1 /* An expandable hash tables datatype. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010 3 Free Software Foundation, Inc. 4 Contributed by Vladimir Makarov (vmakarov@cygnus.com). 5 6 This file is part of the libiberty library. 7 Libiberty is free software; you can redistribute it and/or 8 modify it under the terms of the GNU Library General Public 9 License as published by the Free Software Foundation; either 10 version 2 of the License, or (at your option) any later version. 11 12 Libiberty is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 Library General Public License for more details. 16 17 You should have received a copy of the GNU Library General Public 18 License along with libiberty; see the file COPYING.LIB. If 19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, 20 Boston, MA 02110-1301, USA. */ 21 22 /* This package implements basic hash table functionality. It is possible 23 to search for an entry, create an entry and destroy an entry. 24 25 Elements in the table are generic pointers. 26 27 The size of the table is not fixed; if the occupancy of the table 28 grows too high the hash table will be expanded. 29 30 The abstract data implementation is based on generalized Algorithm D 31 from Knuth's book "The art of computer programming". Hash table is 32 expanded by creation of new hash table and transferring elements from 33 the old table to the new table. */ 34 35 #ifdef HAVE_CONFIG_H 36 #include "config.h" 37 #endif 38 39 #include <sys/types.h> 40 41 #ifdef HAVE_STDLIB_H 42 #include <stdlib.h> 43 #endif 44 #ifdef HAVE_STRING_H 45 #include <string.h> 46 #endif 47 #ifdef HAVE_MALLOC_H 48 #include <malloc.h> 49 #endif 50 #ifdef HAVE_LIMITS_H 51 #include <limits.h> 52 #endif 53 #ifdef HAVE_INTTYPES_H 54 #include <inttypes.h> 55 #endif 56 #ifdef HAVE_STDINT_H 57 #include <stdint.h> 58 #endif 59 60 #include <stdio.h> 61 62 #include "libiberty.h" 63 #include "ansidecl.h" 64 #include "hashtab.h" 65 66 #ifndef CHAR_BIT 67 #define CHAR_BIT 8 68 #endif 69 70 static unsigned int higher_prime_index (unsigned long); 71 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); 72 static hashval_t htab_mod (hashval_t, htab_t); 73 static hashval_t htab_mod_m2 (hashval_t, htab_t); 74 static hashval_t hash_pointer (const void *); 75 static int eq_pointer (const void *, const void *); 76 static int htab_expand (htab_t); 77 static PTR *find_empty_slot_for_expand (htab_t, hashval_t); 78 79 /* At some point, we could make these be NULL, and modify the 80 hash-table routines to handle NULL specially; that would avoid 81 function-call overhead for the common case of hashing pointers. */ 82 htab_hash htab_hash_pointer = hash_pointer; 83 htab_eq htab_eq_pointer = eq_pointer; 84 85 /* Table of primes and multiplicative inverses. 86 87 Note that these are not minimally reduced inverses. Unlike when generating 88 code to divide by a constant, we want to be able to use the same algorithm 89 all the time. All of these inverses (are implied to) have bit 32 set. 90 91 For the record, here's the function that computed the table; it's a 92 vastly simplified version of the function of the same name from gcc. */ 93 94 #if 0 95 unsigned int 96 ceil_log2 (unsigned int x) 97 { 98 int i; 99 for (i = 31; i >= 0 ; --i) 100 if (x > (1u << i)) 101 return i+1; 102 abort (); 103 } 104 105 unsigned int 106 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) 107 { 108 unsigned long long mhigh; 109 double nx; 110 int lgup, post_shift; 111 int pow, pow2; 112 int n = 32, precision = 32; 113 114 lgup = ceil_log2 (d); 115 pow = n + lgup; 116 pow2 = n + lgup - precision; 117 118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2); 119 mhigh = nx / d; 120 121 *shiftp = lgup - 1; 122 *mlp = mhigh; 123 return mhigh >> 32; 124 } 125 #endif 126 127 struct prime_ent 128 { 129 hashval_t prime; 130 hashval_t inv; 131 hashval_t inv_m2; /* inverse of prime-2 */ 132 hashval_t shift; 133 }; 134 135 static struct prime_ent const prime_tab[] = { 136 { 7, 0x24924925, 0x9999999b, 2 }, 137 { 13, 0x3b13b13c, 0x745d1747, 3 }, 138 { 31, 0x08421085, 0x1a7b9612, 4 }, 139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 }, 140 { 127, 0x02040811, 0x0624dd30, 6 }, 141 { 251, 0x05197f7e, 0x073260a5, 7 }, 142 { 509, 0x01824366, 0x02864fc8, 8 }, 143 { 1021, 0x00c0906d, 0x014191f7, 9 }, 144 { 2039, 0x0121456f, 0x0161e69e, 10 }, 145 { 4093, 0x00300902, 0x00501908, 11 }, 146 { 8191, 0x00080041, 0x00180241, 12 }, 147 { 16381, 0x000c0091, 0x00140191, 13 }, 148 { 32749, 0x002605a5, 0x002a06e6, 14 }, 149 { 65521, 0x000f00e2, 0x00110122, 15 }, 150 { 131071, 0x00008001, 0x00018003, 16 }, 151 { 262139, 0x00014002, 0x0001c004, 17 }, 152 { 524287, 0x00002001, 0x00006001, 18 }, 153 { 1048573, 0x00003001, 0x00005001, 19 }, 154 { 2097143, 0x00004801, 0x00005801, 20 }, 155 { 4194301, 0x00000c01, 0x00001401, 21 }, 156 { 8388593, 0x00001e01, 0x00002201, 22 }, 157 { 16777213, 0x00000301, 0x00000501, 23 }, 158 { 33554393, 0x00001381, 0x00001481, 24 }, 159 { 67108859, 0x00000141, 0x000001c1, 25 }, 160 { 134217689, 0x000004e1, 0x00000521, 26 }, 161 { 268435399, 0x00000391, 0x000003b1, 27 }, 162 { 536870909, 0x00000019, 0x00000029, 28 }, 163 { 1073741789, 0x0000008d, 0x00000095, 29 }, 164 { 2147483647, 0x00000003, 0x00000007, 30 }, 165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */ 166 { 0xfffffffb, 0x00000006, 0x00000008, 31 } 167 }; 168 169 /* The following function returns an index into the above table of the 170 nearest prime number which is greater than N, and near a power of two. */ 171 172 static unsigned int 173 higher_prime_index (unsigned long n) 174 { 175 unsigned int low = 0; 176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); 177 178 while (low != high) 179 { 180 unsigned int mid = low + (high - low) / 2; 181 if (n > prime_tab[mid].prime) 182 low = mid + 1; 183 else 184 high = mid; 185 } 186 187 /* If we've run out of primes, abort. */ 188 if (n > prime_tab[low].prime) 189 { 190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n); 191 abort (); 192 } 193 194 return low; 195 } 196 197 /* Returns a hash code for P. */ 198 199 static hashval_t 200 hash_pointer (const PTR p) 201 { 202 return (hashval_t) ((intptr_t)p >> 3); 203 } 204 205 /* Returns non-zero if P1 and P2 are equal. */ 206 207 static int 208 eq_pointer (const PTR p1, const PTR p2) 209 { 210 return p1 == p2; 211 } 212 213 214 /* The parens around the function names in the next two definitions 215 are essential in order to prevent macro expansions of the name. 216 The bodies, however, are expanded as expected, so they are not 217 recursive definitions. */ 218 219 /* Return the current size of given hash table. */ 220 221 #define htab_size(htab) ((htab)->size) 222 223 size_t 224 (htab_size) (htab_t htab) 225 { 226 return htab_size (htab); 227 } 228 229 /* Return the current number of elements in given hash table. */ 230 231 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted) 232 233 size_t 234 (htab_elements) (htab_t htab) 235 { 236 return htab_elements (htab); 237 } 238 239 /* Return X % Y. */ 240 241 static inline hashval_t 242 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) 243 { 244 /* The multiplicative inverses computed above are for 32-bit types, and 245 requires that we be able to compute a highpart multiply. */ 246 #ifdef UNSIGNED_64BIT_TYPE 247 __extension__ typedef UNSIGNED_64BIT_TYPE ull; 248 if (sizeof (hashval_t) * CHAR_BIT <= 32) 249 { 250 hashval_t t1, t2, t3, t4, q, r; 251 252 t1 = ((ull)x * inv) >> 32; 253 t2 = x - t1; 254 t3 = t2 >> 1; 255 t4 = t1 + t3; 256 q = t4 >> shift; 257 r = x - (q * y); 258 259 return r; 260 } 261 #endif 262 263 /* Otherwise just use the native division routines. */ 264 return x % y; 265 } 266 267 /* Compute the primary hash for HASH given HTAB's current size. */ 268 269 static inline hashval_t 270 htab_mod (hashval_t hash, htab_t htab) 271 { 272 const struct prime_ent *p = &prime_tab[htab->size_prime_index]; 273 return htab_mod_1 (hash, p->prime, p->inv, p->shift); 274 } 275 276 /* Compute the secondary hash for HASH given HTAB's current size. */ 277 278 static inline hashval_t 279 htab_mod_m2 (hashval_t hash, htab_t htab) 280 { 281 const struct prime_ent *p = &prime_tab[htab->size_prime_index]; 282 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); 283 } 284 285 /* This function creates table with length slightly longer than given 286 source length. Created hash table is initiated as empty (all the 287 hash table entries are HTAB_EMPTY_ENTRY). The function returns the 288 created hash table, or NULL if memory allocation fails. */ 289 290 htab_t 291 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, 292 htab_del del_f, htab_alloc alloc_f, htab_free free_f) 293 { 294 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f, 295 free_f); 296 } 297 298 /* As above, but uses the variants of ALLOC_F and FREE_F which accept 299 an extra argument. */ 300 301 htab_t 302 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, 303 htab_del del_f, void *alloc_arg, 304 htab_alloc_with_arg alloc_f, 305 htab_free_with_arg free_f) 306 { 307 htab_t result; 308 unsigned int size_prime_index; 309 310 size_prime_index = higher_prime_index (size); 311 size = prime_tab[size_prime_index].prime; 312 313 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); 314 if (result == NULL) 315 return NULL; 316 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR)); 317 if (result->entries == NULL) 318 { 319 if (free_f != NULL) 320 (*free_f) (alloc_arg, result); 321 return NULL; 322 } 323 result->size = size; 324 result->size_prime_index = size_prime_index; 325 result->hash_f = hash_f; 326 result->eq_f = eq_f; 327 result->del_f = del_f; 328 result->alloc_arg = alloc_arg; 329 result->alloc_with_arg_f = alloc_f; 330 result->free_with_arg_f = free_f; 331 return result; 332 } 333 334 /* 335 336 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @ 337 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @ 338 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @ 339 htab_free @var{free_f}) 340 341 This function creates a hash table that uses two different allocators 342 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself 343 and its entries respectively. This is useful when variables of different 344 types need to be allocated with different allocators. 345 346 The created hash table is slightly larger than @var{size} and it is 347 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}). 348 The function returns the created hash table, or @code{NULL} if memory 349 allocation fails. 350 351 @end deftypefn 352 353 */ 354 355 htab_t 356 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, 357 htab_del del_f, htab_alloc alloc_tab_f, 358 htab_alloc alloc_f, htab_free free_f) 359 { 360 htab_t result; 361 unsigned int size_prime_index; 362 363 size_prime_index = higher_prime_index (size); 364 size = prime_tab[size_prime_index].prime; 365 366 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab)); 367 if (result == NULL) 368 return NULL; 369 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR)); 370 if (result->entries == NULL) 371 { 372 if (free_f != NULL) 373 (*free_f) (result); 374 return NULL; 375 } 376 result->size = size; 377 result->size_prime_index = size_prime_index; 378 result->hash_f = hash_f; 379 result->eq_f = eq_f; 380 result->del_f = del_f; 381 result->alloc_f = alloc_f; 382 result->free_f = free_f; 383 return result; 384 } 385 386 387 /* Update the function pointers and allocation parameter in the htab_t. */ 388 389 void 390 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, 391 htab_del del_f, PTR alloc_arg, 392 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) 393 { 394 htab->hash_f = hash_f; 395 htab->eq_f = eq_f; 396 htab->del_f = del_f; 397 htab->alloc_arg = alloc_arg; 398 htab->alloc_with_arg_f = alloc_f; 399 htab->free_with_arg_f = free_f; 400 } 401 402 /* These functions exist solely for backward compatibility. */ 403 404 #undef htab_create 405 htab_t 406 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) 407 { 408 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); 409 } 410 411 htab_t 412 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) 413 { 414 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); 415 } 416 417 /* This function frees all memory allocated for given hash table. 418 Naturally the hash table must already exist. */ 419 420 void 421 htab_delete (htab_t htab) 422 { 423 size_t size = htab_size (htab); 424 PTR *entries = htab->entries; 425 int i; 426 427 if (htab->del_f) 428 for (i = size - 1; i >= 0; i--) 429 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) 430 (*htab->del_f) (entries[i]); 431 432 if (htab->free_f != NULL) 433 { 434 (*htab->free_f) (entries); 435 (*htab->free_f) (htab); 436 } 437 else if (htab->free_with_arg_f != NULL) 438 { 439 (*htab->free_with_arg_f) (htab->alloc_arg, entries); 440 (*htab->free_with_arg_f) (htab->alloc_arg, htab); 441 } 442 } 443 444 /* This function clears all entries in the given hash table. */ 445 446 void 447 htab_empty (htab_t htab) 448 { 449 size_t size = htab_size (htab); 450 PTR *entries = htab->entries; 451 int i; 452 453 if (htab->del_f) 454 for (i = size - 1; i >= 0; i--) 455 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) 456 (*htab->del_f) (entries[i]); 457 458 /* Instead of clearing megabyte, downsize the table. */ 459 if (size > 1024*1024 / sizeof (PTR)) 460 { 461 int nindex = higher_prime_index (1024 / sizeof (PTR)); 462 int nsize = prime_tab[nindex].prime; 463 464 if (htab->free_f != NULL) 465 (*htab->free_f) (htab->entries); 466 else if (htab->free_with_arg_f != NULL) 467 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); 468 if (htab->alloc_with_arg_f != NULL) 469 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, 470 sizeof (PTR *)); 471 else 472 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); 473 htab->size = nsize; 474 htab->size_prime_index = nindex; 475 } 476 else 477 memset (entries, 0, size * sizeof (PTR)); 478 htab->n_deleted = 0; 479 htab->n_elements = 0; 480 } 481 482 /* Similar to htab_find_slot, but without several unwanted side effects: 483 - Does not call htab->eq_f when it finds an existing entry. 484 - Does not change the count of elements/searches/collisions in the 485 hash table. 486 This function also assumes there are no deleted entries in the table. 487 HASH is the hash value for the element to be inserted. */ 488 489 static PTR * 490 find_empty_slot_for_expand (htab_t htab, hashval_t hash) 491 { 492 hashval_t index = htab_mod (hash, htab); 493 size_t size = htab_size (htab); 494 PTR *slot = htab->entries + index; 495 hashval_t hash2; 496 497 if (*slot == HTAB_EMPTY_ENTRY) 498 return slot; 499 else if (*slot == HTAB_DELETED_ENTRY) 500 abort (); 501 502 hash2 = htab_mod_m2 (hash, htab); 503 for (;;) 504 { 505 index += hash2; 506 if (index >= size) 507 index -= size; 508 509 slot = htab->entries + index; 510 if (*slot == HTAB_EMPTY_ENTRY) 511 return slot; 512 else if (*slot == HTAB_DELETED_ENTRY) 513 abort (); 514 } 515 } 516 517 /* The following function changes size of memory allocated for the 518 entries and repeatedly inserts the table elements. The occupancy 519 of the table after the call will be about 50%. Naturally the hash 520 table must already exist. Remember also that the place of the 521 table entries is changed. If memory allocation failures are allowed, 522 this function will return zero, indicating that the table could not be 523 expanded. If all goes well, it will return a non-zero value. */ 524 525 static int 526 htab_expand (htab_t htab) 527 { 528 PTR *oentries; 529 PTR *olimit; 530 PTR *p; 531 PTR *nentries; 532 size_t nsize, osize, elts; 533 unsigned int oindex, nindex; 534 535 oentries = htab->entries; 536 oindex = htab->size_prime_index; 537 osize = htab->size; 538 olimit = oentries + osize; 539 elts = htab_elements (htab); 540 541 /* Resize only when table after removal of unused elements is either 542 too full or too empty. */ 543 if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) 544 { 545 nindex = higher_prime_index (elts * 2); 546 nsize = prime_tab[nindex].prime; 547 } 548 else 549 { 550 nindex = oindex; 551 nsize = osize; 552 } 553 554 if (htab->alloc_with_arg_f != NULL) 555 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, 556 sizeof (PTR *)); 557 else 558 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); 559 if (nentries == NULL) 560 return 0; 561 htab->entries = nentries; 562 htab->size = nsize; 563 htab->size_prime_index = nindex; 564 htab->n_elements -= htab->n_deleted; 565 htab->n_deleted = 0; 566 567 p = oentries; 568 do 569 { 570 PTR x = *p; 571 572 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) 573 { 574 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); 575 576 *q = x; 577 } 578 579 p++; 580 } 581 while (p < olimit); 582 583 if (htab->free_f != NULL) 584 (*htab->free_f) (oentries); 585 else if (htab->free_with_arg_f != NULL) 586 (*htab->free_with_arg_f) (htab->alloc_arg, oentries); 587 return 1; 588 } 589 590 /* This function searches for a hash table entry equal to the given 591 element. It cannot be used to insert or delete an element. */ 592 593 PTR 594 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash) 595 { 596 hashval_t index, hash2; 597 size_t size; 598 PTR entry; 599 600 htab->searches++; 601 size = htab_size (htab); 602 index = htab_mod (hash, htab); 603 604 entry = htab->entries[index]; 605 if (entry == HTAB_EMPTY_ENTRY 606 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) 607 return entry; 608 609 hash2 = htab_mod_m2 (hash, htab); 610 for (;;) 611 { 612 htab->collisions++; 613 index += hash2; 614 if (index >= size) 615 index -= size; 616 617 entry = htab->entries[index]; 618 if (entry == HTAB_EMPTY_ENTRY 619 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) 620 return entry; 621 } 622 } 623 624 /* Like htab_find_slot_with_hash, but compute the hash value from the 625 element. */ 626 627 PTR 628 htab_find (htab_t htab, const PTR element) 629 { 630 return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); 631 } 632 633 /* This function searches for a hash table slot containing an entry 634 equal to the given element. To delete an entry, call this with 635 insert=NO_INSERT, then call htab_clear_slot on the slot returned 636 (possibly after doing some checks). To insert an entry, call this 637 with insert=INSERT, then write the value you want into the returned 638 slot. When inserting an entry, NULL may be returned if memory 639 allocation fails. */ 640 641 PTR * 642 htab_find_slot_with_hash (htab_t htab, const PTR element, 643 hashval_t hash, enum insert_option insert) 644 { 645 PTR *first_deleted_slot; 646 hashval_t index, hash2; 647 size_t size; 648 PTR entry; 649 650 size = htab_size (htab); 651 if (insert == INSERT && size * 3 <= htab->n_elements * 4) 652 { 653 if (htab_expand (htab) == 0) 654 return NULL; 655 size = htab_size (htab); 656 } 657 658 index = htab_mod (hash, htab); 659 660 htab->searches++; 661 first_deleted_slot = NULL; 662 663 entry = htab->entries[index]; 664 if (entry == HTAB_EMPTY_ENTRY) 665 goto empty_entry; 666 else if (entry == HTAB_DELETED_ENTRY) 667 first_deleted_slot = &htab->entries[index]; 668 else if ((*htab->eq_f) (entry, element)) 669 return &htab->entries[index]; 670 671 hash2 = htab_mod_m2 (hash, htab); 672 for (;;) 673 { 674 htab->collisions++; 675 index += hash2; 676 if (index >= size) 677 index -= size; 678 679 entry = htab->entries[index]; 680 if (entry == HTAB_EMPTY_ENTRY) 681 goto empty_entry; 682 else if (entry == HTAB_DELETED_ENTRY) 683 { 684 if (!first_deleted_slot) 685 first_deleted_slot = &htab->entries[index]; 686 } 687 else if ((*htab->eq_f) (entry, element)) 688 return &htab->entries[index]; 689 } 690 691 empty_entry: 692 if (insert == NO_INSERT) 693 return NULL; 694 695 if (first_deleted_slot) 696 { 697 htab->n_deleted--; 698 *first_deleted_slot = HTAB_EMPTY_ENTRY; 699 return first_deleted_slot; 700 } 701 702 htab->n_elements++; 703 return &htab->entries[index]; 704 } 705 706 /* Like htab_find_slot_with_hash, but compute the hash value from the 707 element. */ 708 709 PTR * 710 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert) 711 { 712 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), 713 insert); 714 } 715 716 /* This function deletes an element with the given value from hash 717 table (the hash is computed from the element). If there is no matching 718 element in the hash table, this function does nothing. */ 719 720 void 721 htab_remove_elt (htab_t htab, PTR element) 722 { 723 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); 724 } 725 726 727 /* This function deletes an element with the given value from hash 728 table. If there is no matching element in the hash table, this 729 function does nothing. */ 730 731 void 732 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash) 733 { 734 PTR *slot; 735 736 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); 737 if (*slot == HTAB_EMPTY_ENTRY) 738 return; 739 740 if (htab->del_f) 741 (*htab->del_f) (*slot); 742 743 *slot = HTAB_DELETED_ENTRY; 744 htab->n_deleted++; 745 } 746 747 /* This function clears a specified slot in a hash table. It is 748 useful when you've already done the lookup and don't want to do it 749 again. */ 750 751 void 752 htab_clear_slot (htab_t htab, PTR *slot) 753 { 754 if (slot < htab->entries || slot >= htab->entries + htab_size (htab) 755 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) 756 abort (); 757 758 if (htab->del_f) 759 (*htab->del_f) (*slot); 760 761 *slot = HTAB_DELETED_ENTRY; 762 htab->n_deleted++; 763 } 764 765 /* This function scans over the entire hash table calling 766 CALLBACK for each live entry. If CALLBACK returns false, 767 the iteration stops. INFO is passed as CALLBACK's second 768 argument. */ 769 770 void 771 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info) 772 { 773 PTR *slot; 774 PTR *limit; 775 776 slot = htab->entries; 777 limit = slot + htab_size (htab); 778 779 do 780 { 781 PTR x = *slot; 782 783 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) 784 if (!(*callback) (slot, info)) 785 break; 786 } 787 while (++slot < limit); 788 } 789 790 /* Like htab_traverse_noresize, but does resize the table when it is 791 too empty to improve effectivity of subsequent calls. */ 792 793 void 794 htab_traverse (htab_t htab, htab_trav callback, PTR info) 795 { 796 size_t size = htab_size (htab); 797 if (htab_elements (htab) * 8 < size && size > 32) 798 htab_expand (htab); 799 800 htab_traverse_noresize (htab, callback, info); 801 } 802 803 /* Return the fraction of fixed collisions during all work with given 804 hash table. */ 805 806 double 807 htab_collisions (htab_t htab) 808 { 809 if (htab->searches == 0) 810 return 0.0; 811 812 return (double) htab->collisions / (double) htab->searches; 813 } 814 815 /* Hash P as a null-terminated string. 816 817 Copied from gcc/hashtable.c. Zack had the following to say with respect 818 to applicability, though note that unlike hashtable.c, this hash table 819 implementation re-hashes rather than chain buckets. 820 821 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html 822 From: Zack Weinberg <zackw@panix.com> 823 Date: Fri, 17 Aug 2001 02:15:56 -0400 824 825 I got it by extracting all the identifiers from all the source code 826 I had lying around in mid-1999, and testing many recurrences of 827 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either 828 prime numbers or the appropriate identity. This was the best one. 829 I don't remember exactly what constituted "best", except I was 830 looking at bucket-length distributions mostly. 831 832 So it should be very good at hashing identifiers, but might not be 833 as good at arbitrary strings. 834 835 I'll add that it thoroughly trounces the hash functions recommended 836 for this use at http://burtleburtle.net/bob/hash/index.html, both 837 on speed and bucket distribution. I haven't tried it against the 838 function they just started using for Perl's hashes. */ 839 840 hashval_t 841 htab_hash_string (const PTR p) 842 { 843 const unsigned char *str = (const unsigned char *) p; 844 hashval_t r = 0; 845 unsigned char c; 846 847 while ((c = *str++) != 0) 848 r = r * 67 + c - 113; 849 850 return r; 851 } 852 853 /* DERIVED FROM: 854 -------------------------------------------------------------------- 855 lookup2.c, by Bob Jenkins, December 1996, Public Domain. 856 hash(), hash2(), hash3, and mix() are externally useful functions. 857 Routines to test the hash are included if SELF_TEST is defined. 858 You can use this free for any purpose. It has no warranty. 859 -------------------------------------------------------------------- 860 */ 861 862 /* 863 -------------------------------------------------------------------- 864 mix -- mix 3 32-bit values reversibly. 865 For every delta with one or two bit set, and the deltas of all three 866 high bits or all three low bits, whether the original value of a,b,c 867 is almost all zero or is uniformly distributed, 868 * If mix() is run forward or backward, at least 32 bits in a,b,c 869 have at least 1/4 probability of changing. 870 * If mix() is run forward, every bit of c will change between 1/3 and 871 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) 872 mix() was built out of 36 single-cycle latency instructions in a 873 structure that could supported 2x parallelism, like so: 874 a -= b; 875 a -= c; x = (c>>13); 876 b -= c; a ^= x; 877 b -= a; x = (a<<8); 878 c -= a; b ^= x; 879 c -= b; x = (b>>13); 880 ... 881 Unfortunately, superscalar Pentiums and Sparcs can't take advantage 882 of that parallelism. They've also turned some of those single-cycle 883 latency instructions into multi-cycle latency instructions. Still, 884 this is the fastest good hash I could find. There were about 2^^68 885 to choose from. I only looked at a billion or so. 886 -------------------------------------------------------------------- 887 */ 888 /* same, but slower, works on systems that might have 8 byte hashval_t's */ 889 #define mix(a,b,c) \ 890 { \ 891 a -= b; a -= c; a ^= (c>>13); \ 892 b -= c; b -= a; b ^= (a<< 8); \ 893 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ 894 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ 895 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ 896 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ 897 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ 898 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ 899 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ 900 } 901 902 /* 903 -------------------------------------------------------------------- 904 hash() -- hash a variable-length key into a 32-bit value 905 k : the key (the unaligned variable-length array of bytes) 906 len : the length of the key, counting by bytes 907 level : can be any 4-byte value 908 Returns a 32-bit value. Every bit of the key affects every bit of 909 the return value. Every 1-bit and 2-bit delta achieves avalanche. 910 About 36+6len instructions. 911 912 The best hash table sizes are powers of 2. There is no need to do 913 mod a prime (mod is sooo slow!). If you need less than 32 bits, 914 use a bitmask. For example, if you need only 10 bits, do 915 h = (h & hashmask(10)); 916 In which case, the hash table should have hashsize(10) elements. 917 918 If you are hashing n strings (ub1 **)k, do it like this: 919 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); 920 921 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this 922 code any way you wish, private, educational, or commercial. It's free. 923 924 See http://burtleburtle.net/bob/hash/evahash.html 925 Use for hash table lookup, or anything where one collision in 2^32 is 926 acceptable. Do NOT use for cryptographic purposes. 927 -------------------------------------------------------------------- 928 */ 929 930 hashval_t 931 iterative_hash (const PTR k_in /* the key */, 932 register size_t length /* the length of the key */, 933 register hashval_t initval /* the previous hash, or 934 an arbitrary value */) 935 { 936 register const unsigned char *k = (const unsigned char *)k_in; 937 register hashval_t a,b,c,len; 938 939 /* Set up the internal state */ 940 len = length; 941 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ 942 c = initval; /* the previous hash value */ 943 944 /*---------------------------------------- handle most of the key */ 945 #ifndef WORDS_BIGENDIAN 946 /* On a little-endian machine, if the data is 4-byte aligned we can hash 947 by word for better speed. This gives nondeterministic results on 948 big-endian machines. */ 949 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) 950 while (len >= 12) /* aligned */ 951 { 952 a += *(hashval_t *)(k+0); 953 b += *(hashval_t *)(k+4); 954 c += *(hashval_t *)(k+8); 955 mix(a,b,c); 956 k += 12; len -= 12; 957 } 958 else /* unaligned */ 959 #endif 960 while (len >= 12) 961 { 962 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); 963 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); 964 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); 965 mix(a,b,c); 966 k += 12; len -= 12; 967 } 968 969 /*------------------------------------- handle the last 11 bytes */ 970 c += length; 971 switch(len) /* all the case statements fall through */ 972 { 973 case 11: c+=((hashval_t)k[10]<<24); 974 case 10: c+=((hashval_t)k[9]<<16); 975 case 9 : c+=((hashval_t)k[8]<<8); 976 /* the first byte of c is reserved for the length */ 977 case 8 : b+=((hashval_t)k[7]<<24); 978 case 7 : b+=((hashval_t)k[6]<<16); 979 case 6 : b+=((hashval_t)k[5]<<8); 980 case 5 : b+=k[4]; 981 case 4 : a+=((hashval_t)k[3]<<24); 982 case 3 : a+=((hashval_t)k[2]<<16); 983 case 2 : a+=((hashval_t)k[1]<<8); 984 case 1 : a+=k[0]; 985 /* case 0: nothing left to add */ 986 } 987 mix(a,b,c); 988 /*-------------------------------------------- report the result */ 989 return c; 990 } 991