xref: /dragonfly/contrib/gdb-7/gdb/varobj.c (revision 4e1af74f)
1 /* Implementation of the GDB variable objects API.
2 
3    Copyright (C) 1999-2012 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "wrapper.h"
25 #include "gdbcmd.h"
26 #include "block.h"
27 #include "valprint.h"
28 
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "gdb_regex.h"
32 
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37 
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44 
45 /* Non-zero if we want to see trace of varobj level stuff.  */
46 
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 		  struct cmd_list_element *c, const char *value)
51 {
52   fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54 
55 /* String representations of gdb's format codes.  */
56 char *varobj_format_string[] =
57   { "natural", "binary", "decimal", "hexadecimal", "octal" };
58 
59 /* String representations of gdb's known languages.  */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61 
62 /* True if we want to allow Python-based pretty-printing.  */
63 static int pretty_printing = 0;
64 
65 void
66 varobj_enable_pretty_printing (void)
67 {
68   pretty_printing = 1;
69 }
70 
71 /* Data structures */
72 
73 /* Every root variable has one of these structures saved in its
74    varobj.  Members which must be free'd are noted.  */
75 struct varobj_root
76 {
77 
78   /* Alloc'd expression for this parent.  */
79   struct expression *exp;
80 
81   /* Block for which this expression is valid.  */
82   struct block *valid_block;
83 
84   /* The frame for this expression.  This field is set iff valid_block is
85      not NULL.  */
86   struct frame_id frame;
87 
88   /* The thread ID that this varobj_root belong to.  This field
89      is only valid if valid_block is not NULL.
90      When not 0, indicates which thread 'frame' belongs to.
91      When 0, indicates that the thread list was empty when the varobj_root
92      was created.  */
93   int thread_id;
94 
95   /* If 1, the -var-update always recomputes the value in the
96      current thread and frame.  Otherwise, variable object is
97      always updated in the specific scope/thread/frame.  */
98   int floating;
99 
100   /* Flag that indicates validity: set to 0 when this varobj_root refers
101      to symbols that do not exist anymore.  */
102   int is_valid;
103 
104   /* Language info for this variable and its children.  */
105   struct language_specific *lang;
106 
107   /* The varobj for this root node.  */
108   struct varobj *rootvar;
109 
110   /* Next root variable */
111   struct varobj_root *next;
112 };
113 
114 /* Every variable in the system has a structure of this type defined
115    for it.  This structure holds all information necessary to manipulate
116    a particular object variable.  Members which must be freed are noted.  */
117 struct varobj
118 {
119 
120   /* Alloc'd name of the variable for this object.  If this variable is a
121      child, then this name will be the child's source name.
122      (bar, not foo.bar).  */
123   /* NOTE: This is the "expression".  */
124   char *name;
125 
126   /* Alloc'd expression for this child.  Can be used to create a
127      root variable corresponding to this child.  */
128   char *path_expr;
129 
130   /* The alloc'd name for this variable's object.  This is here for
131      convenience when constructing this object's children.  */
132   char *obj_name;
133 
134   /* Index of this variable in its parent or -1.  */
135   int index;
136 
137   /* The type of this variable.  This can be NULL
138      for artifial variable objects -- currently, the "accessibility"
139      variable objects in C++.  */
140   struct type *type;
141 
142   /* The value of this expression or subexpression.  A NULL value
143      indicates there was an error getting this value.
144      Invariant: if varobj_value_is_changeable_p (this) is non-zero,
145      the value is either NULL, or not lazy.  */
146   struct value *value;
147 
148   /* The number of (immediate) children this variable has.  */
149   int num_children;
150 
151   /* If this object is a child, this points to its immediate parent.  */
152   struct varobj *parent;
153 
154   /* Children of this object.  */
155   VEC (varobj_p) *children;
156 
157   /* Whether the children of this varobj were requested.  This field is
158      used to decide if dynamic varobj should recompute their children.
159      In the event that the frontend never asked for the children, we
160      can avoid that.  */
161   int children_requested;
162 
163   /* Description of the root variable.  Points to root variable for
164      children.  */
165   struct varobj_root *root;
166 
167   /* The format of the output for this object.  */
168   enum varobj_display_formats format;
169 
170   /* Was this variable updated via a varobj_set_value operation.  */
171   int updated;
172 
173   /* Last print value.  */
174   char *print_value;
175 
176   /* Is this variable frozen.  Frozen variables are never implicitly
177      updated by -var-update *
178      or -var-update <direct-or-indirect-parent>.  */
179   int frozen;
180 
181   /* Is the value of this variable intentionally not fetched?  It is
182      not fetched if either the variable is frozen, or any parents is
183      frozen.  */
184   int not_fetched;
185 
186   /* Sub-range of children which the MI consumer has requested.  If
187      FROM < 0 or TO < 0, means that all children have been
188      requested.  */
189   int from;
190   int to;
191 
192   /* The pretty-printer constructor.  If NULL, then the default
193      pretty-printer will be looked up.  If None, then no
194      pretty-printer will be installed.  */
195   PyObject *constructor;
196 
197   /* The pretty-printer that has been constructed.  If NULL, then a
198      new printer object is needed, and one will be constructed.  */
199   PyObject *pretty_printer;
200 
201   /* The iterator returned by the printer's 'children' method, or NULL
202      if not available.  */
203   PyObject *child_iter;
204 
205   /* We request one extra item from the iterator, so that we can
206      report to the caller whether there are more items than we have
207      already reported.  However, we don't want to install this value
208      when we read it, because that will mess up future updates.  So,
209      we stash it here instead.  */
210   PyObject *saved_item;
211 };
212 
213 struct cpstack
214 {
215   char *name;
216   struct cpstack *next;
217 };
218 
219 /* A list of varobjs */
220 
221 struct vlist
222 {
223   struct varobj *var;
224   struct vlist *next;
225 };
226 
227 /* Private function prototypes */
228 
229 /* Helper functions for the above subcommands.  */
230 
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232 
233 static void delete_variable_1 (struct cpstack **, int *,
234 			       struct varobj *, int, int);
235 
236 static int install_variable (struct varobj *);
237 
238 static void uninstall_variable (struct varobj *);
239 
240 static struct varobj *create_child (struct varobj *, int, char *);
241 
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 			 struct value *value);
245 
246 /* Utility routines */
247 
248 static struct varobj *new_variable (void);
249 
250 static struct varobj *new_root_variable (void);
251 
252 static void free_variable (struct varobj *var);
253 
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255 
256 static struct type *get_type (struct varobj *var);
257 
258 static struct type *get_value_type (struct varobj *var);
259 
260 static struct type *get_target_type (struct type *);
261 
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263 
264 static void cppush (struct cpstack **pstack, char *name);
265 
266 static char *cppop (struct cpstack **pstack);
267 
268 static int install_new_value (struct varobj *var, struct value *value,
269 			      int initial);
270 
271 /* Language-specific routines.  */
272 
273 static enum varobj_languages variable_language (struct varobj *var);
274 
275 static int number_of_children (struct varobj *);
276 
277 static char *name_of_variable (struct varobj *);
278 
279 static char *name_of_child (struct varobj *, int);
280 
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282 
283 static struct value *value_of_child (struct varobj *parent, int index);
284 
285 static char *my_value_of_variable (struct varobj *var,
286 				   enum varobj_display_formats format);
287 
288 static char *value_get_print_value (struct value *value,
289 				    enum varobj_display_formats format,
290 				    struct varobj *var);
291 
292 static int varobj_value_is_changeable_p (struct varobj *var);
293 
294 static int is_root_p (struct varobj *var);
295 
296 #if HAVE_PYTHON
297 
298 static struct varobj *varobj_add_child (struct varobj *var,
299 					const char *name,
300 					struct value *value);
301 
302 #endif /* HAVE_PYTHON */
303 
304 /* C implementation */
305 
306 static int c_number_of_children (struct varobj *var);
307 
308 static char *c_name_of_variable (struct varobj *parent);
309 
310 static char *c_name_of_child (struct varobj *parent, int index);
311 
312 static char *c_path_expr_of_child (struct varobj *child);
313 
314 static struct value *c_value_of_root (struct varobj **var_handle);
315 
316 static struct value *c_value_of_child (struct varobj *parent, int index);
317 
318 static struct type *c_type_of_child (struct varobj *parent, int index);
319 
320 static char *c_value_of_variable (struct varobj *var,
321 				  enum varobj_display_formats format);
322 
323 /* C++ implementation */
324 
325 static int cplus_number_of_children (struct varobj *var);
326 
327 static void cplus_class_num_children (struct type *type, int children[3]);
328 
329 static char *cplus_name_of_variable (struct varobj *parent);
330 
331 static char *cplus_name_of_child (struct varobj *parent, int index);
332 
333 static char *cplus_path_expr_of_child (struct varobj *child);
334 
335 static struct value *cplus_value_of_root (struct varobj **var_handle);
336 
337 static struct value *cplus_value_of_child (struct varobj *parent, int index);
338 
339 static struct type *cplus_type_of_child (struct varobj *parent, int index);
340 
341 static char *cplus_value_of_variable (struct varobj *var,
342 				      enum varobj_display_formats format);
343 
344 /* Java implementation */
345 
346 static int java_number_of_children (struct varobj *var);
347 
348 static char *java_name_of_variable (struct varobj *parent);
349 
350 static char *java_name_of_child (struct varobj *parent, int index);
351 
352 static char *java_path_expr_of_child (struct varobj *child);
353 
354 static struct value *java_value_of_root (struct varobj **var_handle);
355 
356 static struct value *java_value_of_child (struct varobj *parent, int index);
357 
358 static struct type *java_type_of_child (struct varobj *parent, int index);
359 
360 static char *java_value_of_variable (struct varobj *var,
361 				     enum varobj_display_formats format);
362 
363 /* Ada implementation */
364 
365 static int ada_number_of_children (struct varobj *var);
366 
367 static char *ada_name_of_variable (struct varobj *parent);
368 
369 static char *ada_name_of_child (struct varobj *parent, int index);
370 
371 static char *ada_path_expr_of_child (struct varobj *child);
372 
373 static struct value *ada_value_of_root (struct varobj **var_handle);
374 
375 static struct value *ada_value_of_child (struct varobj *parent, int index);
376 
377 static struct type *ada_type_of_child (struct varobj *parent, int index);
378 
379 static char *ada_value_of_variable (struct varobj *var,
380 				    enum varobj_display_formats format);
381 
382 /* The language specific vector */
383 
384 struct language_specific
385 {
386 
387   /* The language of this variable.  */
388   enum varobj_languages language;
389 
390   /* The number of children of PARENT.  */
391   int (*number_of_children) (struct varobj * parent);
392 
393   /* The name (expression) of a root varobj.  */
394   char *(*name_of_variable) (struct varobj * parent);
395 
396   /* The name of the INDEX'th child of PARENT.  */
397   char *(*name_of_child) (struct varobj * parent, int index);
398 
399   /* Returns the rooted expression of CHILD, which is a variable
400      obtain that has some parent.  */
401   char *(*path_expr_of_child) (struct varobj * child);
402 
403   /* The ``struct value *'' of the root variable ROOT.  */
404   struct value *(*value_of_root) (struct varobj ** root_handle);
405 
406   /* The ``struct value *'' of the INDEX'th child of PARENT.  */
407   struct value *(*value_of_child) (struct varobj * parent, int index);
408 
409   /* The type of the INDEX'th child of PARENT.  */
410   struct type *(*type_of_child) (struct varobj * parent, int index);
411 
412   /* The current value of VAR.  */
413   char *(*value_of_variable) (struct varobj * var,
414 			      enum varobj_display_formats format);
415 };
416 
417 /* Array of known source language routines.  */
418 static struct language_specific languages[vlang_end] = {
419   /* Unknown (try treating as C).  */
420   {
421    vlang_unknown,
422    c_number_of_children,
423    c_name_of_variable,
424    c_name_of_child,
425    c_path_expr_of_child,
426    c_value_of_root,
427    c_value_of_child,
428    c_type_of_child,
429    c_value_of_variable}
430   ,
431   /* C */
432   {
433    vlang_c,
434    c_number_of_children,
435    c_name_of_variable,
436    c_name_of_child,
437    c_path_expr_of_child,
438    c_value_of_root,
439    c_value_of_child,
440    c_type_of_child,
441    c_value_of_variable}
442   ,
443   /* C++ */
444   {
445    vlang_cplus,
446    cplus_number_of_children,
447    cplus_name_of_variable,
448    cplus_name_of_child,
449    cplus_path_expr_of_child,
450    cplus_value_of_root,
451    cplus_value_of_child,
452    cplus_type_of_child,
453    cplus_value_of_variable}
454   ,
455   /* Java */
456   {
457    vlang_java,
458    java_number_of_children,
459    java_name_of_variable,
460    java_name_of_child,
461    java_path_expr_of_child,
462    java_value_of_root,
463    java_value_of_child,
464    java_type_of_child,
465    java_value_of_variable},
466   /* Ada */
467   {
468    vlang_ada,
469    ada_number_of_children,
470    ada_name_of_variable,
471    ada_name_of_child,
472    ada_path_expr_of_child,
473    ada_value_of_root,
474    ada_value_of_child,
475    ada_type_of_child,
476    ada_value_of_variable}
477 };
478 
479 /* A little convenience enum for dealing with C++/Java.  */
480 enum vsections
481 {
482   v_public = 0, v_private, v_protected
483 };
484 
485 /* Private data */
486 
487 /* Mappings of varobj_display_formats enums to gdb's format codes.  */
488 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
489 
490 /* Header of the list of root variable objects.  */
491 static struct varobj_root *rootlist;
492 
493 /* Prime number indicating the number of buckets in the hash table.  */
494 /* A prime large enough to avoid too many colisions.  */
495 #define VAROBJ_TABLE_SIZE 227
496 
497 /* Pointer to the varobj hash table (built at run time).  */
498 static struct vlist **varobj_table;
499 
500 /* Is the variable X one of our "fake" children?  */
501 #define CPLUS_FAKE_CHILD(x) \
502 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
503 
504 
505 /* API Implementation */
506 static int
507 is_root_p (struct varobj *var)
508 {
509   return (var->root->rootvar == var);
510 }
511 
512 #ifdef HAVE_PYTHON
513 /* Helper function to install a Python environment suitable for
514    use during operations on VAR.  */
515 struct cleanup *
516 varobj_ensure_python_env (struct varobj *var)
517 {
518   return ensure_python_env (var->root->exp->gdbarch,
519 			    var->root->exp->language_defn);
520 }
521 #endif
522 
523 /* Creates a varobj (not its children).  */
524 
525 /* Return the full FRAME which corresponds to the given CORE_ADDR
526    or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */
527 
528 static struct frame_info *
529 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
530 {
531   struct frame_info *frame = NULL;
532 
533   if (frame_addr == (CORE_ADDR) 0)
534     return NULL;
535 
536   for (frame = get_current_frame ();
537        frame != NULL;
538        frame = get_prev_frame (frame))
539     {
540       /* The CORE_ADDR we get as argument was parsed from a string GDB
541 	 output as $fp.  This output got truncated to gdbarch_addr_bit.
542 	 Truncate the frame base address in the same manner before
543 	 comparing it against our argument.  */
544       CORE_ADDR frame_base = get_frame_base_address (frame);
545       int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
546 
547       if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
548 	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
549 
550       if (frame_base == frame_addr)
551 	return frame;
552     }
553 
554   return NULL;
555 }
556 
557 struct varobj *
558 varobj_create (char *objname,
559 	       char *expression, CORE_ADDR frame, enum varobj_type type)
560 {
561   struct varobj *var;
562   struct cleanup *old_chain;
563 
564   /* Fill out a varobj structure for the (root) variable being constructed.  */
565   var = new_root_variable ();
566   old_chain = make_cleanup_free_variable (var);
567 
568   if (expression != NULL)
569     {
570       struct frame_info *fi;
571       struct frame_id old_id = null_frame_id;
572       struct block *block;
573       char *p;
574       enum varobj_languages lang;
575       struct value *value = NULL;
576 
577       /* Parse and evaluate the expression, filling in as much of the
578          variable's data as possible.  */
579 
580       if (has_stack_frames ())
581 	{
582 	  /* Allow creator to specify context of variable.  */
583 	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
584 	    fi = get_selected_frame (NULL);
585 	  else
586 	    /* FIXME: cagney/2002-11-23: This code should be doing a
587 	       lookup using the frame ID and not just the frame's
588 	       ``address''.  This, of course, means an interface
589 	       change.  However, with out that interface change ISAs,
590 	       such as the ia64 with its two stacks, won't work.
591 	       Similar goes for the case where there is a frameless
592 	       function.  */
593 	    fi = find_frame_addr_in_frame_chain (frame);
594 	}
595       else
596 	fi = NULL;
597 
598       /* frame = -2 means always use selected frame.  */
599       if (type == USE_SELECTED_FRAME)
600 	var->root->floating = 1;
601 
602       block = NULL;
603       if (fi != NULL)
604 	block = get_frame_block (fi, 0);
605 
606       p = expression;
607       innermost_block = NULL;
608       /* Wrap the call to parse expression, so we can
609          return a sensible error.  */
610       if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
611 	{
612 	  do_cleanups (old_chain);
613 	  return NULL;
614 	}
615 
616       /* Don't allow variables to be created for types.  */
617       if (var->root->exp->elts[0].opcode == OP_TYPE)
618 	{
619 	  do_cleanups (old_chain);
620 	  fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
621 			      " as an expression.\n");
622 	  return NULL;
623 	}
624 
625       var->format = variable_default_display (var);
626       var->root->valid_block = innermost_block;
627       var->name = xstrdup (expression);
628       /* For a root var, the name and the expr are the same.  */
629       var->path_expr = xstrdup (expression);
630 
631       /* When the frame is different from the current frame,
632          we must select the appropriate frame before parsing
633          the expression, otherwise the value will not be current.
634          Since select_frame is so benign, just call it for all cases.  */
635       if (innermost_block)
636 	{
637 	  /* User could specify explicit FRAME-ADDR which was not found but
638 	     EXPRESSION is frame specific and we would not be able to evaluate
639 	     it correctly next time.  With VALID_BLOCK set we must also set
640 	     FRAME and THREAD_ID.  */
641 	  if (fi == NULL)
642 	    error (_("Failed to find the specified frame"));
643 
644 	  var->root->frame = get_frame_id (fi);
645 	  var->root->thread_id = pid_to_thread_id (inferior_ptid);
646 	  old_id = get_frame_id (get_selected_frame (NULL));
647 	  select_frame (fi);
648 	}
649 
650       /* We definitely need to catch errors here.
651          If evaluate_expression succeeds we got the value we wanted.
652          But if it fails, we still go on with a call to evaluate_type().  */
653       if (!gdb_evaluate_expression (var->root->exp, &value))
654 	{
655 	  /* Error getting the value.  Try to at least get the
656 	     right type.  */
657 	  struct value *type_only_value = evaluate_type (var->root->exp);
658 
659 	  var->type = value_type (type_only_value);
660 	}
661       else
662 	var->type = value_type (value);
663 
664       install_new_value (var, value, 1 /* Initial assignment */);
665 
666       /* Set language info */
667       lang = variable_language (var);
668       var->root->lang = &languages[lang];
669 
670       /* Set ourselves as our root.  */
671       var->root->rootvar = var;
672 
673       /* Reset the selected frame.  */
674       if (frame_id_p (old_id))
675 	select_frame (frame_find_by_id (old_id));
676     }
677 
678   /* If the variable object name is null, that means this
679      is a temporary variable, so don't install it.  */
680 
681   if ((var != NULL) && (objname != NULL))
682     {
683       var->obj_name = xstrdup (objname);
684 
685       /* If a varobj name is duplicated, the install will fail so
686          we must cleanup.  */
687       if (!install_variable (var))
688 	{
689 	  do_cleanups (old_chain);
690 	  return NULL;
691 	}
692     }
693 
694   discard_cleanups (old_chain);
695   return var;
696 }
697 
698 /* Generates an unique name that can be used for a varobj.  */
699 
700 char *
701 varobj_gen_name (void)
702 {
703   static int id = 0;
704   char *obj_name;
705 
706   /* Generate a name for this object.  */
707   id++;
708   obj_name = xstrprintf ("var%d", id);
709 
710   return obj_name;
711 }
712 
713 /* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
714    error if OBJNAME cannot be found.  */
715 
716 struct varobj *
717 varobj_get_handle (char *objname)
718 {
719   struct vlist *cv;
720   const char *chp;
721   unsigned int index = 0;
722   unsigned int i = 1;
723 
724   for (chp = objname; *chp; chp++)
725     {
726       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
727     }
728 
729   cv = *(varobj_table + index);
730   while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
731     cv = cv->next;
732 
733   if (cv == NULL)
734     error (_("Variable object not found"));
735 
736   return cv->var;
737 }
738 
739 /* Given the handle, return the name of the object.  */
740 
741 char *
742 varobj_get_objname (struct varobj *var)
743 {
744   return var->obj_name;
745 }
746 
747 /* Given the handle, return the expression represented by the object.  */
748 
749 char *
750 varobj_get_expression (struct varobj *var)
751 {
752   return name_of_variable (var);
753 }
754 
755 /* Deletes a varobj and all its children if only_children == 0,
756    otherwise deletes only the children; returns a malloc'ed list of
757    all the (malloc'ed) names of the variables that have been deleted
758    (NULL terminated).  */
759 
760 int
761 varobj_delete (struct varobj *var, char ***dellist, int only_children)
762 {
763   int delcount;
764   int mycount;
765   struct cpstack *result = NULL;
766   char **cp;
767 
768   /* Initialize a stack for temporary results.  */
769   cppush (&result, NULL);
770 
771   if (only_children)
772     /* Delete only the variable children.  */
773     delcount = delete_variable (&result, var, 1 /* only the children */ );
774   else
775     /* Delete the variable and all its children.  */
776     delcount = delete_variable (&result, var, 0 /* parent+children */ );
777 
778   /* We may have been asked to return a list of what has been deleted.  */
779   if (dellist != NULL)
780     {
781       *dellist = xmalloc ((delcount + 1) * sizeof (char *));
782 
783       cp = *dellist;
784       mycount = delcount;
785       *cp = cppop (&result);
786       while ((*cp != NULL) && (mycount > 0))
787 	{
788 	  mycount--;
789 	  cp++;
790 	  *cp = cppop (&result);
791 	}
792 
793       if (mycount || (*cp != NULL))
794 	warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
795 		 mycount);
796     }
797 
798   return delcount;
799 }
800 
801 #if HAVE_PYTHON
802 
803 /* Convenience function for varobj_set_visualizer.  Instantiate a
804    pretty-printer for a given value.  */
805 static PyObject *
806 instantiate_pretty_printer (PyObject *constructor, struct value *value)
807 {
808   PyObject *val_obj = NULL;
809   PyObject *printer;
810 
811   val_obj = value_to_value_object (value);
812   if (! val_obj)
813     return NULL;
814 
815   printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
816   Py_DECREF (val_obj);
817   return printer;
818 }
819 
820 #endif
821 
822 /* Set/Get variable object display format.  */
823 
824 enum varobj_display_formats
825 varobj_set_display_format (struct varobj *var,
826 			   enum varobj_display_formats format)
827 {
828   switch (format)
829     {
830     case FORMAT_NATURAL:
831     case FORMAT_BINARY:
832     case FORMAT_DECIMAL:
833     case FORMAT_HEXADECIMAL:
834     case FORMAT_OCTAL:
835       var->format = format;
836       break;
837 
838     default:
839       var->format = variable_default_display (var);
840     }
841 
842   if (varobj_value_is_changeable_p (var)
843       && var->value && !value_lazy (var->value))
844     {
845       xfree (var->print_value);
846       var->print_value = value_get_print_value (var->value, var->format, var);
847     }
848 
849   return var->format;
850 }
851 
852 enum varobj_display_formats
853 varobj_get_display_format (struct varobj *var)
854 {
855   return var->format;
856 }
857 
858 char *
859 varobj_get_display_hint (struct varobj *var)
860 {
861   char *result = NULL;
862 
863 #if HAVE_PYTHON
864   struct cleanup *back_to = varobj_ensure_python_env (var);
865 
866   if (var->pretty_printer)
867     result = gdbpy_get_display_hint (var->pretty_printer);
868 
869   do_cleanups (back_to);
870 #endif
871 
872   return result;
873 }
874 
875 /* Return true if the varobj has items after TO, false otherwise.  */
876 
877 int
878 varobj_has_more (struct varobj *var, int to)
879 {
880   if (VEC_length (varobj_p, var->children) > to)
881     return 1;
882   return ((to == -1 || VEC_length (varobj_p, var->children) == to)
883 	  && var->saved_item != NULL);
884 }
885 
886 /* If the variable object is bound to a specific thread, that
887    is its evaluation can always be done in context of a frame
888    inside that thread, returns GDB id of the thread -- which
889    is always positive.  Otherwise, returns -1.  */
890 int
891 varobj_get_thread_id (struct varobj *var)
892 {
893   if (var->root->valid_block && var->root->thread_id > 0)
894     return var->root->thread_id;
895   else
896     return -1;
897 }
898 
899 void
900 varobj_set_frozen (struct varobj *var, int frozen)
901 {
902   /* When a variable is unfrozen, we don't fetch its value.
903      The 'not_fetched' flag remains set, so next -var-update
904      won't complain.
905 
906      We don't fetch the value, because for structures the client
907      should do -var-update anyway.  It would be bad to have different
908      client-size logic for structure and other types.  */
909   var->frozen = frozen;
910 }
911 
912 int
913 varobj_get_frozen (struct varobj *var)
914 {
915   return var->frozen;
916 }
917 
918 /* A helper function that restricts a range to what is actually
919    available in a VEC.  This follows the usual rules for the meaning
920    of FROM and TO -- if either is negative, the entire range is
921    used.  */
922 
923 static void
924 restrict_range (VEC (varobj_p) *children, int *from, int *to)
925 {
926   if (*from < 0 || *to < 0)
927     {
928       *from = 0;
929       *to = VEC_length (varobj_p, children);
930     }
931   else
932     {
933       if (*from > VEC_length (varobj_p, children))
934 	*from = VEC_length (varobj_p, children);
935       if (*to > VEC_length (varobj_p, children))
936 	*to = VEC_length (varobj_p, children);
937       if (*from > *to)
938 	*from = *to;
939     }
940 }
941 
942 #if HAVE_PYTHON
943 
944 /* A helper for update_dynamic_varobj_children that installs a new
945    child when needed.  */
946 
947 static void
948 install_dynamic_child (struct varobj *var,
949 		       VEC (varobj_p) **changed,
950 		       VEC (varobj_p) **new,
951 		       VEC (varobj_p) **unchanged,
952 		       int *cchanged,
953 		       int index,
954 		       const char *name,
955 		       struct value *value)
956 {
957   if (VEC_length (varobj_p, var->children) < index + 1)
958     {
959       /* There's no child yet.  */
960       struct varobj *child = varobj_add_child (var, name, value);
961 
962       if (new)
963 	{
964 	  VEC_safe_push (varobj_p, *new, child);
965 	  *cchanged = 1;
966 	}
967     }
968   else
969     {
970       varobj_p existing = VEC_index (varobj_p, var->children, index);
971 
972       if (install_new_value (existing, value, 0))
973 	{
974 	  if (changed)
975 	    VEC_safe_push (varobj_p, *changed, existing);
976 	}
977       else if (unchanged)
978 	VEC_safe_push (varobj_p, *unchanged, existing);
979     }
980 }
981 
982 static int
983 dynamic_varobj_has_child_method (struct varobj *var)
984 {
985   struct cleanup *back_to;
986   PyObject *printer = var->pretty_printer;
987   int result;
988 
989   back_to = varobj_ensure_python_env (var);
990   result = PyObject_HasAttr (printer, gdbpy_children_cst);
991   do_cleanups (back_to);
992   return result;
993 }
994 
995 #endif
996 
997 static int
998 update_dynamic_varobj_children (struct varobj *var,
999 				VEC (varobj_p) **changed,
1000 				VEC (varobj_p) **new,
1001 				VEC (varobj_p) **unchanged,
1002 				int *cchanged,
1003 				int update_children,
1004 				int from,
1005 				int to)
1006 {
1007 #if HAVE_PYTHON
1008   struct cleanup *back_to;
1009   PyObject *children;
1010   int i;
1011   PyObject *printer = var->pretty_printer;
1012 
1013   back_to = varobj_ensure_python_env (var);
1014 
1015   *cchanged = 0;
1016   if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1017     {
1018       do_cleanups (back_to);
1019       return 0;
1020     }
1021 
1022   if (update_children || !var->child_iter)
1023     {
1024       children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1025 					     NULL);
1026 
1027       if (!children)
1028 	{
1029 	  gdbpy_print_stack ();
1030 	  error (_("Null value returned for children"));
1031 	}
1032 
1033       make_cleanup_py_decref (children);
1034 
1035       if (!PyIter_Check (children))
1036 	error (_("Returned value is not iterable"));
1037 
1038       Py_XDECREF (var->child_iter);
1039       var->child_iter = PyObject_GetIter (children);
1040       if (!var->child_iter)
1041 	{
1042 	  gdbpy_print_stack ();
1043 	  error (_("Could not get children iterator"));
1044 	}
1045 
1046       Py_XDECREF (var->saved_item);
1047       var->saved_item = NULL;
1048 
1049       i = 0;
1050     }
1051   else
1052     i = VEC_length (varobj_p, var->children);
1053 
1054   /* We ask for one extra child, so that MI can report whether there
1055      are more children.  */
1056   for (; to < 0 || i < to + 1; ++i)
1057     {
1058       PyObject *item;
1059       int force_done = 0;
1060 
1061       /* See if there was a leftover from last time.  */
1062       if (var->saved_item)
1063 	{
1064 	  item = var->saved_item;
1065 	  var->saved_item = NULL;
1066 	}
1067       else
1068 	item = PyIter_Next (var->child_iter);
1069 
1070       if (!item)
1071 	{
1072 	  /* Normal end of iteration.  */
1073 	  if (!PyErr_Occurred ())
1074 	    break;
1075 
1076 	  /* If we got a memory error, just use the text as the
1077 	     item.  */
1078 	  if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1079 	    {
1080 	      PyObject *type, *value, *trace;
1081 	      char *name_str, *value_str;
1082 
1083 	      PyErr_Fetch (&type, &value, &trace);
1084 	      value_str = gdbpy_exception_to_string (type, value);
1085 	      Py_XDECREF (type);
1086 	      Py_XDECREF (value);
1087 	      Py_XDECREF (trace);
1088 	      if (!value_str)
1089 		{
1090 		  gdbpy_print_stack ();
1091 		  break;
1092 		}
1093 
1094 	      name_str = xstrprintf ("<error at %d>", i);
1095 	      item = Py_BuildValue ("(ss)", name_str, value_str);
1096 	      xfree (name_str);
1097 	      xfree (value_str);
1098 	      if (!item)
1099 		{
1100 		  gdbpy_print_stack ();
1101 		  break;
1102 		}
1103 
1104 	      force_done = 1;
1105 	    }
1106 	  else
1107 	    {
1108 	      /* Any other kind of error.  */
1109 	      gdbpy_print_stack ();
1110 	      break;
1111 	    }
1112 	}
1113 
1114       /* We don't want to push the extra child on any report list.  */
1115       if (to < 0 || i < to)
1116 	{
1117 	  PyObject *py_v;
1118 	  const char *name;
1119 	  struct value *v;
1120 	  struct cleanup *inner;
1121 	  int can_mention = from < 0 || i >= from;
1122 
1123 	  inner = make_cleanup_py_decref (item);
1124 
1125 	  if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1126 	    {
1127 	      gdbpy_print_stack ();
1128 	      error (_("Invalid item from the child list"));
1129 	    }
1130 
1131 	  v = convert_value_from_python (py_v);
1132 	  if (v == NULL)
1133 	    gdbpy_print_stack ();
1134 	  install_dynamic_child (var, can_mention ? changed : NULL,
1135 				 can_mention ? new : NULL,
1136 				 can_mention ? unchanged : NULL,
1137 				 can_mention ? cchanged : NULL, i, name, v);
1138 	  do_cleanups (inner);
1139 	}
1140       else
1141 	{
1142 	  Py_XDECREF (var->saved_item);
1143 	  var->saved_item = item;
1144 
1145 	  /* We want to truncate the child list just before this
1146 	     element.  */
1147 	  break;
1148 	}
1149 
1150       if (force_done)
1151 	break;
1152     }
1153 
1154   if (i < VEC_length (varobj_p, var->children))
1155     {
1156       int j;
1157 
1158       *cchanged = 1;
1159       for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1160 	varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1161       VEC_truncate (varobj_p, var->children, i);
1162     }
1163 
1164   /* If there are fewer children than requested, note that the list of
1165      children changed.  */
1166   if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1167     *cchanged = 1;
1168 
1169   var->num_children = VEC_length (varobj_p, var->children);
1170 
1171   do_cleanups (back_to);
1172 
1173   return 1;
1174 #else
1175   gdb_assert (0 && "should never be called if Python is not enabled");
1176 #endif
1177 }
1178 
1179 int
1180 varobj_get_num_children (struct varobj *var)
1181 {
1182   if (var->num_children == -1)
1183     {
1184       if (var->pretty_printer)
1185 	{
1186 	  int dummy;
1187 
1188 	  /* If we have a dynamic varobj, don't report -1 children.
1189 	     So, try to fetch some children first.  */
1190 	  update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1191 					  0, 0, 0);
1192 	}
1193       else
1194 	var->num_children = number_of_children (var);
1195     }
1196 
1197   return var->num_children >= 0 ? var->num_children : 0;
1198 }
1199 
1200 /* Creates a list of the immediate children of a variable object;
1201    the return code is the number of such children or -1 on error.  */
1202 
1203 VEC (varobj_p)*
1204 varobj_list_children (struct varobj *var, int *from, int *to)
1205 {
1206   char *name;
1207   int i, children_changed;
1208 
1209   var->children_requested = 1;
1210 
1211   if (var->pretty_printer)
1212     {
1213       /* This, in theory, can result in the number of children changing without
1214 	 frontend noticing.  But well, calling -var-list-children on the same
1215 	 varobj twice is not something a sane frontend would do.  */
1216       update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1217 				      0, 0, *to);
1218       restrict_range (var->children, from, to);
1219       return var->children;
1220     }
1221 
1222   if (var->num_children == -1)
1223     var->num_children = number_of_children (var);
1224 
1225   /* If that failed, give up.  */
1226   if (var->num_children == -1)
1227     return var->children;
1228 
1229   /* If we're called when the list of children is not yet initialized,
1230      allocate enough elements in it.  */
1231   while (VEC_length (varobj_p, var->children) < var->num_children)
1232     VEC_safe_push (varobj_p, var->children, NULL);
1233 
1234   for (i = 0; i < var->num_children; i++)
1235     {
1236       varobj_p existing = VEC_index (varobj_p, var->children, i);
1237 
1238       if (existing == NULL)
1239 	{
1240 	  /* Either it's the first call to varobj_list_children for
1241 	     this variable object, and the child was never created,
1242 	     or it was explicitly deleted by the client.  */
1243 	  name = name_of_child (var, i);
1244 	  existing = create_child (var, i, name);
1245 	  VEC_replace (varobj_p, var->children, i, existing);
1246 	}
1247     }
1248 
1249   restrict_range (var->children, from, to);
1250   return var->children;
1251 }
1252 
1253 #if HAVE_PYTHON
1254 
1255 static struct varobj *
1256 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1257 {
1258   varobj_p v = create_child_with_value (var,
1259 					VEC_length (varobj_p, var->children),
1260 					name, value);
1261 
1262   VEC_safe_push (varobj_p, var->children, v);
1263   return v;
1264 }
1265 
1266 #endif /* HAVE_PYTHON */
1267 
1268 /* Obtain the type of an object Variable as a string similar to the one gdb
1269    prints on the console.  */
1270 
1271 char *
1272 varobj_get_type (struct varobj *var)
1273 {
1274   /* For the "fake" variables, do not return a type.  (It's type is
1275      NULL, too.)
1276      Do not return a type for invalid variables as well.  */
1277   if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1278     return NULL;
1279 
1280   return type_to_string (var->type);
1281 }
1282 
1283 /* Obtain the type of an object variable.  */
1284 
1285 struct type *
1286 varobj_get_gdb_type (struct varobj *var)
1287 {
1288   return var->type;
1289 }
1290 
1291 /* Return a pointer to the full rooted expression of varobj VAR.
1292    If it has not been computed yet, compute it.  */
1293 char *
1294 varobj_get_path_expr (struct varobj *var)
1295 {
1296   if (var->path_expr != NULL)
1297     return var->path_expr;
1298   else
1299     {
1300       /* For root varobjs, we initialize path_expr
1301 	 when creating varobj, so here it should be
1302 	 child varobj.  */
1303       gdb_assert (!is_root_p (var));
1304       return (*var->root->lang->path_expr_of_child) (var);
1305     }
1306 }
1307 
1308 enum varobj_languages
1309 varobj_get_language (struct varobj *var)
1310 {
1311   return variable_language (var);
1312 }
1313 
1314 int
1315 varobj_get_attributes (struct varobj *var)
1316 {
1317   int attributes = 0;
1318 
1319   if (varobj_editable_p (var))
1320     /* FIXME: define masks for attributes.  */
1321     attributes |= 0x00000001;	/* Editable */
1322 
1323   return attributes;
1324 }
1325 
1326 int
1327 varobj_pretty_printed_p (struct varobj *var)
1328 {
1329   return var->pretty_printer != NULL;
1330 }
1331 
1332 char *
1333 varobj_get_formatted_value (struct varobj *var,
1334 			    enum varobj_display_formats format)
1335 {
1336   return my_value_of_variable (var, format);
1337 }
1338 
1339 char *
1340 varobj_get_value (struct varobj *var)
1341 {
1342   return my_value_of_variable (var, var->format);
1343 }
1344 
1345 /* Set the value of an object variable (if it is editable) to the
1346    value of the given expression.  */
1347 /* Note: Invokes functions that can call error().  */
1348 
1349 int
1350 varobj_set_value (struct varobj *var, char *expression)
1351 {
1352   struct value *val;
1353 
1354   /* The argument "expression" contains the variable's new value.
1355      We need to first construct a legal expression for this -- ugh!  */
1356   /* Does this cover all the bases?  */
1357   struct expression *exp;
1358   struct value *value;
1359   int saved_input_radix = input_radix;
1360   char *s = expression;
1361 
1362   gdb_assert (varobj_editable_p (var));
1363 
1364   input_radix = 10;		/* ALWAYS reset to decimal temporarily.  */
1365   exp = parse_exp_1 (&s, 0, 0);
1366   if (!gdb_evaluate_expression (exp, &value))
1367     {
1368       /* We cannot proceed without a valid expression.  */
1369       xfree (exp);
1370       return 0;
1371     }
1372 
1373   /* All types that are editable must also be changeable.  */
1374   gdb_assert (varobj_value_is_changeable_p (var));
1375 
1376   /* The value of a changeable variable object must not be lazy.  */
1377   gdb_assert (!value_lazy (var->value));
1378 
1379   /* Need to coerce the input.  We want to check if the
1380      value of the variable object will be different
1381      after assignment, and the first thing value_assign
1382      does is coerce the input.
1383      For example, if we are assigning an array to a pointer variable we
1384      should compare the pointer with the array's address, not with the
1385      array's content.  */
1386   value = coerce_array (value);
1387 
1388   /* The new value may be lazy.  gdb_value_assign, or
1389      rather value_contents, will take care of this.
1390      If fetching of the new value will fail, gdb_value_assign
1391      with catch the exception.  */
1392   if (!gdb_value_assign (var->value, value, &val))
1393     return 0;
1394 
1395   /* If the value has changed, record it, so that next -var-update can
1396      report this change.  If a variable had a value of '1', we've set it
1397      to '333' and then set again to '1', when -var-update will report this
1398      variable as changed -- because the first assignment has set the
1399      'updated' flag.  There's no need to optimize that, because return value
1400      of -var-update should be considered an approximation.  */
1401   var->updated = install_new_value (var, val, 0 /* Compare values.  */);
1402   input_radix = saved_input_radix;
1403   return 1;
1404 }
1405 
1406 #if HAVE_PYTHON
1407 
1408 /* A helper function to install a constructor function and visualizer
1409    in a varobj.  */
1410 
1411 static void
1412 install_visualizer (struct varobj *var, PyObject *constructor,
1413 		    PyObject *visualizer)
1414 {
1415   Py_XDECREF (var->constructor);
1416   var->constructor = constructor;
1417 
1418   Py_XDECREF (var->pretty_printer);
1419   var->pretty_printer = visualizer;
1420 
1421   Py_XDECREF (var->child_iter);
1422   var->child_iter = NULL;
1423 }
1424 
1425 /* Install the default visualizer for VAR.  */
1426 
1427 static void
1428 install_default_visualizer (struct varobj *var)
1429 {
1430   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1431   if (CPLUS_FAKE_CHILD (var))
1432     return;
1433 
1434   if (pretty_printing)
1435     {
1436       PyObject *pretty_printer = NULL;
1437 
1438       if (var->value)
1439 	{
1440 	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1441 	  if (! pretty_printer)
1442 	    {
1443 	      gdbpy_print_stack ();
1444 	      error (_("Cannot instantiate printer for default visualizer"));
1445 	    }
1446 	}
1447 
1448       if (pretty_printer == Py_None)
1449 	{
1450 	  Py_DECREF (pretty_printer);
1451 	  pretty_printer = NULL;
1452 	}
1453 
1454       install_visualizer (var, NULL, pretty_printer);
1455     }
1456 }
1457 
1458 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1459    make a new object.  */
1460 
1461 static void
1462 construct_visualizer (struct varobj *var, PyObject *constructor)
1463 {
1464   PyObject *pretty_printer;
1465 
1466   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1467   if (CPLUS_FAKE_CHILD (var))
1468     return;
1469 
1470   Py_INCREF (constructor);
1471   if (constructor == Py_None)
1472     pretty_printer = NULL;
1473   else
1474     {
1475       pretty_printer = instantiate_pretty_printer (constructor, var->value);
1476       if (! pretty_printer)
1477 	{
1478 	  gdbpy_print_stack ();
1479 	  Py_DECREF (constructor);
1480 	  constructor = Py_None;
1481 	  Py_INCREF (constructor);
1482 	}
1483 
1484       if (pretty_printer == Py_None)
1485 	{
1486 	  Py_DECREF (pretty_printer);
1487 	  pretty_printer = NULL;
1488 	}
1489     }
1490 
1491   install_visualizer (var, constructor, pretty_printer);
1492 }
1493 
1494 #endif /* HAVE_PYTHON */
1495 
1496 /* A helper function for install_new_value.  This creates and installs
1497    a visualizer for VAR, if appropriate.  */
1498 
1499 static void
1500 install_new_value_visualizer (struct varobj *var)
1501 {
1502 #if HAVE_PYTHON
1503   /* If the constructor is None, then we want the raw value.  If VAR
1504      does not have a value, just skip this.  */
1505   if (var->constructor != Py_None && var->value)
1506     {
1507       struct cleanup *cleanup;
1508 
1509       cleanup = varobj_ensure_python_env (var);
1510 
1511       if (!var->constructor)
1512 	install_default_visualizer (var);
1513       else
1514 	construct_visualizer (var, var->constructor);
1515 
1516       do_cleanups (cleanup);
1517     }
1518 #else
1519   /* Do nothing.  */
1520 #endif
1521 }
1522 
1523 /* Assign a new value to a variable object.  If INITIAL is non-zero,
1524    this is the first assignement after the variable object was just
1525    created, or changed type.  In that case, just assign the value
1526    and return 0.
1527    Otherwise, assign the new value, and return 1 if the value is
1528    different from the current one, 0 otherwise.  The comparison is
1529    done on textual representation of value.  Therefore, some types
1530    need not be compared.  E.g.  for structures the reported value is
1531    always "{...}", so no comparison is necessary here.  If the old
1532    value was NULL and new one is not, or vice versa, we always return 1.
1533 
1534    The VALUE parameter should not be released -- the function will
1535    take care of releasing it when needed.  */
1536 static int
1537 install_new_value (struct varobj *var, struct value *value, int initial)
1538 {
1539   int changeable;
1540   int need_to_fetch;
1541   int changed = 0;
1542   int intentionally_not_fetched = 0;
1543   char *print_value = NULL;
1544 
1545   /* We need to know the varobj's type to decide if the value should
1546      be fetched or not.  C++ fake children (public/protected/private)
1547      don't have a type.  */
1548   gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1549   changeable = varobj_value_is_changeable_p (var);
1550 
1551   /* If the type has custom visualizer, we consider it to be always
1552      changeable.  FIXME: need to make sure this behaviour will not
1553      mess up read-sensitive values.  */
1554   if (var->pretty_printer)
1555     changeable = 1;
1556 
1557   need_to_fetch = changeable;
1558 
1559   /* We are not interested in the address of references, and given
1560      that in C++ a reference is not rebindable, it cannot
1561      meaningfully change.  So, get hold of the real value.  */
1562   if (value)
1563     value = coerce_ref (value);
1564 
1565   if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1566     /* For unions, we need to fetch the value implicitly because
1567        of implementation of union member fetch.  When gdb
1568        creates a value for a field and the value of the enclosing
1569        structure is not lazy,  it immediately copies the necessary
1570        bytes from the enclosing values.  If the enclosing value is
1571        lazy, the call to value_fetch_lazy on the field will read
1572        the data from memory.  For unions, that means we'll read the
1573        same memory more than once, which is not desirable.  So
1574        fetch now.  */
1575     need_to_fetch = 1;
1576 
1577   /* The new value might be lazy.  If the type is changeable,
1578      that is we'll be comparing values of this type, fetch the
1579      value now.  Otherwise, on the next update the old value
1580      will be lazy, which means we've lost that old value.  */
1581   if (need_to_fetch && value && value_lazy (value))
1582     {
1583       struct varobj *parent = var->parent;
1584       int frozen = var->frozen;
1585 
1586       for (; !frozen && parent; parent = parent->parent)
1587 	frozen |= parent->frozen;
1588 
1589       if (frozen && initial)
1590 	{
1591 	  /* For variables that are frozen, or are children of frozen
1592 	     variables, we don't do fetch on initial assignment.
1593 	     For non-initial assignemnt we do the fetch, since it means we're
1594 	     explicitly asked to compare the new value with the old one.  */
1595 	  intentionally_not_fetched = 1;
1596 	}
1597       else if (!gdb_value_fetch_lazy (value))
1598 	{
1599 	  /* Set the value to NULL, so that for the next -var-update,
1600 	     we don't try to compare the new value with this value,
1601 	     that we couldn't even read.  */
1602 	  value = NULL;
1603 	}
1604     }
1605 
1606 
1607   /* Below, we'll be comparing string rendering of old and new
1608      values.  Don't get string rendering if the value is
1609      lazy -- if it is, the code above has decided that the value
1610      should not be fetched.  */
1611   if (value && !value_lazy (value) && !var->pretty_printer)
1612     print_value = value_get_print_value (value, var->format, var);
1613 
1614   /* If the type is changeable, compare the old and the new values.
1615      If this is the initial assignment, we don't have any old value
1616      to compare with.  */
1617   if (!initial && changeable)
1618     {
1619       /* If the value of the varobj was changed by -var-set-value,
1620 	 then the value in the varobj and in the target is the same.
1621 	 However, that value is different from the value that the
1622 	 varobj had after the previous -var-update.  So need to the
1623 	 varobj as changed.  */
1624       if (var->updated)
1625 	{
1626 	  changed = 1;
1627 	}
1628       else if (! var->pretty_printer)
1629 	{
1630 	  /* Try to compare the values.  That requires that both
1631 	     values are non-lazy.  */
1632 	  if (var->not_fetched && value_lazy (var->value))
1633 	    {
1634 	      /* This is a frozen varobj and the value was never read.
1635 		 Presumably, UI shows some "never read" indicator.
1636 		 Now that we've fetched the real value, we need to report
1637 		 this varobj as changed so that UI can show the real
1638 		 value.  */
1639 	      changed = 1;
1640 	    }
1641           else  if (var->value == NULL && value == NULL)
1642 	    /* Equal.  */
1643 	    ;
1644 	  else if (var->value == NULL || value == NULL)
1645 	    {
1646 	      changed = 1;
1647 	    }
1648 	  else
1649 	    {
1650 	      gdb_assert (!value_lazy (var->value));
1651 	      gdb_assert (!value_lazy (value));
1652 
1653 	      gdb_assert (var->print_value != NULL && print_value != NULL);
1654 	      if (strcmp (var->print_value, print_value) != 0)
1655 		changed = 1;
1656 	    }
1657 	}
1658     }
1659 
1660   if (!initial && !changeable)
1661     {
1662       /* For values that are not changeable, we don't compare the values.
1663 	 However, we want to notice if a value was not NULL and now is NULL,
1664 	 or vise versa, so that we report when top-level varobjs come in scope
1665 	 and leave the scope.  */
1666       changed = (var->value != NULL) != (value != NULL);
1667     }
1668 
1669   /* We must always keep the new value, since children depend on it.  */
1670   if (var->value != NULL && var->value != value)
1671     value_free (var->value);
1672   var->value = value;
1673   if (value != NULL)
1674     value_incref (value);
1675   if (value && value_lazy (value) && intentionally_not_fetched)
1676     var->not_fetched = 1;
1677   else
1678     var->not_fetched = 0;
1679   var->updated = 0;
1680 
1681   install_new_value_visualizer (var);
1682 
1683   /* If we installed a pretty-printer, re-compare the printed version
1684      to see if the variable changed.  */
1685   if (var->pretty_printer)
1686     {
1687       xfree (print_value);
1688       print_value = value_get_print_value (var->value, var->format, var);
1689       if ((var->print_value == NULL && print_value != NULL)
1690 	  || (var->print_value != NULL && print_value == NULL)
1691 	  || (var->print_value != NULL && print_value != NULL
1692 	      && strcmp (var->print_value, print_value) != 0))
1693 	changed = 1;
1694     }
1695   if (var->print_value)
1696     xfree (var->print_value);
1697   var->print_value = print_value;
1698 
1699   gdb_assert (!var->value || value_type (var->value));
1700 
1701   return changed;
1702 }
1703 
1704 /* Return the requested range for a varobj.  VAR is the varobj.  FROM
1705    and TO are out parameters; *FROM and *TO will be set to the
1706    selected sub-range of VAR.  If no range was selected using
1707    -var-set-update-range, then both will be -1.  */
1708 void
1709 varobj_get_child_range (struct varobj *var, int *from, int *to)
1710 {
1711   *from = var->from;
1712   *to = var->to;
1713 }
1714 
1715 /* Set the selected sub-range of children of VAR to start at index
1716    FROM and end at index TO.  If either FROM or TO is less than zero,
1717    this is interpreted as a request for all children.  */
1718 void
1719 varobj_set_child_range (struct varobj *var, int from, int to)
1720 {
1721   var->from = from;
1722   var->to = to;
1723 }
1724 
1725 void
1726 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1727 {
1728 #if HAVE_PYTHON
1729   PyObject *mainmod, *globals, *constructor;
1730   struct cleanup *back_to;
1731 
1732   back_to = varobj_ensure_python_env (var);
1733 
1734   mainmod = PyImport_AddModule ("__main__");
1735   globals = PyModule_GetDict (mainmod);
1736   Py_INCREF (globals);
1737   make_cleanup_py_decref (globals);
1738 
1739   constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1740 
1741   if (! constructor)
1742     {
1743       gdbpy_print_stack ();
1744       error (_("Could not evaluate visualizer expression: %s"), visualizer);
1745     }
1746 
1747   construct_visualizer (var, constructor);
1748   Py_XDECREF (constructor);
1749 
1750   /* If there are any children now, wipe them.  */
1751   varobj_delete (var, NULL, 1 /* children only */);
1752   var->num_children = -1;
1753 
1754   do_cleanups (back_to);
1755 #else
1756   error (_("Python support required"));
1757 #endif
1758 }
1759 
1760 /* Update the values for a variable and its children.  This is a
1761    two-pronged attack.  First, re-parse the value for the root's
1762    expression to see if it's changed.  Then go all the way
1763    through its children, reconstructing them and noting if they've
1764    changed.
1765 
1766    The EXPLICIT parameter specifies if this call is result
1767    of MI request to update this specific variable, or
1768    result of implicit -var-update *.  For implicit request, we don't
1769    update frozen variables.
1770 
1771    NOTE: This function may delete the caller's varobj.  If it
1772    returns TYPE_CHANGED, then it has done this and VARP will be modified
1773    to point to the new varobj.  */
1774 
1775 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1776 {
1777   int changed = 0;
1778   int type_changed = 0;
1779   int i;
1780   struct value *new;
1781   VEC (varobj_update_result) *stack = NULL;
1782   VEC (varobj_update_result) *result = NULL;
1783 
1784   /* Frozen means frozen -- we don't check for any change in
1785      this varobj, including its going out of scope, or
1786      changing type.  One use case for frozen varobjs is
1787      retaining previously evaluated expressions, and we don't
1788      want them to be reevaluated at all.  */
1789   if (!explicit && (*varp)->frozen)
1790     return result;
1791 
1792   if (!(*varp)->root->is_valid)
1793     {
1794       varobj_update_result r = {0};
1795 
1796       r.varobj = *varp;
1797       r.status = VAROBJ_INVALID;
1798       VEC_safe_push (varobj_update_result, result, &r);
1799       return result;
1800     }
1801 
1802   if ((*varp)->root->rootvar == *varp)
1803     {
1804       varobj_update_result r = {0};
1805 
1806       r.varobj = *varp;
1807       r.status = VAROBJ_IN_SCOPE;
1808 
1809       /* Update the root variable.  value_of_root can return NULL
1810 	 if the variable is no longer around, i.e. we stepped out of
1811 	 the frame in which a local existed.  We are letting the
1812 	 value_of_root variable dispose of the varobj if the type
1813 	 has changed.  */
1814       new = value_of_root (varp, &type_changed);
1815       r.varobj = *varp;
1816 
1817       r.type_changed = type_changed;
1818       if (install_new_value ((*varp), new, type_changed))
1819 	r.changed = 1;
1820 
1821       if (new == NULL)
1822 	r.status = VAROBJ_NOT_IN_SCOPE;
1823       r.value_installed = 1;
1824 
1825       if (r.status == VAROBJ_NOT_IN_SCOPE)
1826 	{
1827 	  if (r.type_changed || r.changed)
1828 	    VEC_safe_push (varobj_update_result, result, &r);
1829 	  return result;
1830 	}
1831 
1832       VEC_safe_push (varobj_update_result, stack, &r);
1833     }
1834   else
1835     {
1836       varobj_update_result r = {0};
1837 
1838       r.varobj = *varp;
1839       VEC_safe_push (varobj_update_result, stack, &r);
1840     }
1841 
1842   /* Walk through the children, reconstructing them all.  */
1843   while (!VEC_empty (varobj_update_result, stack))
1844     {
1845       varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1846       struct varobj *v = r.varobj;
1847 
1848       VEC_pop (varobj_update_result, stack);
1849 
1850       /* Update this variable, unless it's a root, which is already
1851 	 updated.  */
1852       if (!r.value_installed)
1853 	{
1854 	  new = value_of_child (v->parent, v->index);
1855 	  if (install_new_value (v, new, 0 /* type not changed */))
1856 	    {
1857 	      r.changed = 1;
1858 	      v->updated = 0;
1859 	    }
1860 	}
1861 
1862       /* We probably should not get children of a varobj that has a
1863 	 pretty-printer, but for which -var-list-children was never
1864 	 invoked.  */
1865       if (v->pretty_printer)
1866 	{
1867 	  VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1868 	  int i, children_changed = 0;
1869 
1870 	  if (v->frozen)
1871 	    continue;
1872 
1873 	  if (!v->children_requested)
1874 	    {
1875 	      int dummy;
1876 
1877 	      /* If we initially did not have potential children, but
1878 		 now we do, consider the varobj as changed.
1879 		 Otherwise, if children were never requested, consider
1880 		 it as unchanged -- presumably, such varobj is not yet
1881 		 expanded in the UI, so we need not bother getting
1882 		 it.  */
1883 	      if (!varobj_has_more (v, 0))
1884 		{
1885 		  update_dynamic_varobj_children (v, NULL, NULL, NULL,
1886 						  &dummy, 0, 0, 0);
1887 		  if (varobj_has_more (v, 0))
1888 		    r.changed = 1;
1889 		}
1890 
1891 	      if (r.changed)
1892 		VEC_safe_push (varobj_update_result, result, &r);
1893 
1894 	      continue;
1895 	    }
1896 
1897 	  /* If update_dynamic_varobj_children returns 0, then we have
1898 	     a non-conforming pretty-printer, so we skip it.  */
1899 	  if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1900 					      &children_changed, 1,
1901 					      v->from, v->to))
1902 	    {
1903 	      if (children_changed || new)
1904 		{
1905 		  r.children_changed = 1;
1906 		  r.new = new;
1907 		}
1908 	      /* Push in reverse order so that the first child is
1909 		 popped from the work stack first, and so will be
1910 		 added to result first.  This does not affect
1911 		 correctness, just "nicer".  */
1912 	      for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1913 		{
1914 		  varobj_p tmp = VEC_index (varobj_p, changed, i);
1915 		  varobj_update_result r = {0};
1916 
1917 		  r.varobj = tmp;
1918 		  r.changed = 1;
1919 		  r.value_installed = 1;
1920 		  VEC_safe_push (varobj_update_result, stack, &r);
1921 		}
1922 	      for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1923 	      	{
1924 		  varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1925 
1926 	      	  if (!tmp->frozen)
1927 	      	    {
1928 	      	      varobj_update_result r = {0};
1929 
1930 		      r.varobj = tmp;
1931 	      	      r.value_installed = 1;
1932 	      	      VEC_safe_push (varobj_update_result, stack, &r);
1933 	      	    }
1934 	      	}
1935 	      if (r.changed || r.children_changed)
1936 		VEC_safe_push (varobj_update_result, result, &r);
1937 
1938 	      /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1939 		 has been put into the result vector.  */
1940 	      VEC_free (varobj_p, changed);
1941 	      VEC_free (varobj_p, unchanged);
1942 
1943 	      continue;
1944 	    }
1945 	}
1946 
1947       /* Push any children.  Use reverse order so that the first
1948 	 child is popped from the work stack first, and so
1949 	 will be added to result first.  This does not
1950 	 affect correctness, just "nicer".  */
1951       for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1952 	{
1953 	  varobj_p c = VEC_index (varobj_p, v->children, i);
1954 
1955 	  /* Child may be NULL if explicitly deleted by -var-delete.  */
1956 	  if (c != NULL && !c->frozen)
1957 	    {
1958 	      varobj_update_result r = {0};
1959 
1960 	      r.varobj = c;
1961 	      VEC_safe_push (varobj_update_result, stack, &r);
1962 	    }
1963 	}
1964 
1965       if (r.changed || r.type_changed)
1966 	VEC_safe_push (varobj_update_result, result, &r);
1967     }
1968 
1969   VEC_free (varobj_update_result, stack);
1970 
1971   return result;
1972 }
1973 
1974 
1975 /* Helper functions */
1976 
1977 /*
1978  * Variable object construction/destruction
1979  */
1980 
1981 static int
1982 delete_variable (struct cpstack **resultp, struct varobj *var,
1983 		 int only_children_p)
1984 {
1985   int delcount = 0;
1986 
1987   delete_variable_1 (resultp, &delcount, var,
1988 		     only_children_p, 1 /* remove_from_parent_p */ );
1989 
1990   return delcount;
1991 }
1992 
1993 /* Delete the variable object VAR and its children.  */
1994 /* IMPORTANT NOTE: If we delete a variable which is a child
1995    and the parent is not removed we dump core.  It must be always
1996    initially called with remove_from_parent_p set.  */
1997 static void
1998 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1999 		   struct varobj *var, int only_children_p,
2000 		   int remove_from_parent_p)
2001 {
2002   int i;
2003 
2004   /* Delete any children of this variable, too.  */
2005   for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2006     {
2007       varobj_p child = VEC_index (varobj_p, var->children, i);
2008 
2009       if (!child)
2010 	continue;
2011       if (!remove_from_parent_p)
2012 	child->parent = NULL;
2013       delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2014     }
2015   VEC_free (varobj_p, var->children);
2016 
2017   /* if we were called to delete only the children we are done here.  */
2018   if (only_children_p)
2019     return;
2020 
2021   /* Otherwise, add it to the list of deleted ones and proceed to do so.  */
2022   /* If the name is null, this is a temporary variable, that has not
2023      yet been installed, don't report it, it belongs to the caller...  */
2024   if (var->obj_name != NULL)
2025     {
2026       cppush (resultp, xstrdup (var->obj_name));
2027       *delcountp = *delcountp + 1;
2028     }
2029 
2030   /* If this variable has a parent, remove it from its parent's list.  */
2031   /* OPTIMIZATION: if the parent of this variable is also being deleted,
2032      (as indicated by remove_from_parent_p) we don't bother doing an
2033      expensive list search to find the element to remove when we are
2034      discarding the list afterwards.  */
2035   if ((remove_from_parent_p) && (var->parent != NULL))
2036     {
2037       VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2038     }
2039 
2040   if (var->obj_name != NULL)
2041     uninstall_variable (var);
2042 
2043   /* Free memory associated with this variable.  */
2044   free_variable (var);
2045 }
2046 
2047 /* Install the given variable VAR with the object name VAR->OBJ_NAME.  */
2048 static int
2049 install_variable (struct varobj *var)
2050 {
2051   struct vlist *cv;
2052   struct vlist *newvl;
2053   const char *chp;
2054   unsigned int index = 0;
2055   unsigned int i = 1;
2056 
2057   for (chp = var->obj_name; *chp; chp++)
2058     {
2059       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2060     }
2061 
2062   cv = *(varobj_table + index);
2063   while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2064     cv = cv->next;
2065 
2066   if (cv != NULL)
2067     error (_("Duplicate variable object name"));
2068 
2069   /* Add varobj to hash table.  */
2070   newvl = xmalloc (sizeof (struct vlist));
2071   newvl->next = *(varobj_table + index);
2072   newvl->var = var;
2073   *(varobj_table + index) = newvl;
2074 
2075   /* If root, add varobj to root list.  */
2076   if (is_root_p (var))
2077     {
2078       /* Add to list of root variables.  */
2079       if (rootlist == NULL)
2080 	var->root->next = NULL;
2081       else
2082 	var->root->next = rootlist;
2083       rootlist = var->root;
2084     }
2085 
2086   return 1;			/* OK */
2087 }
2088 
2089 /* Unistall the object VAR.  */
2090 static void
2091 uninstall_variable (struct varobj *var)
2092 {
2093   struct vlist *cv;
2094   struct vlist *prev;
2095   struct varobj_root *cr;
2096   struct varobj_root *prer;
2097   const char *chp;
2098   unsigned int index = 0;
2099   unsigned int i = 1;
2100 
2101   /* Remove varobj from hash table.  */
2102   for (chp = var->obj_name; *chp; chp++)
2103     {
2104       index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2105     }
2106 
2107   cv = *(varobj_table + index);
2108   prev = NULL;
2109   while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2110     {
2111       prev = cv;
2112       cv = cv->next;
2113     }
2114 
2115   if (varobjdebug)
2116     fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2117 
2118   if (cv == NULL)
2119     {
2120       warning
2121 	("Assertion failed: Could not find variable object \"%s\" to delete",
2122 	 var->obj_name);
2123       return;
2124     }
2125 
2126   if (prev == NULL)
2127     *(varobj_table + index) = cv->next;
2128   else
2129     prev->next = cv->next;
2130 
2131   xfree (cv);
2132 
2133   /* If root, remove varobj from root list.  */
2134   if (is_root_p (var))
2135     {
2136       /* Remove from list of root variables.  */
2137       if (rootlist == var->root)
2138 	rootlist = var->root->next;
2139       else
2140 	{
2141 	  prer = NULL;
2142 	  cr = rootlist;
2143 	  while ((cr != NULL) && (cr->rootvar != var))
2144 	    {
2145 	      prer = cr;
2146 	      cr = cr->next;
2147 	    }
2148 	  if (cr == NULL)
2149 	    {
2150 	      warning (_("Assertion failed: Could not find "
2151 		         "varobj \"%s\" in root list"),
2152 		       var->obj_name);
2153 	      return;
2154 	    }
2155 	  if (prer == NULL)
2156 	    rootlist = NULL;
2157 	  else
2158 	    prer->next = cr->next;
2159 	}
2160     }
2161 
2162 }
2163 
2164 /* Create and install a child of the parent of the given name.  */
2165 static struct varobj *
2166 create_child (struct varobj *parent, int index, char *name)
2167 {
2168   return create_child_with_value (parent, index, name,
2169 				  value_of_child (parent, index));
2170 }
2171 
2172 static struct varobj *
2173 create_child_with_value (struct varobj *parent, int index, const char *name,
2174 			 struct value *value)
2175 {
2176   struct varobj *child;
2177   char *childs_name;
2178 
2179   child = new_variable ();
2180 
2181   /* Name is allocated by name_of_child.  */
2182   /* FIXME: xstrdup should not be here.  */
2183   child->name = xstrdup (name);
2184   child->index = index;
2185   child->parent = parent;
2186   child->root = parent->root;
2187   childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2188   child->obj_name = childs_name;
2189   install_variable (child);
2190 
2191   /* Compute the type of the child.  Must do this before
2192      calling install_new_value.  */
2193   if (value != NULL)
2194     /* If the child had no evaluation errors, var->value
2195        will be non-NULL and contain a valid type.  */
2196     child->type = value_type (value);
2197   else
2198     /* Otherwise, we must compute the type.  */
2199     child->type = (*child->root->lang->type_of_child) (child->parent,
2200 						       child->index);
2201   install_new_value (child, value, 1);
2202 
2203   return child;
2204 }
2205 
2206 
2207 /*
2208  * Miscellaneous utility functions.
2209  */
2210 
2211 /* Allocate memory and initialize a new variable.  */
2212 static struct varobj *
2213 new_variable (void)
2214 {
2215   struct varobj *var;
2216 
2217   var = (struct varobj *) xmalloc (sizeof (struct varobj));
2218   var->name = NULL;
2219   var->path_expr = NULL;
2220   var->obj_name = NULL;
2221   var->index = -1;
2222   var->type = NULL;
2223   var->value = NULL;
2224   var->num_children = -1;
2225   var->parent = NULL;
2226   var->children = NULL;
2227   var->format = 0;
2228   var->root = NULL;
2229   var->updated = 0;
2230   var->print_value = NULL;
2231   var->frozen = 0;
2232   var->not_fetched = 0;
2233   var->children_requested = 0;
2234   var->from = -1;
2235   var->to = -1;
2236   var->constructor = 0;
2237   var->pretty_printer = 0;
2238   var->child_iter = 0;
2239   var->saved_item = 0;
2240 
2241   return var;
2242 }
2243 
2244 /* Allocate memory and initialize a new root variable.  */
2245 static struct varobj *
2246 new_root_variable (void)
2247 {
2248   struct varobj *var = new_variable ();
2249 
2250   var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2251   var->root->lang = NULL;
2252   var->root->exp = NULL;
2253   var->root->valid_block = NULL;
2254   var->root->frame = null_frame_id;
2255   var->root->floating = 0;
2256   var->root->rootvar = NULL;
2257   var->root->is_valid = 1;
2258 
2259   return var;
2260 }
2261 
2262 /* Free any allocated memory associated with VAR.  */
2263 static void
2264 free_variable (struct varobj *var)
2265 {
2266 #if HAVE_PYTHON
2267   if (var->pretty_printer)
2268     {
2269       struct cleanup *cleanup = varobj_ensure_python_env (var);
2270       Py_XDECREF (var->constructor);
2271       Py_XDECREF (var->pretty_printer);
2272       Py_XDECREF (var->child_iter);
2273       Py_XDECREF (var->saved_item);
2274       do_cleanups (cleanup);
2275     }
2276 #endif
2277 
2278   value_free (var->value);
2279 
2280   /* Free the expression if this is a root variable.  */
2281   if (is_root_p (var))
2282     {
2283       xfree (var->root->exp);
2284       xfree (var->root);
2285     }
2286 
2287   xfree (var->name);
2288   xfree (var->obj_name);
2289   xfree (var->print_value);
2290   xfree (var->path_expr);
2291   xfree (var);
2292 }
2293 
2294 static void
2295 do_free_variable_cleanup (void *var)
2296 {
2297   free_variable (var);
2298 }
2299 
2300 static struct cleanup *
2301 make_cleanup_free_variable (struct varobj *var)
2302 {
2303   return make_cleanup (do_free_variable_cleanup, var);
2304 }
2305 
2306 /* This returns the type of the variable.  It also skips past typedefs
2307    to return the real type of the variable.
2308 
2309    NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2310    except within get_target_type and get_type.  */
2311 static struct type *
2312 get_type (struct varobj *var)
2313 {
2314   struct type *type;
2315 
2316   type = var->type;
2317   if (type != NULL)
2318     type = check_typedef (type);
2319 
2320   return type;
2321 }
2322 
2323 /* Return the type of the value that's stored in VAR,
2324    or that would have being stored there if the
2325    value were accessible.
2326 
2327    This differs from VAR->type in that VAR->type is always
2328    the true type of the expession in the source language.
2329    The return value of this function is the type we're
2330    actually storing in varobj, and using for displaying
2331    the values and for comparing previous and new values.
2332 
2333    For example, top-level references are always stripped.  */
2334 static struct type *
2335 get_value_type (struct varobj *var)
2336 {
2337   struct type *type;
2338 
2339   if (var->value)
2340     type = value_type (var->value);
2341   else
2342     type = var->type;
2343 
2344   type = check_typedef (type);
2345 
2346   if (TYPE_CODE (type) == TYPE_CODE_REF)
2347     type = get_target_type (type);
2348 
2349   type = check_typedef (type);
2350 
2351   return type;
2352 }
2353 
2354 /* This returns the target type (or NULL) of TYPE, also skipping
2355    past typedefs, just like get_type ().
2356 
2357    NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2358    except within get_target_type and get_type.  */
2359 static struct type *
2360 get_target_type (struct type *type)
2361 {
2362   if (type != NULL)
2363     {
2364       type = TYPE_TARGET_TYPE (type);
2365       if (type != NULL)
2366 	type = check_typedef (type);
2367     }
2368 
2369   return type;
2370 }
2371 
2372 /* What is the default display for this variable? We assume that
2373    everything is "natural".  Any exceptions?  */
2374 static enum varobj_display_formats
2375 variable_default_display (struct varobj *var)
2376 {
2377   return FORMAT_NATURAL;
2378 }
2379 
2380 /* FIXME: The following should be generic for any pointer.  */
2381 static void
2382 cppush (struct cpstack **pstack, char *name)
2383 {
2384   struct cpstack *s;
2385 
2386   s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2387   s->name = name;
2388   s->next = *pstack;
2389   *pstack = s;
2390 }
2391 
2392 /* FIXME: The following should be generic for any pointer.  */
2393 static char *
2394 cppop (struct cpstack **pstack)
2395 {
2396   struct cpstack *s;
2397   char *v;
2398 
2399   if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2400     return NULL;
2401 
2402   s = *pstack;
2403   v = s->name;
2404   *pstack = (*pstack)->next;
2405   xfree (s);
2406 
2407   return v;
2408 }
2409 
2410 /*
2411  * Language-dependencies
2412  */
2413 
2414 /* Common entry points */
2415 
2416 /* Get the language of variable VAR.  */
2417 static enum varobj_languages
2418 variable_language (struct varobj *var)
2419 {
2420   enum varobj_languages lang;
2421 
2422   switch (var->root->exp->language_defn->la_language)
2423     {
2424     default:
2425     case language_c:
2426       lang = vlang_c;
2427       break;
2428     case language_cplus:
2429       lang = vlang_cplus;
2430       break;
2431     case language_java:
2432       lang = vlang_java;
2433       break;
2434     case language_ada:
2435       lang = vlang_ada;
2436       break;
2437     }
2438 
2439   return lang;
2440 }
2441 
2442 /* Return the number of children for a given variable.
2443    The result of this function is defined by the language
2444    implementation.  The number of children returned by this function
2445    is the number of children that the user will see in the variable
2446    display.  */
2447 static int
2448 number_of_children (struct varobj *var)
2449 {
2450   return (*var->root->lang->number_of_children) (var);
2451 }
2452 
2453 /* What is the expression for the root varobj VAR? Returns a malloc'd
2454    string.  */
2455 static char *
2456 name_of_variable (struct varobj *var)
2457 {
2458   return (*var->root->lang->name_of_variable) (var);
2459 }
2460 
2461 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2462    string.  */
2463 static char *
2464 name_of_child (struct varobj *var, int index)
2465 {
2466   return (*var->root->lang->name_of_child) (var, index);
2467 }
2468 
2469 /* What is the ``struct value *'' of the root variable VAR?
2470    For floating variable object, evaluation can get us a value
2471    of different type from what is stored in varobj already.  In
2472    that case:
2473    - *type_changed will be set to 1
2474    - old varobj will be freed, and new one will be
2475    created, with the same name.
2476    - *var_handle will be set to the new varobj
2477    Otherwise, *type_changed will be set to 0.  */
2478 static struct value *
2479 value_of_root (struct varobj **var_handle, int *type_changed)
2480 {
2481   struct varobj *var;
2482 
2483   if (var_handle == NULL)
2484     return NULL;
2485 
2486   var = *var_handle;
2487 
2488   /* This should really be an exception, since this should
2489      only get called with a root variable.  */
2490 
2491   if (!is_root_p (var))
2492     return NULL;
2493 
2494   if (var->root->floating)
2495     {
2496       struct varobj *tmp_var;
2497       char *old_type, *new_type;
2498 
2499       tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2500 			       USE_SELECTED_FRAME);
2501       if (tmp_var == NULL)
2502 	{
2503 	  return NULL;
2504 	}
2505       old_type = varobj_get_type (var);
2506       new_type = varobj_get_type (tmp_var);
2507       if (strcmp (old_type, new_type) == 0)
2508 	{
2509 	  /* The expression presently stored inside var->root->exp
2510 	     remembers the locations of local variables relatively to
2511 	     the frame where the expression was created (in DWARF location
2512 	     button, for example).  Naturally, those locations are not
2513 	     correct in other frames, so update the expression.  */
2514 
2515          struct expression *tmp_exp = var->root->exp;
2516 
2517          var->root->exp = tmp_var->root->exp;
2518          tmp_var->root->exp = tmp_exp;
2519 
2520 	  varobj_delete (tmp_var, NULL, 0);
2521 	  *type_changed = 0;
2522 	}
2523       else
2524 	{
2525 	  tmp_var->obj_name = xstrdup (var->obj_name);
2526 	  tmp_var->from = var->from;
2527 	  tmp_var->to = var->to;
2528 	  varobj_delete (var, NULL, 0);
2529 
2530 	  install_variable (tmp_var);
2531 	  *var_handle = tmp_var;
2532 	  var = *var_handle;
2533 	  *type_changed = 1;
2534 	}
2535       xfree (old_type);
2536       xfree (new_type);
2537     }
2538   else
2539     {
2540       *type_changed = 0;
2541     }
2542 
2543   return (*var->root->lang->value_of_root) (var_handle);
2544 }
2545 
2546 /* What is the ``struct value *'' for the INDEX'th child of PARENT?  */
2547 static struct value *
2548 value_of_child (struct varobj *parent, int index)
2549 {
2550   struct value *value;
2551 
2552   value = (*parent->root->lang->value_of_child) (parent, index);
2553 
2554   return value;
2555 }
2556 
2557 /* GDB already has a command called "value_of_variable".  Sigh.  */
2558 static char *
2559 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2560 {
2561   if (var->root->is_valid)
2562     {
2563       if (var->pretty_printer)
2564 	return value_get_print_value (var->value, var->format, var);
2565       return (*var->root->lang->value_of_variable) (var, format);
2566     }
2567   else
2568     return NULL;
2569 }
2570 
2571 static char *
2572 value_get_print_value (struct value *value, enum varobj_display_formats format,
2573 		       struct varobj *var)
2574 {
2575   struct ui_file *stb;
2576   struct cleanup *old_chain;
2577   gdb_byte *thevalue = NULL;
2578   struct value_print_options opts;
2579   struct type *type = NULL;
2580   long len = 0;
2581   char *encoding = NULL;
2582   struct gdbarch *gdbarch = NULL;
2583   /* Initialize it just to avoid a GCC false warning.  */
2584   CORE_ADDR str_addr = 0;
2585   int string_print = 0;
2586 
2587   if (value == NULL)
2588     return NULL;
2589 
2590   stb = mem_fileopen ();
2591   old_chain = make_cleanup_ui_file_delete (stb);
2592 
2593   gdbarch = get_type_arch (value_type (value));
2594 #if HAVE_PYTHON
2595   {
2596     PyObject *value_formatter = var->pretty_printer;
2597 
2598     varobj_ensure_python_env (var);
2599 
2600     if (value_formatter)
2601       {
2602 	/* First check to see if we have any children at all.  If so,
2603 	   we simply return {...}.  */
2604 	if (dynamic_varobj_has_child_method (var))
2605 	  {
2606 	    do_cleanups (old_chain);
2607 	    return xstrdup ("{...}");
2608 	  }
2609 
2610 	if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2611 	  {
2612 	    struct value *replacement;
2613 	    PyObject *output = NULL;
2614 
2615 	    output = apply_varobj_pretty_printer (value_formatter,
2616 						  &replacement,
2617 						  stb);
2618 
2619 	    /* If we have string like output ...  */
2620 	    if (output)
2621 	      {
2622 		make_cleanup_py_decref (output);
2623 
2624 		/* If this is a lazy string, extract it.  For lazy
2625 		   strings we always print as a string, so set
2626 		   string_print.  */
2627 		if (gdbpy_is_lazy_string (output))
2628 		  {
2629 		    gdbpy_extract_lazy_string (output, &str_addr, &type,
2630 					       &len, &encoding);
2631 		    make_cleanup (free_current_contents, &encoding);
2632 		    string_print = 1;
2633 		  }
2634 		else
2635 		  {
2636 		    /* If it is a regular (non-lazy) string, extract
2637 		       it and copy the contents into THEVALUE.  If the
2638 		       hint says to print it as a string, set
2639 		       string_print.  Otherwise just return the extracted
2640 		       string as a value.  */
2641 
2642 		    PyObject *py_str
2643 		      = python_string_to_target_python_string (output);
2644 
2645 		    if (py_str)
2646 		      {
2647 			char *s = PyString_AsString (py_str);
2648 			char *hint;
2649 
2650 			hint = gdbpy_get_display_hint (value_formatter);
2651 			if (hint)
2652 			  {
2653 			    if (!strcmp (hint, "string"))
2654 			      string_print = 1;
2655 			    xfree (hint);
2656 			  }
2657 
2658 			len = PyString_Size (py_str);
2659 			thevalue = xmemdup (s, len + 1, len + 1);
2660 			type = builtin_type (gdbarch)->builtin_char;
2661 			Py_DECREF (py_str);
2662 
2663 			if (!string_print)
2664 			  {
2665 			    do_cleanups (old_chain);
2666 			    return thevalue;
2667 			  }
2668 
2669 			make_cleanup (xfree, thevalue);
2670 		      }
2671 		    else
2672 		      gdbpy_print_stack ();
2673 		  }
2674 	      }
2675 	    /* If the printer returned a replacement value, set VALUE
2676 	       to REPLACEMENT.  If there is not a replacement value,
2677 	       just use the value passed to this function.  */
2678 	    if (replacement)
2679 	      value = replacement;
2680 	  }
2681       }
2682   }
2683 #endif
2684 
2685   get_formatted_print_options (&opts, format_code[(int) format]);
2686   opts.deref_ref = 0;
2687   opts.raw = 1;
2688 
2689   /* If the THEVALUE has contents, it is a regular string.  */
2690   if (thevalue)
2691     LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2692   else if (string_print)
2693     /* Otherwise, if string_print is set, and it is not a regular
2694        string, it is a lazy string.  */
2695     val_print_string (type, encoding, str_addr, len, stb, &opts);
2696   else
2697     /* All other cases.  */
2698     common_val_print (value, stb, 0, &opts, current_language);
2699 
2700   thevalue = ui_file_xstrdup (stb, NULL);
2701 
2702   do_cleanups (old_chain);
2703   return thevalue;
2704 }
2705 
2706 int
2707 varobj_editable_p (struct varobj *var)
2708 {
2709   struct type *type;
2710 
2711   if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2712     return 0;
2713 
2714   type = get_value_type (var);
2715 
2716   switch (TYPE_CODE (type))
2717     {
2718     case TYPE_CODE_STRUCT:
2719     case TYPE_CODE_UNION:
2720     case TYPE_CODE_ARRAY:
2721     case TYPE_CODE_FUNC:
2722     case TYPE_CODE_METHOD:
2723       return 0;
2724       break;
2725 
2726     default:
2727       return 1;
2728       break;
2729     }
2730 }
2731 
2732 /* Return non-zero if changes in value of VAR
2733    must be detected and reported by -var-update.
2734    Return zero is -var-update should never report
2735    changes of such values.  This makes sense for structures
2736    (since the changes in children values will be reported separately),
2737    or for artifical objects (like 'public' pseudo-field in C++).
2738 
2739    Return value of 0 means that gdb need not call value_fetch_lazy
2740    for the value of this variable object.  */
2741 static int
2742 varobj_value_is_changeable_p (struct varobj *var)
2743 {
2744   int r;
2745   struct type *type;
2746 
2747   if (CPLUS_FAKE_CHILD (var))
2748     return 0;
2749 
2750   type = get_value_type (var);
2751 
2752   switch (TYPE_CODE (type))
2753     {
2754     case TYPE_CODE_STRUCT:
2755     case TYPE_CODE_UNION:
2756     case TYPE_CODE_ARRAY:
2757       r = 0;
2758       break;
2759 
2760     default:
2761       r = 1;
2762     }
2763 
2764   return r;
2765 }
2766 
2767 /* Return 1 if that varobj is floating, that is is always evaluated in the
2768    selected frame, and not bound to thread/frame.  Such variable objects
2769    are created using '@' as frame specifier to -var-create.  */
2770 int
2771 varobj_floating_p (struct varobj *var)
2772 {
2773   return var->root->floating;
2774 }
2775 
2776 /* Given the value and the type of a variable object,
2777    adjust the value and type to those necessary
2778    for getting children of the variable object.
2779    This includes dereferencing top-level references
2780    to all types and dereferencing pointers to
2781    structures.
2782 
2783    Both TYPE and *TYPE should be non-null.  VALUE
2784    can be null if we want to only translate type.
2785    *VALUE can be null as well -- if the parent
2786    value is not known.
2787 
2788    If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2789    depending on whether pointer was dereferenced
2790    in this function.  */
2791 static void
2792 adjust_value_for_child_access (struct value **value,
2793 				  struct type **type,
2794 				  int *was_ptr)
2795 {
2796   gdb_assert (type && *type);
2797 
2798   if (was_ptr)
2799     *was_ptr = 0;
2800 
2801   *type = check_typedef (*type);
2802 
2803   /* The type of value stored in varobj, that is passed
2804      to us, is already supposed to be
2805      reference-stripped.  */
2806 
2807   gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2808 
2809   /* Pointers to structures are treated just like
2810      structures when accessing children.  Don't
2811      dererences pointers to other types.  */
2812   if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2813     {
2814       struct type *target_type = get_target_type (*type);
2815       if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2816 	  || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2817 	{
2818 	  if (value && *value)
2819 	    {
2820 	      int success = gdb_value_ind (*value, value);
2821 
2822 	      if (!success)
2823 		*value = NULL;
2824 	    }
2825 	  *type = target_type;
2826 	  if (was_ptr)
2827 	    *was_ptr = 1;
2828 	}
2829     }
2830 
2831   /* The 'get_target_type' function calls check_typedef on
2832      result, so we can immediately check type code.  No
2833      need to call check_typedef here.  */
2834 }
2835 
2836 /* C */
2837 static int
2838 c_number_of_children (struct varobj *var)
2839 {
2840   struct type *type = get_value_type (var);
2841   int children = 0;
2842   struct type *target;
2843 
2844   adjust_value_for_child_access (NULL, &type, NULL);
2845   target = get_target_type (type);
2846 
2847   switch (TYPE_CODE (type))
2848     {
2849     case TYPE_CODE_ARRAY:
2850       if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2851 	  && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2852 	children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2853       else
2854 	/* If we don't know how many elements there are, don't display
2855 	   any.  */
2856 	children = 0;
2857       break;
2858 
2859     case TYPE_CODE_STRUCT:
2860     case TYPE_CODE_UNION:
2861       children = TYPE_NFIELDS (type);
2862       break;
2863 
2864     case TYPE_CODE_PTR:
2865       /* The type here is a pointer to non-struct.  Typically, pointers
2866 	 have one child, except for function ptrs, which have no children,
2867 	 and except for void*, as we don't know what to show.
2868 
2869          We can show char* so we allow it to be dereferenced.  If you decide
2870          to test for it, please mind that a little magic is necessary to
2871          properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2872          TYPE_NAME == "char".  */
2873       if (TYPE_CODE (target) == TYPE_CODE_FUNC
2874 	  || TYPE_CODE (target) == TYPE_CODE_VOID)
2875 	children = 0;
2876       else
2877 	children = 1;
2878       break;
2879 
2880     default:
2881       /* Other types have no children.  */
2882       break;
2883     }
2884 
2885   return children;
2886 }
2887 
2888 static char *
2889 c_name_of_variable (struct varobj *parent)
2890 {
2891   return xstrdup (parent->name);
2892 }
2893 
2894 /* Return the value of element TYPE_INDEX of a structure
2895    value VALUE.  VALUE's type should be a structure,
2896    or union, or a typedef to struct/union.
2897 
2898    Returns NULL if getting the value fails.  Never throws.  */
2899 static struct value *
2900 value_struct_element_index (struct value *value, int type_index)
2901 {
2902   struct value *result = NULL;
2903   volatile struct gdb_exception e;
2904   struct type *type = value_type (value);
2905 
2906   type = check_typedef (type);
2907 
2908   gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2909 	      || TYPE_CODE (type) == TYPE_CODE_UNION);
2910 
2911   TRY_CATCH (e, RETURN_MASK_ERROR)
2912     {
2913       if (field_is_static (&TYPE_FIELD (type, type_index)))
2914 	result = value_static_field (type, type_index);
2915       else
2916 	result = value_primitive_field (value, 0, type_index, type);
2917     }
2918   if (e.reason < 0)
2919     {
2920       return NULL;
2921     }
2922   else
2923     {
2924       return result;
2925     }
2926 }
2927 
2928 /* Obtain the information about child INDEX of the variable
2929    object PARENT.
2930    If CNAME is not null, sets *CNAME to the name of the child relative
2931    to the parent.
2932    If CVALUE is not null, sets *CVALUE to the value of the child.
2933    If CTYPE is not null, sets *CTYPE to the type of the child.
2934 
2935    If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2936    information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2937    to NULL.  */
2938 static void
2939 c_describe_child (struct varobj *parent, int index,
2940 		  char **cname, struct value **cvalue, struct type **ctype,
2941 		  char **cfull_expression)
2942 {
2943   struct value *value = parent->value;
2944   struct type *type = get_value_type (parent);
2945   char *parent_expression = NULL;
2946   int was_ptr;
2947 
2948   if (cname)
2949     *cname = NULL;
2950   if (cvalue)
2951     *cvalue = NULL;
2952   if (ctype)
2953     *ctype = NULL;
2954   if (cfull_expression)
2955     {
2956       *cfull_expression = NULL;
2957       parent_expression = varobj_get_path_expr (parent);
2958     }
2959   adjust_value_for_child_access (&value, &type, &was_ptr);
2960 
2961   switch (TYPE_CODE (type))
2962     {
2963     case TYPE_CODE_ARRAY:
2964       if (cname)
2965 	*cname
2966 	  = xstrdup (int_string (index
2967 				 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2968 				 10, 1, 0, 0));
2969 
2970       if (cvalue && value)
2971 	{
2972 	  int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2973 
2974 	  gdb_value_subscript (value, real_index, cvalue);
2975 	}
2976 
2977       if (ctype)
2978 	*ctype = get_target_type (type);
2979 
2980       if (cfull_expression)
2981 	*cfull_expression =
2982 	  xstrprintf ("(%s)[%s]", parent_expression,
2983 		      int_string (index
2984 				  + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2985 				  10, 1, 0, 0));
2986 
2987 
2988       break;
2989 
2990     case TYPE_CODE_STRUCT:
2991     case TYPE_CODE_UNION:
2992       if (cname)
2993 	*cname = xstrdup (TYPE_FIELD_NAME (type, index));
2994 
2995       if (cvalue && value)
2996 	{
2997 	  /* For C, varobj index is the same as type index.  */
2998 	  *cvalue = value_struct_element_index (value, index);
2999 	}
3000 
3001       if (ctype)
3002 	*ctype = TYPE_FIELD_TYPE (type, index);
3003 
3004       if (cfull_expression)
3005 	{
3006 	  char *join = was_ptr ? "->" : ".";
3007 
3008 	  *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
3009 					  TYPE_FIELD_NAME (type, index));
3010 	}
3011 
3012       break;
3013 
3014     case TYPE_CODE_PTR:
3015       if (cname)
3016 	*cname = xstrprintf ("*%s", parent->name);
3017 
3018       if (cvalue && value)
3019 	{
3020 	  int success = gdb_value_ind (value, cvalue);
3021 
3022 	  if (!success)
3023 	    *cvalue = NULL;
3024 	}
3025 
3026       /* Don't use get_target_type because it calls
3027 	 check_typedef and here, we want to show the true
3028 	 declared type of the variable.  */
3029       if (ctype)
3030 	*ctype = TYPE_TARGET_TYPE (type);
3031 
3032       if (cfull_expression)
3033 	*cfull_expression = xstrprintf ("*(%s)", parent_expression);
3034 
3035       break;
3036 
3037     default:
3038       /* This should not happen.  */
3039       if (cname)
3040 	*cname = xstrdup ("???");
3041       if (cfull_expression)
3042 	*cfull_expression = xstrdup ("???");
3043       /* Don't set value and type, we don't know then.  */
3044     }
3045 }
3046 
3047 static char *
3048 c_name_of_child (struct varobj *parent, int index)
3049 {
3050   char *name;
3051 
3052   c_describe_child (parent, index, &name, NULL, NULL, NULL);
3053   return name;
3054 }
3055 
3056 static char *
3057 c_path_expr_of_child (struct varobj *child)
3058 {
3059   c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3060 		    &child->path_expr);
3061   return child->path_expr;
3062 }
3063 
3064 /* If frame associated with VAR can be found, switch
3065    to it and return 1.  Otherwise, return 0.  */
3066 static int
3067 check_scope (struct varobj *var)
3068 {
3069   struct frame_info *fi;
3070   int scope;
3071 
3072   fi = frame_find_by_id (var->root->frame);
3073   scope = fi != NULL;
3074 
3075   if (fi)
3076     {
3077       CORE_ADDR pc = get_frame_pc (fi);
3078 
3079       if (pc <  BLOCK_START (var->root->valid_block) ||
3080 	  pc >= BLOCK_END (var->root->valid_block))
3081 	scope = 0;
3082       else
3083 	select_frame (fi);
3084     }
3085   return scope;
3086 }
3087 
3088 static struct value *
3089 c_value_of_root (struct varobj **var_handle)
3090 {
3091   struct value *new_val = NULL;
3092   struct varobj *var = *var_handle;
3093   int within_scope = 0;
3094   struct cleanup *back_to;
3095 
3096   /*  Only root variables can be updated...  */
3097   if (!is_root_p (var))
3098     /* Not a root var.  */
3099     return NULL;
3100 
3101   back_to = make_cleanup_restore_current_thread ();
3102 
3103   /* Determine whether the variable is still around.  */
3104   if (var->root->valid_block == NULL || var->root->floating)
3105     within_scope = 1;
3106   else if (var->root->thread_id == 0)
3107     {
3108       /* The program was single-threaded when the variable object was
3109 	 created.  Technically, it's possible that the program became
3110 	 multi-threaded since then, but we don't support such
3111 	 scenario yet.  */
3112       within_scope = check_scope (var);
3113     }
3114   else
3115     {
3116       ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3117       if (in_thread_list (ptid))
3118 	{
3119 	  switch_to_thread (ptid);
3120 	  within_scope = check_scope (var);
3121 	}
3122     }
3123 
3124   if (within_scope)
3125     {
3126       /* We need to catch errors here, because if evaluate
3127          expression fails we want to just return NULL.  */
3128       gdb_evaluate_expression (var->root->exp, &new_val);
3129       return new_val;
3130     }
3131 
3132   do_cleanups (back_to);
3133 
3134   return NULL;
3135 }
3136 
3137 static struct value *
3138 c_value_of_child (struct varobj *parent, int index)
3139 {
3140   struct value *value = NULL;
3141 
3142   c_describe_child (parent, index, NULL, &value, NULL, NULL);
3143   return value;
3144 }
3145 
3146 static struct type *
3147 c_type_of_child (struct varobj *parent, int index)
3148 {
3149   struct type *type = NULL;
3150 
3151   c_describe_child (parent, index, NULL, NULL, &type, NULL);
3152   return type;
3153 }
3154 
3155 static char *
3156 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3157 {
3158   /* BOGUS: if val_print sees a struct/class, or a reference to one,
3159      it will print out its children instead of "{...}".  So we need to
3160      catch that case explicitly.  */
3161   struct type *type = get_type (var);
3162 
3163   /* If we have a custom formatter, return whatever string it has
3164      produced.  */
3165   if (var->pretty_printer && var->print_value)
3166     return xstrdup (var->print_value);
3167 
3168   /* Strip top-level references.  */
3169   while (TYPE_CODE (type) == TYPE_CODE_REF)
3170     type = check_typedef (TYPE_TARGET_TYPE (type));
3171 
3172   switch (TYPE_CODE (type))
3173     {
3174     case TYPE_CODE_STRUCT:
3175     case TYPE_CODE_UNION:
3176       return xstrdup ("{...}");
3177       /* break; */
3178 
3179     case TYPE_CODE_ARRAY:
3180       {
3181 	char *number;
3182 
3183 	number = xstrprintf ("[%d]", var->num_children);
3184 	return (number);
3185       }
3186       /* break; */
3187 
3188     default:
3189       {
3190 	if (var->value == NULL)
3191 	  {
3192 	    /* This can happen if we attempt to get the value of a struct
3193 	       member when the parent is an invalid pointer.  This is an
3194 	       error condition, so we should tell the caller.  */
3195 	    return NULL;
3196 	  }
3197 	else
3198 	  {
3199 	    if (var->not_fetched && value_lazy (var->value))
3200 	      /* Frozen variable and no value yet.  We don't
3201 		 implicitly fetch the value.  MI response will
3202 		 use empty string for the value, which is OK.  */
3203 	      return NULL;
3204 
3205 	    gdb_assert (varobj_value_is_changeable_p (var));
3206 	    gdb_assert (!value_lazy (var->value));
3207 
3208 	    /* If the specified format is the current one,
3209 	       we can reuse print_value.  */
3210 	    if (format == var->format)
3211 	      return xstrdup (var->print_value);
3212 	    else
3213 	      return value_get_print_value (var->value, format, var);
3214 	  }
3215       }
3216     }
3217 }
3218 
3219 
3220 /* C++ */
3221 
3222 static int
3223 cplus_number_of_children (struct varobj *var)
3224 {
3225   struct type *type;
3226   int children, dont_know;
3227 
3228   dont_know = 1;
3229   children = 0;
3230 
3231   if (!CPLUS_FAKE_CHILD (var))
3232     {
3233       type = get_value_type (var);
3234       adjust_value_for_child_access (NULL, &type, NULL);
3235 
3236       if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3237 	  ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3238 	{
3239 	  int kids[3];
3240 
3241 	  cplus_class_num_children (type, kids);
3242 	  if (kids[v_public] != 0)
3243 	    children++;
3244 	  if (kids[v_private] != 0)
3245 	    children++;
3246 	  if (kids[v_protected] != 0)
3247 	    children++;
3248 
3249 	  /* Add any baseclasses.  */
3250 	  children += TYPE_N_BASECLASSES (type);
3251 	  dont_know = 0;
3252 
3253 	  /* FIXME: save children in var.  */
3254 	}
3255     }
3256   else
3257     {
3258       int kids[3];
3259 
3260       type = get_value_type (var->parent);
3261       adjust_value_for_child_access (NULL, &type, NULL);
3262 
3263       cplus_class_num_children (type, kids);
3264       if (strcmp (var->name, "public") == 0)
3265 	children = kids[v_public];
3266       else if (strcmp (var->name, "private") == 0)
3267 	children = kids[v_private];
3268       else
3269 	children = kids[v_protected];
3270       dont_know = 0;
3271     }
3272 
3273   if (dont_know)
3274     children = c_number_of_children (var);
3275 
3276   return children;
3277 }
3278 
3279 /* Compute # of public, private, and protected variables in this class.
3280    That means we need to descend into all baseclasses and find out
3281    how many are there, too.  */
3282 static void
3283 cplus_class_num_children (struct type *type, int children[3])
3284 {
3285   int i, vptr_fieldno;
3286   struct type *basetype = NULL;
3287 
3288   children[v_public] = 0;
3289   children[v_private] = 0;
3290   children[v_protected] = 0;
3291 
3292   vptr_fieldno = get_vptr_fieldno (type, &basetype);
3293   for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3294     {
3295       /* If we have a virtual table pointer, omit it.  Even if virtual
3296 	 table pointers are not specifically marked in the debug info,
3297 	 they should be artificial.  */
3298       if ((type == basetype && i == vptr_fieldno)
3299 	  || TYPE_FIELD_ARTIFICIAL (type, i))
3300 	continue;
3301 
3302       if (TYPE_FIELD_PROTECTED (type, i))
3303 	children[v_protected]++;
3304       else if (TYPE_FIELD_PRIVATE (type, i))
3305 	children[v_private]++;
3306       else
3307 	children[v_public]++;
3308     }
3309 }
3310 
3311 static char *
3312 cplus_name_of_variable (struct varobj *parent)
3313 {
3314   return c_name_of_variable (parent);
3315 }
3316 
3317 enum accessibility { private_field, protected_field, public_field };
3318 
3319 /* Check if field INDEX of TYPE has the specified accessibility.
3320    Return 0 if so and 1 otherwise.  */
3321 static int
3322 match_accessibility (struct type *type, int index, enum accessibility acc)
3323 {
3324   if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3325     return 1;
3326   else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3327     return 1;
3328   else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3329 	   && !TYPE_FIELD_PROTECTED (type, index))
3330     return 1;
3331   else
3332     return 0;
3333 }
3334 
3335 static void
3336 cplus_describe_child (struct varobj *parent, int index,
3337 		      char **cname, struct value **cvalue, struct type **ctype,
3338 		      char **cfull_expression)
3339 {
3340   struct value *value;
3341   struct type *type;
3342   int was_ptr;
3343   char *parent_expression = NULL;
3344 
3345   if (cname)
3346     *cname = NULL;
3347   if (cvalue)
3348     *cvalue = NULL;
3349   if (ctype)
3350     *ctype = NULL;
3351   if (cfull_expression)
3352     *cfull_expression = NULL;
3353 
3354   if (CPLUS_FAKE_CHILD (parent))
3355     {
3356       value = parent->parent->value;
3357       type = get_value_type (parent->parent);
3358       if (cfull_expression)
3359 	parent_expression = varobj_get_path_expr (parent->parent);
3360     }
3361   else
3362     {
3363       value = parent->value;
3364       type = get_value_type (parent);
3365       if (cfull_expression)
3366 	parent_expression = varobj_get_path_expr (parent);
3367     }
3368 
3369   adjust_value_for_child_access (&value, &type, &was_ptr);
3370 
3371   if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3372       || TYPE_CODE (type) == TYPE_CODE_UNION)
3373     {
3374       char *join = was_ptr ? "->" : ".";
3375 
3376       if (CPLUS_FAKE_CHILD (parent))
3377 	{
3378 	  /* The fields of the class type are ordered as they
3379 	     appear in the class.  We are given an index for a
3380 	     particular access control type ("public","protected",
3381 	     or "private").  We must skip over fields that don't
3382 	     have the access control we are looking for to properly
3383 	     find the indexed field.  */
3384 	  int type_index = TYPE_N_BASECLASSES (type);
3385 	  enum accessibility acc = public_field;
3386 	  int vptr_fieldno;
3387 	  struct type *basetype = NULL;
3388 
3389 	  vptr_fieldno = get_vptr_fieldno (type, &basetype);
3390 	  if (strcmp (parent->name, "private") == 0)
3391 	    acc = private_field;
3392 	  else if (strcmp (parent->name, "protected") == 0)
3393 	    acc = protected_field;
3394 
3395 	  while (index >= 0)
3396 	    {
3397 	      if ((type == basetype && type_index == vptr_fieldno)
3398 		  || TYPE_FIELD_ARTIFICIAL (type, type_index))
3399 		; /* ignore vptr */
3400 	      else if (match_accessibility (type, type_index, acc))
3401 		    --index;
3402 		  ++type_index;
3403 	    }
3404 	  --type_index;
3405 
3406 	  if (cname)
3407 	    *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3408 
3409 	  if (cvalue && value)
3410 	    *cvalue = value_struct_element_index (value, type_index);
3411 
3412 	  if (ctype)
3413 	    *ctype = TYPE_FIELD_TYPE (type, type_index);
3414 
3415 	  if (cfull_expression)
3416 	    *cfull_expression
3417 	      = xstrprintf ("((%s)%s%s)", parent_expression,
3418 			    join,
3419 			    TYPE_FIELD_NAME (type, type_index));
3420 	}
3421       else if (index < TYPE_N_BASECLASSES (type))
3422 	{
3423 	  /* This is a baseclass.  */
3424 	  if (cname)
3425 	    *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3426 
3427 	  if (cvalue && value)
3428 	    *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3429 
3430 	  if (ctype)
3431 	    {
3432 	      *ctype = TYPE_FIELD_TYPE (type, index);
3433 	    }
3434 
3435 	  if (cfull_expression)
3436 	    {
3437 	      char *ptr = was_ptr ? "*" : "";
3438 
3439 	      /* Cast the parent to the base' type.  Note that in gdb,
3440 		 expression like
3441 		         (Base1)d
3442 		 will create an lvalue, for all appearences, so we don't
3443 		 need to use more fancy:
3444 		         *(Base1*)(&d)
3445 		 construct.
3446 
3447 		 When we are in the scope of the base class or of one
3448 		 of its children, the type field name will be interpreted
3449 		 as a constructor, if it exists.  Therefore, we must
3450 		 indicate that the name is a class name by using the
3451 		 'class' keyword.  See PR mi/11912  */
3452 	      *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3453 					      ptr,
3454 					      TYPE_FIELD_NAME (type, index),
3455 					      ptr,
3456 					      parent_expression);
3457 	    }
3458 	}
3459       else
3460 	{
3461 	  char *access = NULL;
3462 	  int children[3];
3463 
3464 	  cplus_class_num_children (type, children);
3465 
3466 	  /* Everything beyond the baseclasses can
3467 	     only be "public", "private", or "protected"
3468 
3469 	     The special "fake" children are always output by varobj in
3470 	     this order.  So if INDEX == 2, it MUST be "protected".  */
3471 	  index -= TYPE_N_BASECLASSES (type);
3472 	  switch (index)
3473 	    {
3474 	    case 0:
3475 	      if (children[v_public] > 0)
3476 	 	access = "public";
3477 	      else if (children[v_private] > 0)
3478 	 	access = "private";
3479 	      else
3480 	 	access = "protected";
3481 	      break;
3482 	    case 1:
3483 	      if (children[v_public] > 0)
3484 		{
3485 		  if (children[v_private] > 0)
3486 		    access = "private";
3487 		  else
3488 		    access = "protected";
3489 		}
3490 	      else if (children[v_private] > 0)
3491 	 	access = "protected";
3492 	      break;
3493 	    case 2:
3494 	      /* Must be protected.  */
3495 	      access = "protected";
3496 	      break;
3497 	    default:
3498 	      /* error!  */
3499 	      break;
3500 	    }
3501 
3502 	  gdb_assert (access);
3503 	  if (cname)
3504 	    *cname = xstrdup (access);
3505 
3506 	  /* Value and type and full expression are null here.  */
3507 	}
3508     }
3509   else
3510     {
3511       c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3512     }
3513 }
3514 
3515 static char *
3516 cplus_name_of_child (struct varobj *parent, int index)
3517 {
3518   char *name = NULL;
3519 
3520   cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3521   return name;
3522 }
3523 
3524 static char *
3525 cplus_path_expr_of_child (struct varobj *child)
3526 {
3527   cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3528 			&child->path_expr);
3529   return child->path_expr;
3530 }
3531 
3532 static struct value *
3533 cplus_value_of_root (struct varobj **var_handle)
3534 {
3535   return c_value_of_root (var_handle);
3536 }
3537 
3538 static struct value *
3539 cplus_value_of_child (struct varobj *parent, int index)
3540 {
3541   struct value *value = NULL;
3542 
3543   cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3544   return value;
3545 }
3546 
3547 static struct type *
3548 cplus_type_of_child (struct varobj *parent, int index)
3549 {
3550   struct type *type = NULL;
3551 
3552   cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3553   return type;
3554 }
3555 
3556 static char *
3557 cplus_value_of_variable (struct varobj *var,
3558 			 enum varobj_display_formats format)
3559 {
3560 
3561   /* If we have one of our special types, don't print out
3562      any value.  */
3563   if (CPLUS_FAKE_CHILD (var))
3564     return xstrdup ("");
3565 
3566   return c_value_of_variable (var, format);
3567 }
3568 
3569 /* Java */
3570 
3571 static int
3572 java_number_of_children (struct varobj *var)
3573 {
3574   return cplus_number_of_children (var);
3575 }
3576 
3577 static char *
3578 java_name_of_variable (struct varobj *parent)
3579 {
3580   char *p, *name;
3581 
3582   name = cplus_name_of_variable (parent);
3583   /* If  the name has "-" in it, it is because we
3584      needed to escape periods in the name...  */
3585   p = name;
3586 
3587   while (*p != '\000')
3588     {
3589       if (*p == '-')
3590 	*p = '.';
3591       p++;
3592     }
3593 
3594   return name;
3595 }
3596 
3597 static char *
3598 java_name_of_child (struct varobj *parent, int index)
3599 {
3600   char *name, *p;
3601 
3602   name = cplus_name_of_child (parent, index);
3603   /* Escape any periods in the name...  */
3604   p = name;
3605 
3606   while (*p != '\000')
3607     {
3608       if (*p == '.')
3609 	*p = '-';
3610       p++;
3611     }
3612 
3613   return name;
3614 }
3615 
3616 static char *
3617 java_path_expr_of_child (struct varobj *child)
3618 {
3619   return NULL;
3620 }
3621 
3622 static struct value *
3623 java_value_of_root (struct varobj **var_handle)
3624 {
3625   return cplus_value_of_root (var_handle);
3626 }
3627 
3628 static struct value *
3629 java_value_of_child (struct varobj *parent, int index)
3630 {
3631   return cplus_value_of_child (parent, index);
3632 }
3633 
3634 static struct type *
3635 java_type_of_child (struct varobj *parent, int index)
3636 {
3637   return cplus_type_of_child (parent, index);
3638 }
3639 
3640 static char *
3641 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3642 {
3643   return cplus_value_of_variable (var, format);
3644 }
3645 
3646 /* Ada specific callbacks for VAROBJs.  */
3647 
3648 static int
3649 ada_number_of_children (struct varobj *var)
3650 {
3651   return c_number_of_children (var);
3652 }
3653 
3654 static char *
3655 ada_name_of_variable (struct varobj *parent)
3656 {
3657   return c_name_of_variable (parent);
3658 }
3659 
3660 static char *
3661 ada_name_of_child (struct varobj *parent, int index)
3662 {
3663   return c_name_of_child (parent, index);
3664 }
3665 
3666 static char*
3667 ada_path_expr_of_child (struct varobj *child)
3668 {
3669   return c_path_expr_of_child (child);
3670 }
3671 
3672 static struct value *
3673 ada_value_of_root (struct varobj **var_handle)
3674 {
3675   return c_value_of_root (var_handle);
3676 }
3677 
3678 static struct value *
3679 ada_value_of_child (struct varobj *parent, int index)
3680 {
3681   return c_value_of_child (parent, index);
3682 }
3683 
3684 static struct type *
3685 ada_type_of_child (struct varobj *parent, int index)
3686 {
3687   return c_type_of_child (parent, index);
3688 }
3689 
3690 static char *
3691 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3692 {
3693   return c_value_of_variable (var, format);
3694 }
3695 
3696 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3697    with an arbitrary caller supplied DATA pointer.  */
3698 
3699 void
3700 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3701 {
3702   struct varobj_root *var_root, *var_root_next;
3703 
3704   /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */
3705 
3706   for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3707     {
3708       var_root_next = var_root->next;
3709 
3710       (*func) (var_root->rootvar, data);
3711     }
3712 }
3713 
3714 extern void _initialize_varobj (void);
3715 void
3716 _initialize_varobj (void)
3717 {
3718   int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3719 
3720   varobj_table = xmalloc (sizeof_table);
3721   memset (varobj_table, 0, sizeof_table);
3722 
3723   add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3724 			    &varobjdebug,
3725 			    _("Set varobj debugging."),
3726 			    _("Show varobj debugging."),
3727 			    _("When non-zero, varobj debugging is enabled."),
3728 			    NULL, show_varobjdebug,
3729 			    &setlist, &showlist);
3730 }
3731 
3732 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3733    defined on globals.  It is a helper for varobj_invalidate.  */
3734 
3735 static void
3736 varobj_invalidate_iter (struct varobj *var, void *unused)
3737 {
3738   /* Floating varobjs are reparsed on each stop, so we don't care if the
3739      presently parsed expression refers to something that's gone.  */
3740   if (var->root->floating)
3741     return;
3742 
3743   /* global var must be re-evaluated.  */
3744   if (var->root->valid_block == NULL)
3745     {
3746       struct varobj *tmp_var;
3747 
3748       /* Try to create a varobj with same expression.  If we succeed
3749 	 replace the old varobj, otherwise invalidate it.  */
3750       tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3751 			       USE_CURRENT_FRAME);
3752       if (tmp_var != NULL)
3753 	{
3754 	  tmp_var->obj_name = xstrdup (var->obj_name);
3755 	  varobj_delete (var, NULL, 0);
3756 	  install_variable (tmp_var);
3757 	}
3758       else
3759 	var->root->is_valid = 0;
3760     }
3761   else /* locals must be invalidated.  */
3762     var->root->is_valid = 0;
3763 }
3764 
3765 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3766    are defined on globals.
3767    Invalidated varobjs will be always printed in_scope="invalid".  */
3768 
3769 void
3770 varobj_invalidate (void)
3771 {
3772   all_root_varobjs (varobj_invalidate_iter, NULL);
3773 }
3774