len > 0)
1803     {
1804       *buffer = (gdb_byte *) xmalloc (len * width);
1805       bufptr = *buffer;
1806 
1807       nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1808 	/ width;
1809       addr += nfetch * width;
1810       bufptr += nfetch * width;
1811     }
1812   else if (len == -1)
1813     {
1814       unsigned long bufsize = 0;
1815 
1816       do
1817 	{
1818 	  QUIT;
1819 	  nfetch = min (chunksize, fetchlimit - bufsize);
1820 
1821 	  if (*buffer == NULL)
1822 	    *buffer = (gdb_byte *) xmalloc (nfetch * width);
1823 	  else
1824 	    *buffer = (gdb_byte *) xrealloc (*buffer,
1825 					     (nfetch + bufsize) * width);
1826 
1827 	  bufptr = *buffer + bufsize * width;
1828 	  bufsize += nfetch;
1829 
1830 	  /* Read as much as we can.  */
1831 	  nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1832 		    / width;
1833 
1834 	  /* Scan this chunk for the null character that terminates the string
1835 	     to print.  If found, we don't need to fetch any more.  Note
1836 	     that bufptr is explicitly left pointing at the next character
1837 	     after the null character, or at the next character after the end
1838 	     of the buffer.  */
1839 
1840 	  limit = bufptr + nfetch * width;
1841 	  while (bufptr < limit)
1842 	    {
1843 	      unsigned long c;
1844 
1845 	      c = extract_unsigned_integer (bufptr, width, byte_order);
1846 	      addr += width;
1847 	      bufptr += width;
1848 	      if (c == 0)
1849 		{
1850 		  /* We don't care about any error which happened after
1851 		     the NUL terminator.  */
1852 		  errcode = 0;
1853 		  found_nul = 1;
1854 		  break;
1855 		}
1856 	    }
1857 	}
1858       while (errcode == 0	/* no error */
1859 	     && bufptr - *buffer < fetchlimit * width	/* no overrun */
1860 	     && !found_nul);	/* haven't found NUL yet */
1861     }
1862   else
1863     {				/* Length of string is really 0!  */
1864       /* We always allocate *buffer.  */
1865       *buffer = bufptr = xmalloc (1);
1866       errcode = 0;
1867     }
1868 
1869   /* bufptr and addr now point immediately beyond the last byte which we
1870      consider part of the string (including a '\0' which ends the string).  */
1871   *bytes_read = bufptr - *buffer;
1872 
1873   QUIT;
1874 
1875   discard_cleanups (old_chain);
1876 
1877   return errcode;
1878 }
1879 
1880 /* Return true if print_wchar can display W without resorting to a
1881    numeric escape, false otherwise.  */
1882 
1883 static int
1884 wchar_printable (gdb_wchar_t w)
1885 {
1886   return (gdb_iswprint (w)
1887 	  || w == LCST ('\a') || w == LCST ('\b')
1888 	  || w == LCST ('\f') || w == LCST ('\n')
1889 	  || w == LCST ('\r') || w == LCST ('\t')
1890 	  || w == LCST ('\v'));
1891 }
1892 
1893 /* A helper function that converts the contents of STRING to wide
1894    characters and then appends them to OUTPUT.  */
1895 
1896 static void
1897 append_string_as_wide (const char *string,
1898 		       struct obstack *output)
1899 {
1900   for (; *string; ++string)
1901     {
1902       gdb_wchar_t w = gdb_btowc (*string);
1903       obstack_grow (output, &w, sizeof (gdb_wchar_t));
1904     }
1905 }
1906 
1907 /* Print a wide character W to OUTPUT.  ORIG is a pointer to the
1908    original (target) bytes representing the character, ORIG_LEN is the
1909    number of valid bytes.  WIDTH is the number of bytes in a base
1910    characters of the type.  OUTPUT is an obstack to which wide
1911    characters are emitted.  QUOTER is a (narrow) character indicating
1912    the style of quotes surrounding the character to be printed.
1913    NEED_ESCAPE is an in/out flag which is used to track numeric
1914    escapes across calls.  */
1915 
1916 static void
1917 print_wchar (gdb_wint_t w, const gdb_byte *orig,
1918 	     int orig_len, int width,
1919 	     enum bfd_endian byte_order,
1920 	     struct obstack *output,
1921 	     int quoter, int *need_escapep)
1922 {
1923   int need_escape = *need_escapep;
1924 
1925   *need_escapep = 0;
1926   if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w)
1927 					    && w != LCST ('8')
1928 					    && w != LCST ('9'))))
1929     {
1930       gdb_wchar_t wchar = w;
1931 
1932       if (w == gdb_btowc (quoter) || w == LCST ('\\'))
1933 	obstack_grow_wstr (output, LCST ("\\"));
1934       obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
1935     }
1936   else
1937     {
1938       switch (w)
1939 	{
1940 	case LCST ('\a'):
1941 	  obstack_grow_wstr (output, LCST ("\\a"));
1942 	  break;
1943 	case LCST ('\b'):
1944 	  obstack_grow_wstr (output, LCST ("\\b"));
1945 	  break;
1946 	case LCST ('\f'):
1947 	  obstack_grow_wstr (output, LCST ("\\f"));
1948 	  break;
1949 	case LCST ('\n'):
1950 	  obstack_grow_wstr (output, LCST ("\\n"));
1951 	  break;
1952 	case LCST ('\r'):
1953 	  obstack_grow_wstr (output, LCST ("\\r"));
1954 	  break;
1955 	case LCST ('\t'):
1956 	  obstack_grow_wstr (output, LCST ("\\t"));
1957 	  break;
1958 	case LCST ('\v'):
1959 	  obstack_grow_wstr (output, LCST ("\\v"));
1960 	  break;
1961 	default:
1962 	  {
1963 	    int i;
1964 
1965 	    for (i = 0; i + width <= orig_len; i += width)
1966 	      {
1967 		char octal[30];
1968 		ULONGEST value;
1969 
1970 		value = extract_unsigned_integer (&orig[i], width,
1971 						  byte_order);
1972 		/* If the value fits in 3 octal digits, print it that
1973 		   way.  Otherwise, print it as a hex escape.  */
1974 		if (value <= 0777)
1975 		  xsnprintf (octal, sizeof (octal), "\\%.3o",
1976 			     (int) (value & 0777));
1977 		else
1978 		  xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
1979 		append_string_as_wide (octal, output);
1980 	      }
1981 	    /* If we somehow have extra bytes, print them now.  */
1982 	    while (i < orig_len)
1983 	      {
1984 		char octal[5];
1985 
1986 		xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
1987 		append_string_as_wide (octal, output);
1988 		++i;
1989 	      }
1990 
1991 	    *need_escapep = 1;
1992 	  }
1993 	  break;
1994 	}
1995     }
1996 }
1997 
1998 /* Print the character C on STREAM as part of the contents of a
1999    literal string whose delimiter is QUOTER.  ENCODING names the
2000    encoding of C.  */
2001 
2002 void
2003 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2004 		   int quoter, const char *encoding)
2005 {
2006   enum bfd_endian byte_order
2007     = gdbarch_byte_order (get_type_arch (type));
2008   struct obstack wchar_buf, output;
2009   struct cleanup *cleanups;
2010   gdb_byte *buf;
2011   struct wchar_iterator *iter;
2012   int need_escape = 0;
2013 
2014   buf = alloca (TYPE_LENGTH (type));
2015   pack_long (buf, type, c);
2016 
2017   iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2018 			      encoding, TYPE_LENGTH (type));
2019   cleanups = make_cleanup_wchar_iterator (iter);
2020 
2021   /* This holds the printable form of the wchar_t data.  */
2022   obstack_init (&wchar_buf);
2023   make_cleanup_obstack_free (&wchar_buf);
2024 
2025   while (1)
2026     {
2027       int num_chars;
2028       gdb_wchar_t *chars;
2029       const gdb_byte *buf;
2030       size_t buflen;
2031       int print_escape = 1;
2032       enum wchar_iterate_result result;
2033 
2034       num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2035       if (num_chars < 0)
2036 	break;
2037       if (num_chars > 0)
2038 	{
2039 	  /* If all characters are printable, print them.  Otherwise,
2040 	     we're going to have to print an escape sequence.  We
2041 	     check all characters because we want to print the target
2042 	     bytes in the escape sequence, and we don't know character
2043 	     boundaries there.  */
2044 	  int i;
2045 
2046 	  print_escape = 0;
2047 	  for (i = 0; i < num_chars; ++i)
2048 	    if (!wchar_printable (chars[i]))
2049 	      {
2050 		print_escape = 1;
2051 		break;
2052 	      }
2053 
2054 	  if (!print_escape)
2055 	    {
2056 	      for (i = 0; i < num_chars; ++i)
2057 		print_wchar (chars[i], buf, buflen,
2058 			     TYPE_LENGTH (type), byte_order,
2059 			     &wchar_buf, quoter, &need_escape);
2060 	    }
2061 	}
2062 
2063       /* This handles the NUM_CHARS == 0 case as well.  */
2064       if (print_escape)
2065 	print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2066 		     byte_order, &wchar_buf, quoter, &need_escape);
2067     }
2068 
2069   /* The output in the host encoding.  */
2070   obstack_init (&output);
2071   make_cleanup_obstack_free (&output);
2072 
2073   convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2074 			     (gdb_byte *) obstack_base (&wchar_buf),
2075 			     obstack_object_size (&wchar_buf),
2076 			     sizeof (gdb_wchar_t), &output, translit_char);
2077   obstack_1grow (&output, '\0');
2078 
2079   fputs_filtered (obstack_base (&output), stream);
2080 
2081   do_cleanups (cleanups);
2082 }
2083 
2084 /* Return the repeat count of the next character/byte in ITER,
2085    storing the result in VEC.  */
2086 
2087 static int
2088 count_next_character (struct wchar_iterator *iter,
2089 		      VEC (converted_character_d) **vec)
2090 {
2091   struct converted_character *current;
2092 
2093   if (VEC_empty (converted_character_d, *vec))
2094     {
2095       struct converted_character tmp;
2096       gdb_wchar_t *chars;
2097 
2098       tmp.num_chars
2099 	= wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2100       if (tmp.num_chars > 0)
2101 	{
2102 	  gdb_assert (tmp.num_chars < MAX_WCHARS);
2103 	  memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2104 	}
2105       VEC_safe_push (converted_character_d, *vec, &tmp);
2106     }
2107 
2108   current = VEC_last (converted_character_d, *vec);
2109 
2110   /* Count repeated characters or bytes.  */
2111   current->repeat_count = 1;
2112   if (current->num_chars == -1)
2113     {
2114       /* EOF  */
2115       return -1;
2116     }
2117   else
2118     {
2119       gdb_wchar_t *chars;
2120       struct converted_character d;
2121       int repeat;
2122 
2123       d.repeat_count = 0;
2124 
2125       while (1)
2126 	{
2127 	  /* Get the next character.  */
2128 	  d.num_chars
2129 	    = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2130 
2131 	  /* If a character was successfully converted, save the character
2132 	     into the converted character.  */
2133 	  if (d.num_chars > 0)
2134 	    {
2135 	      gdb_assert (d.num_chars < MAX_WCHARS);
2136 	      memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2137 	    }
2138 
2139 	  /* Determine if the current character is the same as this
2140 	     new character.  */
2141 	  if (d.num_chars == current->num_chars && d.result == current->result)
2142 	    {
2143 	      /* There are two cases to consider:
2144 
2145 		 1) Equality of converted character (num_chars > 0)
2146 		 2) Equality of non-converted character (num_chars == 0)  */
2147 	      if ((current->num_chars > 0
2148 		   && memcmp (current->chars, d.chars,
2149 			      WCHAR_BUFLEN (current->num_chars)) == 0)
2150 		  || (current->num_chars == 0
2151 		      && current->buflen == d.buflen
2152 		      && memcmp (current->buf, d.buf, current->buflen) == 0))
2153 		++current->repeat_count;
2154 	      else
2155 		break;
2156 	    }
2157 	  else
2158 	    break;
2159 	}
2160 
2161       /* Push this next converted character onto the result vector.  */
2162       repeat = current->repeat_count;
2163       VEC_safe_push (converted_character_d, *vec, &d);
2164       return repeat;
2165     }
2166 }
2167 
2168 /* Print the characters in CHARS to the OBSTACK.  QUOTE_CHAR is the quote
2169    character to use with string output.  WIDTH is the size of the output
2170    character type.  BYTE_ORDER is the the target byte order.  OPTIONS
2171    is the user's print options.  */
2172 
2173 static void
2174 print_converted_chars_to_obstack (struct obstack *obstack,
2175 				  VEC (converted_character_d) *chars,
2176 				  int quote_char, int width,
2177 				  enum bfd_endian byte_order,
2178 				  const struct value_print_options *options)
2179 {
2180   unsigned int idx;
2181   struct converted_character *elem;
2182   enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2183   gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2184   int need_escape = 0;
2185 
2186   /* Set the start state.  */
2187   idx = 0;
2188   last = state = START;
2189   elem = NULL;
2190 
2191   while (1)
2192     {
2193       switch (state)
2194 	{
2195 	case START:
2196 	  /* Nothing to do.  */
2197 	  break;
2198 
2199 	case SINGLE:
2200 	  {
2201 	    int j;
2202 
2203 	    /* We are outputting a single character
2204 	       (< options->repeat_count_threshold).  */
2205 
2206 	    if (last != SINGLE)
2207 	      {
2208 		/* We were outputting some other type of content, so we
2209 		   must output and a comma and a quote.  */
2210 		if (last != START)
2211 		  obstack_grow_wstr (obstack, LCST (", "));
2212 		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2213 	      }
2214 	    /* Output the character.  */
2215 	    for (j = 0; j < elem->repeat_count; ++j)
2216 	      {
2217 		if (elem->result == wchar_iterate_ok)
2218 		  print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2219 			       byte_order, obstack, quote_char, &need_escape);
2220 		else
2221 		  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2222 			       byte_order, obstack, quote_char, &need_escape);
2223 	      }
2224 	  }
2225 	  break;
2226 
2227 	case REPEAT:
2228 	  {
2229 	    int j;
2230 	    char *s;
2231 
2232 	    /* We are outputting a character with a repeat count
2233 	       greater than options->repeat_count_threshold.  */
2234 
2235 	    if (last == SINGLE)
2236 	      {
2237 		/* We were outputting a single string.  Terminate the
2238 		   string.  */
2239 		obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2240 	      }
2241 	    if (last != START)
2242 	      obstack_grow_wstr (obstack, LCST (", "));
2243 
2244 	    /* Output the character and repeat string.  */
2245 	    obstack_grow_wstr (obstack, LCST ("'"));
2246 	    if (elem->result == wchar_iterate_ok)
2247 	      print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2248 			   byte_order, obstack, quote_char, &need_escape);
2249 	    else
2250 	      print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2251 			   byte_order, obstack, quote_char, &need_escape);
2252 	    obstack_grow_wstr (obstack, LCST ("'"));
2253 	    s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2254 	    for (j = 0; s[j]; ++j)
2255 	      {
2256 		gdb_wchar_t w = gdb_btowc (s[j]);
2257 		obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2258 	      }
2259 	    xfree (s);
2260 	  }
2261 	  break;
2262 
2263 	case INCOMPLETE:
2264 	  /* We are outputting an incomplete sequence.  */
2265 	  if (last == SINGLE)
2266 	    {
2267 	      /* If we were outputting a string of SINGLE characters,
2268 		 terminate the quote.  */
2269 	      obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2270 	    }
2271 	  if (last != START)
2272 	    obstack_grow_wstr (obstack, LCST (", "));
2273 
2274 	  /* Output the incomplete sequence string.  */
2275 	  obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2276 	  print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2277 		       obstack, 0, &need_escape);
2278 	  obstack_grow_wstr (obstack, LCST (">"));
2279 
2280 	  /* We do not attempt to outupt anything after this.  */
2281 	  state = FINISH;
2282 	  break;
2283 
2284 	case FINISH:
2285 	  /* All done.  If we were outputting a string of SINGLE
2286 	     characters, the string must be terminated.  Otherwise,
2287 	     REPEAT and INCOMPLETE are always left properly terminated.  */
2288 	  if (last == SINGLE)
2289 	    obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2290 
2291 	  return;
2292 	}
2293 
2294       /* Get the next element and state.  */
2295       last = state;
2296       if (state != FINISH)
2297 	{
2298 	  elem = VEC_index (converted_character_d, chars, idx++);
2299 	  switch (elem->result)
2300 	    {
2301 	    case wchar_iterate_ok:
2302 	    case wchar_iterate_invalid:
2303 	      if (elem->repeat_count > options->repeat_count_threshold)
2304 		state = REPEAT;
2305 	      else
2306 		state = SINGLE;
2307 	      break;
2308 
2309 	    case wchar_iterate_incomplete:
2310 	      state = INCOMPLETE;
2311 	      break;
2312 
2313 	    case wchar_iterate_eof:
2314 	      state = FINISH;
2315 	      break;
2316 	    }
2317 	}
2318     }
2319 }
2320 
2321 /* Print the character string STRING, printing at most LENGTH
2322    characters.  LENGTH is -1 if the string is nul terminated.  TYPE is
2323    the type of each character.  OPTIONS holds the printing options;
2324    printing stops early if the number hits print_max; repeat counts
2325    are printed as appropriate.  Print ellipses at the end if we had to
2326    stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2327    QUOTE_CHAR is the character to print at each end of the string.  If
2328    C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2329    omitted.  */
2330 
2331 void
2332 generic_printstr (struct ui_file *stream, struct type *type,
2333 		  const gdb_byte *string, unsigned int length,
2334 		  const char *encoding, int force_ellipses,
2335 		  int quote_char, int c_style_terminator,
2336 		  const struct value_print_options *options)
2337 {
2338   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2339   unsigned int i;
2340   int width = TYPE_LENGTH (type);
2341   struct obstack wchar_buf, output;
2342   struct cleanup *cleanup;
2343   struct wchar_iterator *iter;
2344   int finished = 0;
2345   struct converted_character *last;
2346   VEC (converted_character_d) *converted_chars;
2347 
2348   if (length == -1)
2349     {
2350       unsigned long current_char = 1;
2351 
2352       for (i = 0; current_char; ++i)
2353 	{
2354 	  QUIT;
2355 	  current_char = extract_unsigned_integer (string + i * width,
2356 						   width, byte_order);
2357 	}
2358       length = i;
2359     }
2360 
2361   /* If the string was not truncated due to `set print elements', and
2362      the last byte of it is a null, we don't print that, in
2363      traditional C style.  */
2364   if (c_style_terminator
2365       && !force_ellipses
2366       && length > 0
2367       && (extract_unsigned_integer (string + (length - 1) * width,
2368 				    width, byte_order) == 0))
2369     length--;
2370 
2371   if (length == 0)
2372     {
2373       fputs_filtered ("\"\"", stream);
2374       return;
2375     }
2376 
2377   /* Arrange to iterate over the characters, in wchar_t form.  */
2378   iter = make_wchar_iterator (string, length * width, encoding, width);
2379   cleanup = make_cleanup_wchar_iterator (iter);
2380   converted_chars = NULL;
2381   make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
2382 
2383   /* Convert characters until the string is over or the maximum
2384      number of printed characters has been reached.  */
2385   i = 0;
2386   while (i < options->print_max)
2387     {
2388       int r;
2389 
2390       QUIT;
2391 
2392       /* Grab the next character and repeat count.  */
2393       r = count_next_character (iter, &converted_chars);
2394 
2395       /* If less than zero, the end of the input string was reached.  */
2396       if (r < 0)
2397 	break;
2398 
2399       /* Otherwise, add the count to the total print count and get
2400 	 the next character.  */
2401       i += r;
2402     }
2403 
2404   /* Get the last element and determine if the entire string was
2405      processed.  */
2406   last = VEC_last (converted_character_d, converted_chars);
2407   finished = (last->result == wchar_iterate_eof);
2408 
2409   /* Ensure that CONVERTED_CHARS is terminated.  */
2410   last->result = wchar_iterate_eof;
2411 
2412   /* WCHAR_BUF is the obstack we use to represent the string in
2413      wchar_t form.  */
2414   obstack_init (&wchar_buf);
2415   make_cleanup_obstack_free (&wchar_buf);
2416 
2417   /* Print the output string to the obstack.  */
2418   print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2419 				    width, byte_order, options);
2420 
2421   if (force_ellipses || !finished)
2422     obstack_grow_wstr (&wchar_buf, LCST ("..."));
2423 
2424   /* OUTPUT is where we collect `char's for printing.  */
2425   obstack_init (&output);
2426   make_cleanup_obstack_free (&output);
2427 
2428   convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2429 			     (gdb_byte *) obstack_base (&wchar_buf),
2430 			     obstack_object_size (&wchar_buf),
2431 			     sizeof (gdb_wchar_t), &output, translit_char);
2432   obstack_1grow (&output, '\0');
2433 
2434   fputs_filtered (obstack_base (&output), stream);
2435 
2436   do_cleanups (cleanup);
2437 }
2438 
2439 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2440    characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
2441    stops at the first null byte, otherwise printing proceeds (including null
2442    bytes) until either print_max or LEN characters have been printed,
2443    whichever is smaller.  ENCODING is the name of the string's
2444    encoding.  It can be NULL, in which case the target encoding is
2445    assumed.  */
2446 
2447 int
2448 val_print_string (struct type *elttype, const char *encoding,
2449 		  CORE_ADDR addr, int len,
2450 		  struct ui_file *stream,
2451 		  const struct value_print_options *options)
2452 {
2453   int force_ellipsis = 0;	/* Force ellipsis to be printed if nonzero.  */
2454   int errcode;			/* Errno returned from bad reads.  */
2455   int found_nul;		/* Non-zero if we found the nul char.  */
2456   unsigned int fetchlimit;	/* Maximum number of chars to print.  */
2457   int bytes_read;
2458   gdb_byte *buffer = NULL;	/* Dynamically growable fetch buffer.  */
2459   struct cleanup *old_chain = NULL;	/* Top of the old cleanup chain.  */
2460   struct gdbarch *gdbarch = get_type_arch (elttype);
2461   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2462   int width = TYPE_LENGTH (elttype);
2463 
2464   /* First we need to figure out the limit on the number of characters we are
2465      going to attempt to fetch and print.  This is actually pretty simple.  If
2466      LEN >= zero, then the limit is the minimum of LEN and print_max.  If
2467      LEN is -1, then the limit is print_max.  This is true regardless of
2468      whether print_max is zero, UINT_MAX (unlimited), or something in between,
2469      because finding the null byte (or available memory) is what actually
2470      limits the fetch.  */
2471 
2472   fetchlimit = (len == -1 ? options->print_max : min (len,
2473 						      options->print_max));
2474 
2475   errcode = read_string (addr, len, width, fetchlimit, byte_order,
2476 			 &buffer, &bytes_read);
2477   old_chain = make_cleanup (xfree, buffer);
2478 
2479   addr += bytes_read;
2480 
2481   /* We now have either successfully filled the buffer to fetchlimit,
2482      or terminated early due to an error or finding a null char when
2483      LEN is -1.  */
2484 
2485   /* Determine found_nul by looking at the last character read.  */
2486   found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2487 					byte_order) == 0;
2488   if (len == -1 && !found_nul)
2489     {
2490       gdb_byte *peekbuf;
2491 
2492       /* We didn't find a NUL terminator we were looking for.  Attempt
2493          to peek at the next character.  If not successful, or it is not
2494          a null byte, then force ellipsis to be printed.  */
2495 
2496       peekbuf = (gdb_byte *) alloca (width);
2497 
2498       if (target_read_memory (addr, peekbuf, width) == 0
2499 	  && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2500 	force_ellipsis = 1;
2501     }
2502   else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
2503     {
2504       /* Getting an error when we have a requested length, or fetching less
2505          than the number of characters actually requested, always make us
2506          print ellipsis.  */
2507       force_ellipsis = 1;
2508     }
2509 
2510   /* If we get an error before fetching anything, don't print a string.
2511      But if we fetch something and then get an error, print the string
2512      and then the error message.  */
2513   if (errcode == 0 || bytes_read > 0)
2514     {
2515       LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
2516 		       encoding, force_ellipsis, options);
2517     }
2518 
2519   if (errcode != 0)
2520     {
2521       if (errcode == EIO)
2522 	{
2523 	  fprintf_filtered (stream, "<Address ");
2524 	  fputs_filtered (paddress (gdbarch, addr), stream);
2525 	  fprintf_filtered (stream, " out of bounds>");
2526 	}
2527       else
2528 	{
2529 	  fprintf_filtered (stream, "<Error reading address ");
2530 	  fputs_filtered (paddress (gdbarch, addr), stream);
2531 	  fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
2532 	}
2533     }
2534 
2535   gdb_flush (stream);
2536   do_cleanups (old_chain);
2537 
2538   return (bytes_read / width);
2539 }
2540 
2541 
2542 /* The 'set input-radix' command writes to this auxiliary variable.
2543    If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2544    it is left unchanged.  */
2545 
2546 static unsigned input_radix_1 = 10;
2547 
2548 /* Validate an input or output radix setting, and make sure the user
2549    knows what they really did here.  Radix setting is confusing, e.g.
2550    setting the input radix to "10" never changes it!  */
2551 
2552 static void
2553 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
2554 {
2555   set_input_radix_1 (from_tty, input_radix_1);
2556 }
2557 
2558 static void
2559 set_input_radix_1 (int from_tty, unsigned radix)
2560 {
2561   /* We don't currently disallow any input radix except 0 or 1, which don't
2562      make any mathematical sense.  In theory, we can deal with any input
2563      radix greater than 1, even if we don't have unique digits for every
2564      value from 0 to radix-1, but in practice we lose on large radix values.
2565      We should either fix the lossage or restrict the radix range more.
2566      (FIXME).  */
2567 
2568   if (radix < 2)
2569     {
2570       input_radix_1 = input_radix;
2571       error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2572 	     radix);
2573     }
2574   input_radix_1 = input_radix = radix;
2575   if (from_tty)
2576     {
2577       printf_filtered (_("Input radix now set to "
2578 			 "decimal %u, hex %x, octal %o.\n"),
2579 		       radix, radix, radix);
2580     }
2581 }
2582 
2583 /* The 'set output-radix' command writes to this auxiliary variable.
2584    If the requested radix is valid, OUTPUT_RADIX is updated,
2585    otherwise, it is left unchanged.  */
2586 
2587 static unsigned output_radix_1 = 10;
2588 
2589 static void
2590 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
2591 {
2592   set_output_radix_1 (from_tty, output_radix_1);
2593 }
2594 
2595 static void
2596 set_output_radix_1 (int from_tty, unsigned radix)
2597 {
2598   /* Validate the radix and disallow ones that we aren't prepared to
2599      handle correctly, leaving the radix unchanged.  */
2600   switch (radix)
2601     {
2602     case 16:
2603       user_print_options.output_format = 'x';	/* hex */
2604       break;
2605     case 10:
2606       user_print_options.output_format = 0;	/* decimal */
2607       break;
2608     case 8:
2609       user_print_options.output_format = 'o';	/* octal */
2610       break;
2611     default:
2612       output_radix_1 = output_radix;
2613       error (_("Unsupported output radix ``decimal %u''; "
2614 	       "output radix unchanged."),
2615 	     radix);
2616     }
2617   output_radix_1 = output_radix = radix;
2618   if (from_tty)
2619     {
2620       printf_filtered (_("Output radix now set to "
2621 			 "decimal %u, hex %x, octal %o.\n"),
2622 		       radix, radix, radix);
2623     }
2624 }
2625 
2626 /* Set both the input and output radix at once.  Try to set the output radix
2627    first, since it has the most restrictive range.  An radix that is valid as
2628    an output radix is also valid as an input radix.
2629 
2630    It may be useful to have an unusual input radix.  If the user wishes to
2631    set an input radix that is not valid as an output radix, he needs to use
2632    the 'set input-radix' command.  */
2633 
2634 static void
2635 set_radix (char *arg, int from_tty)
2636 {
2637   unsigned radix;
2638 
2639   radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2640   set_output_radix_1 (0, radix);
2641   set_input_radix_1 (0, radix);
2642   if (from_tty)
2643     {
2644       printf_filtered (_("Input and output radices now set to "
2645 			 "decimal %u, hex %x, octal %o.\n"),
2646 		       radix, radix, radix);
2647     }
2648 }
2649 
2650 /* Show both the input and output radices.  */
2651 
2652 static void
2653 show_radix (char *arg, int from_tty)
2654 {
2655   if (from_tty)
2656     {
2657       if (input_radix == output_radix)
2658 	{
2659 	  printf_filtered (_("Input and output radices set to "
2660 			     "decimal %u, hex %x, octal %o.\n"),
2661 			   input_radix, input_radix, input_radix);
2662 	}
2663       else
2664 	{
2665 	  printf_filtered (_("Input radix set to decimal "
2666 			     "%u, hex %x, octal %o.\n"),
2667 			   input_radix, input_radix, input_radix);
2668 	  printf_filtered (_("Output radix set to decimal "
2669 			     "%u, hex %x, octal %o.\n"),
2670 			   output_radix, output_radix, output_radix);
2671 	}
2672     }
2673 }
2674 
2675 
2676 static void
2677 set_print (char *arg, int from_tty)
2678 {
2679   printf_unfiltered (
2680      "\"set print\" must be followed by the name of a print subcommand.\n");
2681   help_list (setprintlist, "set print ", -1, gdb_stdout);
2682 }
2683 
2684 static void
2685 show_print (char *args, int from_tty)
2686 {
2687   cmd_show_list (showprintlist, from_tty, "");
2688 }
2689 
2690 void
2691 _initialize_valprint (void)
2692 {
2693   add_prefix_cmd ("print", no_class, set_print,
2694 		  _("Generic command for setting how things print."),
2695 		  &setprintlist, "set print ", 0, &setlist);
2696   add_alias_cmd ("p", "print", no_class, 1, &setlist);
2697   /* Prefer set print to set prompt.  */
2698   add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2699 
2700   add_prefix_cmd ("print", no_class, show_print,
2701 		  _("Generic command for showing print settings."),
2702 		  &showprintlist, "show print ", 0, &showlist);
2703   add_alias_cmd ("p", "print", no_class, 1, &showlist);
2704   add_alias_cmd ("pr", "print", no_class, 1, &showlist);
2705 
2706   add_setshow_uinteger_cmd ("elements", no_class,
2707 			    &user_print_options.print_max, _("\
2708 Set limit on string chars or array elements to print."), _("\
2709 Show limit on string chars or array elements to print."), _("\
2710 \"set print elements 0\" causes there to be no limit."),
2711 			    NULL,
2712 			    show_print_max,
2713 			    &setprintlist, &showprintlist);
2714 
2715   add_setshow_boolean_cmd ("null-stop", no_class,
2716 			   &user_print_options.stop_print_at_null, _("\
2717 Set printing of char arrays to stop at first null char."), _("\
2718 Show printing of char arrays to stop at first null char."), NULL,
2719 			   NULL,
2720 			   show_stop_print_at_null,
2721 			   &setprintlist, &showprintlist);
2722 
2723   add_setshow_uinteger_cmd ("repeats", no_class,
2724 			    &user_print_options.repeat_count_threshold, _("\
2725 Set threshold for repeated print elements."), _("\
2726 Show threshold for repeated print elements."), _("\
2727 \"set print repeats 0\" causes all elements to be individually printed."),
2728 			    NULL,
2729 			    show_repeat_count_threshold,
2730 			    &setprintlist, &showprintlist);
2731 
2732   add_setshow_boolean_cmd ("pretty", class_support,
2733 			   &user_print_options.prettyprint_structs, _("\
2734 Set prettyprinting of structures."), _("\
2735 Show prettyprinting of structures."), NULL,
2736 			   NULL,
2737 			   show_prettyprint_structs,
2738 			   &setprintlist, &showprintlist);
2739 
2740   add_setshow_boolean_cmd ("union", class_support,
2741 			   &user_print_options.unionprint, _("\
2742 Set printing of unions interior to structures."), _("\
2743 Show printing of unions interior to structures."), NULL,
2744 			   NULL,
2745 			   show_unionprint,
2746 			   &setprintlist, &showprintlist);
2747 
2748   add_setshow_boolean_cmd ("array", class_support,
2749 			   &user_print_options.prettyprint_arrays, _("\
2750 Set prettyprinting of arrays."), _("\
2751 Show prettyprinting of arrays."), NULL,
2752 			   NULL,
2753 			   show_prettyprint_arrays,
2754 			   &setprintlist, &showprintlist);
2755 
2756   add_setshow_boolean_cmd ("address", class_support,
2757 			   &user_print_options.addressprint, _("\
2758 Set printing of addresses."), _("\
2759 Show printing of addresses."), NULL,
2760 			   NULL,
2761 			   show_addressprint,
2762 			   &setprintlist, &showprintlist);
2763 
2764   add_setshow_boolean_cmd ("symbol", class_support,
2765 			   &user_print_options.symbol_print, _("\
2766 Set printing of symbol names when printing pointers."), _("\
2767 Show printing of symbol names when printing pointers."),
2768 			   NULL, NULL,
2769 			   show_symbol_print,
2770 			   &setprintlist, &showprintlist);
2771 
2772   add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2773 			     _("\
2774 Set default input radix for entering numbers."), _("\
2775 Show default input radix for entering numbers."), NULL,
2776 			     set_input_radix,
2777 			     show_input_radix,
2778 			     &setlist, &showlist);
2779 
2780   add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2781 			     _("\
2782 Set default output radix for printing of values."), _("\
2783 Show default output radix for printing of values."), NULL,
2784 			     set_output_radix,
2785 			     show_output_radix,
2786 			     &setlist, &showlist);
2787 
2788   /* The "set radix" and "show radix" commands are special in that
2789      they are like normal set and show commands but allow two normally
2790      independent variables to be either set or shown with a single
2791      command.  So the usual deprecated_add_set_cmd() and [deleted]
2792      add_show_from_set() commands aren't really appropriate.  */
2793   /* FIXME: i18n: With the new add_setshow_integer command, that is no
2794      longer true - show can display anything.  */
2795   add_cmd ("radix", class_support, set_radix, _("\
2796 Set default input and output number radices.\n\
2797 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
2798 Without an argument, sets both radices back to the default value of 10."),
2799 	   &setlist);
2800   add_cmd ("radix", class_support, show_radix, _("\
2801 Show the default input and output number radices.\n\
2802 Use 'show input-radix' or 'show output-radix' to independently show each."),
2803 	   &showlist);
2804 
2805   add_setshow_boolean_cmd ("array-indexes", class_support,
2806                            &user_print_options.print_array_indexes, _("\
2807 Set printing of array indexes."), _("\
2808 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
2809                            &setprintlist, &showprintlist);
2810 }
2811