xref: /dragonfly/contrib/gdb-7/gdb/value.c (revision 10cbe914)
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5    2009 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42 
43 #include "python/python.h"
44 
45 /* Prototypes for exported functions. */
46 
47 void _initialize_values (void);
48 
49 /* Definition of a user function.  */
50 struct internal_function
51 {
52   /* The name of the function.  It is a bit odd to have this in the
53      function itself -- the user might use a differently-named
54      convenience variable to hold the function.  */
55   char *name;
56 
57   /* The handler.  */
58   internal_function_fn handler;
59 
60   /* User data for the handler.  */
61   void *cookie;
62 };
63 
64 static struct cmd_list_element *functionlist;
65 
66 struct value
67 {
68   /* Type of value; either not an lval, or one of the various
69      different possible kinds of lval.  */
70   enum lval_type lval;
71 
72   /* Is it modifiable?  Only relevant if lval != not_lval.  */
73   int modifiable;
74 
75   /* Location of value (if lval).  */
76   union
77   {
78     /* If lval == lval_memory, this is the address in the inferior.
79        If lval == lval_register, this is the byte offset into the
80        registers structure.  */
81     CORE_ADDR address;
82 
83     /* Pointer to internal variable.  */
84     struct internalvar *internalvar;
85 
86     /* If lval == lval_computed, this is a set of function pointers
87        to use to access and describe the value, and a closure pointer
88        for them to use.  */
89     struct
90     {
91       struct lval_funcs *funcs; /* Functions to call.  */
92       void *closure;            /* Closure for those functions to use.  */
93     } computed;
94   } location;
95 
96   /* Describes offset of a value within lval of a structure in bytes.
97      If lval == lval_memory, this is an offset to the address.  If
98      lval == lval_register, this is a further offset from
99      location.address within the registers structure.  Note also the
100      member embedded_offset below.  */
101   int offset;
102 
103   /* Only used for bitfields; number of bits contained in them.  */
104   int bitsize;
105 
106   /* Only used for bitfields; position of start of field.  For
107      gdbarch_bits_big_endian=0 targets, it is the position of the LSB.  For
108      gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109   int bitpos;
110 
111   /* Only used for bitfields; the containing value.  This allows a
112      single read from the target when displaying multiple
113      bitfields.  */
114   struct value *parent;
115 
116   /* Frame register value is relative to.  This will be described in
117      the lval enum above as "lval_register".  */
118   struct frame_id frame_id;
119 
120   /* Type of the value.  */
121   struct type *type;
122 
123   /* If a value represents a C++ object, then the `type' field gives
124      the object's compile-time type.  If the object actually belongs
125      to some class derived from `type', perhaps with other base
126      classes and additional members, then `type' is just a subobject
127      of the real thing, and the full object is probably larger than
128      `type' would suggest.
129 
130      If `type' is a dynamic class (i.e. one with a vtable), then GDB
131      can actually determine the object's run-time type by looking at
132      the run-time type information in the vtable.  When this
133      information is available, we may elect to read in the entire
134      object, for several reasons:
135 
136      - When printing the value, the user would probably rather see the
137      full object, not just the limited portion apparent from the
138      compile-time type.
139 
140      - If `type' has virtual base classes, then even printing `type'
141      alone may require reaching outside the `type' portion of the
142      object to wherever the virtual base class has been stored.
143 
144      When we store the entire object, `enclosing_type' is the run-time
145      type -- the complete object -- and `embedded_offset' is the
146      offset of `type' within that larger type, in bytes.  The
147      value_contents() macro takes `embedded_offset' into account, so
148      most GDB code continues to see the `type' portion of the value,
149      just as the inferior would.
150 
151      If `type' is a pointer to an object, then `enclosing_type' is a
152      pointer to the object's run-time type, and `pointed_to_offset' is
153      the offset in bytes from the full object to the pointed-to object
154      -- that is, the value `embedded_offset' would have if we followed
155      the pointer and fetched the complete object.  (I don't really see
156      the point.  Why not just determine the run-time type when you
157      indirect, and avoid the special case?  The contents don't matter
158      until you indirect anyway.)
159 
160      If we're not doing anything fancy, `enclosing_type' is equal to
161      `type', and `embedded_offset' is zero, so everything works
162      normally.  */
163   struct type *enclosing_type;
164   int embedded_offset;
165   int pointed_to_offset;
166 
167   /* Values are stored in a chain, so that they can be deleted easily
168      over calls to the inferior.  Values assigned to internal
169      variables, put into the value history or exposed to Python are
170      taken off this list.  */
171   struct value *next;
172 
173   /* Register number if the value is from a register.  */
174   short regnum;
175 
176   /* If zero, contents of this value are in the contents field.  If
177      nonzero, contents are in inferior.  If the lval field is lval_memory,
178      the contents are in inferior memory at location.address plus offset.
179      The lval field may also be lval_register.
180 
181      WARNING: This field is used by the code which handles watchpoints
182      (see breakpoint.c) to decide whether a particular value can be
183      watched by hardware watchpoints.  If the lazy flag is set for
184      some member of a value chain, it is assumed that this member of
185      the chain doesn't need to be watched as part of watching the
186      value itself.  This is how GDB avoids watching the entire struct
187      or array when the user wants to watch a single struct member or
188      array element.  If you ever change the way lazy flag is set and
189      reset, be sure to consider this use as well!  */
190   char lazy;
191 
192   /* If nonzero, this is the value of a variable which does not
193      actually exist in the program.  */
194   char optimized_out;
195 
196   /* If value is a variable, is it initialized or not.  */
197   int initialized;
198 
199   /* If value is from the stack.  If this is set, read_stack will be
200      used instead of read_memory to enable extra caching.  */
201   int stack;
202 
203   /* Actual contents of the value.  Target byte-order.  NULL or not
204      valid if lazy is nonzero.  */
205   gdb_byte *contents;
206 
207   /* The number of references to this value.  When a value is created,
208      the value chain holds a reference, so REFERENCE_COUNT is 1.  If
209      release_value is called, this value is removed from the chain but
210      the caller of release_value now has a reference to this value.
211      The caller must arrange for a call to value_free later.  */
212   int reference_count;
213 };
214 
215 /* Prototypes for local functions. */
216 
217 static void show_values (char *, int);
218 
219 static void show_convenience (char *, int);
220 
221 
222 /* The value-history records all the values printed
223    by print commands during this session.  Each chunk
224    records 60 consecutive values.  The first chunk on
225    the chain records the most recent values.
226    The total number of values is in value_history_count.  */
227 
228 #define VALUE_HISTORY_CHUNK 60
229 
230 struct value_history_chunk
231   {
232     struct value_history_chunk *next;
233     struct value *values[VALUE_HISTORY_CHUNK];
234   };
235 
236 /* Chain of chunks now in use.  */
237 
238 static struct value_history_chunk *value_history_chain;
239 
240 static int value_history_count;	/* Abs number of last entry stored */
241 
242 
243 /* List of all value objects currently allocated
244    (except for those released by calls to release_value)
245    This is so they can be freed after each command.  */
246 
247 static struct value *all_values;
248 
249 /* Allocate a lazy value for type TYPE.  Its actual content is
250    "lazily" allocated too: the content field of the return value is
251    NULL; it will be allocated when it is fetched from the target.  */
252 
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256   struct value *val;
257   struct type *atype = check_typedef (type);
258 
259   val = (struct value *) xzalloc (sizeof (struct value));
260   val->contents = NULL;
261   val->next = all_values;
262   all_values = val;
263   val->type = type;
264   val->enclosing_type = type;
265   VALUE_LVAL (val) = not_lval;
266   val->location.address = 0;
267   VALUE_FRAME_ID (val) = null_frame_id;
268   val->offset = 0;
269   val->bitpos = 0;
270   val->bitsize = 0;
271   VALUE_REGNUM (val) = -1;
272   val->lazy = 1;
273   val->optimized_out = 0;
274   val->embedded_offset = 0;
275   val->pointed_to_offset = 0;
276   val->modifiable = 1;
277   val->initialized = 1;  /* Default to initialized.  */
278 
279   /* Values start out on the all_values chain.  */
280   val->reference_count = 1;
281 
282   return val;
283 }
284 
285 /* Allocate the contents of VAL if it has not been allocated yet.  */
286 
287 void
288 allocate_value_contents (struct value *val)
289 {
290   if (!val->contents)
291     val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
292 }
293 
294 /* Allocate a  value  and its contents for type TYPE.  */
295 
296 struct value *
297 allocate_value (struct type *type)
298 {
299   struct value *val = allocate_value_lazy (type);
300   allocate_value_contents (val);
301   val->lazy = 0;
302   return val;
303 }
304 
305 /* Allocate a  value  that has the correct length
306    for COUNT repetitions of type TYPE.  */
307 
308 struct value *
309 allocate_repeat_value (struct type *type, int count)
310 {
311   int low_bound = current_language->string_lower_bound;		/* ??? */
312   /* FIXME-type-allocation: need a way to free this type when we are
313      done with it.  */
314   struct type *array_type
315     = lookup_array_range_type (type, low_bound, count + low_bound - 1);
316   return allocate_value (array_type);
317 }
318 
319 struct value *
320 allocate_computed_value (struct type *type,
321                          struct lval_funcs *funcs,
322                          void *closure)
323 {
324   struct value *v = allocate_value (type);
325   VALUE_LVAL (v) = lval_computed;
326   v->location.computed.funcs = funcs;
327   v->location.computed.closure = closure;
328   set_value_lazy (v, 1);
329 
330   return v;
331 }
332 
333 /* Accessor methods.  */
334 
335 struct value *
336 value_next (struct value *value)
337 {
338   return value->next;
339 }
340 
341 struct type *
342 value_type (struct value *value)
343 {
344   return value->type;
345 }
346 void
347 deprecated_set_value_type (struct value *value, struct type *type)
348 {
349   value->type = type;
350 }
351 
352 int
353 value_offset (struct value *value)
354 {
355   return value->offset;
356 }
357 void
358 set_value_offset (struct value *value, int offset)
359 {
360   value->offset = offset;
361 }
362 
363 int
364 value_bitpos (struct value *value)
365 {
366   return value->bitpos;
367 }
368 void
369 set_value_bitpos (struct value *value, int bit)
370 {
371   value->bitpos = bit;
372 }
373 
374 int
375 value_bitsize (struct value *value)
376 {
377   return value->bitsize;
378 }
379 void
380 set_value_bitsize (struct value *value, int bit)
381 {
382   value->bitsize = bit;
383 }
384 
385 struct value *
386 value_parent (struct value *value)
387 {
388   return value->parent;
389 }
390 
391 gdb_byte *
392 value_contents_raw (struct value *value)
393 {
394   allocate_value_contents (value);
395   return value->contents + value->embedded_offset;
396 }
397 
398 gdb_byte *
399 value_contents_all_raw (struct value *value)
400 {
401   allocate_value_contents (value);
402   return value->contents;
403 }
404 
405 struct type *
406 value_enclosing_type (struct value *value)
407 {
408   return value->enclosing_type;
409 }
410 
411 const gdb_byte *
412 value_contents_all (struct value *value)
413 {
414   if (value->lazy)
415     value_fetch_lazy (value);
416   return value->contents;
417 }
418 
419 int
420 value_lazy (struct value *value)
421 {
422   return value->lazy;
423 }
424 
425 void
426 set_value_lazy (struct value *value, int val)
427 {
428   value->lazy = val;
429 }
430 
431 int
432 value_stack (struct value *value)
433 {
434   return value->stack;
435 }
436 
437 void
438 set_value_stack (struct value *value, int val)
439 {
440   value->stack = val;
441 }
442 
443 const gdb_byte *
444 value_contents (struct value *value)
445 {
446   return value_contents_writeable (value);
447 }
448 
449 gdb_byte *
450 value_contents_writeable (struct value *value)
451 {
452   if (value->lazy)
453     value_fetch_lazy (value);
454   return value_contents_raw (value);
455 }
456 
457 /* Return non-zero if VAL1 and VAL2 have the same contents.  Note that
458    this function is different from value_equal; in C the operator ==
459    can return 0 even if the two values being compared are equal.  */
460 
461 int
462 value_contents_equal (struct value *val1, struct value *val2)
463 {
464   struct type *type1;
465   struct type *type2;
466   int len;
467 
468   type1 = check_typedef (value_type (val1));
469   type2 = check_typedef (value_type (val2));
470   len = TYPE_LENGTH (type1);
471   if (len != TYPE_LENGTH (type2))
472     return 0;
473 
474   return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
475 }
476 
477 int
478 value_optimized_out (struct value *value)
479 {
480   return value->optimized_out;
481 }
482 
483 void
484 set_value_optimized_out (struct value *value, int val)
485 {
486   value->optimized_out = val;
487 }
488 
489 int
490 value_embedded_offset (struct value *value)
491 {
492   return value->embedded_offset;
493 }
494 
495 void
496 set_value_embedded_offset (struct value *value, int val)
497 {
498   value->embedded_offset = val;
499 }
500 
501 int
502 value_pointed_to_offset (struct value *value)
503 {
504   return value->pointed_to_offset;
505 }
506 
507 void
508 set_value_pointed_to_offset (struct value *value, int val)
509 {
510   value->pointed_to_offset = val;
511 }
512 
513 struct lval_funcs *
514 value_computed_funcs (struct value *v)
515 {
516   gdb_assert (VALUE_LVAL (v) == lval_computed);
517 
518   return v->location.computed.funcs;
519 }
520 
521 void *
522 value_computed_closure (struct value *v)
523 {
524   gdb_assert (VALUE_LVAL (v) == lval_computed);
525 
526   return v->location.computed.closure;
527 }
528 
529 enum lval_type *
530 deprecated_value_lval_hack (struct value *value)
531 {
532   return &value->lval;
533 }
534 
535 CORE_ADDR
536 value_address (struct value *value)
537 {
538   if (value->lval == lval_internalvar
539       || value->lval == lval_internalvar_component)
540     return 0;
541   return value->location.address + value->offset;
542 }
543 
544 CORE_ADDR
545 value_raw_address (struct value *value)
546 {
547   if (value->lval == lval_internalvar
548       || value->lval == lval_internalvar_component)
549     return 0;
550   return value->location.address;
551 }
552 
553 void
554 set_value_address (struct value *value, CORE_ADDR addr)
555 {
556   gdb_assert (value->lval != lval_internalvar
557 	      && value->lval != lval_internalvar_component);
558   value->location.address = addr;
559 }
560 
561 struct internalvar **
562 deprecated_value_internalvar_hack (struct value *value)
563 {
564   return &value->location.internalvar;
565 }
566 
567 struct frame_id *
568 deprecated_value_frame_id_hack (struct value *value)
569 {
570   return &value->frame_id;
571 }
572 
573 short *
574 deprecated_value_regnum_hack (struct value *value)
575 {
576   return &value->regnum;
577 }
578 
579 int
580 deprecated_value_modifiable (struct value *value)
581 {
582   return value->modifiable;
583 }
584 void
585 deprecated_set_value_modifiable (struct value *value, int modifiable)
586 {
587   value->modifiable = modifiable;
588 }
589 
590 /* Return a mark in the value chain.  All values allocated after the
591    mark is obtained (except for those released) are subject to being freed
592    if a subsequent value_free_to_mark is passed the mark.  */
593 struct value *
594 value_mark (void)
595 {
596   return all_values;
597 }
598 
599 /* Take a reference to VAL.  VAL will not be deallocated until all
600    references are released.  */
601 
602 void
603 value_incref (struct value *val)
604 {
605   val->reference_count++;
606 }
607 
608 /* Release a reference to VAL, which was acquired with value_incref.
609    This function is also called to deallocate values from the value
610    chain.  */
611 
612 void
613 value_free (struct value *val)
614 {
615   if (val)
616     {
617       gdb_assert (val->reference_count > 0);
618       val->reference_count--;
619       if (val->reference_count > 0)
620 	return;
621 
622       /* If there's an associated parent value, drop our reference to
623 	 it.  */
624       if (val->parent != NULL)
625 	value_free (val->parent);
626 
627       if (VALUE_LVAL (val) == lval_computed)
628 	{
629 	  struct lval_funcs *funcs = val->location.computed.funcs;
630 
631 	  if (funcs->free_closure)
632 	    funcs->free_closure (val);
633 	}
634 
635       xfree (val->contents);
636     }
637   xfree (val);
638 }
639 
640 /* Free all values allocated since MARK was obtained by value_mark
641    (except for those released).  */
642 void
643 value_free_to_mark (struct value *mark)
644 {
645   struct value *val;
646   struct value *next;
647 
648   for (val = all_values; val && val != mark; val = next)
649     {
650       next = val->next;
651       value_free (val);
652     }
653   all_values = val;
654 }
655 
656 /* Free all the values that have been allocated (except for those released).
657    Call after each command, successful or not.
658    In practice this is called before each command, which is sufficient.  */
659 
660 void
661 free_all_values (void)
662 {
663   struct value *val;
664   struct value *next;
665 
666   for (val = all_values; val; val = next)
667     {
668       next = val->next;
669       value_free (val);
670     }
671 
672   all_values = 0;
673 }
674 
675 /* Remove VAL from the chain all_values
676    so it will not be freed automatically.  */
677 
678 void
679 release_value (struct value *val)
680 {
681   struct value *v;
682 
683   if (all_values == val)
684     {
685       all_values = val->next;
686       return;
687     }
688 
689   for (v = all_values; v; v = v->next)
690     {
691       if (v->next == val)
692 	{
693 	  v->next = val->next;
694 	  break;
695 	}
696     }
697 }
698 
699 /* Release all values up to mark  */
700 struct value *
701 value_release_to_mark (struct value *mark)
702 {
703   struct value *val;
704   struct value *next;
705 
706   for (val = next = all_values; next; next = next->next)
707     if (next->next == mark)
708       {
709 	all_values = next->next;
710 	next->next = NULL;
711 	return val;
712       }
713   all_values = 0;
714   return val;
715 }
716 
717 /* Return a copy of the value ARG.
718    It contains the same contents, for same memory address,
719    but it's a different block of storage.  */
720 
721 struct value *
722 value_copy (struct value *arg)
723 {
724   struct type *encl_type = value_enclosing_type (arg);
725   struct value *val;
726 
727   if (value_lazy (arg))
728     val = allocate_value_lazy (encl_type);
729   else
730     val = allocate_value (encl_type);
731   val->type = arg->type;
732   VALUE_LVAL (val) = VALUE_LVAL (arg);
733   val->location = arg->location;
734   val->offset = arg->offset;
735   val->bitpos = arg->bitpos;
736   val->bitsize = arg->bitsize;
737   VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
738   VALUE_REGNUM (val) = VALUE_REGNUM (arg);
739   val->lazy = arg->lazy;
740   val->optimized_out = arg->optimized_out;
741   val->embedded_offset = value_embedded_offset (arg);
742   val->pointed_to_offset = arg->pointed_to_offset;
743   val->modifiable = arg->modifiable;
744   if (!value_lazy (val))
745     {
746       memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
747 	      TYPE_LENGTH (value_enclosing_type (arg)));
748 
749     }
750   val->parent = arg->parent;
751   if (val->parent)
752     value_incref (val->parent);
753   if (VALUE_LVAL (val) == lval_computed)
754     {
755       struct lval_funcs *funcs = val->location.computed.funcs;
756 
757       if (funcs->copy_closure)
758         val->location.computed.closure = funcs->copy_closure (val);
759     }
760   return val;
761 }
762 
763 void
764 set_value_component_location (struct value *component, struct value *whole)
765 {
766   if (VALUE_LVAL (whole) == lval_internalvar)
767     VALUE_LVAL (component) = lval_internalvar_component;
768   else
769     VALUE_LVAL (component) = VALUE_LVAL (whole);
770 
771   component->location = whole->location;
772   if (VALUE_LVAL (whole) == lval_computed)
773     {
774       struct lval_funcs *funcs = whole->location.computed.funcs;
775 
776       if (funcs->copy_closure)
777         component->location.computed.closure = funcs->copy_closure (whole);
778     }
779 }
780 
781 
782 /* Access to the value history.  */
783 
784 /* Record a new value in the value history.
785    Returns the absolute history index of the entry.
786    Result of -1 indicates the value was not saved; otherwise it is the
787    value history index of this new item.  */
788 
789 int
790 record_latest_value (struct value *val)
791 {
792   int i;
793 
794   /* We don't want this value to have anything to do with the inferior anymore.
795      In particular, "set $1 = 50" should not affect the variable from which
796      the value was taken, and fast watchpoints should be able to assume that
797      a value on the value history never changes.  */
798   if (value_lazy (val))
799     value_fetch_lazy (val);
800   /* We preserve VALUE_LVAL so that the user can find out where it was fetched
801      from.  This is a bit dubious, because then *&$1 does not just return $1
802      but the current contents of that location.  c'est la vie...  */
803   val->modifiable = 0;
804   release_value (val);
805 
806   /* Here we treat value_history_count as origin-zero
807      and applying to the value being stored now.  */
808 
809   i = value_history_count % VALUE_HISTORY_CHUNK;
810   if (i == 0)
811     {
812       struct value_history_chunk *new
813       = (struct value_history_chunk *)
814       xmalloc (sizeof (struct value_history_chunk));
815       memset (new->values, 0, sizeof new->values);
816       new->next = value_history_chain;
817       value_history_chain = new;
818     }
819 
820   value_history_chain->values[i] = val;
821 
822   /* Now we regard value_history_count as origin-one
823      and applying to the value just stored.  */
824 
825   return ++value_history_count;
826 }
827 
828 /* Return a copy of the value in the history with sequence number NUM.  */
829 
830 struct value *
831 access_value_history (int num)
832 {
833   struct value_history_chunk *chunk;
834   int i;
835   int absnum = num;
836 
837   if (absnum <= 0)
838     absnum += value_history_count;
839 
840   if (absnum <= 0)
841     {
842       if (num == 0)
843 	error (_("The history is empty."));
844       else if (num == 1)
845 	error (_("There is only one value in the history."));
846       else
847 	error (_("History does not go back to $$%d."), -num);
848     }
849   if (absnum > value_history_count)
850     error (_("History has not yet reached $%d."), absnum);
851 
852   absnum--;
853 
854   /* Now absnum is always absolute and origin zero.  */
855 
856   chunk = value_history_chain;
857   for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
858        i > 0; i--)
859     chunk = chunk->next;
860 
861   return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
862 }
863 
864 static void
865 show_values (char *num_exp, int from_tty)
866 {
867   int i;
868   struct value *val;
869   static int num = 1;
870 
871   if (num_exp)
872     {
873       /* "show values +" should print from the stored position.
874          "show values <exp>" should print around value number <exp>.  */
875       if (num_exp[0] != '+' || num_exp[1] != '\0')
876 	num = parse_and_eval_long (num_exp) - 5;
877     }
878   else
879     {
880       /* "show values" means print the last 10 values.  */
881       num = value_history_count - 9;
882     }
883 
884   if (num <= 0)
885     num = 1;
886 
887   for (i = num; i < num + 10 && i <= value_history_count; i++)
888     {
889       struct value_print_options opts;
890       val = access_value_history (i);
891       printf_filtered (("$%d = "), i);
892       get_user_print_options (&opts);
893       value_print (val, gdb_stdout, &opts);
894       printf_filtered (("\n"));
895     }
896 
897   /* The next "show values +" should start after what we just printed.  */
898   num += 10;
899 
900   /* Hitting just return after this command should do the same thing as
901      "show values +".  If num_exp is null, this is unnecessary, since
902      "show values +" is not useful after "show values".  */
903   if (from_tty && num_exp)
904     {
905       num_exp[0] = '+';
906       num_exp[1] = '\0';
907     }
908 }
909 
910 /* Internal variables.  These are variables within the debugger
911    that hold values assigned by debugger commands.
912    The user refers to them with a '$' prefix
913    that does not appear in the variable names stored internally.  */
914 
915 struct internalvar
916 {
917   struct internalvar *next;
918   char *name;
919 
920   /* We support various different kinds of content of an internal variable.
921      enum internalvar_kind specifies the kind, and union internalvar_data
922      provides the data associated with this particular kind.  */
923 
924   enum internalvar_kind
925     {
926       /* The internal variable is empty.  */
927       INTERNALVAR_VOID,
928 
929       /* The value of the internal variable is provided directly as
930 	 a GDB value object.  */
931       INTERNALVAR_VALUE,
932 
933       /* A fresh value is computed via a call-back routine on every
934 	 access to the internal variable.  */
935       INTERNALVAR_MAKE_VALUE,
936 
937       /* The internal variable holds a GDB internal convenience function.  */
938       INTERNALVAR_FUNCTION,
939 
940       /* The variable holds an integer value.  */
941       INTERNALVAR_INTEGER,
942 
943       /* The variable holds a pointer value.  */
944       INTERNALVAR_POINTER,
945 
946       /* The variable holds a GDB-provided string.  */
947       INTERNALVAR_STRING,
948 
949     } kind;
950 
951   union internalvar_data
952     {
953       /* A value object used with INTERNALVAR_VALUE.  */
954       struct value *value;
955 
956       /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
957       internalvar_make_value make_value;
958 
959       /* The internal function used with INTERNALVAR_FUNCTION.  */
960       struct
961 	{
962 	  struct internal_function *function;
963 	  /* True if this is the canonical name for the function.  */
964 	  int canonical;
965 	} fn;
966 
967       /* An integer value used with INTERNALVAR_INTEGER.  */
968       struct
969         {
970 	  /* If type is non-NULL, it will be used as the type to generate
971 	     a value for this internal variable.  If type is NULL, a default
972 	     integer type for the architecture is used.  */
973 	  struct type *type;
974 	  LONGEST val;
975         } integer;
976 
977       /* A pointer value used with INTERNALVAR_POINTER.  */
978       struct
979         {
980 	  struct type *type;
981 	  CORE_ADDR val;
982         } pointer;
983 
984       /* A string value used with INTERNALVAR_STRING.  */
985       char *string;
986     } u;
987 };
988 
989 static struct internalvar *internalvars;
990 
991 /* If the variable does not already exist create it and give it the value given.
992    If no value is given then the default is zero.  */
993 static void
994 init_if_undefined_command (char* args, int from_tty)
995 {
996   struct internalvar* intvar;
997 
998   /* Parse the expression - this is taken from set_command().  */
999   struct expression *expr = parse_expression (args);
1000   register struct cleanup *old_chain =
1001     make_cleanup (free_current_contents, &expr);
1002 
1003   /* Validate the expression.
1004      Was the expression an assignment?
1005      Or even an expression at all?  */
1006   if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1007     error (_("Init-if-undefined requires an assignment expression."));
1008 
1009   /* Extract the variable from the parsed expression.
1010      In the case of an assign the lvalue will be in elts[1] and elts[2].  */
1011   if (expr->elts[1].opcode != OP_INTERNALVAR)
1012     error (_("The first parameter to init-if-undefined should be a GDB variable."));
1013   intvar = expr->elts[2].internalvar;
1014 
1015   /* Only evaluate the expression if the lvalue is void.
1016      This may still fail if the expresssion is invalid.  */
1017   if (intvar->kind == INTERNALVAR_VOID)
1018     evaluate_expression (expr);
1019 
1020   do_cleanups (old_chain);
1021 }
1022 
1023 
1024 /* Look up an internal variable with name NAME.  NAME should not
1025    normally include a dollar sign.
1026 
1027    If the specified internal variable does not exist,
1028    the return value is NULL.  */
1029 
1030 struct internalvar *
1031 lookup_only_internalvar (const char *name)
1032 {
1033   struct internalvar *var;
1034 
1035   for (var = internalvars; var; var = var->next)
1036     if (strcmp (var->name, name) == 0)
1037       return var;
1038 
1039   return NULL;
1040 }
1041 
1042 
1043 /* Create an internal variable with name NAME and with a void value.
1044    NAME should not normally include a dollar sign.  */
1045 
1046 struct internalvar *
1047 create_internalvar (const char *name)
1048 {
1049   struct internalvar *var;
1050   var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1051   var->name = concat (name, (char *)NULL);
1052   var->kind = INTERNALVAR_VOID;
1053   var->next = internalvars;
1054   internalvars = var;
1055   return var;
1056 }
1057 
1058 /* Create an internal variable with name NAME and register FUN as the
1059    function that value_of_internalvar uses to create a value whenever
1060    this variable is referenced.  NAME should not normally include a
1061    dollar sign.  */
1062 
1063 struct internalvar *
1064 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1065 {
1066   struct internalvar *var = create_internalvar (name);
1067   var->kind = INTERNALVAR_MAKE_VALUE;
1068   var->u.make_value = fun;
1069   return var;
1070 }
1071 
1072 /* Look up an internal variable with name NAME.  NAME should not
1073    normally include a dollar sign.
1074 
1075    If the specified internal variable does not exist,
1076    one is created, with a void value.  */
1077 
1078 struct internalvar *
1079 lookup_internalvar (const char *name)
1080 {
1081   struct internalvar *var;
1082 
1083   var = lookup_only_internalvar (name);
1084   if (var)
1085     return var;
1086 
1087   return create_internalvar (name);
1088 }
1089 
1090 /* Return current value of internal variable VAR.  For variables that
1091    are not inherently typed, use a value type appropriate for GDBARCH.  */
1092 
1093 struct value *
1094 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1095 {
1096   struct value *val;
1097 
1098   switch (var->kind)
1099     {
1100     case INTERNALVAR_VOID:
1101       val = allocate_value (builtin_type (gdbarch)->builtin_void);
1102       break;
1103 
1104     case INTERNALVAR_FUNCTION:
1105       val = allocate_value (builtin_type (gdbarch)->internal_fn);
1106       break;
1107 
1108     case INTERNALVAR_INTEGER:
1109       if (!var->u.integer.type)
1110 	val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1111 				  var->u.integer.val);
1112       else
1113 	val = value_from_longest (var->u.integer.type, var->u.integer.val);
1114       break;
1115 
1116     case INTERNALVAR_POINTER:
1117       val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1118       break;
1119 
1120     case INTERNALVAR_STRING:
1121       val = value_cstring (var->u.string, strlen (var->u.string),
1122 			   builtin_type (gdbarch)->builtin_char);
1123       break;
1124 
1125     case INTERNALVAR_VALUE:
1126       val = value_copy (var->u.value);
1127       if (value_lazy (val))
1128 	value_fetch_lazy (val);
1129       break;
1130 
1131     case INTERNALVAR_MAKE_VALUE:
1132       val = (*var->u.make_value) (gdbarch, var);
1133       break;
1134 
1135     default:
1136       internal_error (__FILE__, __LINE__, "bad kind");
1137     }
1138 
1139   /* Change the VALUE_LVAL to lval_internalvar so that future operations
1140      on this value go back to affect the original internal variable.
1141 
1142      Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1143      no underlying modifyable state in the internal variable.
1144 
1145      Likewise, if the variable's value is a computed lvalue, we want
1146      references to it to produce another computed lvalue, where
1147      references and assignments actually operate through the
1148      computed value's functions.
1149 
1150      This means that internal variables with computed values
1151      behave a little differently from other internal variables:
1152      assignments to them don't just replace the previous value
1153      altogether.  At the moment, this seems like the behavior we
1154      want.  */
1155 
1156   if (var->kind != INTERNALVAR_MAKE_VALUE
1157       && val->lval != lval_computed)
1158     {
1159       VALUE_LVAL (val) = lval_internalvar;
1160       VALUE_INTERNALVAR (val) = var;
1161     }
1162 
1163   return val;
1164 }
1165 
1166 int
1167 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1168 {
1169   switch (var->kind)
1170     {
1171     case INTERNALVAR_INTEGER:
1172       *result = var->u.integer.val;
1173       return 1;
1174 
1175     default:
1176       return 0;
1177     }
1178 }
1179 
1180 static int
1181 get_internalvar_function (struct internalvar *var,
1182 			  struct internal_function **result)
1183 {
1184   switch (var->kind)
1185     {
1186     case INTERNALVAR_FUNCTION:
1187       *result = var->u.fn.function;
1188       return 1;
1189 
1190     default:
1191       return 0;
1192     }
1193 }
1194 
1195 void
1196 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1197 			   int bitsize, struct value *newval)
1198 {
1199   gdb_byte *addr;
1200 
1201   switch (var->kind)
1202     {
1203     case INTERNALVAR_VALUE:
1204       addr = value_contents_writeable (var->u.value);
1205 
1206       if (bitsize)
1207 	modify_field (value_type (var->u.value), addr + offset,
1208 		      value_as_long (newval), bitpos, bitsize);
1209       else
1210 	memcpy (addr + offset, value_contents (newval),
1211 		TYPE_LENGTH (value_type (newval)));
1212       break;
1213 
1214     default:
1215       /* We can never get a component of any other kind.  */
1216       internal_error (__FILE__, __LINE__, "set_internalvar_component");
1217     }
1218 }
1219 
1220 void
1221 set_internalvar (struct internalvar *var, struct value *val)
1222 {
1223   enum internalvar_kind new_kind;
1224   union internalvar_data new_data = { 0 };
1225 
1226   if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1227     error (_("Cannot overwrite convenience function %s"), var->name);
1228 
1229   /* Prepare new contents.  */
1230   switch (TYPE_CODE (check_typedef (value_type (val))))
1231     {
1232     case TYPE_CODE_VOID:
1233       new_kind = INTERNALVAR_VOID;
1234       break;
1235 
1236     case TYPE_CODE_INTERNAL_FUNCTION:
1237       gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1238       new_kind = INTERNALVAR_FUNCTION;
1239       get_internalvar_function (VALUE_INTERNALVAR (val),
1240 				&new_data.fn.function);
1241       /* Copies created here are never canonical.  */
1242       break;
1243 
1244     case TYPE_CODE_INT:
1245       new_kind = INTERNALVAR_INTEGER;
1246       new_data.integer.type = value_type (val);
1247       new_data.integer.val = value_as_long (val);
1248       break;
1249 
1250     case TYPE_CODE_PTR:
1251       new_kind = INTERNALVAR_POINTER;
1252       new_data.pointer.type = value_type (val);
1253       new_data.pointer.val = value_as_address (val);
1254       break;
1255 
1256     default:
1257       new_kind = INTERNALVAR_VALUE;
1258       new_data.value = value_copy (val);
1259       new_data.value->modifiable = 1;
1260 
1261       /* Force the value to be fetched from the target now, to avoid problems
1262 	 later when this internalvar is referenced and the target is gone or
1263 	 has changed.  */
1264       if (value_lazy (new_data.value))
1265        value_fetch_lazy (new_data.value);
1266 
1267       /* Release the value from the value chain to prevent it from being
1268 	 deleted by free_all_values.  From here on this function should not
1269 	 call error () until new_data is installed into the var->u to avoid
1270 	 leaking memory.  */
1271       release_value (new_data.value);
1272       break;
1273     }
1274 
1275   /* Clean up old contents.  */
1276   clear_internalvar (var);
1277 
1278   /* Switch over.  */
1279   var->kind = new_kind;
1280   var->u = new_data;
1281   /* End code which must not call error().  */
1282 }
1283 
1284 void
1285 set_internalvar_integer (struct internalvar *var, LONGEST l)
1286 {
1287   /* Clean up old contents.  */
1288   clear_internalvar (var);
1289 
1290   var->kind = INTERNALVAR_INTEGER;
1291   var->u.integer.type = NULL;
1292   var->u.integer.val = l;
1293 }
1294 
1295 void
1296 set_internalvar_string (struct internalvar *var, const char *string)
1297 {
1298   /* Clean up old contents.  */
1299   clear_internalvar (var);
1300 
1301   var->kind = INTERNALVAR_STRING;
1302   var->u.string = xstrdup (string);
1303 }
1304 
1305 static void
1306 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1307 {
1308   /* Clean up old contents.  */
1309   clear_internalvar (var);
1310 
1311   var->kind = INTERNALVAR_FUNCTION;
1312   var->u.fn.function = f;
1313   var->u.fn.canonical = 1;
1314   /* Variables installed here are always the canonical version.  */
1315 }
1316 
1317 void
1318 clear_internalvar (struct internalvar *var)
1319 {
1320   /* Clean up old contents.  */
1321   switch (var->kind)
1322     {
1323     case INTERNALVAR_VALUE:
1324       value_free (var->u.value);
1325       break;
1326 
1327     case INTERNALVAR_STRING:
1328       xfree (var->u.string);
1329       break;
1330 
1331     default:
1332       break;
1333     }
1334 
1335   /* Reset to void kind.  */
1336   var->kind = INTERNALVAR_VOID;
1337 }
1338 
1339 char *
1340 internalvar_name (struct internalvar *var)
1341 {
1342   return var->name;
1343 }
1344 
1345 static struct internal_function *
1346 create_internal_function (const char *name,
1347 			  internal_function_fn handler, void *cookie)
1348 {
1349   struct internal_function *ifn = XNEW (struct internal_function);
1350   ifn->name = xstrdup (name);
1351   ifn->handler = handler;
1352   ifn->cookie = cookie;
1353   return ifn;
1354 }
1355 
1356 char *
1357 value_internal_function_name (struct value *val)
1358 {
1359   struct internal_function *ifn;
1360   int result;
1361 
1362   gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1363   result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1364   gdb_assert (result);
1365 
1366   return ifn->name;
1367 }
1368 
1369 struct value *
1370 call_internal_function (struct gdbarch *gdbarch,
1371 			const struct language_defn *language,
1372 			struct value *func, int argc, struct value **argv)
1373 {
1374   struct internal_function *ifn;
1375   int result;
1376 
1377   gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1378   result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1379   gdb_assert (result);
1380 
1381   return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1382 }
1383 
1384 /* The 'function' command.  This does nothing -- it is just a
1385    placeholder to let "help function NAME" work.  This is also used as
1386    the implementation of the sub-command that is created when
1387    registering an internal function.  */
1388 static void
1389 function_command (char *command, int from_tty)
1390 {
1391   /* Do nothing.  */
1392 }
1393 
1394 /* Clean up if an internal function's command is destroyed.  */
1395 static void
1396 function_destroyer (struct cmd_list_element *self, void *ignore)
1397 {
1398   xfree (self->name);
1399   xfree (self->doc);
1400 }
1401 
1402 /* Add a new internal function.  NAME is the name of the function; DOC
1403    is a documentation string describing the function.  HANDLER is
1404    called when the function is invoked.  COOKIE is an arbitrary
1405    pointer which is passed to HANDLER and is intended for "user
1406    data".  */
1407 void
1408 add_internal_function (const char *name, const char *doc,
1409 		       internal_function_fn handler, void *cookie)
1410 {
1411   struct cmd_list_element *cmd;
1412   struct internal_function *ifn;
1413   struct internalvar *var = lookup_internalvar (name);
1414 
1415   ifn = create_internal_function (name, handler, cookie);
1416   set_internalvar_function (var, ifn);
1417 
1418   cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1419 		 &functionlist);
1420   cmd->destroyer = function_destroyer;
1421 }
1422 
1423 /* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
1424    prevent cycles / duplicates.  */
1425 
1426 void
1427 preserve_one_value (struct value *value, struct objfile *objfile,
1428 		    htab_t copied_types)
1429 {
1430   if (TYPE_OBJFILE (value->type) == objfile)
1431     value->type = copy_type_recursive (objfile, value->type, copied_types);
1432 
1433   if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1434     value->enclosing_type = copy_type_recursive (objfile,
1435 						 value->enclosing_type,
1436 						 copied_types);
1437 }
1438 
1439 /* Likewise for internal variable VAR.  */
1440 
1441 static void
1442 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1443 			  htab_t copied_types)
1444 {
1445   switch (var->kind)
1446     {
1447     case INTERNALVAR_INTEGER:
1448       if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1449 	var->u.integer.type
1450 	  = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1451       break;
1452 
1453     case INTERNALVAR_POINTER:
1454       if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1455 	var->u.pointer.type
1456 	  = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1457       break;
1458 
1459     case INTERNALVAR_VALUE:
1460       preserve_one_value (var->u.value, objfile, copied_types);
1461       break;
1462     }
1463 }
1464 
1465 /* Update the internal variables and value history when OBJFILE is
1466    discarded; we must copy the types out of the objfile.  New global types
1467    will be created for every convenience variable which currently points to
1468    this objfile's types, and the convenience variables will be adjusted to
1469    use the new global types.  */
1470 
1471 void
1472 preserve_values (struct objfile *objfile)
1473 {
1474   htab_t copied_types;
1475   struct value_history_chunk *cur;
1476   struct internalvar *var;
1477   struct value *val;
1478   int i;
1479 
1480   /* Create the hash table.  We allocate on the objfile's obstack, since
1481      it is soon to be deleted.  */
1482   copied_types = create_copied_types_hash (objfile);
1483 
1484   for (cur = value_history_chain; cur; cur = cur->next)
1485     for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1486       if (cur->values[i])
1487 	preserve_one_value (cur->values[i], objfile, copied_types);
1488 
1489   for (var = internalvars; var; var = var->next)
1490     preserve_one_internalvar (var, objfile, copied_types);
1491 
1492   preserve_python_values (objfile, copied_types);
1493 
1494   htab_delete (copied_types);
1495 }
1496 
1497 static void
1498 show_convenience (char *ignore, int from_tty)
1499 {
1500   struct gdbarch *gdbarch = get_current_arch ();
1501   struct internalvar *var;
1502   int varseen = 0;
1503   struct value_print_options opts;
1504 
1505   get_user_print_options (&opts);
1506   for (var = internalvars; var; var = var->next)
1507     {
1508       if (!varseen)
1509 	{
1510 	  varseen = 1;
1511 	}
1512       printf_filtered (("$%s = "), var->name);
1513       value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1514 		   &opts);
1515       printf_filtered (("\n"));
1516     }
1517   if (!varseen)
1518     printf_unfiltered (_("\
1519 No debugger convenience variables now defined.\n\
1520 Convenience variables have names starting with \"$\";\n\
1521 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1522 }
1523 
1524 /* Extract a value as a C number (either long or double).
1525    Knows how to convert fixed values to double, or
1526    floating values to long.
1527    Does not deallocate the value.  */
1528 
1529 LONGEST
1530 value_as_long (struct value *val)
1531 {
1532   /* This coerces arrays and functions, which is necessary (e.g.
1533      in disassemble_command).  It also dereferences references, which
1534      I suspect is the most logical thing to do.  */
1535   val = coerce_array (val);
1536   return unpack_long (value_type (val), value_contents (val));
1537 }
1538 
1539 DOUBLEST
1540 value_as_double (struct value *val)
1541 {
1542   DOUBLEST foo;
1543   int inv;
1544 
1545   foo = unpack_double (value_type (val), value_contents (val), &inv);
1546   if (inv)
1547     error (_("Invalid floating value found in program."));
1548   return foo;
1549 }
1550 
1551 /* Extract a value as a C pointer. Does not deallocate the value.
1552    Note that val's type may not actually be a pointer; value_as_long
1553    handles all the cases.  */
1554 CORE_ADDR
1555 value_as_address (struct value *val)
1556 {
1557   struct gdbarch *gdbarch = get_type_arch (value_type (val));
1558 
1559   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
1560      whether we want this to be true eventually.  */
1561 #if 0
1562   /* gdbarch_addr_bits_remove is wrong if we are being called for a
1563      non-address (e.g. argument to "signal", "info break", etc.), or
1564      for pointers to char, in which the low bits *are* significant.  */
1565   return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1566 #else
1567 
1568   /* There are several targets (IA-64, PowerPC, and others) which
1569      don't represent pointers to functions as simply the address of
1570      the function's entry point.  For example, on the IA-64, a
1571      function pointer points to a two-word descriptor, generated by
1572      the linker, which contains the function's entry point, and the
1573      value the IA-64 "global pointer" register should have --- to
1574      support position-independent code.  The linker generates
1575      descriptors only for those functions whose addresses are taken.
1576 
1577      On such targets, it's difficult for GDB to convert an arbitrary
1578      function address into a function pointer; it has to either find
1579      an existing descriptor for that function, or call malloc and
1580      build its own.  On some targets, it is impossible for GDB to
1581      build a descriptor at all: the descriptor must contain a jump
1582      instruction; data memory cannot be executed; and code memory
1583      cannot be modified.
1584 
1585      Upon entry to this function, if VAL is a value of type `function'
1586      (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1587      value_address (val) is the address of the function.  This is what
1588      you'll get if you evaluate an expression like `main'.  The call
1589      to COERCE_ARRAY below actually does all the usual unary
1590      conversions, which includes converting values of type `function'
1591      to `pointer to function'.  This is the challenging conversion
1592      discussed above.  Then, `unpack_long' will convert that pointer
1593      back into an address.
1594 
1595      So, suppose the user types `disassemble foo' on an architecture
1596      with a strange function pointer representation, on which GDB
1597      cannot build its own descriptors, and suppose further that `foo'
1598      has no linker-built descriptor.  The address->pointer conversion
1599      will signal an error and prevent the command from running, even
1600      though the next step would have been to convert the pointer
1601      directly back into the same address.
1602 
1603      The following shortcut avoids this whole mess.  If VAL is a
1604      function, just return its address directly.  */
1605   if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1606       || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1607     return value_address (val);
1608 
1609   val = coerce_array (val);
1610 
1611   /* Some architectures (e.g. Harvard), map instruction and data
1612      addresses onto a single large unified address space.  For
1613      instance: An architecture may consider a large integer in the
1614      range 0x10000000 .. 0x1000ffff to already represent a data
1615      addresses (hence not need a pointer to address conversion) while
1616      a small integer would still need to be converted integer to
1617      pointer to address.  Just assume such architectures handle all
1618      integer conversions in a single function.  */
1619 
1620   /* JimB writes:
1621 
1622      I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1623      must admonish GDB hackers to make sure its behavior matches the
1624      compiler's, whenever possible.
1625 
1626      In general, I think GDB should evaluate expressions the same way
1627      the compiler does.  When the user copies an expression out of
1628      their source code and hands it to a `print' command, they should
1629      get the same value the compiler would have computed.  Any
1630      deviation from this rule can cause major confusion and annoyance,
1631      and needs to be justified carefully.  In other words, GDB doesn't
1632      really have the freedom to do these conversions in clever and
1633      useful ways.
1634 
1635      AndrewC pointed out that users aren't complaining about how GDB
1636      casts integers to pointers; they are complaining that they can't
1637      take an address from a disassembly listing and give it to `x/i'.
1638      This is certainly important.
1639 
1640      Adding an architecture method like integer_to_address() certainly
1641      makes it possible for GDB to "get it right" in all circumstances
1642      --- the target has complete control over how things get done, so
1643      people can Do The Right Thing for their target without breaking
1644      anyone else.  The standard doesn't specify how integers get
1645      converted to pointers; usually, the ABI doesn't either, but
1646      ABI-specific code is a more reasonable place to handle it.  */
1647 
1648   if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1649       && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1650       && gdbarch_integer_to_address_p (gdbarch))
1651     return gdbarch_integer_to_address (gdbarch, value_type (val),
1652 				       value_contents (val));
1653 
1654   return unpack_long (value_type (val), value_contents (val));
1655 #endif
1656 }
1657 
1658 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1659    as a long, or as a double, assuming the raw data is described
1660    by type TYPE.  Knows how to convert different sizes of values
1661    and can convert between fixed and floating point.  We don't assume
1662    any alignment for the raw data.  Return value is in host byte order.
1663 
1664    If you want functions and arrays to be coerced to pointers, and
1665    references to be dereferenced, call value_as_long() instead.
1666 
1667    C++: It is assumed that the front-end has taken care of
1668    all matters concerning pointers to members.  A pointer
1669    to member which reaches here is considered to be equivalent
1670    to an INT (or some size).  After all, it is only an offset.  */
1671 
1672 LONGEST
1673 unpack_long (struct type *type, const gdb_byte *valaddr)
1674 {
1675   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1676   enum type_code code = TYPE_CODE (type);
1677   int len = TYPE_LENGTH (type);
1678   int nosign = TYPE_UNSIGNED (type);
1679 
1680   switch (code)
1681     {
1682     case TYPE_CODE_TYPEDEF:
1683       return unpack_long (check_typedef (type), valaddr);
1684     case TYPE_CODE_ENUM:
1685     case TYPE_CODE_FLAGS:
1686     case TYPE_CODE_BOOL:
1687     case TYPE_CODE_INT:
1688     case TYPE_CODE_CHAR:
1689     case TYPE_CODE_RANGE:
1690     case TYPE_CODE_MEMBERPTR:
1691       if (nosign)
1692 	return extract_unsigned_integer (valaddr, len, byte_order);
1693       else
1694 	return extract_signed_integer (valaddr, len, byte_order);
1695 
1696     case TYPE_CODE_FLT:
1697       return extract_typed_floating (valaddr, type);
1698 
1699     case TYPE_CODE_DECFLOAT:
1700       /* libdecnumber has a function to convert from decimal to integer, but
1701 	 it doesn't work when the decimal number has a fractional part.  */
1702       return decimal_to_doublest (valaddr, len, byte_order);
1703 
1704     case TYPE_CODE_PTR:
1705     case TYPE_CODE_REF:
1706       /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
1707          whether we want this to be true eventually.  */
1708       return extract_typed_address (valaddr, type);
1709 
1710     default:
1711       error (_("Value can't be converted to integer."));
1712     }
1713   return 0;			/* Placate lint.  */
1714 }
1715 
1716 /* Return a double value from the specified type and address.
1717    INVP points to an int which is set to 0 for valid value,
1718    1 for invalid value (bad float format).  In either case,
1719    the returned double is OK to use.  Argument is in target
1720    format, result is in host format.  */
1721 
1722 DOUBLEST
1723 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1724 {
1725   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1726   enum type_code code;
1727   int len;
1728   int nosign;
1729 
1730   *invp = 0;			/* Assume valid.   */
1731   CHECK_TYPEDEF (type);
1732   code = TYPE_CODE (type);
1733   len = TYPE_LENGTH (type);
1734   nosign = TYPE_UNSIGNED (type);
1735   if (code == TYPE_CODE_FLT)
1736     {
1737       /* NOTE: cagney/2002-02-19: There was a test here to see if the
1738 	 floating-point value was valid (using the macro
1739 	 INVALID_FLOAT).  That test/macro have been removed.
1740 
1741 	 It turns out that only the VAX defined this macro and then
1742 	 only in a non-portable way.  Fixing the portability problem
1743 	 wouldn't help since the VAX floating-point code is also badly
1744 	 bit-rotten.  The target needs to add definitions for the
1745 	 methods gdbarch_float_format and gdbarch_double_format - these
1746 	 exactly describe the target floating-point format.  The
1747 	 problem here is that the corresponding floatformat_vax_f and
1748 	 floatformat_vax_d values these methods should be set to are
1749 	 also not defined either.  Oops!
1750 
1751          Hopefully someone will add both the missing floatformat
1752          definitions and the new cases for floatformat_is_valid ().  */
1753 
1754       if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1755 	{
1756 	  *invp = 1;
1757 	  return 0.0;
1758 	}
1759 
1760       return extract_typed_floating (valaddr, type);
1761     }
1762   else if (code == TYPE_CODE_DECFLOAT)
1763     return decimal_to_doublest (valaddr, len, byte_order);
1764   else if (nosign)
1765     {
1766       /* Unsigned -- be sure we compensate for signed LONGEST.  */
1767       return (ULONGEST) unpack_long (type, valaddr);
1768     }
1769   else
1770     {
1771       /* Signed -- we are OK with unpack_long.  */
1772       return unpack_long (type, valaddr);
1773     }
1774 }
1775 
1776 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1777    as a CORE_ADDR, assuming the raw data is described by type TYPE.
1778    We don't assume any alignment for the raw data.  Return value is in
1779    host byte order.
1780 
1781    If you want functions and arrays to be coerced to pointers, and
1782    references to be dereferenced, call value_as_address() instead.
1783 
1784    C++: It is assumed that the front-end has taken care of
1785    all matters concerning pointers to members.  A pointer
1786    to member which reaches here is considered to be equivalent
1787    to an INT (or some size).  After all, it is only an offset.  */
1788 
1789 CORE_ADDR
1790 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1791 {
1792   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
1793      whether we want this to be true eventually.  */
1794   return unpack_long (type, valaddr);
1795 }
1796 
1797 
1798 /* Get the value of the FIELDN'th field (which must be static) of
1799    TYPE.  Return NULL if the field doesn't exist or has been
1800    optimized out. */
1801 
1802 struct value *
1803 value_static_field (struct type *type, int fieldno)
1804 {
1805   struct value *retval;
1806 
1807   if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1808     {
1809       retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1810 			 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1811     }
1812   else
1813     {
1814       char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1815       struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1816       if (sym == NULL)
1817 	{
1818 	  /* With some compilers, e.g. HP aCC, static data members are reported
1819 	     as non-debuggable symbols */
1820 	  struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1821 	  if (!msym)
1822 	    return NULL;
1823 	  else
1824 	    {
1825 	      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1826 				 SYMBOL_VALUE_ADDRESS (msym));
1827 	    }
1828 	}
1829       else
1830 	{
1831 	  /* SYM should never have a SYMBOL_CLASS which will require
1832 	     read_var_value to use the FRAME parameter.  */
1833 	  if (symbol_read_needs_frame (sym))
1834 	    warning (_("static field's value depends on the current "
1835 		     "frame - bad debug info?"));
1836 	  retval = read_var_value (sym, NULL);
1837  	}
1838       if (retval && VALUE_LVAL (retval) == lval_memory)
1839 	SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1840 			    value_address (retval));
1841     }
1842   return retval;
1843 }
1844 
1845 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1846    You have to be careful here, since the size of the data area for the value
1847    is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
1848    than the old enclosing type, you have to allocate more space for the data.
1849    The return value is a pointer to the new version of this value structure. */
1850 
1851 struct value *
1852 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1853 {
1854   if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1855     val->contents =
1856       (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1857 
1858   val->enclosing_type = new_encl_type;
1859   return val;
1860 }
1861 
1862 /* Given a value ARG1 (offset by OFFSET bytes)
1863    of a struct or union type ARG_TYPE,
1864    extract and return the value of one of its (non-static) fields.
1865    FIELDNO says which field. */
1866 
1867 struct value *
1868 value_primitive_field (struct value *arg1, int offset,
1869 		       int fieldno, struct type *arg_type)
1870 {
1871   struct value *v;
1872   struct type *type;
1873 
1874   CHECK_TYPEDEF (arg_type);
1875   type = TYPE_FIELD_TYPE (arg_type, fieldno);
1876 
1877   /* Handle packed fields */
1878 
1879   if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1880     {
1881       /* Create a new value for the bitfield, with bitpos and bitsize
1882 	 set.  If possible, arrange offset and bitpos so that we can
1883 	 do a single aligned read of the size of the containing type.
1884 	 Otherwise, adjust offset to the byte containing the first
1885 	 bit.  Assume that the address, offset, and embedded offset
1886 	 are sufficiently aligned.  */
1887       int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1888       int container_bitsize = TYPE_LENGTH (type) * 8;
1889 
1890       v = allocate_value_lazy (type);
1891       v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1892       if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1893 	  && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1894 	v->bitpos = bitpos % container_bitsize;
1895       else
1896 	v->bitpos = bitpos % 8;
1897       v->offset = value_embedded_offset (arg1)
1898 	+ (bitpos - v->bitpos) / 8;
1899       v->parent = arg1;
1900       value_incref (v->parent);
1901       if (!value_lazy (arg1))
1902 	value_fetch_lazy (v);
1903     }
1904   else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1905     {
1906       /* This field is actually a base subobject, so preserve the
1907          entire object's contents for later references to virtual
1908          bases, etc.  */
1909 
1910       /* Lazy register values with offsets are not supported.  */
1911       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1912 	value_fetch_lazy (arg1);
1913 
1914       if (value_lazy (arg1))
1915 	v = allocate_value_lazy (value_enclosing_type (arg1));
1916       else
1917 	{
1918 	  v = allocate_value (value_enclosing_type (arg1));
1919 	  memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1920 		  TYPE_LENGTH (value_enclosing_type (arg1)));
1921 	}
1922       v->type = type;
1923       v->offset = value_offset (arg1);
1924       v->embedded_offset = (offset + value_embedded_offset (arg1)
1925 			    + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1926     }
1927   else
1928     {
1929       /* Plain old data member */
1930       offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1931 
1932       /* Lazy register values with offsets are not supported.  */
1933       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1934 	value_fetch_lazy (arg1);
1935 
1936       if (value_lazy (arg1))
1937 	v = allocate_value_lazy (type);
1938       else
1939 	{
1940 	  v = allocate_value (type);
1941 	  memcpy (value_contents_raw (v),
1942 		  value_contents_raw (arg1) + offset,
1943 		  TYPE_LENGTH (type));
1944 	}
1945       v->offset = (value_offset (arg1) + offset
1946 		   + value_embedded_offset (arg1));
1947     }
1948   set_value_component_location (v, arg1);
1949   VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1950   VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1951   return v;
1952 }
1953 
1954 /* Given a value ARG1 of a struct or union type,
1955    extract and return the value of one of its (non-static) fields.
1956    FIELDNO says which field. */
1957 
1958 struct value *
1959 value_field (struct value *arg1, int fieldno)
1960 {
1961   return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1962 }
1963 
1964 /* Return a non-virtual function as a value.
1965    F is the list of member functions which contains the desired method.
1966    J is an index into F which provides the desired method.
1967 
1968    We only use the symbol for its address, so be happy with either a
1969    full symbol or a minimal symbol.
1970  */
1971 
1972 struct value *
1973 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1974 		int offset)
1975 {
1976   struct value *v;
1977   struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1978   char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1979   struct symbol *sym;
1980   struct minimal_symbol *msym;
1981 
1982   sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1983   if (sym != NULL)
1984     {
1985       msym = NULL;
1986     }
1987   else
1988     {
1989       gdb_assert (sym == NULL);
1990       msym = lookup_minimal_symbol (physname, NULL, NULL);
1991       if (msym == NULL)
1992 	return NULL;
1993     }
1994 
1995   v = allocate_value (ftype);
1996   if (sym)
1997     {
1998       set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
1999     }
2000   else
2001     {
2002       /* The minimal symbol might point to a function descriptor;
2003 	 resolve it to the actual code address instead.  */
2004       struct objfile *objfile = msymbol_objfile (msym);
2005       struct gdbarch *gdbarch = get_objfile_arch (objfile);
2006 
2007       set_value_address (v,
2008 	gdbarch_convert_from_func_ptr_addr
2009 	   (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2010     }
2011 
2012   if (arg1p)
2013     {
2014       if (type != value_type (*arg1p))
2015 	*arg1p = value_ind (value_cast (lookup_pointer_type (type),
2016 					value_addr (*arg1p)));
2017 
2018       /* Move the `this' pointer according to the offset.
2019          VALUE_OFFSET (*arg1p) += offset;
2020        */
2021     }
2022 
2023   return v;
2024 }
2025 
2026 
2027 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2028    object at VALADDR.  The bitfield starts at BITPOS bits and contains
2029    BITSIZE bits.
2030 
2031    Extracting bits depends on endianness of the machine.  Compute the
2032    number of least significant bits to discard.  For big endian machines,
2033    we compute the total number of bits in the anonymous object, subtract
2034    off the bit count from the MSB of the object to the MSB of the
2035    bitfield, then the size of the bitfield, which leaves the LSB discard
2036    count.  For little endian machines, the discard count is simply the
2037    number of bits from the LSB of the anonymous object to the LSB of the
2038    bitfield.
2039 
2040    If the field is signed, we also do sign extension. */
2041 
2042 LONGEST
2043 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2044 		     int bitpos, int bitsize)
2045 {
2046   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2047   ULONGEST val;
2048   ULONGEST valmask;
2049   int lsbcount;
2050   int bytes_read;
2051 
2052   /* Read the minimum number of bytes required; there may not be
2053      enough bytes to read an entire ULONGEST.  */
2054   CHECK_TYPEDEF (field_type);
2055   if (bitsize)
2056     bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2057   else
2058     bytes_read = TYPE_LENGTH (field_type);
2059 
2060   val = extract_unsigned_integer (valaddr + bitpos / 8,
2061 				  bytes_read, byte_order);
2062 
2063   /* Extract bits.  See comment above. */
2064 
2065   if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2066     lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2067   else
2068     lsbcount = (bitpos % 8);
2069   val >>= lsbcount;
2070 
2071   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2072      If the field is signed, and is negative, then sign extend. */
2073 
2074   if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2075     {
2076       valmask = (((ULONGEST) 1) << bitsize) - 1;
2077       val &= valmask;
2078       if (!TYPE_UNSIGNED (field_type))
2079 	{
2080 	  if (val & (valmask ^ (valmask >> 1)))
2081 	    {
2082 	      val |= ~valmask;
2083 	    }
2084 	}
2085     }
2086   return (val);
2087 }
2088 
2089 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2090    VALADDR.  See unpack_bits_as_long for more details.  */
2091 
2092 LONGEST
2093 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2094 {
2095   int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2096   int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2097   struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2098 
2099   return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2100 }
2101 
2102 /* Modify the value of a bitfield.  ADDR points to a block of memory in
2103    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
2104    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
2105    indicate which bits (in target bit order) comprise the bitfield.
2106    Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2107    0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */
2108 
2109 void
2110 modify_field (struct type *type, gdb_byte *addr,
2111 	      LONGEST fieldval, int bitpos, int bitsize)
2112 {
2113   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2114   ULONGEST oword;
2115   ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2116 
2117   /* If a negative fieldval fits in the field in question, chop
2118      off the sign extension bits.  */
2119   if ((~fieldval & ~(mask >> 1)) == 0)
2120     fieldval &= mask;
2121 
2122   /* Warn if value is too big to fit in the field in question.  */
2123   if (0 != (fieldval & ~mask))
2124     {
2125       /* FIXME: would like to include fieldval in the message, but
2126          we don't have a sprintf_longest.  */
2127       warning (_("Value does not fit in %d bits."), bitsize);
2128 
2129       /* Truncate it, otherwise adjoining fields may be corrupted.  */
2130       fieldval &= mask;
2131     }
2132 
2133   oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2134 
2135   /* Shifting for bit field depends on endianness of the target machine.  */
2136   if (gdbarch_bits_big_endian (get_type_arch (type)))
2137     bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2138 
2139   oword &= ~(mask << bitpos);
2140   oword |= fieldval << bitpos;
2141 
2142   store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2143 }
2144 
2145 /* Pack NUM into BUF using a target format of TYPE.  */
2146 
2147 void
2148 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2149 {
2150   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2151   int len;
2152 
2153   type = check_typedef (type);
2154   len = TYPE_LENGTH (type);
2155 
2156   switch (TYPE_CODE (type))
2157     {
2158     case TYPE_CODE_INT:
2159     case TYPE_CODE_CHAR:
2160     case TYPE_CODE_ENUM:
2161     case TYPE_CODE_FLAGS:
2162     case TYPE_CODE_BOOL:
2163     case TYPE_CODE_RANGE:
2164     case TYPE_CODE_MEMBERPTR:
2165       store_signed_integer (buf, len, byte_order, num);
2166       break;
2167 
2168     case TYPE_CODE_REF:
2169     case TYPE_CODE_PTR:
2170       store_typed_address (buf, type, (CORE_ADDR) num);
2171       break;
2172 
2173     default:
2174       error (_("Unexpected type (%d) encountered for integer constant."),
2175 	     TYPE_CODE (type));
2176     }
2177 }
2178 
2179 
2180 /* Convert C numbers into newly allocated values.  */
2181 
2182 struct value *
2183 value_from_longest (struct type *type, LONGEST num)
2184 {
2185   struct value *val = allocate_value (type);
2186 
2187   pack_long (value_contents_raw (val), type, num);
2188 
2189   return val;
2190 }
2191 
2192 
2193 /* Create a value representing a pointer of type TYPE to the address
2194    ADDR.  */
2195 struct value *
2196 value_from_pointer (struct type *type, CORE_ADDR addr)
2197 {
2198   struct value *val = allocate_value (type);
2199   store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2200   return val;
2201 }
2202 
2203 
2204 /* Create a value of type TYPE whose contents come from VALADDR, if it
2205    is non-null, and whose memory address (in the inferior) is
2206    ADDRESS.  */
2207 
2208 struct value *
2209 value_from_contents_and_address (struct type *type,
2210 				 const gdb_byte *valaddr,
2211 				 CORE_ADDR address)
2212 {
2213   struct value *v = allocate_value (type);
2214   if (valaddr == NULL)
2215     set_value_lazy (v, 1);
2216   else
2217     memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2218   set_value_address (v, address);
2219   VALUE_LVAL (v) = lval_memory;
2220   return v;
2221 }
2222 
2223 struct value *
2224 value_from_double (struct type *type, DOUBLEST num)
2225 {
2226   struct value *val = allocate_value (type);
2227   struct type *base_type = check_typedef (type);
2228   enum type_code code = TYPE_CODE (base_type);
2229   int len = TYPE_LENGTH (base_type);
2230 
2231   if (code == TYPE_CODE_FLT)
2232     {
2233       store_typed_floating (value_contents_raw (val), base_type, num);
2234     }
2235   else
2236     error (_("Unexpected type encountered for floating constant."));
2237 
2238   return val;
2239 }
2240 
2241 struct value *
2242 value_from_decfloat (struct type *type, const gdb_byte *dec)
2243 {
2244   struct value *val = allocate_value (type);
2245 
2246   memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2247 
2248   return val;
2249 }
2250 
2251 struct value *
2252 coerce_ref (struct value *arg)
2253 {
2254   struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2255   if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2256     arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2257 			 unpack_pointer (value_type (arg),
2258 					 value_contents (arg)));
2259   return arg;
2260 }
2261 
2262 struct value *
2263 coerce_array (struct value *arg)
2264 {
2265   struct type *type;
2266 
2267   arg = coerce_ref (arg);
2268   type = check_typedef (value_type (arg));
2269 
2270   switch (TYPE_CODE (type))
2271     {
2272     case TYPE_CODE_ARRAY:
2273       if (current_language->c_style_arrays)
2274 	arg = value_coerce_array (arg);
2275       break;
2276     case TYPE_CODE_FUNC:
2277       arg = value_coerce_function (arg);
2278       break;
2279     }
2280   return arg;
2281 }
2282 
2283 
2284 /* Return true if the function returning the specified type is using
2285    the convention of returning structures in memory (passing in the
2286    address as a hidden first parameter).  */
2287 
2288 int
2289 using_struct_return (struct gdbarch *gdbarch,
2290 		     struct type *func_type, struct type *value_type)
2291 {
2292   enum type_code code = TYPE_CODE (value_type);
2293 
2294   if (code == TYPE_CODE_ERROR)
2295     error (_("Function return type unknown."));
2296 
2297   if (code == TYPE_CODE_VOID)
2298     /* A void return value is never in memory.  See also corresponding
2299        code in "print_return_value".  */
2300     return 0;
2301 
2302   /* Probe the architecture for the return-value convention.  */
2303   return (gdbarch_return_value (gdbarch, func_type, value_type,
2304 				NULL, NULL, NULL)
2305 	  != RETURN_VALUE_REGISTER_CONVENTION);
2306 }
2307 
2308 /* Set the initialized field in a value struct.  */
2309 
2310 void
2311 set_value_initialized (struct value *val, int status)
2312 {
2313   val->initialized = status;
2314 }
2315 
2316 /* Return the initialized field in a value struct.  */
2317 
2318 int
2319 value_initialized (struct value *val)
2320 {
2321   return val->initialized;
2322 }
2323 
2324 void
2325 _initialize_values (void)
2326 {
2327   add_cmd ("convenience", no_class, show_convenience, _("\
2328 Debugger convenience (\"$foo\") variables.\n\
2329 These variables are created when you assign them values;\n\
2330 thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
2331 \n\
2332 A few convenience variables are given values automatically:\n\
2333 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2334 \"$__\" holds the contents of the last address examined with \"x\"."),
2335 	   &showlist);
2336 
2337   add_cmd ("values", no_class, show_values,
2338 	   _("Elements of value history around item number IDX (or last ten)."),
2339 	   &showlist);
2340 
2341   add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2342 Initialize a convenience variable if necessary.\n\
2343 init-if-undefined VARIABLE = EXPRESSION\n\
2344 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2345 exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
2346 VARIABLE is already initialized."));
2347 
2348   add_prefix_cmd ("function", no_class, function_command, _("\
2349 Placeholder command for showing help on convenience functions."),
2350 		  &functionlist, "function ", 0, &cmdlist);
2351 }
2352