xref: /dragonfly/contrib/gdb-7/libiberty/regex.c (revision 678e8cc6)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5 
6    Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7    2002, 2005, 2010 Free Software Foundation, Inc.
8    This file is part of the GNU C Library.
9 
10    The GNU C Library is free software; you can redistribute it and/or
11    modify it under the terms of the GNU Lesser General Public
12    License as published by the Free Software Foundation; either
13    version 2.1 of the License, or (at your option) any later version.
14 
15    The GNU C Library is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18    Lesser General Public License for more details.
19 
20    You should have received a copy of the GNU Lesser General Public
21    License along with the GNU C Library; if not, write to the Free
22    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23    02110-1301 USA.  */
24 
25 /* This file has been modified for usage in libiberty.  It includes "xregex.h"
26    instead of <regex.h>.  The "xregex.h" header file renames all external
27    routines with an "x" prefix so they do not collide with the native regex
28    routines or with other components regex routines. */
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
31   #pragma alloca
32 #endif
33 
34 #undef	_GNU_SOURCE
35 #define _GNU_SOURCE
36 
37 #ifndef INSIDE_RECURSION
38 # ifdef HAVE_CONFIG_H
39 #  include <config.h>
40 # endif
41 #endif
42 
43 #include <ansidecl.h>
44 
45 #ifndef INSIDE_RECURSION
46 
47 # if defined STDC_HEADERS && !defined emacs
48 #  include <stddef.h>
49 # else
50 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
51 #  include <sys/types.h>
52 # endif
53 
54 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
55 
56 /* For platform which support the ISO C amendement 1 functionality we
57    support user defined character classes.  */
58 # if defined _LIBC || WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
60 #  include <wchar.h>
61 #  include <wctype.h>
62 # endif
63 
64 # ifdef _LIBC
65 /* We have to keep the namespace clean.  */
66 #  define regfree(preg) __regfree (preg)
67 #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 #  define regerror(errcode, preg, errbuf, errbuf_size) \
70 	__regerror(errcode, preg, errbuf, errbuf_size)
71 #  define re_set_registers(bu, re, nu, st, en) \
72 	__re_set_registers (bu, re, nu, st, en)
73 #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 #  define re_match(bufp, string, size, pos, regs) \
76 	__re_match (bufp, string, size, pos, regs)
77 #  define re_search(bufp, string, size, startpos, range, regs) \
78 	__re_search (bufp, string, size, startpos, range, regs)
79 #  define re_compile_pattern(pattern, length, bufp) \
80 	__re_compile_pattern (pattern, length, bufp)
81 #  define re_set_syntax(syntax) __re_set_syntax (syntax)
82 #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
85 
86 #  define btowc __btowc
87 
88 /* We are also using some library internals.  */
89 #  include <locale/localeinfo.h>
90 #  include <locale/elem-hash.h>
91 #  include <langinfo.h>
92 #  include <locale/coll-lookup.h>
93 # endif
94 
95 /* This is for other GNU distributions with internationalized messages.  */
96 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
97 #  include <libintl.h>
98 #  ifdef _LIBC
99 #   undef gettext
100 #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
101 #  endif
102 # else
103 #  define gettext(msgid) (msgid)
104 # endif
105 
106 # ifndef gettext_noop
107 /* This define is so xgettext can find the internationalizable
108    strings.  */
109 #  define gettext_noop(String) String
110 # endif
111 
112 /* The `emacs' switch turns on certain matching commands
113    that make sense only in Emacs. */
114 # ifdef emacs
115 
116 #  include "lisp.h"
117 #  include "buffer.h"
118 #  include "syntax.h"
119 
120 # else  /* not emacs */
121 
122 /* If we are not linking with Emacs proper,
123    we can't use the relocating allocator
124    even if config.h says that we can.  */
125 #  undef REL_ALLOC
126 
127 #  if defined STDC_HEADERS || defined _LIBC
128 #   include <stdlib.h>
129 #  else
130 char *malloc ();
131 char *realloc ();
132 #  endif
133 
134 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
135    If nothing else has been done, use the method below.  */
136 #  ifdef INHIBIT_STRING_HEADER
137 #   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
138 #    if !defined bzero && !defined bcopy
139 #     undef INHIBIT_STRING_HEADER
140 #    endif
141 #   endif
142 #  endif
143 
144 /* This is the normal way of making sure we have a bcopy and a bzero.
145    This is used in most programs--a few other programs avoid this
146    by defining INHIBIT_STRING_HEADER.  */
147 #  ifndef INHIBIT_STRING_HEADER
148 #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
149 #    include <string.h>
150 #    ifndef bzero
151 #     ifndef _LIBC
152 #      define bzero(s, n)	(memset (s, '\0', n), (s))
153 #     else
154 #      define bzero(s, n)	__bzero (s, n)
155 #     endif
156 #    endif
157 #   else
158 #    include <strings.h>
159 #    ifndef memcmp
160 #     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
161 #    endif
162 #    ifndef memcpy
163 #     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
164 #    endif
165 #   endif
166 #  endif
167 
168 /* Define the syntax stuff for \<, \>, etc.  */
169 
170 /* This must be nonzero for the wordchar and notwordchar pattern
171    commands in re_match_2.  */
172 #  ifndef Sword
173 #   define Sword 1
174 #  endif
175 
176 #  ifdef SWITCH_ENUM_BUG
177 #   define SWITCH_ENUM_CAST(x) ((int)(x))
178 #  else
179 #   define SWITCH_ENUM_CAST(x) (x)
180 #  endif
181 
182 # endif /* not emacs */
183 
184 # if defined _LIBC || HAVE_LIMITS_H
185 #  include <limits.h>
186 # endif
187 
188 # ifndef MB_LEN_MAX
189 #  define MB_LEN_MAX 1
190 # endif
191 
192 /* Get the interface, including the syntax bits.  */
193 # include "xregex.h"  /* change for libiberty */
194 
195 /* isalpha etc. are used for the character classes.  */
196 # include <ctype.h>
197 
198 /* Jim Meyering writes:
199 
200    "... Some ctype macros are valid only for character codes that
201    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202    using /bin/cc or gcc but without giving an ansi option).  So, all
203    ctype uses should be through macros like ISPRINT...  If
204    STDC_HEADERS is defined, then autoconf has verified that the ctype
205    macros don't need to be guarded with references to isascii. ...
206    Defining isascii to 1 should let any compiler worth its salt
207    eliminate the && through constant folding."
208    Solaris defines some of these symbols so we must undefine them first.  */
209 
210 # undef ISASCII
211 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
212 #  define ISASCII(c) 1
213 # else
214 #  define ISASCII(c) isascii(c)
215 # endif
216 
217 # ifdef isblank
218 #  define ISBLANK(c) (ISASCII (c) && isblank (c))
219 # else
220 #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
221 # endif
222 # ifdef isgraph
223 #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
224 # else
225 #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
226 # endif
227 
228 # undef ISPRINT
229 # define ISPRINT(c) (ISASCII (c) && isprint (c))
230 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
231 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
232 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
233 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
234 # define ISLOWER(c) (ISASCII (c) && islower (c))
235 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
236 # define ISSPACE(c) (ISASCII (c) && isspace (c))
237 # define ISUPPER(c) (ISASCII (c) && isupper (c))
238 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
239 
240 # ifdef _tolower
241 #  define TOLOWER(c) _tolower(c)
242 # else
243 #  define TOLOWER(c) tolower(c)
244 # endif
245 
246 # ifndef NULL
247 #  define NULL (void *)0
248 # endif
249 
250 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
251    since ours (we hope) works properly with all combinations of
252    machines, compilers, `char' and `unsigned char' argument types.
253    (Per Bothner suggested the basic approach.)  */
254 # undef SIGN_EXTEND_CHAR
255 # if __STDC__
256 #  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
257 # else  /* not __STDC__ */
258 /* As in Harbison and Steele.  */
259 #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
260 # endif
261 
262 # ifndef emacs
263 /* How many characters in the character set.  */
264 #  define CHAR_SET_SIZE 256
265 
266 #  ifdef SYNTAX_TABLE
267 
268 extern char *re_syntax_table;
269 
270 #  else /* not SYNTAX_TABLE */
271 
272 static char re_syntax_table[CHAR_SET_SIZE];
273 
274 static void init_syntax_once (void);
275 
276 static void
277 init_syntax_once (void)
278 {
279    register int c;
280    static int done = 0;
281 
282    if (done)
283      return;
284    bzero (re_syntax_table, sizeof re_syntax_table);
285 
286    for (c = 0; c < CHAR_SET_SIZE; ++c)
287      if (ISALNUM (c))
288 	re_syntax_table[c] = Sword;
289 
290    re_syntax_table['_'] = Sword;
291 
292    done = 1;
293 }
294 
295 #  endif /* not SYNTAX_TABLE */
296 
297 #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
298 
299 # endif /* emacs */
300 
301 /* Integer type for pointers.  */
302 # if !defined _LIBC && !defined HAVE_UINTPTR_T
303 typedef unsigned long int uintptr_t;
304 # endif
305 
306 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
307    use `alloca' instead of `malloc'.  This is because using malloc in
308    re_search* or re_match* could cause memory leaks when C-g is used in
309    Emacs; also, malloc is slower and causes storage fragmentation.  On
310    the other hand, malloc is more portable, and easier to debug.
311 
312    Because we sometimes use alloca, some routines have to be macros,
313    not functions -- `alloca'-allocated space disappears at the end of the
314    function it is called in.  */
315 
316 # ifdef REGEX_MALLOC
317 
318 #  define REGEX_ALLOCATE malloc
319 #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
320 #  define REGEX_FREE free
321 
322 # else /* not REGEX_MALLOC  */
323 
324 /* Emacs already defines alloca, sometimes.  */
325 #  ifndef alloca
326 
327 /* Make alloca work the best possible way.  */
328 #   ifdef __GNUC__
329 #    define alloca __builtin_alloca
330 #   else /* not __GNUC__ */
331 #    if HAVE_ALLOCA_H
332 #     include <alloca.h>
333 #    endif /* HAVE_ALLOCA_H */
334 #   endif /* not __GNUC__ */
335 
336 #  endif /* not alloca */
337 
338 #  define REGEX_ALLOCATE alloca
339 
340 /* Assumes a `char *destination' variable.  */
341 #  define REGEX_REALLOCATE(source, osize, nsize)			\
342   (destination = (char *) alloca (nsize),				\
343    memcpy (destination, source, osize))
344 
345 /* No need to do anything to free, after alloca.  */
346 #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
347 
348 # endif /* not REGEX_MALLOC */
349 
350 /* Define how to allocate the failure stack.  */
351 
352 # if defined REL_ALLOC && defined REGEX_MALLOC
353 
354 #  define REGEX_ALLOCATE_STACK(size)				\
355   r_alloc (&failure_stack_ptr, (size))
356 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
357   r_re_alloc (&failure_stack_ptr, (nsize))
358 #  define REGEX_FREE_STACK(ptr)					\
359   r_alloc_free (&failure_stack_ptr)
360 
361 # else /* not using relocating allocator */
362 
363 #  ifdef REGEX_MALLOC
364 
365 #   define REGEX_ALLOCATE_STACK malloc
366 #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
367 #   define REGEX_FREE_STACK free
368 
369 #  else /* not REGEX_MALLOC */
370 
371 #   define REGEX_ALLOCATE_STACK alloca
372 
373 #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
374    REGEX_REALLOCATE (source, osize, nsize)
375 /* No need to explicitly free anything.  */
376 #   define REGEX_FREE_STACK(arg)
377 
378 #  endif /* not REGEX_MALLOC */
379 # endif /* not using relocating allocator */
380 
381 
382 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
383    `string1' or just past its end.  This works if PTR is NULL, which is
384    a good thing.  */
385 # define FIRST_STRING_P(ptr) 					\
386   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
387 
388 /* (Re)Allocate N items of type T using malloc, or fail.  */
389 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
390 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
391 # define RETALLOC_IF(addr, n, t) \
392   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
393 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
394 
395 # define BYTEWIDTH 8 /* In bits.  */
396 
397 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
398 
399 # undef MAX
400 # undef MIN
401 # define MAX(a, b) ((a) > (b) ? (a) : (b))
402 # define MIN(a, b) ((a) < (b) ? (a) : (b))
403 
404 typedef char boolean;
405 # define false 0
406 # define true 1
407 
408 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
409                                          reg_syntax_t syntax,
410                                          struct re_pattern_buffer *bufp);
411 
412 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
413                                      const char *string1, int size1,
414                                      const char *string2, int size2,
415                                      int pos,
416                                      struct re_registers *regs,
417                                      int stop);
418 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
419                              const char *string1, int size1,
420                              const char *string2, int size2,
421                              int startpos, int range,
422                              struct re_registers *regs, int stop);
423 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
424 
425 #ifdef MBS_SUPPORT
426 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
427                                         reg_syntax_t syntax,
428                                         struct re_pattern_buffer *bufp);
429 
430 
431 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
432                                     const char *cstring1, int csize1,
433                                     const char *cstring2, int csize2,
434                                     int pos,
435                                     struct re_registers *regs,
436                                     int stop,
437                                     wchar_t *string1, int size1,
438                                     wchar_t *string2, int size2,
439                                     int *mbs_offset1, int *mbs_offset2);
440 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
441                             const char *string1, int size1,
442                             const char *string2, int size2,
443                             int startpos, int range,
444                             struct re_registers *regs, int stop);
445 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
446 #endif
447 
448 /* These are the command codes that appear in compiled regular
449    expressions.  Some opcodes are followed by argument bytes.  A
450    command code can specify any interpretation whatsoever for its
451    arguments.  Zero bytes may appear in the compiled regular expression.  */
452 
453 typedef enum
454 {
455   no_op = 0,
456 
457   /* Succeed right away--no more backtracking.  */
458   succeed,
459 
460         /* Followed by one byte giving n, then by n literal bytes.  */
461   exactn,
462 
463 # ifdef MBS_SUPPORT
464 	/* Same as exactn, but contains binary data.  */
465   exactn_bin,
466 # endif
467 
468         /* Matches any (more or less) character.  */
469   anychar,
470 
471         /* Matches any one char belonging to specified set.  First
472            following byte is number of bitmap bytes.  Then come bytes
473            for a bitmap saying which chars are in.  Bits in each byte
474            are ordered low-bit-first.  A character is in the set if its
475            bit is 1.  A character too large to have a bit in the map is
476            automatically not in the set.  */
477         /* ifdef MBS_SUPPORT, following element is length of character
478 	   classes, length of collating symbols, length of equivalence
479 	   classes, length of character ranges, and length of characters.
480 	   Next, character class element, collating symbols elements,
481 	   equivalence class elements, range elements, and character
482 	   elements follow.
483 	   See regex_compile function.  */
484   charset,
485 
486         /* Same parameters as charset, but match any character that is
487            not one of those specified.  */
488   charset_not,
489 
490         /* Start remembering the text that is matched, for storing in a
491            register.  Followed by one byte with the register number, in
492            the range 0 to one less than the pattern buffer's re_nsub
493            field.  Then followed by one byte with the number of groups
494            inner to this one.  (This last has to be part of the
495            start_memory only because we need it in the on_failure_jump
496            of re_match_2.)  */
497   start_memory,
498 
499         /* Stop remembering the text that is matched and store it in a
500            memory register.  Followed by one byte with the register
501            number, in the range 0 to one less than `re_nsub' in the
502            pattern buffer, and one byte with the number of inner groups,
503            just like `start_memory'.  (We need the number of inner
504            groups here because we don't have any easy way of finding the
505            corresponding start_memory when we're at a stop_memory.)  */
506   stop_memory,
507 
508         /* Match a duplicate of something remembered. Followed by one
509            byte containing the register number.  */
510   duplicate,
511 
512         /* Fail unless at beginning of line.  */
513   begline,
514 
515         /* Fail unless at end of line.  */
516   endline,
517 
518         /* Succeeds if at beginning of buffer (if emacs) or at beginning
519            of string to be matched (if not).  */
520   begbuf,
521 
522         /* Analogously, for end of buffer/string.  */
523   endbuf,
524 
525         /* Followed by two byte relative address to which to jump.  */
526   jump,
527 
528 	/* Same as jump, but marks the end of an alternative.  */
529   jump_past_alt,
530 
531         /* Followed by two-byte relative address of place to resume at
532            in case of failure.  */
533         /* ifdef MBS_SUPPORT, the size of address is 1.  */
534   on_failure_jump,
535 
536         /* Like on_failure_jump, but pushes a placeholder instead of the
537            current string position when executed.  */
538   on_failure_keep_string_jump,
539 
540         /* Throw away latest failure point and then jump to following
541            two-byte relative address.  */
542         /* ifdef MBS_SUPPORT, the size of address is 1.  */
543   pop_failure_jump,
544 
545         /* Change to pop_failure_jump if know won't have to backtrack to
546            match; otherwise change to jump.  This is used to jump
547            back to the beginning of a repeat.  If what follows this jump
548            clearly won't match what the repeat does, such that we can be
549            sure that there is no use backtracking out of repetitions
550            already matched, then we change it to a pop_failure_jump.
551            Followed by two-byte address.  */
552         /* ifdef MBS_SUPPORT, the size of address is 1.  */
553   maybe_pop_jump,
554 
555         /* Jump to following two-byte address, and push a dummy failure
556            point. This failure point will be thrown away if an attempt
557            is made to use it for a failure.  A `+' construct makes this
558            before the first repeat.  Also used as an intermediary kind
559            of jump when compiling an alternative.  */
560         /* ifdef MBS_SUPPORT, the size of address is 1.  */
561   dummy_failure_jump,
562 
563 	/* Push a dummy failure point and continue.  Used at the end of
564 	   alternatives.  */
565   push_dummy_failure,
566 
567         /* Followed by two-byte relative address and two-byte number n.
568            After matching N times, jump to the address upon failure.  */
569         /* ifdef MBS_SUPPORT, the size of address is 1.  */
570   succeed_n,
571 
572         /* Followed by two-byte relative address, and two-byte number n.
573            Jump to the address N times, then fail.  */
574         /* ifdef MBS_SUPPORT, the size of address is 1.  */
575   jump_n,
576 
577         /* Set the following two-byte relative address to the
578            subsequent two-byte number.  The address *includes* the two
579            bytes of number.  */
580         /* ifdef MBS_SUPPORT, the size of address is 1.  */
581   set_number_at,
582 
583   wordchar,	/* Matches any word-constituent character.  */
584   notwordchar,	/* Matches any char that is not a word-constituent.  */
585 
586   wordbeg,	/* Succeeds if at word beginning.  */
587   wordend,	/* Succeeds if at word end.  */
588 
589   wordbound,	/* Succeeds if at a word boundary.  */
590   notwordbound	/* Succeeds if not at a word boundary.  */
591 
592 # ifdef emacs
593   ,before_dot,	/* Succeeds if before point.  */
594   at_dot,	/* Succeeds if at point.  */
595   after_dot,	/* Succeeds if after point.  */
596 
597 	/* Matches any character whose syntax is specified.  Followed by
598            a byte which contains a syntax code, e.g., Sword.  */
599   syntaxspec,
600 
601 	/* Matches any character whose syntax is not that specified.  */
602   notsyntaxspec
603 # endif /* emacs */
604 } re_opcode_t;
605 #endif /* not INSIDE_RECURSION */
606 
607 
608 #ifdef BYTE
609 # define CHAR_T char
610 # define UCHAR_T unsigned char
611 # define COMPILED_BUFFER_VAR bufp->buffer
612 # define OFFSET_ADDRESS_SIZE 2
613 # define PREFIX(name) byte_##name
614 # define ARG_PREFIX(name) name
615 # define PUT_CHAR(c) putchar (c)
616 #else
617 # ifdef WCHAR
618 #  define CHAR_T wchar_t
619 #  define UCHAR_T wchar_t
620 #  define COMPILED_BUFFER_VAR wc_buffer
621 #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
622 #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
623 #  define PREFIX(name) wcs_##name
624 #  define ARG_PREFIX(name) c##name
625 /* Should we use wide stream??  */
626 #  define PUT_CHAR(c) printf ("%C", c);
627 #  define TRUE 1
628 #  define FALSE 0
629 # else
630 #  ifdef MBS_SUPPORT
631 #   define WCHAR
632 #   define INSIDE_RECURSION
633 #   include "regex.c"
634 #   undef INSIDE_RECURSION
635 #  endif
636 #  define BYTE
637 #  define INSIDE_RECURSION
638 #  include "regex.c"
639 #  undef INSIDE_RECURSION
640 # endif
641 #endif
642 
643 #ifdef INSIDE_RECURSION
644 /* Common operations on the compiled pattern.  */
645 
646 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
647 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
648 
649 # ifdef WCHAR
650 #  define STORE_NUMBER(destination, number)				\
651   do {									\
652     *(destination) = (UCHAR_T)(number);				\
653   } while (0)
654 # else /* BYTE */
655 #  define STORE_NUMBER(destination, number)				\
656   do {									\
657     (destination)[0] = (number) & 0377;					\
658     (destination)[1] = (number) >> 8;					\
659   } while (0)
660 # endif /* WCHAR */
661 
662 /* Same as STORE_NUMBER, except increment DESTINATION to
663    the byte after where the number is stored.  Therefore, DESTINATION
664    must be an lvalue.  */
665 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
666 
667 # define STORE_NUMBER_AND_INCR(destination, number)			\
668   do {									\
669     STORE_NUMBER (destination, number);					\
670     (destination) += OFFSET_ADDRESS_SIZE;				\
671   } while (0)
672 
673 /* Put into DESTINATION a number stored in two contiguous bytes starting
674    at SOURCE.  */
675 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
676 
677 # ifdef WCHAR
678 #  define EXTRACT_NUMBER(destination, source)				\
679   do {									\
680     (destination) = *(source);						\
681   } while (0)
682 # else /* BYTE */
683 #  define EXTRACT_NUMBER(destination, source)				\
684   do {									\
685     (destination) = *(source) & 0377;					\
686     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
687   } while (0)
688 # endif
689 
690 # ifdef DEBUG
691 static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
692 static void
693 PREFIX(extract_number) (int *dest, UCHAR_T *source)
694 {
695 #  ifdef WCHAR
696   *dest = *source;
697 #  else /* BYTE */
698   int temp = SIGN_EXTEND_CHAR (*(source + 1));
699   *dest = *source & 0377;
700   *dest += temp << 8;
701 #  endif
702 }
703 
704 #  ifndef EXTRACT_MACROS /* To debug the macros.  */
705 #   undef EXTRACT_NUMBER
706 #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
707 #  endif /* not EXTRACT_MACROS */
708 
709 # endif /* DEBUG */
710 
711 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
712    SOURCE must be an lvalue.  */
713 
714 # define EXTRACT_NUMBER_AND_INCR(destination, source)			\
715   do {									\
716     EXTRACT_NUMBER (destination, source);				\
717     (source) += OFFSET_ADDRESS_SIZE; 					\
718   } while (0)
719 
720 # ifdef DEBUG
721 static void PREFIX(extract_number_and_incr) (int *destination,
722                                              UCHAR_T **source);
723 static void
724 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
725 {
726   PREFIX(extract_number) (destination, *source);
727   *source += OFFSET_ADDRESS_SIZE;
728 }
729 
730 #  ifndef EXTRACT_MACROS
731 #   undef EXTRACT_NUMBER_AND_INCR
732 #   define EXTRACT_NUMBER_AND_INCR(dest, src) \
733   PREFIX(extract_number_and_incr) (&dest, &src)
734 #  endif /* not EXTRACT_MACROS */
735 
736 # endif /* DEBUG */
737 
738 
739 
740 /* If DEBUG is defined, Regex prints many voluminous messages about what
741    it is doing (if the variable `debug' is nonzero).  If linked with the
742    main program in `iregex.c', you can enter patterns and strings
743    interactively.  And if linked with the main program in `main.c' and
744    the other test files, you can run the already-written tests.  */
745 
746 # ifdef DEBUG
747 
748 #  ifndef DEFINED_ONCE
749 
750 /* We use standard I/O for debugging.  */
751 #   include <stdio.h>
752 
753 /* It is useful to test things that ``must'' be true when debugging.  */
754 #   include <assert.h>
755 
756 static int debug;
757 
758 #   define DEBUG_STATEMENT(e) e
759 #   define DEBUG_PRINT1(x) if (debug) printf (x)
760 #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
761 #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
762 #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
763 #  endif /* not DEFINED_ONCE */
764 
765 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
766   if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
767 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
768   if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
769 
770 
771 /* Print the fastmap in human-readable form.  */
772 
773 #  ifndef DEFINED_ONCE
774 void
775 print_fastmap (char *fastmap)
776 {
777   unsigned was_a_range = 0;
778   unsigned i = 0;
779 
780   while (i < (1 << BYTEWIDTH))
781     {
782       if (fastmap[i++])
783 	{
784 	  was_a_range = 0;
785           putchar (i - 1);
786           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
787             {
788               was_a_range = 1;
789               i++;
790             }
791 	  if (was_a_range)
792             {
793               printf ("-");
794               putchar (i - 1);
795             }
796         }
797     }
798   putchar ('\n');
799 }
800 #  endif /* not DEFINED_ONCE */
801 
802 
803 /* Print a compiled pattern string in human-readable form, starting at
804    the START pointer into it and ending just before the pointer END.  */
805 
806 void
807 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
808 {
809   int mcnt, mcnt2;
810   UCHAR_T *p1;
811   UCHAR_T *p = start;
812   UCHAR_T *pend = end;
813 
814   if (start == NULL)
815     {
816       printf ("(null)\n");
817       return;
818     }
819 
820   /* Loop over pattern commands.  */
821   while (p < pend)
822     {
823 #  ifdef _LIBC
824       printf ("%td:\t", p - start);
825 #  else
826       printf ("%ld:\t", (long int) (p - start));
827 #  endif
828 
829       switch ((re_opcode_t) *p++)
830 	{
831         case no_op:
832           printf ("/no_op");
833           break;
834 
835 	case exactn:
836 	  mcnt = *p++;
837           printf ("/exactn/%d", mcnt);
838           do
839 	    {
840               putchar ('/');
841 	      PUT_CHAR (*p++);
842             }
843           while (--mcnt);
844           break;
845 
846 #  ifdef MBS_SUPPORT
847 	case exactn_bin:
848 	  mcnt = *p++;
849 	  printf ("/exactn_bin/%d", mcnt);
850           do
851 	    {
852 	      printf("/%lx", (long int) *p++);
853             }
854           while (--mcnt);
855           break;
856 #  endif /* MBS_SUPPORT */
857 
858 	case start_memory:
859           mcnt = *p++;
860           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
861           break;
862 
863 	case stop_memory:
864           mcnt = *p++;
865 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
866           break;
867 
868 	case duplicate:
869 	  printf ("/duplicate/%ld", (long int) *p++);
870 	  break;
871 
872 	case anychar:
873 	  printf ("/anychar");
874 	  break;
875 
876 	case charset:
877         case charset_not:
878           {
879 #  ifdef WCHAR
880 	    int i, length;
881 	    wchar_t *workp = p;
882 	    printf ("/charset [%s",
883 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
884 	    p += 5;
885 	    length = *workp++; /* the length of char_classes */
886 	    for (i=0 ; i<length ; i++)
887 	      printf("[:%lx:]", (long int) *p++);
888 	    length = *workp++; /* the length of collating_symbol */
889 	    for (i=0 ; i<length ;)
890 	      {
891 		printf("[.");
892 		while(*p != 0)
893 		  PUT_CHAR((i++,*p++));
894 		i++,p++;
895 		printf(".]");
896 	      }
897 	    length = *workp++; /* the length of equivalence_class */
898 	    for (i=0 ; i<length ;)
899 	      {
900 		printf("[=");
901 		while(*p != 0)
902 		  PUT_CHAR((i++,*p++));
903 		i++,p++;
904 		printf("=]");
905 	      }
906 	    length = *workp++; /* the length of char_range */
907 	    for (i=0 ; i<length ; i++)
908 	      {
909 		wchar_t range_start = *p++;
910 		wchar_t range_end = *p++;
911 		printf("%C-%C", range_start, range_end);
912 	      }
913 	    length = *workp++; /* the length of char */
914 	    for (i=0 ; i<length ; i++)
915 	      printf("%C", *p++);
916 	    putchar (']');
917 #  else
918             register int c, last = -100;
919 	    register int in_range = 0;
920 
921 	    printf ("/charset [%s",
922 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
923 
924             assert (p + *p < pend);
925 
926             for (c = 0; c < 256; c++)
927 	      if (c / 8 < *p
928 		  && (p[1 + (c/8)] & (1 << (c % 8))))
929 		{
930 		  /* Are we starting a range?  */
931 		  if (last + 1 == c && ! in_range)
932 		    {
933 		      putchar ('-');
934 		      in_range = 1;
935 		    }
936 		  /* Have we broken a range?  */
937 		  else if (last + 1 != c && in_range)
938               {
939 		      putchar (last);
940 		      in_range = 0;
941 		    }
942 
943 		  if (! in_range)
944 		    putchar (c);
945 
946 		  last = c;
947               }
948 
949 	    if (in_range)
950 	      putchar (last);
951 
952 	    putchar (']');
953 
954 	    p += 1 + *p;
955 #  endif /* WCHAR */
956 	  }
957 	  break;
958 
959 	case begline:
960 	  printf ("/begline");
961           break;
962 
963 	case endline:
964           printf ("/endline");
965           break;
966 
967 	case on_failure_jump:
968           PREFIX(extract_number_and_incr) (&mcnt, &p);
969 #  ifdef _LIBC
970   	  printf ("/on_failure_jump to %td", p + mcnt - start);
971 #  else
972   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
973 #  endif
974           break;
975 
976 	case on_failure_keep_string_jump:
977           PREFIX(extract_number_and_incr) (&mcnt, &p);
978 #  ifdef _LIBC
979   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
980 #  else
981   	  printf ("/on_failure_keep_string_jump to %ld",
982 		  (long int) (p + mcnt - start));
983 #  endif
984           break;
985 
986 	case dummy_failure_jump:
987           PREFIX(extract_number_and_incr) (&mcnt, &p);
988 #  ifdef _LIBC
989   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
990 #  else
991   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
992 #  endif
993           break;
994 
995 	case push_dummy_failure:
996           printf ("/push_dummy_failure");
997           break;
998 
999         case maybe_pop_jump:
1000           PREFIX(extract_number_and_incr) (&mcnt, &p);
1001 #  ifdef _LIBC
1002   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1003 #  else
1004   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1005 #  endif
1006 	  break;
1007 
1008         case pop_failure_jump:
1009 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1010 #  ifdef _LIBC
1011   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1012 #  else
1013   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1014 #  endif
1015 	  break;
1016 
1017         case jump_past_alt:
1018 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1019 #  ifdef _LIBC
1020   	  printf ("/jump_past_alt to %td", p + mcnt - start);
1021 #  else
1022   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1023 #  endif
1024 	  break;
1025 
1026         case jump:
1027 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1028 #  ifdef _LIBC
1029   	  printf ("/jump to %td", p + mcnt - start);
1030 #  else
1031   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1032 #  endif
1033 	  break;
1034 
1035         case succeed_n:
1036           PREFIX(extract_number_and_incr) (&mcnt, &p);
1037 	  p1 = p + mcnt;
1038           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1039 #  ifdef _LIBC
1040 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1041 #  else
1042 	  printf ("/succeed_n to %ld, %d times",
1043 		  (long int) (p1 - start), mcnt2);
1044 #  endif
1045           break;
1046 
1047         case jump_n:
1048           PREFIX(extract_number_and_incr) (&mcnt, &p);
1049 	  p1 = p + mcnt;
1050           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1051 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1052           break;
1053 
1054         case set_number_at:
1055           PREFIX(extract_number_and_incr) (&mcnt, &p);
1056 	  p1 = p + mcnt;
1057           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1058 #  ifdef _LIBC
1059 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1060 #  else
1061 	  printf ("/set_number_at location %ld to %d",
1062 		  (long int) (p1 - start), mcnt2);
1063 #  endif
1064           break;
1065 
1066         case wordbound:
1067 	  printf ("/wordbound");
1068 	  break;
1069 
1070 	case notwordbound:
1071 	  printf ("/notwordbound");
1072           break;
1073 
1074 	case wordbeg:
1075 	  printf ("/wordbeg");
1076 	  break;
1077 
1078 	case wordend:
1079 	  printf ("/wordend");
1080 	  break;
1081 
1082 #  ifdef emacs
1083 	case before_dot:
1084 	  printf ("/before_dot");
1085           break;
1086 
1087 	case at_dot:
1088 	  printf ("/at_dot");
1089           break;
1090 
1091 	case after_dot:
1092 	  printf ("/after_dot");
1093           break;
1094 
1095 	case syntaxspec:
1096           printf ("/syntaxspec");
1097 	  mcnt = *p++;
1098 	  printf ("/%d", mcnt);
1099           break;
1100 
1101 	case notsyntaxspec:
1102           printf ("/notsyntaxspec");
1103 	  mcnt = *p++;
1104 	  printf ("/%d", mcnt);
1105 	  break;
1106 #  endif /* emacs */
1107 
1108 	case wordchar:
1109 	  printf ("/wordchar");
1110           break;
1111 
1112 	case notwordchar:
1113 	  printf ("/notwordchar");
1114           break;
1115 
1116 	case begbuf:
1117 	  printf ("/begbuf");
1118           break;
1119 
1120 	case endbuf:
1121 	  printf ("/endbuf");
1122           break;
1123 
1124         default:
1125           printf ("?%ld", (long int) *(p-1));
1126 	}
1127 
1128       putchar ('\n');
1129     }
1130 
1131 #  ifdef _LIBC
1132   printf ("%td:\tend of pattern.\n", p - start);
1133 #  else
1134   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1135 #  endif
1136 }
1137 
1138 
1139 void
1140 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1141 {
1142   UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1143 
1144   PREFIX(print_partial_compiled_pattern) (buffer, buffer
1145 				  + bufp->used / sizeof(UCHAR_T));
1146   printf ("%ld bytes used/%ld bytes allocated.\n",
1147 	  bufp->used, bufp->allocated);
1148 
1149   if (bufp->fastmap_accurate && bufp->fastmap)
1150     {
1151       printf ("fastmap: ");
1152       print_fastmap (bufp->fastmap);
1153     }
1154 
1155 #  ifdef _LIBC
1156   printf ("re_nsub: %Zd\t", bufp->re_nsub);
1157 #  else
1158   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1159 #  endif
1160   printf ("regs_alloc: %d\t", bufp->regs_allocated);
1161   printf ("can_be_null: %d\t", bufp->can_be_null);
1162   printf ("newline_anchor: %d\n", bufp->newline_anchor);
1163   printf ("no_sub: %d\t", bufp->no_sub);
1164   printf ("not_bol: %d\t", bufp->not_bol);
1165   printf ("not_eol: %d\t", bufp->not_eol);
1166   printf ("syntax: %lx\n", bufp->syntax);
1167   /* Perhaps we should print the translate table?  */
1168 }
1169 
1170 
1171 void
1172 PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1173                              int size1, const CHAR_T *string2, int size2)
1174 {
1175   int this_char;
1176 
1177   if (where == NULL)
1178     printf ("(null)");
1179   else
1180     {
1181       int cnt;
1182 
1183       if (FIRST_STRING_P (where))
1184         {
1185           for (this_char = where - string1; this_char < size1; this_char++)
1186 	    PUT_CHAR (string1[this_char]);
1187 
1188           where = string2;
1189         }
1190 
1191       cnt = 0;
1192       for (this_char = where - string2; this_char < size2; this_char++)
1193 	{
1194 	  PUT_CHAR (string2[this_char]);
1195 	  if (++cnt > 100)
1196 	    {
1197 	      fputs ("...", stdout);
1198 	      break;
1199 	    }
1200 	}
1201     }
1202 }
1203 
1204 #  ifndef DEFINED_ONCE
1205 void
1206 printchar (int c)
1207 {
1208   putc (c, stderr);
1209 }
1210 #  endif
1211 
1212 # else /* not DEBUG */
1213 
1214 #  ifndef DEFINED_ONCE
1215 #   undef assert
1216 #   define assert(e)
1217 
1218 #   define DEBUG_STATEMENT(e)
1219 #   define DEBUG_PRINT1(x)
1220 #   define DEBUG_PRINT2(x1, x2)
1221 #   define DEBUG_PRINT3(x1, x2, x3)
1222 #   define DEBUG_PRINT4(x1, x2, x3, x4)
1223 #  endif /* not DEFINED_ONCE */
1224 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1225 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1226 
1227 # endif /* not DEBUG */
1228 
1229 
1230 
1231 # ifdef WCHAR
1232 /* This  convert a multibyte string to a wide character string.
1233    And write their correspondances to offset_buffer(see below)
1234    and write whether each wchar_t is binary data to is_binary.
1235    This assume invalid multibyte sequences as binary data.
1236    We assume offset_buffer and is_binary is already allocated
1237    enough space.  */
1238 
1239 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1240 				  size_t len, int *offset_buffer,
1241 				  char *is_binary);
1242 static size_t
1243 convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1244                     int *offset_buffer, char *is_binary)
1245      /* It hold correspondances between src(char string) and
1246 	dest(wchar_t string) for optimization.
1247 	e.g. src  = "xxxyzz"
1248              dest = {'X', 'Y', 'Z'}
1249 	      (each "xxx", "y" and "zz" represent one multibyte character
1250 	       corresponding to 'X', 'Y' and 'Z'.)
1251 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1252 	  	        = {0, 3, 4, 6}
1253      */
1254 {
1255   wchar_t *pdest = dest;
1256   const unsigned char *psrc = src;
1257   size_t wc_count = 0;
1258 
1259   mbstate_t mbs;
1260   int i, consumed;
1261   size_t mb_remain = len;
1262   size_t mb_count = 0;
1263 
1264   /* Initialize the conversion state.  */
1265   memset (&mbs, 0, sizeof (mbstate_t));
1266 
1267   offset_buffer[0] = 0;
1268   for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1269 	 psrc += consumed)
1270     {
1271 #ifdef _LIBC
1272       consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1273 #else
1274       consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1275 #endif
1276 
1277       if (consumed <= 0)
1278 	/* failed to convert. maybe src contains binary data.
1279 	   So we consume 1 byte manualy.  */
1280 	{
1281 	  *pdest = *psrc;
1282 	  consumed = 1;
1283 	  is_binary[wc_count] = TRUE;
1284 	}
1285       else
1286 	is_binary[wc_count] = FALSE;
1287       /* In sjis encoding, we use yen sign as escape character in
1288 	 place of reverse solidus. So we convert 0x5c(yen sign in
1289 	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1290 	 solidus in UCS2).  */
1291       if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1292 	*pdest = (wchar_t) *psrc;
1293 
1294       offset_buffer[wc_count + 1] = mb_count += consumed;
1295     }
1296 
1297   /* Fill remain of the buffer with sentinel.  */
1298   for (i = wc_count + 1 ; i <= len ; i++)
1299     offset_buffer[i] = mb_count + 1;
1300 
1301   return wc_count;
1302 }
1303 
1304 # endif /* WCHAR */
1305 
1306 #else /* not INSIDE_RECURSION */
1307 
1308 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1309    also be assigned to arbitrarily: each pattern buffer stores its own
1310    syntax, so it can be changed between regex compilations.  */
1311 /* This has no initializer because initialized variables in Emacs
1312    become read-only after dumping.  */
1313 reg_syntax_t re_syntax_options;
1314 
1315 
1316 /* Specify the precise syntax of regexps for compilation.  This provides
1317    for compatibility for various utilities which historically have
1318    different, incompatible syntaxes.
1319 
1320    The argument SYNTAX is a bit mask comprised of the various bits
1321    defined in regex.h.  We return the old syntax.  */
1322 
1323 reg_syntax_t
1324 re_set_syntax (reg_syntax_t syntax)
1325 {
1326   reg_syntax_t ret = re_syntax_options;
1327 
1328   re_syntax_options = syntax;
1329 # ifdef DEBUG
1330   if (syntax & RE_DEBUG)
1331     debug = 1;
1332   else if (debug) /* was on but now is not */
1333     debug = 0;
1334 # endif /* DEBUG */
1335   return ret;
1336 }
1337 # ifdef _LIBC
1338 weak_alias (__re_set_syntax, re_set_syntax)
1339 # endif
1340 
1341 /* This table gives an error message for each of the error codes listed
1342    in regex.h.  Obviously the order here has to be same as there.
1343    POSIX doesn't require that we do anything for REG_NOERROR,
1344    but why not be nice?  */
1345 
1346 static const char *re_error_msgid[] =
1347   {
1348     gettext_noop ("Success"),	/* REG_NOERROR */
1349     gettext_noop ("No match"),	/* REG_NOMATCH */
1350     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1351     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1352     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1353     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1354     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1355     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1356     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1357     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1358     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1359     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1360     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1361     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1362     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1363     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1364     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1365   };
1366 
1367 #endif /* INSIDE_RECURSION */
1368 
1369 #ifndef DEFINED_ONCE
1370 /* Avoiding alloca during matching, to placate r_alloc.  */
1371 
1372 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373    searching and matching functions should not call alloca.  On some
1374    systems, alloca is implemented in terms of malloc, and if we're
1375    using the relocating allocator routines, then malloc could cause a
1376    relocation, which might (if the strings being searched are in the
1377    ralloc heap) shift the data out from underneath the regexp
1378    routines.
1379 
1380    Here's another reason to avoid allocation: Emacs
1381    processes input from X in a signal handler; processing X input may
1382    call malloc; if input arrives while a matching routine is calling
1383    malloc, then we're scrod.  But Emacs can't just block input while
1384    calling matching routines; then we don't notice interrupts when
1385    they come in.  So, Emacs blocks input around all regexp calls
1386    except the matching calls, which it leaves unprotected, in the
1387    faith that they will not malloc.  */
1388 
1389 /* Normally, this is fine.  */
1390 # define MATCH_MAY_ALLOCATE
1391 
1392 /* When using GNU C, we are not REALLY using the C alloca, no matter
1393    what config.h may say.  So don't take precautions for it.  */
1394 # ifdef __GNUC__
1395 #  undef C_ALLOCA
1396 # endif
1397 
1398 /* The match routines may not allocate if (1) they would do it with malloc
1399    and (2) it's not safe for them to use malloc.
1400    Note that if REL_ALLOC is defined, matching would not use malloc for the
1401    failure stack, but we would still use it for the register vectors;
1402    so REL_ALLOC should not affect this.  */
1403 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1404 #  undef MATCH_MAY_ALLOCATE
1405 # endif
1406 #endif /* not DEFINED_ONCE */
1407 
1408 #ifdef INSIDE_RECURSION
1409 /* Failure stack declarations and macros; both re_compile_fastmap and
1410    re_match_2 use a failure stack.  These have to be macros because of
1411    REGEX_ALLOCATE_STACK.  */
1412 
1413 
1414 /* Number of failure points for which to initially allocate space
1415    when matching.  If this number is exceeded, we allocate more
1416    space, so it is not a hard limit.  */
1417 # ifndef INIT_FAILURE_ALLOC
1418 #  define INIT_FAILURE_ALLOC 5
1419 # endif
1420 
1421 /* Roughly the maximum number of failure points on the stack.  Would be
1422    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423    This is a variable only so users of regex can assign to it; we never
1424    change it ourselves.  */
1425 
1426 # ifdef INT_IS_16BIT
1427 
1428 #  ifndef DEFINED_ONCE
1429 #   if defined MATCH_MAY_ALLOCATE
1430 /* 4400 was enough to cause a crash on Alpha OSF/1,
1431    whose default stack limit is 2mb.  */
1432 long int re_max_failures = 4000;
1433 #   else
1434 long int re_max_failures = 2000;
1435 #   endif
1436 #  endif
1437 
1438 union PREFIX(fail_stack_elt)
1439 {
1440   UCHAR_T *pointer;
1441   long int integer;
1442 };
1443 
1444 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1445 
1446 typedef struct
1447 {
1448   PREFIX(fail_stack_elt_t) *stack;
1449   unsigned long int size;
1450   unsigned long int avail;		/* Offset of next open position.  */
1451 } PREFIX(fail_stack_type);
1452 
1453 # else /* not INT_IS_16BIT */
1454 
1455 #  ifndef DEFINED_ONCE
1456 #   if defined MATCH_MAY_ALLOCATE
1457 /* 4400 was enough to cause a crash on Alpha OSF/1,
1458    whose default stack limit is 2mb.  */
1459 int re_max_failures = 4000;
1460 #   else
1461 int re_max_failures = 2000;
1462 #   endif
1463 #  endif
1464 
1465 union PREFIX(fail_stack_elt)
1466 {
1467   UCHAR_T *pointer;
1468   int integer;
1469 };
1470 
1471 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1472 
1473 typedef struct
1474 {
1475   PREFIX(fail_stack_elt_t) *stack;
1476   unsigned size;
1477   unsigned avail;			/* Offset of next open position.  */
1478 } PREFIX(fail_stack_type);
1479 
1480 # endif /* INT_IS_16BIT */
1481 
1482 # ifndef DEFINED_ONCE
1483 #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1484 #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1485 #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1486 # endif
1487 
1488 
1489 /* Define macros to initialize and free the failure stack.
1490    Do `return -2' if the alloc fails.  */
1491 
1492 # ifdef MATCH_MAY_ALLOCATE
1493 #  define INIT_FAIL_STACK()						\
1494   do {									\
1495     fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1496       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1497 									\
1498     if (fail_stack.stack == NULL)				\
1499       return -2;							\
1500 									\
1501     fail_stack.size = INIT_FAILURE_ALLOC;			\
1502     fail_stack.avail = 0;					\
1503   } while (0)
1504 
1505 #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1506 # else
1507 #  define INIT_FAIL_STACK()						\
1508   do {									\
1509     fail_stack.avail = 0;					\
1510   } while (0)
1511 
1512 #  define RESET_FAIL_STACK()
1513 # endif
1514 
1515 
1516 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1517 
1518    Return 1 if succeeds, and 0 if either ran out of memory
1519    allocating space for it or it was already too large.
1520 
1521    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1522 
1523 # define DOUBLE_FAIL_STACK(fail_stack)					\
1524   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1525    ? 0									\
1526    : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1527         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1528           (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1529           ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1530 									\
1531       (fail_stack).stack == NULL					\
1532       ? 0								\
1533       : ((fail_stack).size <<= 1, 					\
1534          1)))
1535 
1536 
1537 /* Push pointer POINTER on FAIL_STACK.
1538    Return 1 if was able to do so and 0 if ran out of memory allocating
1539    space to do so.  */
1540 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1541   ((FAIL_STACK_FULL ()							\
1542     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1543    ? 0									\
1544    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1545       1))
1546 
1547 /* Push a pointer value onto the failure stack.
1548    Assumes the variable `fail_stack'.  Probably should only
1549    be called from within `PUSH_FAILURE_POINT'.  */
1550 # define PUSH_FAILURE_POINTER(item)					\
1551   fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1552 
1553 /* This pushes an integer-valued item onto the failure stack.
1554    Assumes the variable `fail_stack'.  Probably should only
1555    be called from within `PUSH_FAILURE_POINT'.  */
1556 # define PUSH_FAILURE_INT(item)					\
1557   fail_stack.stack[fail_stack.avail++].integer = (item)
1558 
1559 /* Push a fail_stack_elt_t value onto the failure stack.
1560    Assumes the variable `fail_stack'.  Probably should only
1561    be called from within `PUSH_FAILURE_POINT'.  */
1562 # define PUSH_FAILURE_ELT(item)					\
1563   fail_stack.stack[fail_stack.avail++] =  (item)
1564 
1565 /* These three POP... operations complement the three PUSH... operations.
1566    All assume that `fail_stack' is nonempty.  */
1567 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1568 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1569 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1570 
1571 /* Used to omit pushing failure point id's when we're not debugging.  */
1572 # ifdef DEBUG
1573 #  define DEBUG_PUSH PUSH_FAILURE_INT
1574 #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1575 # else
1576 #  define DEBUG_PUSH(item)
1577 #  define DEBUG_POP(item_addr)
1578 # endif
1579 
1580 
1581 /* Push the information about the state we will need
1582    if we ever fail back to it.
1583 
1584    Requires variables fail_stack, regstart, regend, reg_info, and
1585    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1586    be declared.
1587 
1588    Does `return FAILURE_CODE' if runs out of memory.  */
1589 
1590 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1591   do {									\
1592     char *destination;							\
1593     /* Must be int, so when we don't save any registers, the arithmetic	\
1594        of 0 + -1 isn't done as unsigned.  */				\
1595     /* Can't be int, since there is not a shred of a guarantee that int	\
1596        is wide enough to hold a value of something to which pointer can	\
1597        be assigned */							\
1598     active_reg_t this_reg;						\
1599     									\
1600     DEBUG_STATEMENT (failure_id++);					\
1601     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1602     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1603     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1604     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1605 									\
1606     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1607     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1608 									\
1609     /* Ensure we have enough space allocated for what we will push.  */	\
1610     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1611       {									\
1612         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1613           return failure_code;						\
1614 									\
1615         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1616 		       (fail_stack).size);				\
1617         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1618       }									\
1619 									\
1620     /* Push the info, starting with the registers.  */			\
1621     DEBUG_PRINT1 ("\n");						\
1622 									\
1623     if (1)								\
1624       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1625 	   this_reg++)							\
1626 	{								\
1627 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1628 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1629 									\
1630 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1631 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1632 									\
1633 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1634 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1635 									\
1636 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1637 			reg_info[this_reg].word.pointer);		\
1638 	  DEBUG_PRINT2 (" match_null=%d",				\
1639 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1640 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1641 	  DEBUG_PRINT2 (" matched_something=%d",			\
1642 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1643 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1644 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1645 	  DEBUG_PRINT1 ("\n");						\
1646 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1647 	}								\
1648 									\
1649     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1650     PUSH_FAILURE_INT (lowest_active_reg);				\
1651 									\
1652     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1653     PUSH_FAILURE_INT (highest_active_reg);				\
1654 									\
1655     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1656     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1657     PUSH_FAILURE_POINTER (pattern_place);				\
1658 									\
1659     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1660     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1661 				 size2);				\
1662     DEBUG_PRINT1 ("'\n");						\
1663     PUSH_FAILURE_POINTER (string_place);				\
1664 									\
1665     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1666     DEBUG_PUSH (failure_id);						\
1667   } while (0)
1668 
1669 # ifndef DEFINED_ONCE
1670 /* This is the number of items that are pushed and popped on the stack
1671    for each register.  */
1672 #  define NUM_REG_ITEMS  3
1673 
1674 /* Individual items aside from the registers.  */
1675 #  ifdef DEBUG
1676 #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1677 #  else
1678 #   define NUM_NONREG_ITEMS 4
1679 #  endif
1680 
1681 /* We push at most this many items on the stack.  */
1682 /* We used to use (num_regs - 1), which is the number of registers
1683    this regexp will save; but that was changed to 5
1684    to avoid stack overflow for a regexp with lots of parens.  */
1685 #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1686 
1687 /* We actually push this many items.  */
1688 #  define NUM_FAILURE_ITEMS				\
1689   (((0							\
1690      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1691     * NUM_REG_ITEMS)					\
1692    + NUM_NONREG_ITEMS)
1693 
1694 /* How many items can still be added to the stack without overflowing it.  */
1695 #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1696 # endif /* not DEFINED_ONCE */
1697 
1698 
1699 /* Pops what PUSH_FAIL_STACK pushes.
1700 
1701    We restore into the parameters, all of which should be lvalues:
1702      STR -- the saved data position.
1703      PAT -- the saved pattern position.
1704      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1705      REGSTART, REGEND -- arrays of string positions.
1706      REG_INFO -- array of information about each subexpression.
1707 
1708    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1709    `pend', `string1', `size1', `string2', and `size2'.  */
1710 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1711 {									\
1712   DEBUG_STATEMENT (unsigned failure_id;)				\
1713   active_reg_t this_reg;						\
1714   const UCHAR_T *string_temp;						\
1715 									\
1716   assert (!FAIL_STACK_EMPTY ());					\
1717 									\
1718   /* Remove failure points and point to how many regs pushed.  */	\
1719   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1720   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1721   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1722 									\
1723   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1724 									\
1725   DEBUG_POP (&failure_id);						\
1726   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1727 									\
1728   /* If the saved string location is NULL, it came from an		\
1729      on_failure_keep_string_jump opcode, and we want to throw away the	\
1730      saved NULL, thus retaining our current position in the string.  */	\
1731   string_temp = POP_FAILURE_POINTER ();					\
1732   if (string_temp != NULL)						\
1733     str = (const CHAR_T *) string_temp;					\
1734 									\
1735   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1736   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1737   DEBUG_PRINT1 ("'\n");							\
1738 									\
1739   pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1740   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1741   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1742 									\
1743   /* Restore register info.  */						\
1744   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1745   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1746 									\
1747   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1748   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1749 									\
1750   if (1)								\
1751     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1752       {									\
1753 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1754 									\
1755 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1756 	DEBUG_PRINT2 ("      info: %p\n",				\
1757 		      reg_info[this_reg].word.pointer);			\
1758 									\
1759 	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1760 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1761 									\
1762 	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1763 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1764       }									\
1765   else									\
1766     {									\
1767       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1768 	{								\
1769 	  reg_info[this_reg].word.integer = 0;				\
1770 	  regend[this_reg] = 0;						\
1771 	  regstart[this_reg] = 0;					\
1772 	}								\
1773       highest_active_reg = high_reg;					\
1774     }									\
1775 									\
1776   set_regs_matched_done = 0;						\
1777   DEBUG_STATEMENT (nfailure_points_popped++);				\
1778 } /* POP_FAILURE_POINT */
1779 
1780 /* Structure for per-register (a.k.a. per-group) information.
1781    Other register information, such as the
1782    starting and ending positions (which are addresses), and the list of
1783    inner groups (which is a bits list) are maintained in separate
1784    variables.
1785 
1786    We are making a (strictly speaking) nonportable assumption here: that
1787    the compiler will pack our bit fields into something that fits into
1788    the type of `word', i.e., is something that fits into one item on the
1789    failure stack.  */
1790 
1791 
1792 /* Declarations and macros for re_match_2.  */
1793 
1794 typedef union
1795 {
1796   PREFIX(fail_stack_elt_t) word;
1797   struct
1798   {
1799       /* This field is one if this group can match the empty string,
1800          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1801 # define MATCH_NULL_UNSET_VALUE 3
1802     unsigned match_null_string_p : 2;
1803     unsigned is_active : 1;
1804     unsigned matched_something : 1;
1805     unsigned ever_matched_something : 1;
1806   } bits;
1807 } PREFIX(register_info_type);
1808 
1809 # ifndef DEFINED_ONCE
1810 #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1811 #  define IS_ACTIVE(R)  ((R).bits.is_active)
1812 #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1813 #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1814 
1815 
1816 /* Call this when have matched a real character; it sets `matched' flags
1817    for the subexpressions which we are currently inside.  Also records
1818    that those subexprs have matched.  */
1819 #  define SET_REGS_MATCHED()						\
1820   do									\
1821     {									\
1822       if (!set_regs_matched_done)					\
1823 	{								\
1824 	  active_reg_t r;						\
1825 	  set_regs_matched_done = 1;					\
1826 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1827 	    {								\
1828 	      MATCHED_SOMETHING (reg_info[r])				\
1829 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1830 		= 1;							\
1831 	    }								\
1832 	}								\
1833     }									\
1834   while (0)
1835 # endif /* not DEFINED_ONCE */
1836 
1837 /* Registers are set to a sentinel when they haven't yet matched.  */
1838 static CHAR_T PREFIX(reg_unset_dummy);
1839 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1840 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1841 
1842 /* Subroutine declarations and macros for regex_compile.  */
1843 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1844 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1845                                int arg1, int arg2);
1846 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1847                                 int arg, UCHAR_T *end);
1848 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1849                                 int arg1, int arg2, UCHAR_T *end);
1850 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1851                                          const CHAR_T *p,
1852                                          reg_syntax_t syntax);
1853 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1854                                          const CHAR_T *pend,
1855                                          reg_syntax_t syntax);
1856 # ifdef WCHAR
1857 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1858                                         const CHAR_T **p_ptr,
1859                                         const CHAR_T *pend,
1860                                         char *translate,
1861                                         reg_syntax_t syntax,
1862                                         UCHAR_T *b,
1863                                         CHAR_T *char_set);
1864 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1865 # else /* BYTE */
1866 static reg_errcode_t byte_compile_range (unsigned int range_start,
1867                                          const char **p_ptr,
1868                                          const char *pend,
1869                                          char *translate,
1870                                          reg_syntax_t syntax,
1871                                          unsigned char *b);
1872 # endif /* WCHAR */
1873 
1874 /* Fetch the next character in the uncompiled pattern---translating it
1875    if necessary.  Also cast from a signed character in the constant
1876    string passed to us by the user to an unsigned char that we can use
1877    as an array index (in, e.g., `translate').  */
1878 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1879    because it is impossible to allocate 4GB array for some encodings
1880    which have 4 byte character_set like UCS4.  */
1881 # ifndef PATFETCH
1882 #  ifdef WCHAR
1883 #   define PATFETCH(c)							\
1884   do {if (p == pend) return REG_EEND;					\
1885     c = (UCHAR_T) *p++;							\
1886     if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1887   } while (0)
1888 #  else /* BYTE */
1889 #   define PATFETCH(c)							\
1890   do {if (p == pend) return REG_EEND;					\
1891     c = (unsigned char) *p++;						\
1892     if (translate) c = (unsigned char) translate[c];			\
1893   } while (0)
1894 #  endif /* WCHAR */
1895 # endif
1896 
1897 /* Fetch the next character in the uncompiled pattern, with no
1898    translation.  */
1899 # define PATFETCH_RAW(c)						\
1900   do {if (p == pend) return REG_EEND;					\
1901     c = (UCHAR_T) *p++; 	       					\
1902   } while (0)
1903 
1904 /* Go backwards one character in the pattern.  */
1905 # define PATUNFETCH p--
1906 
1907 
1908 /* If `translate' is non-null, return translate[D], else just D.  We
1909    cast the subscript to translate because some data is declared as
1910    `char *', to avoid warnings when a string constant is passed.  But
1911    when we use a character as a subscript we must make it unsigned.  */
1912 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913    because it is impossible to allocate 4GB array for some encodings
1914    which have 4 byte character_set like UCS4.  */
1915 
1916 # ifndef TRANSLATE
1917 #  ifdef WCHAR
1918 #   define TRANSLATE(d) \
1919   ((translate && ((UCHAR_T) (d)) <= 0xff) \
1920    ? (char) translate[(unsigned char) (d)] : (d))
1921 # else /* BYTE */
1922 #   define TRANSLATE(d) \
1923   (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1924 #  endif /* WCHAR */
1925 # endif
1926 
1927 
1928 /* Macros for outputting the compiled pattern into `buffer'.  */
1929 
1930 /* If the buffer isn't allocated when it comes in, use this.  */
1931 # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1932 
1933 /* Make sure we have at least N more bytes of space in buffer.  */
1934 # ifdef WCHAR
1935 #  define GET_BUFFER_SPACE(n)						\
1936     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1937             + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1938       EXTEND_BUFFER ()
1939 # else /* BYTE */
1940 #  define GET_BUFFER_SPACE(n)						\
1941     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1942       EXTEND_BUFFER ()
1943 # endif /* WCHAR */
1944 
1945 /* Make sure we have one more byte of buffer space and then add C to it.  */
1946 # define BUF_PUSH(c)							\
1947   do {									\
1948     GET_BUFFER_SPACE (1);						\
1949     *b++ = (UCHAR_T) (c);						\
1950   } while (0)
1951 
1952 
1953 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1954 # define BUF_PUSH_2(c1, c2)						\
1955   do {									\
1956     GET_BUFFER_SPACE (2);						\
1957     *b++ = (UCHAR_T) (c1);						\
1958     *b++ = (UCHAR_T) (c2);						\
1959   } while (0)
1960 
1961 
1962 /* As with BUF_PUSH_2, except for three bytes.  */
1963 # define BUF_PUSH_3(c1, c2, c3)						\
1964   do {									\
1965     GET_BUFFER_SPACE (3);						\
1966     *b++ = (UCHAR_T) (c1);						\
1967     *b++ = (UCHAR_T) (c2);						\
1968     *b++ = (UCHAR_T) (c3);						\
1969   } while (0)
1970 
1971 /* Store a jump with opcode OP at LOC to location TO.  We store a
1972    relative address offset by the three bytes the jump itself occupies.  */
1973 # define STORE_JUMP(op, loc, to) \
1974  PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1975 
1976 /* Likewise, for a two-argument jump.  */
1977 # define STORE_JUMP2(op, loc, to, arg) \
1978   PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1979 
1980 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1981 # define INSERT_JUMP(op, loc, to) \
1982   PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1983 
1984 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1985 # define INSERT_JUMP2(op, loc, to, arg) \
1986   PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1987 	      arg, b)
1988 
1989 /* This is not an arbitrary limit: the arguments which represent offsets
1990    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1991    be too small, many things would have to change.  */
1992 /* Any other compiler which, like MSC, has allocation limit below 2^16
1993    bytes will have to use approach similar to what was done below for
1994    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1995    reallocating to 0 bytes.  Such thing is not going to work too well.
1996    You have been warned!!  */
1997 # ifndef DEFINED_ONCE
1998 #  if defined _MSC_VER  && !defined WIN32
1999 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2000    The REALLOC define eliminates a flurry of conversion warnings,
2001    but is not required. */
2002 #   define MAX_BUF_SIZE  65500L
2003 #   define REALLOC(p,s) realloc ((p), (size_t) (s))
2004 #  else
2005 #   define MAX_BUF_SIZE (1L << 16)
2006 #   define REALLOC(p,s) realloc ((p), (s))
2007 #  endif
2008 
2009 /* Extend the buffer by twice its current size via realloc and
2010    reset the pointers that pointed into the old block to point to the
2011    correct places in the new one.  If extending the buffer results in it
2012    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2013 #  if __BOUNDED_POINTERS__
2014 #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2015 #   define MOVE_BUFFER_POINTER(P) \
2016   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2017 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2018   else						\
2019     {						\
2020       SET_HIGH_BOUND (b);			\
2021       SET_HIGH_BOUND (begalt);			\
2022       if (fixup_alt_jump)			\
2023 	SET_HIGH_BOUND (fixup_alt_jump);	\
2024       if (laststart)				\
2025 	SET_HIGH_BOUND (laststart);		\
2026       if (pending_exact)			\
2027 	SET_HIGH_BOUND (pending_exact);		\
2028     }
2029 #  else
2030 #   define MOVE_BUFFER_POINTER(P) (P) += incr
2031 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2032 #  endif
2033 # endif /* not DEFINED_ONCE */
2034 
2035 # ifdef WCHAR
2036 #  define EXTEND_BUFFER()						\
2037   do {									\
2038     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2039     int wchar_count;							\
2040     if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2041       return REG_ESIZE;							\
2042     bufp->allocated <<= 1;						\
2043     if (bufp->allocated > MAX_BUF_SIZE)					\
2044       bufp->allocated = MAX_BUF_SIZE;					\
2045     /* How many characters the new buffer can have?  */			\
2046     wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2047     if (wchar_count == 0) wchar_count = 1;				\
2048     /* Truncate the buffer to CHAR_T align.  */			\
2049     bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2050     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2051     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2052     if (COMPILED_BUFFER_VAR == NULL)					\
2053       return REG_ESPACE;						\
2054     /* If the buffer moved, move all the pointers into it.  */		\
2055     if (old_buffer != COMPILED_BUFFER_VAR)				\
2056       {									\
2057 	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2058 	MOVE_BUFFER_POINTER (b);					\
2059 	MOVE_BUFFER_POINTER (begalt);					\
2060 	if (fixup_alt_jump)						\
2061 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2062 	if (laststart)							\
2063 	  MOVE_BUFFER_POINTER (laststart);				\
2064 	if (pending_exact)						\
2065 	  MOVE_BUFFER_POINTER (pending_exact);				\
2066       }									\
2067     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2068   } while (0)
2069 # else /* BYTE */
2070 #  define EXTEND_BUFFER()						\
2071   do {									\
2072     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2073     if (bufp->allocated == MAX_BUF_SIZE)				\
2074       return REG_ESIZE;							\
2075     bufp->allocated <<= 1;						\
2076     if (bufp->allocated > MAX_BUF_SIZE)					\
2077       bufp->allocated = MAX_BUF_SIZE;					\
2078     bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2079 						bufp->allocated);	\
2080     if (COMPILED_BUFFER_VAR == NULL)					\
2081       return REG_ESPACE;						\
2082     /* If the buffer moved, move all the pointers into it.  */		\
2083     if (old_buffer != COMPILED_BUFFER_VAR)				\
2084       {									\
2085 	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2086 	MOVE_BUFFER_POINTER (b);					\
2087 	MOVE_BUFFER_POINTER (begalt);					\
2088 	if (fixup_alt_jump)						\
2089 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2090 	if (laststart)							\
2091 	  MOVE_BUFFER_POINTER (laststart);				\
2092 	if (pending_exact)						\
2093 	  MOVE_BUFFER_POINTER (pending_exact);				\
2094       }									\
2095     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2096   } while (0)
2097 # endif /* WCHAR */
2098 
2099 # ifndef DEFINED_ONCE
2100 /* Since we have one byte reserved for the register number argument to
2101    {start,stop}_memory, the maximum number of groups we can report
2102    things about is what fits in that byte.  */
2103 #  define MAX_REGNUM 255
2104 
2105 /* But patterns can have more than `MAX_REGNUM' registers.  We just
2106    ignore the excess.  */
2107 typedef unsigned regnum_t;
2108 
2109 
2110 /* Macros for the compile stack.  */
2111 
2112 /* Since offsets can go either forwards or backwards, this type needs to
2113    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2114 /* int may be not enough when sizeof(int) == 2.  */
2115 typedef long pattern_offset_t;
2116 
2117 typedef struct
2118 {
2119   pattern_offset_t begalt_offset;
2120   pattern_offset_t fixup_alt_jump;
2121   pattern_offset_t inner_group_offset;
2122   pattern_offset_t laststart_offset;
2123   regnum_t regnum;
2124 } compile_stack_elt_t;
2125 
2126 
2127 typedef struct
2128 {
2129   compile_stack_elt_t *stack;
2130   unsigned size;
2131   unsigned avail;			/* Offset of next open position.  */
2132 } compile_stack_type;
2133 
2134 
2135 #  define INIT_COMPILE_STACK_SIZE 32
2136 
2137 #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2138 #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2139 
2140 /* The next available element.  */
2141 #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2142 
2143 # endif /* not DEFINED_ONCE */
2144 
2145 /* Set the bit for character C in a list.  */
2146 # ifndef DEFINED_ONCE
2147 #  define SET_LIST_BIT(c)                               \
2148   (b[((unsigned char) (c)) / BYTEWIDTH]               \
2149    |= 1 << (((unsigned char) c) % BYTEWIDTH))
2150 # endif /* DEFINED_ONCE */
2151 
2152 /* Get the next unsigned number in the uncompiled pattern.  */
2153 # define GET_UNSIGNED_NUMBER(num) \
2154   {									\
2155     while (p != pend)							\
2156       {									\
2157 	PATFETCH (c);							\
2158 	if (c < '0' || c > '9')						\
2159 	  break;							\
2160 	if (num <= RE_DUP_MAX)						\
2161 	  {								\
2162 	    if (num < 0)						\
2163 	      num = 0;							\
2164 	    num = num * 10 + c - '0';					\
2165 	  }								\
2166       }									\
2167   }
2168 
2169 # ifndef DEFINED_ONCE
2170 #  if defined _LIBC || WIDE_CHAR_SUPPORT
2171 /* The GNU C library provides support for user-defined character classes
2172    and the functions from ISO C amendement 1.  */
2173 #   ifdef CHARCLASS_NAME_MAX
2174 #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2175 #   else
2176 /* This shouldn't happen but some implementation might still have this
2177    problem.  Use a reasonable default value.  */
2178 #    define CHAR_CLASS_MAX_LENGTH 256
2179 #   endif
2180 
2181 #   ifdef _LIBC
2182 #    define IS_CHAR_CLASS(string) __wctype (string)
2183 #   else
2184 #    define IS_CHAR_CLASS(string) wctype (string)
2185 #   endif
2186 #  else
2187 #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2188 
2189 #   define IS_CHAR_CLASS(string)					\
2190    (STREQ (string, "alpha") || STREQ (string, "upper")			\
2191     || STREQ (string, "lower") || STREQ (string, "digit")		\
2192     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2193     || STREQ (string, "space") || STREQ (string, "print")		\
2194     || STREQ (string, "punct") || STREQ (string, "graph")		\
2195     || STREQ (string, "cntrl") || STREQ (string, "blank"))
2196 #  endif
2197 # endif /* DEFINED_ONCE */
2198 
2199 # ifndef MATCH_MAY_ALLOCATE
2200 
2201 /* If we cannot allocate large objects within re_match_2_internal,
2202    we make the fail stack and register vectors global.
2203    The fail stack, we grow to the maximum size when a regexp
2204    is compiled.
2205    The register vectors, we adjust in size each time we
2206    compile a regexp, according to the number of registers it needs.  */
2207 
2208 static PREFIX(fail_stack_type) fail_stack;
2209 
2210 /* Size with which the following vectors are currently allocated.
2211    That is so we can make them bigger as needed,
2212    but never make them smaller.  */
2213 #  ifdef DEFINED_ONCE
2214 static int regs_allocated_size;
2215 
2216 static const char **     regstart, **     regend;
2217 static const char ** old_regstart, ** old_regend;
2218 static const char **best_regstart, **best_regend;
2219 static const char **reg_dummy;
2220 #  endif /* DEFINED_ONCE */
2221 
2222 static PREFIX(register_info_type) *PREFIX(reg_info);
2223 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2224 
2225 /* Make the register vectors big enough for NUM_REGS registers,
2226    but don't make them smaller.  */
2227 
2228 static void
2229 PREFIX(regex_grow_registers) (int num_regs)
2230 {
2231   if (num_regs > regs_allocated_size)
2232     {
2233       RETALLOC_IF (regstart,	 num_regs, const char *);
2234       RETALLOC_IF (regend,	 num_regs, const char *);
2235       RETALLOC_IF (old_regstart, num_regs, const char *);
2236       RETALLOC_IF (old_regend,	 num_regs, const char *);
2237       RETALLOC_IF (best_regstart, num_regs, const char *);
2238       RETALLOC_IF (best_regend,	 num_regs, const char *);
2239       RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2240       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2241       RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2242 
2243       regs_allocated_size = num_regs;
2244     }
2245 }
2246 
2247 # endif /* not MATCH_MAY_ALLOCATE */
2248 
2249 # ifndef DEFINED_ONCE
2250 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2251                                        regnum_t regnum);
2252 # endif /* not DEFINED_ONCE */
2253 
2254 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2255    Returns one of error codes defined in `regex.h', or zero for success.
2256 
2257    Assumes the `allocated' (and perhaps `buffer') and `translate'
2258    fields are set in BUFP on entry.
2259 
2260    If it succeeds, results are put in BUFP (if it returns an error, the
2261    contents of BUFP are undefined):
2262      `buffer' is the compiled pattern;
2263      `syntax' is set to SYNTAX;
2264      `used' is set to the length of the compiled pattern;
2265      `fastmap_accurate' is zero;
2266      `re_nsub' is the number of subexpressions in PATTERN;
2267      `not_bol' and `not_eol' are zero;
2268 
2269    The `fastmap' and `newline_anchor' fields are neither
2270    examined nor set.  */
2271 
2272 /* Return, freeing storage we allocated.  */
2273 # ifdef WCHAR
2274 #  define FREE_STACK_RETURN(value)		\
2275   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2276 # else
2277 #  define FREE_STACK_RETURN(value)		\
2278   return (free (compile_stack.stack), value)
2279 # endif /* WCHAR */
2280 
2281 static reg_errcode_t
2282 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2283                        size_t ARG_PREFIX(size), reg_syntax_t syntax,
2284                        struct re_pattern_buffer *bufp)
2285 {
2286   /* We fetch characters from PATTERN here.  Even though PATTERN is
2287      `char *' (i.e., signed), we declare these variables as unsigned, so
2288      they can be reliably used as array indices.  */
2289   register UCHAR_T c, c1;
2290 
2291 #ifdef WCHAR
2292   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2293   CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2294   size_t size;
2295   /* offset buffer for optimization. See convert_mbs_to_wc.  */
2296   int *mbs_offset = NULL;
2297   /* It hold whether each wchar_t is binary data or not.  */
2298   char *is_binary = NULL;
2299   /* A flag whether exactn is handling binary data or not.  */
2300   char is_exactn_bin = FALSE;
2301 #endif /* WCHAR */
2302 
2303   /* A random temporary spot in PATTERN.  */
2304   const CHAR_T *p1;
2305 
2306   /* Points to the end of the buffer, where we should append.  */
2307   register UCHAR_T *b;
2308 
2309   /* Keeps track of unclosed groups.  */
2310   compile_stack_type compile_stack;
2311 
2312   /* Points to the current (ending) position in the pattern.  */
2313 #ifdef WCHAR
2314   const CHAR_T *p;
2315   const CHAR_T *pend;
2316 #else /* BYTE */
2317   const CHAR_T *p = pattern;
2318   const CHAR_T *pend = pattern + size;
2319 #endif /* WCHAR */
2320 
2321   /* How to translate the characters in the pattern.  */
2322   RE_TRANSLATE_TYPE translate = bufp->translate;
2323 
2324   /* Address of the count-byte of the most recently inserted `exactn'
2325      command.  This makes it possible to tell if a new exact-match
2326      character can be added to that command or if the character requires
2327      a new `exactn' command.  */
2328   UCHAR_T *pending_exact = 0;
2329 
2330   /* Address of start of the most recently finished expression.
2331      This tells, e.g., postfix * where to find the start of its
2332      operand.  Reset at the beginning of groups and alternatives.  */
2333   UCHAR_T *laststart = 0;
2334 
2335   /* Address of beginning of regexp, or inside of last group.  */
2336   UCHAR_T *begalt;
2337 
2338   /* Address of the place where a forward jump should go to the end of
2339      the containing expression.  Each alternative of an `or' -- except the
2340      last -- ends with a forward jump of this sort.  */
2341   UCHAR_T *fixup_alt_jump = 0;
2342 
2343   /* Counts open-groups as they are encountered.  Remembered for the
2344      matching close-group on the compile stack, so the same register
2345      number is put in the stop_memory as the start_memory.  */
2346   regnum_t regnum = 0;
2347 
2348 #ifdef WCHAR
2349   /* Initialize the wchar_t PATTERN and offset_buffer.  */
2350   p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2351   mbs_offset = TALLOC(csize + 1, int);
2352   is_binary = TALLOC(csize + 1, char);
2353   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2354     {
2355       free(pattern);
2356       free(mbs_offset);
2357       free(is_binary);
2358       return REG_ESPACE;
2359     }
2360   pattern[csize] = L'\0';	/* sentinel */
2361   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2362   pend = p + size;
2363   if (size < 0)
2364     {
2365       free(pattern);
2366       free(mbs_offset);
2367       free(is_binary);
2368       return REG_BADPAT;
2369     }
2370 #endif
2371 
2372 #ifdef DEBUG
2373   DEBUG_PRINT1 ("\nCompiling pattern: ");
2374   if (debug)
2375     {
2376       unsigned debug_count;
2377 
2378       for (debug_count = 0; debug_count < size; debug_count++)
2379         PUT_CHAR (pattern[debug_count]);
2380       putchar ('\n');
2381     }
2382 #endif /* DEBUG */
2383 
2384   /* Initialize the compile stack.  */
2385   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2386   if (compile_stack.stack == NULL)
2387     {
2388 #ifdef WCHAR
2389       free(pattern);
2390       free(mbs_offset);
2391       free(is_binary);
2392 #endif
2393       return REG_ESPACE;
2394     }
2395 
2396   compile_stack.size = INIT_COMPILE_STACK_SIZE;
2397   compile_stack.avail = 0;
2398 
2399   /* Initialize the pattern buffer.  */
2400   bufp->syntax = syntax;
2401   bufp->fastmap_accurate = 0;
2402   bufp->not_bol = bufp->not_eol = 0;
2403 
2404   /* Set `used' to zero, so that if we return an error, the pattern
2405      printer (for debugging) will think there's no pattern.  We reset it
2406      at the end.  */
2407   bufp->used = 0;
2408 
2409   /* Always count groups, whether or not bufp->no_sub is set.  */
2410   bufp->re_nsub = 0;
2411 
2412 #if !defined emacs && !defined SYNTAX_TABLE
2413   /* Initialize the syntax table.  */
2414    init_syntax_once ();
2415 #endif
2416 
2417   if (bufp->allocated == 0)
2418     {
2419       if (bufp->buffer)
2420 	{ /* If zero allocated, but buffer is non-null, try to realloc
2421              enough space.  This loses if buffer's address is bogus, but
2422              that is the user's responsibility.  */
2423 #ifdef WCHAR
2424 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2425 	     buffer.  */
2426           free(bufp->buffer);
2427           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2428 					UCHAR_T);
2429 #else
2430           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2431 #endif /* WCHAR */
2432         }
2433       else
2434         { /* Caller did not allocate a buffer.  Do it for them.  */
2435           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2436 					UCHAR_T);
2437         }
2438 
2439       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2440 #ifdef WCHAR
2441       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2442 #endif /* WCHAR */
2443       bufp->allocated = INIT_BUF_SIZE;
2444     }
2445 #ifdef WCHAR
2446   else
2447     COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2448 #endif
2449 
2450   begalt = b = COMPILED_BUFFER_VAR;
2451 
2452   /* Loop through the uncompiled pattern until we're at the end.  */
2453   while (p != pend)
2454     {
2455       PATFETCH (c);
2456 
2457       switch (c)
2458         {
2459         case '^':
2460           {
2461             if (   /* If at start of pattern, it's an operator.  */
2462                    p == pattern + 1
2463                    /* If context independent, it's an operator.  */
2464                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2465                    /* Otherwise, depends on what's come before.  */
2466                 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2467               BUF_PUSH (begline);
2468             else
2469               goto normal_char;
2470           }
2471           break;
2472 
2473 
2474         case '$':
2475           {
2476             if (   /* If at end of pattern, it's an operator.  */
2477                    p == pend
2478                    /* If context independent, it's an operator.  */
2479                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2480                    /* Otherwise, depends on what's next.  */
2481                 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2482                BUF_PUSH (endline);
2483              else
2484                goto normal_char;
2485            }
2486            break;
2487 
2488 
2489 	case '+':
2490         case '?':
2491           if ((syntax & RE_BK_PLUS_QM)
2492               || (syntax & RE_LIMITED_OPS))
2493             goto normal_char;
2494         handle_plus:
2495         case '*':
2496           /* If there is no previous pattern... */
2497           if (!laststart)
2498             {
2499               if (syntax & RE_CONTEXT_INVALID_OPS)
2500                 FREE_STACK_RETURN (REG_BADRPT);
2501               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2502                 goto normal_char;
2503             }
2504 
2505           {
2506             /* Are we optimizing this jump?  */
2507             boolean keep_string_p = false;
2508 
2509             /* 1 means zero (many) matches is allowed.  */
2510             char zero_times_ok = 0, many_times_ok = 0;
2511 
2512             /* If there is a sequence of repetition chars, collapse it
2513                down to just one (the right one).  We can't combine
2514                interval operators with these because of, e.g., `a{2}*',
2515                which should only match an even number of `a's.  */
2516 
2517             for (;;)
2518               {
2519                 zero_times_ok |= c != '+';
2520                 many_times_ok |= c != '?';
2521 
2522                 if (p == pend)
2523                   break;
2524 
2525                 PATFETCH (c);
2526 
2527                 if (c == '*'
2528                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2529                   ;
2530 
2531                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2532                   {
2533                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2534 
2535                     PATFETCH (c1);
2536                     if (!(c1 == '+' || c1 == '?'))
2537                       {
2538                         PATUNFETCH;
2539                         PATUNFETCH;
2540                         break;
2541                       }
2542 
2543                     c = c1;
2544                   }
2545                 else
2546                   {
2547                     PATUNFETCH;
2548                     break;
2549                   }
2550 
2551                 /* If we get here, we found another repeat character.  */
2552                }
2553 
2554             /* Star, etc. applied to an empty pattern is equivalent
2555                to an empty pattern.  */
2556             if (!laststart)
2557               break;
2558 
2559             /* Now we know whether or not zero matches is allowed
2560                and also whether or not two or more matches is allowed.  */
2561             if (many_times_ok)
2562               { /* More than one repetition is allowed, so put in at the
2563                    end a backward relative jump from `b' to before the next
2564                    jump we're going to put in below (which jumps from
2565                    laststart to after this jump).
2566 
2567                    But if we are at the `*' in the exact sequence `.*\n',
2568                    insert an unconditional jump backwards to the .,
2569                    instead of the beginning of the loop.  This way we only
2570                    push a failure point once, instead of every time
2571                    through the loop.  */
2572                 assert (p - 1 > pattern);
2573 
2574                 /* Allocate the space for the jump.  */
2575                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2576 
2577                 /* We know we are not at the first character of the pattern,
2578                    because laststart was nonzero.  And we've already
2579                    incremented `p', by the way, to be the character after
2580                    the `*'.  Do we have to do something analogous here
2581                    for null bytes, because of RE_DOT_NOT_NULL?  */
2582                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2583 		    && zero_times_ok
2584                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2585                     && !(syntax & RE_DOT_NEWLINE))
2586                   { /* We have .*\n.  */
2587                     STORE_JUMP (jump, b, laststart);
2588                     keep_string_p = true;
2589                   }
2590                 else
2591                   /* Anything else.  */
2592                   STORE_JUMP (maybe_pop_jump, b, laststart -
2593 			      (1 + OFFSET_ADDRESS_SIZE));
2594 
2595                 /* We've added more stuff to the buffer.  */
2596                 b += 1 + OFFSET_ADDRESS_SIZE;
2597               }
2598 
2599             /* On failure, jump from laststart to b + 3, which will be the
2600                end of the buffer after this jump is inserted.  */
2601 	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2602 	       'b + 3'.  */
2603             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2604             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2605                                        : on_failure_jump,
2606                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2607             pending_exact = 0;
2608             b += 1 + OFFSET_ADDRESS_SIZE;
2609 
2610             if (!zero_times_ok)
2611               {
2612                 /* At least one repetition is required, so insert a
2613                    `dummy_failure_jump' before the initial
2614                    `on_failure_jump' instruction of the loop. This
2615                    effects a skip over that instruction the first time
2616                    we hit that loop.  */
2617                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2618                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2619 			     2 + 2 * OFFSET_ADDRESS_SIZE);
2620                 b += 1 + OFFSET_ADDRESS_SIZE;
2621               }
2622             }
2623 	  break;
2624 
2625 
2626 	case '.':
2627           laststart = b;
2628           BUF_PUSH (anychar);
2629           break;
2630 
2631 
2632         case '[':
2633           {
2634             boolean had_char_class = false;
2635 #ifdef WCHAR
2636 	    CHAR_T range_start = 0xffffffff;
2637 #else
2638 	    unsigned int range_start = 0xffffffff;
2639 #endif
2640             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2641 
2642 #ifdef WCHAR
2643 	    /* We assume a charset(_not) structure as a wchar_t array.
2644 	       charset[0] = (re_opcode_t) charset(_not)
2645                charset[1] = l (= length of char_classes)
2646                charset[2] = m (= length of collating_symbols)
2647                charset[3] = n (= length of equivalence_classes)
2648 	       charset[4] = o (= length of char_ranges)
2649 	       charset[5] = p (= length of chars)
2650 
2651                charset[6] = char_class (wctype_t)
2652                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2653                          ...
2654                charset[l+5]  = char_class (wctype_t)
2655 
2656                charset[l+6]  = collating_symbol (wchar_t)
2657                             ...
2658                charset[l+m+5]  = collating_symbol (wchar_t)
2659 					ifdef _LIBC we use the index if
2660 					_NL_COLLATE_SYMB_EXTRAMB instead of
2661 					wchar_t string.
2662 
2663                charset[l+m+6]  = equivalence_classes (wchar_t)
2664                               ...
2665                charset[l+m+n+5]  = equivalence_classes (wchar_t)
2666 					ifdef _LIBC we use the index in
2667 					_NL_COLLATE_WEIGHT instead of
2668 					wchar_t string.
2669 
2670 	       charset[l+m+n+6] = range_start
2671 	       charset[l+m+n+7] = range_end
2672 	                       ...
2673 	       charset[l+m+n+2o+4] = range_start
2674 	       charset[l+m+n+2o+5] = range_end
2675 					ifdef _LIBC we use the value looked up
2676 					in _NL_COLLATE_COLLSEQ instead of
2677 					wchar_t character.
2678 
2679 	       charset[l+m+n+2o+6] = char
2680 	                          ...
2681 	       charset[l+m+n+2o+p+5] = char
2682 
2683 	     */
2684 
2685 	    /* We need at least 6 spaces: the opcode, the length of
2686                char_classes, the length of collating_symbols, the length of
2687                equivalence_classes, the length of char_ranges, the length of
2688                chars.  */
2689 	    GET_BUFFER_SPACE (6);
2690 
2691 	    /* Save b as laststart. And We use laststart as the pointer
2692 	       to the first element of the charset here.
2693 	       In other words, laststart[i] indicates charset[i].  */
2694             laststart = b;
2695 
2696             /* We test `*p == '^' twice, instead of using an if
2697                statement, so we only need one BUF_PUSH.  */
2698             BUF_PUSH (*p == '^' ? charset_not : charset);
2699             if (*p == '^')
2700               p++;
2701 
2702             /* Push the length of char_classes, the length of
2703                collating_symbols, the length of equivalence_classes, the
2704                length of char_ranges and the length of chars.  */
2705             BUF_PUSH_3 (0, 0, 0);
2706             BUF_PUSH_2 (0, 0);
2707 
2708             /* Remember the first position in the bracket expression.  */
2709             p1 = p;
2710 
2711             /* charset_not matches newline according to a syntax bit.  */
2712             if ((re_opcode_t) b[-6] == charset_not
2713                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2714 	      {
2715 		BUF_PUSH('\n');
2716 		laststart[5]++; /* Update the length of characters  */
2717 	      }
2718 
2719             /* Read in characters and ranges, setting map bits.  */
2720             for (;;)
2721               {
2722                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2723 
2724                 PATFETCH (c);
2725 
2726                 /* \ might escape characters inside [...] and [^...].  */
2727                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2728                   {
2729                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2730 
2731                     PATFETCH (c1);
2732 		    BUF_PUSH(c1);
2733 		    laststart[5]++; /* Update the length of chars  */
2734 		    range_start = c1;
2735                     continue;
2736                   }
2737 
2738                 /* Could be the end of the bracket expression.  If it's
2739                    not (i.e., when the bracket expression is `[]' so
2740                    far), the ']' character bit gets set way below.  */
2741                 if (c == ']' && p != p1 + 1)
2742                   break;
2743 
2744                 /* Look ahead to see if it's a range when the last thing
2745                    was a character class.  */
2746                 if (had_char_class && c == '-' && *p != ']')
2747                   FREE_STACK_RETURN (REG_ERANGE);
2748 
2749                 /* Look ahead to see if it's a range when the last thing
2750                    was a character: if this is a hyphen not at the
2751                    beginning or the end of a list, then it's the range
2752                    operator.  */
2753                 if (c == '-'
2754                     && !(p - 2 >= pattern && p[-2] == '[')
2755                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2756                     && *p != ']')
2757                   {
2758                     reg_errcode_t ret;
2759 		    /* Allocate the space for range_start and range_end.  */
2760 		    GET_BUFFER_SPACE (2);
2761 		    /* Update the pointer to indicate end of buffer.  */
2762                     b += 2;
2763                     ret = wcs_compile_range (range_start, &p, pend, translate,
2764                                          syntax, b, laststart);
2765                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2766                     range_start = 0xffffffff;
2767                   }
2768                 else if (p[0] == '-' && p[1] != ']')
2769                   { /* This handles ranges made up of characters only.  */
2770                     reg_errcode_t ret;
2771 
2772 		    /* Move past the `-'.  */
2773                     PATFETCH (c1);
2774 		    /* Allocate the space for range_start and range_end.  */
2775 		    GET_BUFFER_SPACE (2);
2776 		    /* Update the pointer to indicate end of buffer.  */
2777                     b += 2;
2778                     ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2779                                          laststart);
2780                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2781 		    range_start = 0xffffffff;
2782                   }
2783 
2784                 /* See if we're at the beginning of a possible character
2785                    class.  */
2786                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2787                   { /* Leave room for the null.  */
2788                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2789 
2790                     PATFETCH (c);
2791                     c1 = 0;
2792 
2793                     /* If pattern is `[[:'.  */
2794                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2795 
2796                     for (;;)
2797                       {
2798                         PATFETCH (c);
2799                         if ((c == ':' && *p == ']') || p == pend)
2800                           break;
2801 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2802 			  str[c1++] = c;
2803 			else
2804 			  /* This is in any case an invalid class name.  */
2805 			  str[0] = '\0';
2806                       }
2807                     str[c1] = '\0';
2808 
2809                     /* If isn't a word bracketed by `[:' and `:]':
2810                        undo the ending character, the letters, and leave
2811                        the leading `:' and `[' (but store them as character).  */
2812                     if (c == ':' && *p == ']')
2813                       {
2814 			wctype_t wt;
2815 			uintptr_t alignedp;
2816 
2817 			/* Query the character class as wctype_t.  */
2818 			wt = IS_CHAR_CLASS (str);
2819 			if (wt == 0)
2820 			  FREE_STACK_RETURN (REG_ECTYPE);
2821 
2822                         /* Throw away the ] at the end of the character
2823                            class.  */
2824                         PATFETCH (c);
2825 
2826                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2827 
2828 			/* Allocate the space for character class.  */
2829                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2830 			/* Update the pointer to indicate end of buffer.  */
2831                         b += CHAR_CLASS_SIZE;
2832 			/* Move data which follow character classes
2833 			    not to violate the data.  */
2834                         insert_space(CHAR_CLASS_SIZE,
2835 				     laststart + 6 + laststart[1],
2836 				     b - 1);
2837 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2838 				    + __alignof__(wctype_t) - 1)
2839 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2840 			/* Store the character class.  */
2841                         *((wctype_t*)alignedp) = wt;
2842                         /* Update length of char_classes */
2843                         laststart[1] += CHAR_CLASS_SIZE;
2844 
2845                         had_char_class = true;
2846                       }
2847                     else
2848                       {
2849                         c1++;
2850                         while (c1--)
2851                           PATUNFETCH;
2852                         BUF_PUSH ('[');
2853                         BUF_PUSH (':');
2854                         laststart[5] += 2; /* Update the length of characters  */
2855 			range_start = ':';
2856                         had_char_class = false;
2857                       }
2858                   }
2859                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2860 							  || *p == '.'))
2861 		  {
2862 		    CHAR_T str[128];	/* Should be large enough.  */
2863 		    CHAR_T delim = *p; /* '=' or '.'  */
2864 # ifdef _LIBC
2865 		    uint32_t nrules =
2866 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2867 # endif
2868 		    PATFETCH (c);
2869 		    c1 = 0;
2870 
2871 		    /* If pattern is `[[=' or '[[.'.  */
2872 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2873 
2874 		    for (;;)
2875 		      {
2876 			PATFETCH (c);
2877 			if ((c == delim && *p == ']') || p == pend)
2878 			  break;
2879 			if (c1 < sizeof (str) - 1)
2880 			  str[c1++] = c;
2881 			else
2882 			  /* This is in any case an invalid class name.  */
2883 			  str[0] = '\0';
2884                       }
2885 		    str[c1] = '\0';
2886 
2887 		    if (c == delim && *p == ']' && str[0] != '\0')
2888 		      {
2889                         unsigned int i, offset;
2890 			/* If we have no collation data we use the default
2891 			   collation in which each character is in a class
2892 			   by itself.  It also means that ASCII is the
2893 			   character set and therefore we cannot have character
2894 			   with more than one byte in the multibyte
2895 			   representation.  */
2896 
2897                         /* If not defined _LIBC, we push the name and
2898 			   `\0' for the sake of matching performance.  */
2899 			int datasize = c1 + 1;
2900 
2901 # ifdef _LIBC
2902 			int32_t idx = 0;
2903 			if (nrules == 0)
2904 # endif
2905 			  {
2906 			    if (c1 != 1)
2907 			      FREE_STACK_RETURN (REG_ECOLLATE);
2908 			  }
2909 # ifdef _LIBC
2910 			else
2911 			  {
2912 			    const int32_t *table;
2913 			    const int32_t *weights;
2914 			    const int32_t *extra;
2915 			    const int32_t *indirect;
2916 			    wint_t *cp;
2917 
2918 			    /* This #include defines a local function!  */
2919 #  include <locale/weightwc.h>
2920 
2921 			    if(delim == '=')
2922 			      {
2923 				/* We push the index for equivalence class.  */
2924 				cp = (wint_t*)str;
2925 
2926 				table = (const int32_t *)
2927 				  _NL_CURRENT (LC_COLLATE,
2928 					       _NL_COLLATE_TABLEWC);
2929 				weights = (const int32_t *)
2930 				  _NL_CURRENT (LC_COLLATE,
2931 					       _NL_COLLATE_WEIGHTWC);
2932 				extra = (const int32_t *)
2933 				  _NL_CURRENT (LC_COLLATE,
2934 					       _NL_COLLATE_EXTRAWC);
2935 				indirect = (const int32_t *)
2936 				  _NL_CURRENT (LC_COLLATE,
2937 					       _NL_COLLATE_INDIRECTWC);
2938 
2939 				idx = findidx ((const wint_t**)&cp);
2940 				if (idx == 0 || cp < (wint_t*) str + c1)
2941 				  /* This is no valid character.  */
2942 				  FREE_STACK_RETURN (REG_ECOLLATE);
2943 
2944 				str[0] = (wchar_t)idx;
2945 			      }
2946 			    else /* delim == '.' */
2947 			      {
2948 				/* We push collation sequence value
2949 				   for collating symbol.  */
2950 				int32_t table_size;
2951 				const int32_t *symb_table;
2952 				const unsigned char *extra;
2953 				int32_t idx;
2954 				int32_t elem;
2955 				int32_t second;
2956 				int32_t hash;
2957 				char char_str[c1];
2958 
2959 				/* We have to convert the name to a single-byte
2960 				   string.  This is possible since the names
2961 				   consist of ASCII characters and the internal
2962 				   representation is UCS4.  */
2963 				for (i = 0; i < c1; ++i)
2964 				  char_str[i] = str[i];
2965 
2966 				table_size =
2967 				  _NL_CURRENT_WORD (LC_COLLATE,
2968 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2969 				symb_table = (const int32_t *)
2970 				  _NL_CURRENT (LC_COLLATE,
2971 					       _NL_COLLATE_SYMB_TABLEMB);
2972 				extra = (const unsigned char *)
2973 				  _NL_CURRENT (LC_COLLATE,
2974 					       _NL_COLLATE_SYMB_EXTRAMB);
2975 
2976 				/* Locate the character in the hashing table.  */
2977 				hash = elem_hash (char_str, c1);
2978 
2979 				idx = 0;
2980 				elem = hash % table_size;
2981 				second = hash % (table_size - 2);
2982 				while (symb_table[2 * elem] != 0)
2983 				  {
2984 				    /* First compare the hashing value.  */
2985 				    if (symb_table[2 * elem] == hash
2986 					&& c1 == extra[symb_table[2 * elem + 1]]
2987 					&& memcmp (char_str,
2988 						   &extra[symb_table[2 * elem + 1]
2989 							 + 1], c1) == 0)
2990 				      {
2991 					/* Yep, this is the entry.  */
2992 					idx = symb_table[2 * elem + 1];
2993 					idx += 1 + extra[idx];
2994 					break;
2995 				      }
2996 
2997 				    /* Next entry.  */
2998 				    elem += second;
2999 				  }
3000 
3001 				if (symb_table[2 * elem] != 0)
3002 				  {
3003 				    /* Compute the index of the byte sequence
3004 				       in the table.  */
3005 				    idx += 1 + extra[idx];
3006 				    /* Adjust for the alignment.  */
3007 				    idx = (idx + 3) & ~3;
3008 
3009 				    str[0] = (wchar_t) idx + 4;
3010 				  }
3011 				else if (symb_table[2 * elem] == 0 && c1 == 1)
3012 				  {
3013 				    /* No valid character.  Match it as a
3014 				       single byte character.  */
3015 				    had_char_class = false;
3016 				    BUF_PUSH(str[0]);
3017 				    /* Update the length of characters  */
3018 				    laststart[5]++;
3019 				    range_start = str[0];
3020 
3021 				    /* Throw away the ] at the end of the
3022 				       collating symbol.  */
3023 				    PATFETCH (c);
3024 				    /* exit from the switch block.  */
3025 				    continue;
3026 				  }
3027 				else
3028 				  FREE_STACK_RETURN (REG_ECOLLATE);
3029 			      }
3030 			    datasize = 1;
3031 			  }
3032 # endif
3033                         /* Throw away the ] at the end of the equivalence
3034                            class (or collating symbol).  */
3035                         PATFETCH (c);
3036 
3037 			/* Allocate the space for the equivalence class
3038 			   (or collating symbol) (and '\0' if needed).  */
3039                         GET_BUFFER_SPACE(datasize);
3040 			/* Update the pointer to indicate end of buffer.  */
3041                         b += datasize;
3042 
3043 			if (delim == '=')
3044 			  { /* equivalence class  */
3045 			    /* Calculate the offset of char_ranges,
3046 			       which is next to equivalence_classes.  */
3047 			    offset = laststart[1] + laststart[2]
3048 			      + laststart[3] +6;
3049 			    /* Insert space.  */
3050 			    insert_space(datasize, laststart + offset, b - 1);
3051 
3052 			    /* Write the equivalence_class and \0.  */
3053 			    for (i = 0 ; i < datasize ; i++)
3054 			      laststart[offset + i] = str[i];
3055 
3056 			    /* Update the length of equivalence_classes.  */
3057 			    laststart[3] += datasize;
3058 			    had_char_class = true;
3059 			  }
3060 			else /* delim == '.' */
3061 			  { /* collating symbol  */
3062 			    /* Calculate the offset of the equivalence_classes,
3063 			       which is next to collating_symbols.  */
3064 			    offset = laststart[1] + laststart[2] + 6;
3065 			    /* Insert space and write the collationg_symbol
3066 			       and \0.  */
3067 			    insert_space(datasize, laststart + offset, b-1);
3068 			    for (i = 0 ; i < datasize ; i++)
3069 			      laststart[offset + i] = str[i];
3070 
3071 			    /* In re_match_2_internal if range_start < -1, we
3072 			       assume -range_start is the offset of the
3073 			       collating symbol which is specified as
3074 			       the character of the range start.  So we assign
3075 			       -(laststart[1] + laststart[2] + 6) to
3076 			       range_start.  */
3077 			    range_start = -(laststart[1] + laststart[2] + 6);
3078 			    /* Update the length of collating_symbol.  */
3079 			    laststart[2] += datasize;
3080 			    had_char_class = false;
3081 			  }
3082 		      }
3083                     else
3084                       {
3085                         c1++;
3086                         while (c1--)
3087                           PATUNFETCH;
3088                         BUF_PUSH ('[');
3089                         BUF_PUSH (delim);
3090                         laststart[5] += 2; /* Update the length of characters  */
3091 			range_start = delim;
3092                         had_char_class = false;
3093                       }
3094 		  }
3095                 else
3096                   {
3097                     had_char_class = false;
3098 		    BUF_PUSH(c);
3099 		    laststart[5]++;  /* Update the length of characters  */
3100 		    range_start = c;
3101                   }
3102 	      }
3103 
3104 #else /* BYTE */
3105             /* Ensure that we have enough space to push a charset: the
3106                opcode, the length count, and the bitset; 34 bytes in all.  */
3107 	    GET_BUFFER_SPACE (34);
3108 
3109             laststart = b;
3110 
3111             /* We test `*p == '^' twice, instead of using an if
3112                statement, so we only need one BUF_PUSH.  */
3113             BUF_PUSH (*p == '^' ? charset_not : charset);
3114             if (*p == '^')
3115               p++;
3116 
3117             /* Remember the first position in the bracket expression.  */
3118             p1 = p;
3119 
3120             /* Push the number of bytes in the bitmap.  */
3121             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3122 
3123             /* Clear the whole map.  */
3124             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3125 
3126             /* charset_not matches newline according to a syntax bit.  */
3127             if ((re_opcode_t) b[-2] == charset_not
3128                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3129               SET_LIST_BIT ('\n');
3130 
3131             /* Read in characters and ranges, setting map bits.  */
3132             for (;;)
3133               {
3134                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3135 
3136                 PATFETCH (c);
3137 
3138                 /* \ might escape characters inside [...] and [^...].  */
3139                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3140                   {
3141                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3142 
3143                     PATFETCH (c1);
3144                     SET_LIST_BIT (c1);
3145 		    range_start = c1;
3146                     continue;
3147                   }
3148 
3149                 /* Could be the end of the bracket expression.  If it's
3150                    not (i.e., when the bracket expression is `[]' so
3151                    far), the ']' character bit gets set way below.  */
3152                 if (c == ']' && p != p1 + 1)
3153                   break;
3154 
3155                 /* Look ahead to see if it's a range when the last thing
3156                    was a character class.  */
3157                 if (had_char_class && c == '-' && *p != ']')
3158                   FREE_STACK_RETURN (REG_ERANGE);
3159 
3160                 /* Look ahead to see if it's a range when the last thing
3161                    was a character: if this is a hyphen not at the
3162                    beginning or the end of a list, then it's the range
3163                    operator.  */
3164                 if (c == '-'
3165                     && !(p - 2 >= pattern && p[-2] == '[')
3166                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3167                     && *p != ']')
3168                   {
3169                     reg_errcode_t ret
3170                       = byte_compile_range (range_start, &p, pend, translate,
3171 					    syntax, b);
3172                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3173 		    range_start = 0xffffffff;
3174                   }
3175 
3176                 else if (p[0] == '-' && p[1] != ']')
3177                   { /* This handles ranges made up of characters only.  */
3178                     reg_errcode_t ret;
3179 
3180 		    /* Move past the `-'.  */
3181                     PATFETCH (c1);
3182 
3183                     ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3184                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3185 		    range_start = 0xffffffff;
3186                   }
3187 
3188                 /* See if we're at the beginning of a possible character
3189                    class.  */
3190 
3191                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3192                   { /* Leave room for the null.  */
3193                     char str[CHAR_CLASS_MAX_LENGTH + 1];
3194 
3195                     PATFETCH (c);
3196                     c1 = 0;
3197 
3198                     /* If pattern is `[[:'.  */
3199                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3200 
3201                     for (;;)
3202                       {
3203                         PATFETCH (c);
3204                         if ((c == ':' && *p == ']') || p == pend)
3205                           break;
3206 			if (c1 < CHAR_CLASS_MAX_LENGTH)
3207 			  str[c1++] = c;
3208 			else
3209 			  /* This is in any case an invalid class name.  */
3210 			  str[0] = '\0';
3211                       }
3212                     str[c1] = '\0';
3213 
3214                     /* If isn't a word bracketed by `[:' and `:]':
3215                        undo the ending character, the letters, and leave
3216                        the leading `:' and `[' (but set bits for them).  */
3217                     if (c == ':' && *p == ']')
3218                       {
3219 # if defined _LIBC || WIDE_CHAR_SUPPORT
3220                         boolean is_lower = STREQ (str, "lower");
3221                         boolean is_upper = STREQ (str, "upper");
3222 			wctype_t wt;
3223                         int ch;
3224 
3225 			wt = IS_CHAR_CLASS (str);
3226 			if (wt == 0)
3227 			  FREE_STACK_RETURN (REG_ECTYPE);
3228 
3229                         /* Throw away the ] at the end of the character
3230                            class.  */
3231                         PATFETCH (c);
3232 
3233                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3234 
3235                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3236 			  {
3237 #  ifdef _LIBC
3238 			    if (__iswctype (__btowc (ch), wt))
3239 			      SET_LIST_BIT (ch);
3240 #  else
3241 			    if (iswctype (btowc (ch), wt))
3242 			      SET_LIST_BIT (ch);
3243 #  endif
3244 
3245 			    if (translate && (is_upper || is_lower)
3246 				&& (ISUPPER (ch) || ISLOWER (ch)))
3247 			      SET_LIST_BIT (ch);
3248 			  }
3249 
3250                         had_char_class = true;
3251 # else
3252                         int ch;
3253                         boolean is_alnum = STREQ (str, "alnum");
3254                         boolean is_alpha = STREQ (str, "alpha");
3255                         boolean is_blank = STREQ (str, "blank");
3256                         boolean is_cntrl = STREQ (str, "cntrl");
3257                         boolean is_digit = STREQ (str, "digit");
3258                         boolean is_graph = STREQ (str, "graph");
3259                         boolean is_lower = STREQ (str, "lower");
3260                         boolean is_print = STREQ (str, "print");
3261                         boolean is_punct = STREQ (str, "punct");
3262                         boolean is_space = STREQ (str, "space");
3263                         boolean is_upper = STREQ (str, "upper");
3264                         boolean is_xdigit = STREQ (str, "xdigit");
3265 
3266                         if (!IS_CHAR_CLASS (str))
3267 			  FREE_STACK_RETURN (REG_ECTYPE);
3268 
3269                         /* Throw away the ] at the end of the character
3270                            class.  */
3271                         PATFETCH (c);
3272 
3273                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3274 
3275                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3276                           {
3277 			    /* This was split into 3 if's to
3278 			       avoid an arbitrary limit in some compiler.  */
3279                             if (   (is_alnum  && ISALNUM (ch))
3280                                 || (is_alpha  && ISALPHA (ch))
3281                                 || (is_blank  && ISBLANK (ch))
3282                                 || (is_cntrl  && ISCNTRL (ch)))
3283 			      SET_LIST_BIT (ch);
3284 			    if (   (is_digit  && ISDIGIT (ch))
3285                                 || (is_graph  && ISGRAPH (ch))
3286                                 || (is_lower  && ISLOWER (ch))
3287                                 || (is_print  && ISPRINT (ch)))
3288 			      SET_LIST_BIT (ch);
3289 			    if (   (is_punct  && ISPUNCT (ch))
3290                                 || (is_space  && ISSPACE (ch))
3291                                 || (is_upper  && ISUPPER (ch))
3292                                 || (is_xdigit && ISXDIGIT (ch)))
3293 			      SET_LIST_BIT (ch);
3294 			    if (   translate && (is_upper || is_lower)
3295 				&& (ISUPPER (ch) || ISLOWER (ch)))
3296 			      SET_LIST_BIT (ch);
3297                           }
3298                         had_char_class = true;
3299 # endif	/* libc || wctype.h */
3300                       }
3301                     else
3302                       {
3303                         c1++;
3304                         while (c1--)
3305                           PATUNFETCH;
3306                         SET_LIST_BIT ('[');
3307                         SET_LIST_BIT (':');
3308 			range_start = ':';
3309                         had_char_class = false;
3310                       }
3311                   }
3312                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3313 		  {
3314 		    unsigned char str[MB_LEN_MAX + 1];
3315 # ifdef _LIBC
3316 		    uint32_t nrules =
3317 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3318 # endif
3319 
3320 		    PATFETCH (c);
3321 		    c1 = 0;
3322 
3323 		    /* If pattern is `[[='.  */
3324 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3325 
3326 		    for (;;)
3327 		      {
3328 			PATFETCH (c);
3329 			if ((c == '=' && *p == ']') || p == pend)
3330 			  break;
3331 			if (c1 < MB_LEN_MAX)
3332 			  str[c1++] = c;
3333 			else
3334 			  /* This is in any case an invalid class name.  */
3335 			  str[0] = '\0';
3336                       }
3337 		    str[c1] = '\0';
3338 
3339 		    if (c == '=' && *p == ']' && str[0] != '\0')
3340 		      {
3341 			/* If we have no collation data we use the default
3342 			   collation in which each character is in a class
3343 			   by itself.  It also means that ASCII is the
3344 			   character set and therefore we cannot have character
3345 			   with more than one byte in the multibyte
3346 			   representation.  */
3347 # ifdef _LIBC
3348 			if (nrules == 0)
3349 # endif
3350 			  {
3351 			    if (c1 != 1)
3352 			      FREE_STACK_RETURN (REG_ECOLLATE);
3353 
3354 			    /* Throw away the ] at the end of the equivalence
3355 			       class.  */
3356 			    PATFETCH (c);
3357 
3358 			    /* Set the bit for the character.  */
3359 			    SET_LIST_BIT (str[0]);
3360 			  }
3361 # ifdef _LIBC
3362 			else
3363 			  {
3364 			    /* Try to match the byte sequence in `str' against
3365 			       those known to the collate implementation.
3366 			       First find out whether the bytes in `str' are
3367 			       actually from exactly one character.  */
3368 			    const int32_t *table;
3369 			    const unsigned char *weights;
3370 			    const unsigned char *extra;
3371 			    const int32_t *indirect;
3372 			    int32_t idx;
3373 			    const unsigned char *cp = str;
3374 			    int ch;
3375 
3376 			    /* This #include defines a local function!  */
3377 #  include <locale/weight.h>
3378 
3379 			    table = (const int32_t *)
3380 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3381 			    weights = (const unsigned char *)
3382 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3383 			    extra = (const unsigned char *)
3384 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3385 			    indirect = (const int32_t *)
3386 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3387 
3388 			    idx = findidx (&cp);
3389 			    if (idx == 0 || cp < str + c1)
3390 			      /* This is no valid character.  */
3391 			      FREE_STACK_RETURN (REG_ECOLLATE);
3392 
3393 			    /* Throw away the ] at the end of the equivalence
3394 			       class.  */
3395 			    PATFETCH (c);
3396 
3397 			    /* Now we have to go throught the whole table
3398 			       and find all characters which have the same
3399 			       first level weight.
3400 
3401 			       XXX Note that this is not entirely correct.
3402 			       we would have to match multibyte sequences
3403 			       but this is not possible with the current
3404 			       implementation.  */
3405 			    for (ch = 1; ch < 256; ++ch)
3406 			      /* XXX This test would have to be changed if we
3407 				 would allow matching multibyte sequences.  */
3408 			      if (table[ch] > 0)
3409 				{
3410 				  int32_t idx2 = table[ch];
3411 				  size_t len = weights[idx2];
3412 
3413 				  /* Test whether the lenghts match.  */
3414 				  if (weights[idx] == len)
3415 				    {
3416 				      /* They do.  New compare the bytes of
3417 					 the weight.  */
3418 				      size_t cnt = 0;
3419 
3420 				      while (cnt < len
3421 					     && (weights[idx + 1 + cnt]
3422 						 == weights[idx2 + 1 + cnt]))
3423 					++cnt;
3424 
3425 				      if (cnt == len)
3426 					/* They match.  Mark the character as
3427 					   acceptable.  */
3428 					SET_LIST_BIT (ch);
3429 				    }
3430 				}
3431 			  }
3432 # endif
3433 			had_char_class = true;
3434 		      }
3435                     else
3436                       {
3437                         c1++;
3438                         while (c1--)
3439                           PATUNFETCH;
3440                         SET_LIST_BIT ('[');
3441                         SET_LIST_BIT ('=');
3442 			range_start = '=';
3443                         had_char_class = false;
3444                       }
3445 		  }
3446                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3447 		  {
3448 		    unsigned char str[128];	/* Should be large enough.  */
3449 # ifdef _LIBC
3450 		    uint32_t nrules =
3451 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3452 # endif
3453 
3454 		    PATFETCH (c);
3455 		    c1 = 0;
3456 
3457 		    /* If pattern is `[[.'.  */
3458 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3459 
3460 		    for (;;)
3461 		      {
3462 			PATFETCH (c);
3463 			if ((c == '.' && *p == ']') || p == pend)
3464 			  break;
3465 			if (c1 < sizeof (str))
3466 			  str[c1++] = c;
3467 			else
3468 			  /* This is in any case an invalid class name.  */
3469 			  str[0] = '\0';
3470                       }
3471 		    str[c1] = '\0';
3472 
3473 		    if (c == '.' && *p == ']' && str[0] != '\0')
3474 		      {
3475 			/* If we have no collation data we use the default
3476 			   collation in which each character is the name
3477 			   for its own class which contains only the one
3478 			   character.  It also means that ASCII is the
3479 			   character set and therefore we cannot have character
3480 			   with more than one byte in the multibyte
3481 			   representation.  */
3482 # ifdef _LIBC
3483 			if (nrules == 0)
3484 # endif
3485 			  {
3486 			    if (c1 != 1)
3487 			      FREE_STACK_RETURN (REG_ECOLLATE);
3488 
3489 			    /* Throw away the ] at the end of the equivalence
3490 			       class.  */
3491 			    PATFETCH (c);
3492 
3493 			    /* Set the bit for the character.  */
3494 			    SET_LIST_BIT (str[0]);
3495 			    range_start = ((const unsigned char *) str)[0];
3496 			  }
3497 # ifdef _LIBC
3498 			else
3499 			  {
3500 			    /* Try to match the byte sequence in `str' against
3501 			       those known to the collate implementation.
3502 			       First find out whether the bytes in `str' are
3503 			       actually from exactly one character.  */
3504 			    int32_t table_size;
3505 			    const int32_t *symb_table;
3506 			    const unsigned char *extra;
3507 			    int32_t idx;
3508 			    int32_t elem;
3509 			    int32_t second;
3510 			    int32_t hash;
3511 
3512 			    table_size =
3513 			      _NL_CURRENT_WORD (LC_COLLATE,
3514 						_NL_COLLATE_SYMB_HASH_SIZEMB);
3515 			    symb_table = (const int32_t *)
3516 			      _NL_CURRENT (LC_COLLATE,
3517 					   _NL_COLLATE_SYMB_TABLEMB);
3518 			    extra = (const unsigned char *)
3519 			      _NL_CURRENT (LC_COLLATE,
3520 					   _NL_COLLATE_SYMB_EXTRAMB);
3521 
3522 			    /* Locate the character in the hashing table.  */
3523 			    hash = elem_hash (str, c1);
3524 
3525 			    idx = 0;
3526 			    elem = hash % table_size;
3527 			    second = hash % (table_size - 2);
3528 			    while (symb_table[2 * elem] != 0)
3529 			      {
3530 				/* First compare the hashing value.  */
3531 				if (symb_table[2 * elem] == hash
3532 				    && c1 == extra[symb_table[2 * elem + 1]]
3533 				    && memcmp (str,
3534 					       &extra[symb_table[2 * elem + 1]
3535 						     + 1],
3536 					       c1) == 0)
3537 				  {
3538 				    /* Yep, this is the entry.  */
3539 				    idx = symb_table[2 * elem + 1];
3540 				    idx += 1 + extra[idx];
3541 				    break;
3542 				  }
3543 
3544 				/* Next entry.  */
3545 				elem += second;
3546 			      }
3547 
3548 			    if (symb_table[2 * elem] == 0)
3549 			      /* This is no valid character.  */
3550 			      FREE_STACK_RETURN (REG_ECOLLATE);
3551 
3552 			    /* Throw away the ] at the end of the equivalence
3553 			       class.  */
3554 			    PATFETCH (c);
3555 
3556 			    /* Now add the multibyte character(s) we found
3557 			       to the accept list.
3558 
3559 			       XXX Note that this is not entirely correct.
3560 			       we would have to match multibyte sequences
3561 			       but this is not possible with the current
3562 			       implementation.  Also, we have to match
3563 			       collating symbols, which expand to more than
3564 			       one file, as a whole and not allow the
3565 			       individual bytes.  */
3566 			    c1 = extra[idx++];
3567 			    if (c1 == 1)
3568 			      range_start = extra[idx];
3569 			    while (c1-- > 0)
3570 			      {
3571 				SET_LIST_BIT (extra[idx]);
3572 				++idx;
3573 			      }
3574 			  }
3575 # endif
3576 			had_char_class = false;
3577 		      }
3578                     else
3579                       {
3580                         c1++;
3581                         while (c1--)
3582                           PATUNFETCH;
3583                         SET_LIST_BIT ('[');
3584                         SET_LIST_BIT ('.');
3585 			range_start = '.';
3586                         had_char_class = false;
3587                       }
3588 		  }
3589                 else
3590                   {
3591                     had_char_class = false;
3592                     SET_LIST_BIT (c);
3593 		    range_start = c;
3594                   }
3595               }
3596 
3597             /* Discard any (non)matching list bytes that are all 0 at the
3598                end of the map.  Decrease the map-length byte too.  */
3599             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3600               b[-1]--;
3601             b += b[-1];
3602 #endif /* WCHAR */
3603           }
3604           break;
3605 
3606 
3607 	case '(':
3608           if (syntax & RE_NO_BK_PARENS)
3609             goto handle_open;
3610           else
3611             goto normal_char;
3612 
3613 
3614         case ')':
3615           if (syntax & RE_NO_BK_PARENS)
3616             goto handle_close;
3617           else
3618             goto normal_char;
3619 
3620 
3621         case '\n':
3622           if (syntax & RE_NEWLINE_ALT)
3623             goto handle_alt;
3624           else
3625             goto normal_char;
3626 
3627 
3628 	case '|':
3629           if (syntax & RE_NO_BK_VBAR)
3630             goto handle_alt;
3631           else
3632             goto normal_char;
3633 
3634 
3635         case '{':
3636            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3637              goto handle_interval;
3638            else
3639              goto normal_char;
3640 
3641 
3642         case '\\':
3643           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3644 
3645           /* Do not translate the character after the \, so that we can
3646              distinguish, e.g., \B from \b, even if we normally would
3647              translate, e.g., B to b.  */
3648           PATFETCH_RAW (c);
3649 
3650           switch (c)
3651             {
3652             case '(':
3653               if (syntax & RE_NO_BK_PARENS)
3654                 goto normal_backslash;
3655 
3656             handle_open:
3657               bufp->re_nsub++;
3658               regnum++;
3659 
3660               if (COMPILE_STACK_FULL)
3661                 {
3662                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
3663                             compile_stack_elt_t);
3664                   if (compile_stack.stack == NULL) return REG_ESPACE;
3665 
3666                   compile_stack.size <<= 1;
3667                 }
3668 
3669               /* These are the values to restore when we hit end of this
3670                  group.  They are all relative offsets, so that if the
3671                  whole pattern moves because of realloc, they will still
3672                  be valid.  */
3673               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3674               COMPILE_STACK_TOP.fixup_alt_jump
3675                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3676               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3677               COMPILE_STACK_TOP.regnum = regnum;
3678 
3679               /* We will eventually replace the 0 with the number of
3680                  groups inner to this one.  But do not push a
3681                  start_memory for groups beyond the last one we can
3682                  represent in the compiled pattern.  */
3683               if (regnum <= MAX_REGNUM)
3684                 {
3685                   COMPILE_STACK_TOP.inner_group_offset = b
3686 		    - COMPILED_BUFFER_VAR + 2;
3687                   BUF_PUSH_3 (start_memory, regnum, 0);
3688                 }
3689 
3690               compile_stack.avail++;
3691 
3692               fixup_alt_jump = 0;
3693               laststart = 0;
3694               begalt = b;
3695 	      /* If we've reached MAX_REGNUM groups, then this open
3696 		 won't actually generate any code, so we'll have to
3697 		 clear pending_exact explicitly.  */
3698 	      pending_exact = 0;
3699               break;
3700 
3701 
3702             case ')':
3703               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3704 
3705               if (COMPILE_STACK_EMPTY)
3706 		{
3707 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3708 		    goto normal_backslash;
3709 		  else
3710 		    FREE_STACK_RETURN (REG_ERPAREN);
3711 		}
3712 
3713             handle_close:
3714               if (fixup_alt_jump)
3715                 { /* Push a dummy failure point at the end of the
3716                      alternative for a possible future
3717                      `pop_failure_jump' to pop.  See comments at
3718                      `push_dummy_failure' in `re_match_2'.  */
3719                   BUF_PUSH (push_dummy_failure);
3720 
3721                   /* We allocated space for this jump when we assigned
3722                      to `fixup_alt_jump', in the `handle_alt' case below.  */
3723                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3724                 }
3725 
3726               /* See similar code for backslashed left paren above.  */
3727               if (COMPILE_STACK_EMPTY)
3728 		{
3729 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3730 		    goto normal_char;
3731 		  else
3732 		    FREE_STACK_RETURN (REG_ERPAREN);
3733 		}
3734 
3735               /* Since we just checked for an empty stack above, this
3736                  ``can't happen''.  */
3737               assert (compile_stack.avail != 0);
3738               {
3739                 /* We don't just want to restore into `regnum', because
3740                    later groups should continue to be numbered higher,
3741                    as in `(ab)c(de)' -- the second group is #2.  */
3742                 regnum_t this_group_regnum;
3743 
3744                 compile_stack.avail--;
3745                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3746                 fixup_alt_jump
3747                   = COMPILE_STACK_TOP.fixup_alt_jump
3748                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3749                     : 0;
3750                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3751                 this_group_regnum = COMPILE_STACK_TOP.regnum;
3752 		/* If we've reached MAX_REGNUM groups, then this open
3753 		   won't actually generate any code, so we'll have to
3754 		   clear pending_exact explicitly.  */
3755 		pending_exact = 0;
3756 
3757                 /* We're at the end of the group, so now we know how many
3758                    groups were inside this one.  */
3759                 if (this_group_regnum <= MAX_REGNUM)
3760                   {
3761 		    UCHAR_T *inner_group_loc
3762                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3763 
3764                     *inner_group_loc = regnum - this_group_regnum;
3765                     BUF_PUSH_3 (stop_memory, this_group_regnum,
3766                                 regnum - this_group_regnum);
3767                   }
3768               }
3769               break;
3770 
3771 
3772             case '|':					/* `\|'.  */
3773               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3774                 goto normal_backslash;
3775             handle_alt:
3776               if (syntax & RE_LIMITED_OPS)
3777                 goto normal_char;
3778 
3779               /* Insert before the previous alternative a jump which
3780                  jumps to this alternative if the former fails.  */
3781               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3782               INSERT_JUMP (on_failure_jump, begalt,
3783 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3784               pending_exact = 0;
3785               b += 1 + OFFSET_ADDRESS_SIZE;
3786 
3787               /* The alternative before this one has a jump after it
3788                  which gets executed if it gets matched.  Adjust that
3789                  jump so it will jump to this alternative's analogous
3790                  jump (put in below, which in turn will jump to the next
3791                  (if any) alternative's such jump, etc.).  The last such
3792                  jump jumps to the correct final destination.  A picture:
3793                           _____ _____
3794                           |   | |   |
3795                           |   v |   v
3796                          a | b   | c
3797 
3798                  If we are at `b', then fixup_alt_jump right now points to a
3799                  three-byte space after `a'.  We'll put in the jump, set
3800                  fixup_alt_jump to right after `b', and leave behind three
3801                  bytes which we'll fill in when we get to after `c'.  */
3802 
3803               if (fixup_alt_jump)
3804                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3805 
3806               /* Mark and leave space for a jump after this alternative,
3807                  to be filled in later either by next alternative or
3808                  when know we're at the end of a series of alternatives.  */
3809               fixup_alt_jump = b;
3810               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3811               b += 1 + OFFSET_ADDRESS_SIZE;
3812 
3813               laststart = 0;
3814               begalt = b;
3815               break;
3816 
3817 
3818             case '{':
3819               /* If \{ is a literal.  */
3820               if (!(syntax & RE_INTERVALS)
3821                      /* If we're at `\{' and it's not the open-interval
3822                         operator.  */
3823 		  || (syntax & RE_NO_BK_BRACES))
3824                 goto normal_backslash;
3825 
3826             handle_interval:
3827               {
3828                 /* If got here, then the syntax allows intervals.  */
3829 
3830                 /* At least (most) this many matches must be made.  */
3831                 int lower_bound = -1, upper_bound = -1;
3832 
3833 		/* Place in the uncompiled pattern (i.e., just after
3834 		   the '{') to go back to if the interval is invalid.  */
3835 		const CHAR_T *beg_interval = p;
3836 
3837                 if (p == pend)
3838 		  goto invalid_interval;
3839 
3840                 GET_UNSIGNED_NUMBER (lower_bound);
3841 
3842                 if (c == ',')
3843                   {
3844                     GET_UNSIGNED_NUMBER (upper_bound);
3845 		    if (upper_bound < 0)
3846 		      upper_bound = RE_DUP_MAX;
3847                   }
3848                 else
3849                   /* Interval such as `{1}' => match exactly once. */
3850                   upper_bound = lower_bound;
3851 
3852                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3853 		  goto invalid_interval;
3854 
3855                 if (!(syntax & RE_NO_BK_BRACES))
3856                   {
3857 		    if (c != '\\' || p == pend)
3858 		      goto invalid_interval;
3859                     PATFETCH (c);
3860                   }
3861 
3862                 if (c != '}')
3863 		  goto invalid_interval;
3864 
3865                 /* If it's invalid to have no preceding re.  */
3866                 if (!laststart)
3867                   {
3868 		    if (syntax & RE_CONTEXT_INVALID_OPS
3869 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3870                       FREE_STACK_RETURN (REG_BADRPT);
3871                     else if (syntax & RE_CONTEXT_INDEP_OPS)
3872                       laststart = b;
3873                     else
3874                       goto unfetch_interval;
3875                   }
3876 
3877                 /* We just parsed a valid interval.  */
3878 
3879                 if (RE_DUP_MAX < upper_bound)
3880 		  FREE_STACK_RETURN (REG_BADBR);
3881 
3882                 /* If the upper bound is zero, don't want to succeed at
3883                    all; jump from `laststart' to `b + 3', which will be
3884 		   the end of the buffer after we insert the jump.  */
3885 		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886 		   instead of 'b + 3'.  */
3887                  if (upper_bound == 0)
3888                    {
3889                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3890                      INSERT_JUMP (jump, laststart, b + 1
3891 				  + OFFSET_ADDRESS_SIZE);
3892                      b += 1 + OFFSET_ADDRESS_SIZE;
3893                    }
3894 
3895                  /* Otherwise, we have a nontrivial interval.  When
3896                     we're all done, the pattern will look like:
3897                       set_number_at <jump count> <upper bound>
3898                       set_number_at <succeed_n count> <lower bound>
3899                       succeed_n <after jump addr> <succeed_n count>
3900                       <body of loop>
3901                       jump_n <succeed_n addr> <jump count>
3902                     (The upper bound and `jump_n' are omitted if
3903                     `upper_bound' is 1, though.)  */
3904                  else
3905                    { /* If the upper bound is > 1, we need to insert
3906                         more at the end of the loop.  */
3907                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3908 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3909 
3910                      GET_BUFFER_SPACE (nbytes);
3911 
3912                      /* Initialize lower bound of the `succeed_n', even
3913                         though it will be set during matching by its
3914                         attendant `set_number_at' (inserted next),
3915                         because `re_compile_fastmap' needs to know.
3916                         Jump to the `jump_n' we might insert below.  */
3917                      INSERT_JUMP2 (succeed_n, laststart,
3918                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
3919 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3920 				   , lower_bound);
3921                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3922 
3923                      /* Code to initialize the lower bound.  Insert
3924                         before the `succeed_n'.  The `5' is the last two
3925                         bytes of this `set_number_at', plus 3 bytes of
3926                         the following `succeed_n'.  */
3927 		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929 			of the following `succeed_n'.  */
3930                      PREFIX(insert_op2) (set_number_at, laststart, 1
3931 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3932                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3933 
3934                      if (upper_bound > 1)
3935                        { /* More than one repetition is allowed, so
3936                             append a backward jump to the `succeed_n'
3937                             that starts this interval.
3938 
3939                             When we've reached this during matching,
3940                             we'll have matched the interval once, so
3941                             jump back only `upper_bound - 1' times.  */
3942                          STORE_JUMP2 (jump_n, b, laststart
3943 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3944                                       upper_bound - 1);
3945                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3946 
3947                          /* The location we want to set is the second
3948                             parameter of the `jump_n'; that is `b-2' as
3949                             an absolute address.  `laststart' will be
3950                             the `set_number_at' we're about to insert;
3951                             `laststart+3' the number to set, the source
3952                             for the relative address.  But we are
3953                             inserting into the middle of the pattern --
3954                             so everything is getting moved up by 5.
3955                             Conclusion: (b - 2) - (laststart + 3) + 5,
3956                             i.e., b - laststart.
3957 
3958                             We insert this at the beginning of the loop
3959                             so that if we fail during matching, we'll
3960                             reinitialize the bounds.  */
3961                          PREFIX(insert_op2) (set_number_at, laststart,
3962 					     b - laststart,
3963 					     upper_bound - 1, b);
3964                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3965                        }
3966                    }
3967                 pending_exact = 0;
3968 		break;
3969 
3970 	      invalid_interval:
3971 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3972 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3973 	      unfetch_interval:
3974 		/* Match the characters as literals.  */
3975 		p = beg_interval;
3976 		c = '{';
3977 		if (syntax & RE_NO_BK_BRACES)
3978 		  goto normal_char;
3979 		else
3980 		  goto normal_backslash;
3981 	      }
3982 
3983 #ifdef emacs
3984             /* There is no way to specify the before_dot and after_dot
3985                operators.  rms says this is ok.  --karl  */
3986             case '=':
3987               BUF_PUSH (at_dot);
3988               break;
3989 
3990             case 's':
3991               laststart = b;
3992               PATFETCH (c);
3993               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3994               break;
3995 
3996             case 'S':
3997               laststart = b;
3998               PATFETCH (c);
3999               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4000               break;
4001 #endif /* emacs */
4002 
4003 
4004             case 'w':
4005 	      if (syntax & RE_NO_GNU_OPS)
4006 		goto normal_char;
4007               laststart = b;
4008               BUF_PUSH (wordchar);
4009               break;
4010 
4011 
4012             case 'W':
4013 	      if (syntax & RE_NO_GNU_OPS)
4014 		goto normal_char;
4015               laststart = b;
4016               BUF_PUSH (notwordchar);
4017               break;
4018 
4019 
4020             case '<':
4021 	      if (syntax & RE_NO_GNU_OPS)
4022 		goto normal_char;
4023               BUF_PUSH (wordbeg);
4024               break;
4025 
4026             case '>':
4027 	      if (syntax & RE_NO_GNU_OPS)
4028 		goto normal_char;
4029               BUF_PUSH (wordend);
4030               break;
4031 
4032             case 'b':
4033 	      if (syntax & RE_NO_GNU_OPS)
4034 		goto normal_char;
4035               BUF_PUSH (wordbound);
4036               break;
4037 
4038             case 'B':
4039 	      if (syntax & RE_NO_GNU_OPS)
4040 		goto normal_char;
4041               BUF_PUSH (notwordbound);
4042               break;
4043 
4044             case '`':
4045 	      if (syntax & RE_NO_GNU_OPS)
4046 		goto normal_char;
4047               BUF_PUSH (begbuf);
4048               break;
4049 
4050             case '\'':
4051 	      if (syntax & RE_NO_GNU_OPS)
4052 		goto normal_char;
4053               BUF_PUSH (endbuf);
4054               break;
4055 
4056             case '1': case '2': case '3': case '4': case '5':
4057             case '6': case '7': case '8': case '9':
4058               if (syntax & RE_NO_BK_REFS)
4059                 goto normal_char;
4060 
4061               c1 = c - '0';
4062 
4063               if (c1 > regnum)
4064                 FREE_STACK_RETURN (REG_ESUBREG);
4065 
4066               /* Can't back reference to a subexpression if inside of it.  */
4067               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4068                 goto normal_char;
4069 
4070               laststart = b;
4071               BUF_PUSH_2 (duplicate, c1);
4072               break;
4073 
4074 
4075             case '+':
4076             case '?':
4077               if (syntax & RE_BK_PLUS_QM)
4078                 goto handle_plus;
4079               else
4080                 goto normal_backslash;
4081 
4082             default:
4083             normal_backslash:
4084               /* You might think it would be useful for \ to mean
4085                  not to translate; but if we don't translate it
4086                  it will never match anything.  */
4087               c = TRANSLATE (c);
4088               goto normal_char;
4089             }
4090           break;
4091 
4092 
4093 	default:
4094         /* Expects the character in `c'.  */
4095 	normal_char:
4096 	      /* If no exactn currently being built.  */
4097           if (!pending_exact
4098 #ifdef WCHAR
4099 	      /* If last exactn handle binary(or character) and
4100 		 new exactn handle character(or binary).  */
4101 	      || is_exactn_bin != is_binary[p - 1 - pattern]
4102 #endif /* WCHAR */
4103 
4104               /* If last exactn not at current position.  */
4105               || pending_exact + *pending_exact + 1 != b
4106 
4107               /* We have only one byte following the exactn for the count.  */
4108 	      || *pending_exact == (1 << BYTEWIDTH) - 1
4109 
4110               /* If followed by a repetition operator.  */
4111               || *p == '*' || *p == '^'
4112 	      || ((syntax & RE_BK_PLUS_QM)
4113 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4114 		  : (*p == '+' || *p == '?'))
4115 	      || ((syntax & RE_INTERVALS)
4116                   && ((syntax & RE_NO_BK_BRACES)
4117 		      ? *p == '{'
4118                       : (p[0] == '\\' && p[1] == '{'))))
4119 	    {
4120 	      /* Start building a new exactn.  */
4121 
4122               laststart = b;
4123 
4124 #ifdef WCHAR
4125 	      /* Is this exactn binary data or character? */
4126 	      is_exactn_bin = is_binary[p - 1 - pattern];
4127 	      if (is_exactn_bin)
4128 		  BUF_PUSH_2 (exactn_bin, 0);
4129 	      else
4130 		  BUF_PUSH_2 (exactn, 0);
4131 #else
4132 	      BUF_PUSH_2 (exactn, 0);
4133 #endif /* WCHAR */
4134 	      pending_exact = b - 1;
4135             }
4136 
4137 	  BUF_PUSH (c);
4138           (*pending_exact)++;
4139 	  break;
4140         } /* switch (c) */
4141     } /* while p != pend */
4142 
4143 
4144   /* Through the pattern now.  */
4145 
4146   if (fixup_alt_jump)
4147     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4148 
4149   if (!COMPILE_STACK_EMPTY)
4150     FREE_STACK_RETURN (REG_EPAREN);
4151 
4152   /* If we don't want backtracking, force success
4153      the first time we reach the end of the compiled pattern.  */
4154   if (syntax & RE_NO_POSIX_BACKTRACKING)
4155     BUF_PUSH (succeed);
4156 
4157 #ifdef WCHAR
4158   free (pattern);
4159   free (mbs_offset);
4160   free (is_binary);
4161 #endif
4162   free (compile_stack.stack);
4163 
4164   /* We have succeeded; set the length of the buffer.  */
4165 #ifdef WCHAR
4166   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4167 #else
4168   bufp->used = b - bufp->buffer;
4169 #endif
4170 
4171 #ifdef DEBUG
4172   if (debug)
4173     {
4174       DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175       PREFIX(print_compiled_pattern) (bufp);
4176     }
4177 #endif /* DEBUG */
4178 
4179 #ifndef MATCH_MAY_ALLOCATE
4180   /* Initialize the failure stack to the largest possible stack.  This
4181      isn't necessary unless we're trying to avoid calling alloca in
4182      the search and match routines.  */
4183   {
4184     int num_regs = bufp->re_nsub + 1;
4185 
4186     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187        is strictly greater than re_max_failures, the largest possible stack
4188        is 2 * re_max_failures failure points.  */
4189     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4190       {
4191 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4192 
4193 # ifdef emacs
4194 	if (! fail_stack.stack)
4195 	  fail_stack.stack
4196 	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4197 				    * sizeof (PREFIX(fail_stack_elt_t)));
4198 	else
4199 	  fail_stack.stack
4200 	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4201 				     (fail_stack.size
4202 				      * sizeof (PREFIX(fail_stack_elt_t))));
4203 # else /* not emacs */
4204 	if (! fail_stack.stack)
4205 	  fail_stack.stack
4206 	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4207 				   * sizeof (PREFIX(fail_stack_elt_t)));
4208 	else
4209 	  fail_stack.stack
4210 	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4211 					    (fail_stack.size
4212 				     * sizeof (PREFIX(fail_stack_elt_t))));
4213 # endif /* not emacs */
4214       }
4215 
4216    PREFIX(regex_grow_registers) (num_regs);
4217   }
4218 #endif /* not MATCH_MAY_ALLOCATE */
4219 
4220   return REG_NOERROR;
4221 } /* regex_compile */
4222 
4223 /* Subroutines for `regex_compile'.  */
4224 
4225 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
4226 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4227 
4228 static void
4229 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4230 {
4231   *loc = (UCHAR_T) op;
4232   STORE_NUMBER (loc + 1, arg);
4233 }
4234 
4235 
4236 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4237 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4238 
4239 static void
4240 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4241 {
4242   *loc = (UCHAR_T) op;
4243   STORE_NUMBER (loc + 1, arg1);
4244   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4245 }
4246 
4247 
4248 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4249    for OP followed by two-byte integer parameter ARG.  */
4250 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4251 
4252 static void
4253 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4254 {
4255   register UCHAR_T *pfrom = end;
4256   register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257 
4258   while (pfrom != loc)
4259     *--pto = *--pfrom;
4260 
4261   PREFIX(store_op1) (op, loc, arg);
4262 }
4263 
4264 
4265 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4266 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4267 
4268 static void
4269 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4270                     int arg2, UCHAR_T *end)
4271 {
4272   register UCHAR_T *pfrom = end;
4273   register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4274 
4275   while (pfrom != loc)
4276     *--pto = *--pfrom;
4277 
4278   PREFIX(store_op2) (op, loc, arg1, arg2);
4279 }
4280 
4281 
4282 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4283    after an alternative or a begin-subexpression.  We assume there is at
4284    least one character before the ^.  */
4285 
4286 static boolean
4287 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4288                           reg_syntax_t syntax)
4289 {
4290   const CHAR_T *prev = p - 2;
4291   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4292 
4293   return
4294        /* After a subexpression?  */
4295        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4296        /* After an alternative?  */
4297     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4298 }
4299 
4300 
4301 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4302    at least one character after the $, i.e., `P < PEND'.  */
4303 
4304 static boolean
4305 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4306                           reg_syntax_t syntax)
4307 {
4308   const CHAR_T *next = p;
4309   boolean next_backslash = *next == '\\';
4310   const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4311 
4312   return
4313        /* Before a subexpression?  */
4314        (syntax & RE_NO_BK_PARENS ? *next == ')'
4315         : next_backslash && next_next && *next_next == ')')
4316        /* Before an alternative?  */
4317     || (syntax & RE_NO_BK_VBAR ? *next == '|'
4318         : next_backslash && next_next && *next_next == '|');
4319 }
4320 
4321 #else /* not INSIDE_RECURSION */
4322 
4323 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4324    false if it's not.  */
4325 
4326 static boolean
4327 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4328 {
4329   int this_element;
4330 
4331   for (this_element = compile_stack.avail - 1;
4332        this_element >= 0;
4333        this_element--)
4334     if (compile_stack.stack[this_element].regnum == regnum)
4335       return true;
4336 
4337   return false;
4338 }
4339 #endif /* not INSIDE_RECURSION */
4340 
4341 #ifdef INSIDE_RECURSION
4342 
4343 #ifdef WCHAR
4344 /* This insert space, which size is "num", into the pattern at "loc".
4345    "end" must point the end of the allocated buffer.  */
4346 static void
4347 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4348 {
4349   register CHAR_T *pto = end;
4350   register CHAR_T *pfrom = end - num;
4351 
4352   while (pfrom >= loc)
4353     *pto-- = *pfrom--;
4354 }
4355 #endif /* WCHAR */
4356 
4357 #ifdef WCHAR
4358 static reg_errcode_t
4359 wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4360                    const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4361                    reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4362 {
4363   const CHAR_T *p = *p_ptr;
4364   CHAR_T range_start, range_end;
4365   reg_errcode_t ret;
4366 # ifdef _LIBC
4367   uint32_t nrules;
4368   uint32_t start_val, end_val;
4369 # endif
4370   if (p == pend)
4371     return REG_ERANGE;
4372 
4373 # ifdef _LIBC
4374   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4375   if (nrules != 0)
4376     {
4377       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4378 						       _NL_COLLATE_COLLSEQWC);
4379       const unsigned char *extra = (const unsigned char *)
4380 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4381 
4382       if (range_start_char < -1)
4383 	{
4384 	  /* range_start is a collating symbol.  */
4385 	  int32_t *wextra;
4386 	  /* Retreive the index and get collation sequence value.  */
4387 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4388 	  start_val = wextra[1 + *wextra];
4389 	}
4390       else
4391 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4392 
4393       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4394 
4395       /* Report an error if the range is empty and the syntax prohibits
4396 	 this.  */
4397       ret = ((syntax & RE_NO_EMPTY_RANGES)
4398 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4399 
4400       /* Insert space to the end of the char_ranges.  */
4401       insert_space(2, b - char_set[5] - 2, b - 1);
4402       *(b - char_set[5] - 2) = (wchar_t)start_val;
4403       *(b - char_set[5] - 1) = (wchar_t)end_val;
4404       char_set[4]++; /* ranges_index */
4405     }
4406   else
4407 # endif
4408     {
4409       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4410 	range_start_char;
4411       range_end = TRANSLATE (p[0]);
4412       /* Report an error if the range is empty and the syntax prohibits
4413 	 this.  */
4414       ret = ((syntax & RE_NO_EMPTY_RANGES)
4415 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4416 
4417       /* Insert space to the end of the char_ranges.  */
4418       insert_space(2, b - char_set[5] - 2, b - 1);
4419       *(b - char_set[5] - 2) = range_start;
4420       *(b - char_set[5] - 1) = range_end;
4421       char_set[4]++; /* ranges_index */
4422     }
4423   /* Have to increment the pointer into the pattern string, so the
4424      caller isn't still at the ending character.  */
4425   (*p_ptr)++;
4426 
4427   return ret;
4428 }
4429 #else /* BYTE */
4430 /* Read the ending character of a range (in a bracket expression) from the
4431    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4432    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4433    Then we set the translation of all bits between the starting and
4434    ending characters (inclusive) in the compiled pattern B.
4435 
4436    Return an error code.
4437 
4438    We use these short variable names so we can use the same macros as
4439    `regex_compile' itself.  */
4440 
4441 static reg_errcode_t
4442 byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4443                     const char *pend, RE_TRANSLATE_TYPE translate,
4444                     reg_syntax_t syntax, unsigned char *b)
4445 {
4446   unsigned this_char;
4447   const char *p = *p_ptr;
4448   reg_errcode_t ret;
4449 # if _LIBC
4450   const unsigned char *collseq;
4451   unsigned int start_colseq;
4452   unsigned int end_colseq;
4453 # else
4454   unsigned end_char;
4455 # endif
4456 
4457   if (p == pend)
4458     return REG_ERANGE;
4459 
4460   /* Have to increment the pointer into the pattern string, so the
4461      caller isn't still at the ending character.  */
4462   (*p_ptr)++;
4463 
4464   /* Report an error if the range is empty and the syntax prohibits this.  */
4465   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4466 
4467 # if _LIBC
4468   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4469 						 _NL_COLLATE_COLLSEQMB);
4470 
4471   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4472   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4473   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4474     {
4475       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4476 
4477       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4478 	{
4479 	  SET_LIST_BIT (TRANSLATE (this_char));
4480 	  ret = REG_NOERROR;
4481 	}
4482     }
4483 # else
4484   /* Here we see why `this_char' has to be larger than an `unsigned
4485      char' -- we would otherwise go into an infinite loop, since all
4486      characters <= 0xff.  */
4487   range_start_char = TRANSLATE (range_start_char);
4488   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4489      and some compilers cast it to int implicitly, so following for_loop
4490      may fall to (almost) infinite loop.
4491      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4492      To avoid this, we cast p[0] to unsigned int and truncate it.  */
4493   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4494 
4495   for (this_char = range_start_char; this_char <= end_char; ++this_char)
4496     {
4497       SET_LIST_BIT (TRANSLATE (this_char));
4498       ret = REG_NOERROR;
4499     }
4500 # endif
4501 
4502   return ret;
4503 }
4504 #endif /* WCHAR */
4505 
4506 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4507    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4508    characters can start a string that matches the pattern.  This fastmap
4509    is used by re_search to skip quickly over impossible starting points.
4510 
4511    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4512    area as BUFP->fastmap.
4513 
4514    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4515    the pattern buffer.
4516 
4517    Returns 0 if we succeed, -2 if an internal error.   */
4518 
4519 #ifdef WCHAR
4520 /* local function for re_compile_fastmap.
4521    truncate wchar_t character to char.  */
4522 static unsigned char truncate_wchar (CHAR_T c);
4523 
4524 static unsigned char
4525 truncate_wchar (CHAR_T c)
4526 {
4527   unsigned char buf[MB_CUR_MAX];
4528   mbstate_t state;
4529   int retval;
4530   memset (&state, '\0', sizeof (state));
4531 # ifdef _LIBC
4532   retval = __wcrtomb (buf, c, &state);
4533 # else
4534   retval = wcrtomb (buf, c, &state);
4535 # endif
4536   return retval > 0 ? buf[0] : (unsigned char) c;
4537 }
4538 #endif /* WCHAR */
4539 
4540 static int
4541 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4542 {
4543   int j, k;
4544 #ifdef MATCH_MAY_ALLOCATE
4545   PREFIX(fail_stack_type) fail_stack;
4546 #endif
4547 #ifndef REGEX_MALLOC
4548   char *destination;
4549 #endif
4550 
4551   register char *fastmap = bufp->fastmap;
4552 
4553 #ifdef WCHAR
4554   /* We need to cast pattern to (wchar_t*), because we casted this compiled
4555      pattern to (char*) in regex_compile.  */
4556   UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4557   register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4558 #else /* BYTE */
4559   UCHAR_T *pattern = bufp->buffer;
4560   register UCHAR_T *pend = pattern + bufp->used;
4561 #endif /* WCHAR */
4562   UCHAR_T *p = pattern;
4563 
4564 #ifdef REL_ALLOC
4565   /* This holds the pointer to the failure stack, when
4566      it is allocated relocatably.  */
4567   fail_stack_elt_t *failure_stack_ptr;
4568 #endif
4569 
4570   /* Assume that each path through the pattern can be null until
4571      proven otherwise.  We set this false at the bottom of switch
4572      statement, to which we get only if a particular path doesn't
4573      match the empty string.  */
4574   boolean path_can_be_null = true;
4575 
4576   /* We aren't doing a `succeed_n' to begin with.  */
4577   boolean succeed_n_p = false;
4578 
4579   assert (fastmap != NULL && p != NULL);
4580 
4581   INIT_FAIL_STACK ();
4582   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4583   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4584   bufp->can_be_null = 0;
4585 
4586   while (1)
4587     {
4588       if (p == pend || *p == (UCHAR_T) succeed)
4589 	{
4590 	  /* We have reached the (effective) end of pattern.  */
4591 	  if (!FAIL_STACK_EMPTY ())
4592 	    {
4593 	      bufp->can_be_null |= path_can_be_null;
4594 
4595 	      /* Reset for next path.  */
4596 	      path_can_be_null = true;
4597 
4598 	      p = fail_stack.stack[--fail_stack.avail].pointer;
4599 
4600 	      continue;
4601 	    }
4602 	  else
4603 	    break;
4604 	}
4605 
4606       /* We should never be about to go beyond the end of the pattern.  */
4607       assert (p < pend);
4608 
4609       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4610 	{
4611 
4612         /* I guess the idea here is to simply not bother with a fastmap
4613            if a backreference is used, since it's too hard to figure out
4614            the fastmap for the corresponding group.  Setting
4615            `can_be_null' stops `re_search_2' from using the fastmap, so
4616            that is all we do.  */
4617 	case duplicate:
4618 	  bufp->can_be_null = 1;
4619           goto done;
4620 
4621 
4622       /* Following are the cases which match a character.  These end
4623          with `break'.  */
4624 
4625 #ifdef WCHAR
4626 	case exactn:
4627           fastmap[truncate_wchar(p[1])] = 1;
4628 	  break;
4629 #else /* BYTE */
4630 	case exactn:
4631           fastmap[p[1]] = 1;
4632 	  break;
4633 #endif /* WCHAR */
4634 #ifdef MBS_SUPPORT
4635 	case exactn_bin:
4636 	  fastmap[p[1]] = 1;
4637 	  break;
4638 #endif
4639 
4640 #ifdef WCHAR
4641         /* It is hard to distinguish fastmap from (multi byte) characters
4642            which depends on current locale.  */
4643         case charset:
4644 	case charset_not:
4645 	case wordchar:
4646 	case notwordchar:
4647           bufp->can_be_null = 1;
4648           goto done;
4649 #else /* BYTE */
4650         case charset:
4651           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4652 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4653               fastmap[j] = 1;
4654 	  break;
4655 
4656 
4657 	case charset_not:
4658 	  /* Chars beyond end of map must be allowed.  */
4659 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4660             fastmap[j] = 1;
4661 
4662 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4663 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4664               fastmap[j] = 1;
4665           break;
4666 
4667 
4668 	case wordchar:
4669 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4670 	    if (SYNTAX (j) == Sword)
4671 	      fastmap[j] = 1;
4672 	  break;
4673 
4674 
4675 	case notwordchar:
4676 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4677 	    if (SYNTAX (j) != Sword)
4678 	      fastmap[j] = 1;
4679 	  break;
4680 #endif /* WCHAR */
4681 
4682         case anychar:
4683 	  {
4684 	    int fastmap_newline = fastmap['\n'];
4685 
4686 	    /* `.' matches anything ...  */
4687 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4688 	      fastmap[j] = 1;
4689 
4690 	    /* ... except perhaps newline.  */
4691 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4692 	      fastmap['\n'] = fastmap_newline;
4693 
4694 	    /* Return if we have already set `can_be_null'; if we have,
4695 	       then the fastmap is irrelevant.  Something's wrong here.  */
4696 	    else if (bufp->can_be_null)
4697 	      goto done;
4698 
4699 	    /* Otherwise, have to check alternative paths.  */
4700 	    break;
4701 	  }
4702 
4703 #ifdef emacs
4704         case syntaxspec:
4705 	  k = *p++;
4706 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4707 	    if (SYNTAX (j) == (enum syntaxcode) k)
4708 	      fastmap[j] = 1;
4709 	  break;
4710 
4711 
4712 	case notsyntaxspec:
4713 	  k = *p++;
4714 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4715 	    if (SYNTAX (j) != (enum syntaxcode) k)
4716 	      fastmap[j] = 1;
4717 	  break;
4718 
4719 
4720       /* All cases after this match the empty string.  These end with
4721          `continue'.  */
4722 
4723 
4724 	case before_dot:
4725 	case at_dot:
4726 	case after_dot:
4727           continue;
4728 #endif /* emacs */
4729 
4730 
4731         case no_op:
4732         case begline:
4733         case endline:
4734 	case begbuf:
4735 	case endbuf:
4736 	case wordbound:
4737 	case notwordbound:
4738 	case wordbeg:
4739 	case wordend:
4740         case push_dummy_failure:
4741           continue;
4742 
4743 
4744 	case jump_n:
4745         case pop_failure_jump:
4746 	case maybe_pop_jump:
4747 	case jump:
4748         case jump_past_alt:
4749 	case dummy_failure_jump:
4750           EXTRACT_NUMBER_AND_INCR (j, p);
4751 	  p += j;
4752 	  if (j > 0)
4753 	    continue;
4754 
4755           /* Jump backward implies we just went through the body of a
4756              loop and matched nothing.  Opcode jumped to should be
4757              `on_failure_jump' or `succeed_n'.  Just treat it like an
4758              ordinary jump.  For a * loop, it has pushed its failure
4759              point already; if so, discard that as redundant.  */
4760           if ((re_opcode_t) *p != on_failure_jump
4761 	      && (re_opcode_t) *p != succeed_n)
4762 	    continue;
4763 
4764           p++;
4765           EXTRACT_NUMBER_AND_INCR (j, p);
4766           p += j;
4767 
4768           /* If what's on the stack is where we are now, pop it.  */
4769           if (!FAIL_STACK_EMPTY ()
4770 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4771             fail_stack.avail--;
4772 
4773           continue;
4774 
4775 
4776         case on_failure_jump:
4777         case on_failure_keep_string_jump:
4778 	handle_on_failure_jump:
4779           EXTRACT_NUMBER_AND_INCR (j, p);
4780 
4781           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4782              end of the pattern.  We don't want to push such a point,
4783              since when we restore it above, entering the switch will
4784              increment `p' past the end of the pattern.  We don't need
4785              to push such a point since we obviously won't find any more
4786              fastmap entries beyond `pend'.  Such a pattern can match
4787              the null string, though.  */
4788           if (p + j < pend)
4789             {
4790               if (!PUSH_PATTERN_OP (p + j, fail_stack))
4791 		{
4792 		  RESET_FAIL_STACK ();
4793 		  return -2;
4794 		}
4795             }
4796           else
4797             bufp->can_be_null = 1;
4798 
4799           if (succeed_n_p)
4800             {
4801               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4802               succeed_n_p = false;
4803 	    }
4804 
4805           continue;
4806 
4807 
4808 	case succeed_n:
4809           /* Get to the number of times to succeed.  */
4810           p += OFFSET_ADDRESS_SIZE;
4811 
4812           /* Increment p past the n for when k != 0.  */
4813           EXTRACT_NUMBER_AND_INCR (k, p);
4814           if (k == 0)
4815 	    {
4816               p -= 2 * OFFSET_ADDRESS_SIZE;
4817   	      succeed_n_p = true;  /* Spaghetti code alert.  */
4818               goto handle_on_failure_jump;
4819             }
4820           continue;
4821 
4822 
4823 	case set_number_at:
4824           p += 2 * OFFSET_ADDRESS_SIZE;
4825           continue;
4826 
4827 
4828 	case start_memory:
4829         case stop_memory:
4830 	  p += 2;
4831 	  continue;
4832 
4833 
4834 	default:
4835           abort (); /* We have listed all the cases.  */
4836         } /* switch *p++ */
4837 
4838       /* Getting here means we have found the possible starting
4839          characters for one path of the pattern -- and that the empty
4840          string does not match.  We need not follow this path further.
4841          Instead, look at the next alternative (remembered on the
4842          stack), or quit if no more.  The test at the top of the loop
4843          does these things.  */
4844       path_can_be_null = false;
4845       p = pend;
4846     } /* while p */
4847 
4848   /* Set `can_be_null' for the last path (also the first path, if the
4849      pattern is empty).  */
4850   bufp->can_be_null |= path_can_be_null;
4851 
4852  done:
4853   RESET_FAIL_STACK ();
4854   return 0;
4855 }
4856 
4857 #else /* not INSIDE_RECURSION */
4858 
4859 int
4860 re_compile_fastmap (struct re_pattern_buffer *bufp)
4861 {
4862 # ifdef MBS_SUPPORT
4863   if (MB_CUR_MAX != 1)
4864     return wcs_re_compile_fastmap(bufp);
4865   else
4866 # endif
4867     return byte_re_compile_fastmap(bufp);
4868 } /* re_compile_fastmap */
4869 #ifdef _LIBC
4870 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4871 #endif
4872 
4873 
4874 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4875    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4876    this memory for recording register information.  STARTS and ENDS
4877    must be allocated using the malloc library routine, and must each
4878    be at least NUM_REGS * sizeof (regoff_t) bytes long.
4879 
4880    If NUM_REGS == 0, then subsequent matches should allocate their own
4881    register data.
4882 
4883    Unless this function is called, the first search or match using
4884    PATTERN_BUFFER will allocate its own register data, without
4885    freeing the old data.  */
4886 
4887 void
4888 re_set_registers (struct re_pattern_buffer *bufp,
4889                   struct re_registers *regs, unsigned num_regs,
4890                   regoff_t *starts, regoff_t *ends)
4891 {
4892   if (num_regs)
4893     {
4894       bufp->regs_allocated = REGS_REALLOCATE;
4895       regs->num_regs = num_regs;
4896       regs->start = starts;
4897       regs->end = ends;
4898     }
4899   else
4900     {
4901       bufp->regs_allocated = REGS_UNALLOCATED;
4902       regs->num_regs = 0;
4903       regs->start = regs->end = (regoff_t *) 0;
4904     }
4905 }
4906 #ifdef _LIBC
4907 weak_alias (__re_set_registers, re_set_registers)
4908 #endif
4909 
4910 /* Searching routines.  */
4911 
4912 /* Like re_search_2, below, but only one string is specified, and
4913    doesn't let you say where to stop matching.  */
4914 
4915 int
4916 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4917            int startpos, int range, struct re_registers *regs)
4918 {
4919   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4920 		      regs, size);
4921 }
4922 #ifdef _LIBC
4923 weak_alias (__re_search, re_search)
4924 #endif
4925 
4926 
4927 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4928    virtual concatenation of STRING1 and STRING2, starting first at index
4929    STARTPOS, then at STARTPOS + 1, and so on.
4930 
4931    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932 
4933    RANGE is how far to scan while trying to match.  RANGE = 0 means try
4934    only at STARTPOS; in general, the last start tried is STARTPOS +
4935    RANGE.
4936 
4937    In REGS, return the indices of the virtual concatenation of STRING1
4938    and STRING2 that matched the entire BUFP->buffer and its contained
4939    subexpressions.
4940 
4941    Do not consider matching one past the index STOP in the virtual
4942    concatenation of STRING1 and STRING2.
4943 
4944    We return either the position in the strings at which the match was
4945    found, -1 if no match, or -2 if error (such as failure
4946    stack overflow).  */
4947 
4948 int
4949 re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4950              const char *string2, int size2, int startpos, int range,
4951              struct re_registers *regs, int stop)
4952 {
4953 # ifdef MBS_SUPPORT
4954   if (MB_CUR_MAX != 1)
4955     return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4956 			    range, regs, stop);
4957   else
4958 # endif
4959     return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4960 			     range, regs, stop);
4961 } /* re_search_2 */
4962 #ifdef _LIBC
4963 weak_alias (__re_search_2, re_search_2)
4964 #endif
4965 
4966 #endif /* not INSIDE_RECURSION */
4967 
4968 #ifdef INSIDE_RECURSION
4969 
4970 #ifdef MATCH_MAY_ALLOCATE
4971 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4972 #else
4973 # define FREE_VAR(var) if (var) free (var); var = NULL
4974 #endif
4975 
4976 #ifdef WCHAR
4977 # define MAX_ALLOCA_SIZE	2000
4978 
4979 # define FREE_WCS_BUFFERS() \
4980   do {									      \
4981     if (size1 > MAX_ALLOCA_SIZE)					      \
4982       {									      \
4983 	free (wcs_string1);						      \
4984 	free (mbs_offset1);						      \
4985       }									      \
4986     else								      \
4987       {									      \
4988 	FREE_VAR (wcs_string1);						      \
4989 	FREE_VAR (mbs_offset1);						      \
4990       }									      \
4991     if (size2 > MAX_ALLOCA_SIZE) 					      \
4992       {									      \
4993 	free (wcs_string2);						      \
4994 	free (mbs_offset2);						      \
4995       }									      \
4996     else								      \
4997       {									      \
4998 	FREE_VAR (wcs_string2);						      \
4999 	FREE_VAR (mbs_offset2);						      \
5000       }									      \
5001   } while (0)
5002 
5003 #endif
5004 
5005 
5006 static int
5007 PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5008                      int size1, const char *string2, int size2,
5009                      int startpos, int range,
5010                      struct re_registers *regs, int stop)
5011 {
5012   int val;
5013   register char *fastmap = bufp->fastmap;
5014   register RE_TRANSLATE_TYPE translate = bufp->translate;
5015   int total_size = size1 + size2;
5016   int endpos = startpos + range;
5017 #ifdef WCHAR
5018   /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5019   wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5020   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5021   int wcs_size1 = 0, wcs_size2 = 0;
5022   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5023   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5024   /* They hold whether each wchar_t is binary data or not.  */
5025   char *is_binary = NULL;
5026 #endif /* WCHAR */
5027 
5028   /* Check for out-of-range STARTPOS.  */
5029   if (startpos < 0 || startpos > total_size)
5030     return -1;
5031 
5032   /* Fix up RANGE if it might eventually take us outside
5033      the virtual concatenation of STRING1 and STRING2.
5034      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5035   if (endpos < 0)
5036     range = 0 - startpos;
5037   else if (endpos > total_size)
5038     range = total_size - startpos;
5039 
5040   /* If the search isn't to be a backwards one, don't waste time in a
5041      search for a pattern that must be anchored.  */
5042   if (bufp->used > 0 && range > 0
5043       && ((re_opcode_t) bufp->buffer[0] == begbuf
5044 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5045 	  || ((re_opcode_t) bufp->buffer[0] == begline
5046 	      && !bufp->newline_anchor)))
5047     {
5048       if (startpos > 0)
5049 	return -1;
5050       else
5051 	range = 1;
5052     }
5053 
5054 #ifdef emacs
5055   /* In a forward search for something that starts with \=.
5056      don't keep searching past point.  */
5057   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5058     {
5059       range = PT - startpos;
5060       if (range <= 0)
5061 	return -1;
5062     }
5063 #endif /* emacs */
5064 
5065   /* Update the fastmap now if not correct already.  */
5066   if (fastmap && !bufp->fastmap_accurate)
5067     if (re_compile_fastmap (bufp) == -2)
5068       return -2;
5069 
5070 #ifdef WCHAR
5071   /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5072      fill them with converted string.  */
5073   if (size1 != 0)
5074     {
5075       if (size1 > MAX_ALLOCA_SIZE)
5076 	{
5077 	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5078 	  mbs_offset1 = TALLOC (size1 + 1, int);
5079 	  is_binary = TALLOC (size1 + 1, char);
5080 	}
5081       else
5082 	{
5083 	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5084 	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5085 	  is_binary = REGEX_TALLOC (size1 + 1, char);
5086 	}
5087       if (!wcs_string1 || !mbs_offset1 || !is_binary)
5088 	{
5089 	  if (size1 > MAX_ALLOCA_SIZE)
5090 	    {
5091 	      free (wcs_string1);
5092 	      free (mbs_offset1);
5093 	      free (is_binary);
5094 	    }
5095 	  else
5096 	    {
5097 	      FREE_VAR (wcs_string1);
5098 	      FREE_VAR (mbs_offset1);
5099 	      FREE_VAR (is_binary);
5100 	    }
5101 	  return -2;
5102 	}
5103       wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5104 				     mbs_offset1, is_binary);
5105       wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5106       if (size1 > MAX_ALLOCA_SIZE)
5107 	free (is_binary);
5108       else
5109 	FREE_VAR (is_binary);
5110     }
5111   if (size2 != 0)
5112     {
5113       if (size2 > MAX_ALLOCA_SIZE)
5114 	{
5115 	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5116 	  mbs_offset2 = TALLOC (size2 + 1, int);
5117 	  is_binary = TALLOC (size2 + 1, char);
5118 	}
5119       else
5120 	{
5121 	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5122 	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5123 	  is_binary = REGEX_TALLOC (size2 + 1, char);
5124 	}
5125       if (!wcs_string2 || !mbs_offset2 || !is_binary)
5126 	{
5127 	  FREE_WCS_BUFFERS ();
5128 	  if (size2 > MAX_ALLOCA_SIZE)
5129 	    free (is_binary);
5130 	  else
5131 	    FREE_VAR (is_binary);
5132 	  return -2;
5133 	}
5134       wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5135 				     mbs_offset2, is_binary);
5136       wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5137       if (size2 > MAX_ALLOCA_SIZE)
5138 	free (is_binary);
5139       else
5140 	FREE_VAR (is_binary);
5141     }
5142 #endif /* WCHAR */
5143 
5144 
5145   /* Loop through the string, looking for a place to start matching.  */
5146   for (;;)
5147     {
5148       /* If a fastmap is supplied, skip quickly over characters that
5149          cannot be the start of a match.  If the pattern can match the
5150          null string, however, we don't need to skip characters; we want
5151          the first null string.  */
5152       if (fastmap && startpos < total_size && !bufp->can_be_null)
5153 	{
5154 	  if (range > 0)	/* Searching forwards.  */
5155 	    {
5156 	      register const char *d;
5157 	      register int lim = 0;
5158 	      int irange = range;
5159 
5160               if (startpos < size1 && startpos + range >= size1)
5161                 lim = range - (size1 - startpos);
5162 
5163 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5164 
5165               /* Written out as an if-else to avoid testing `translate'
5166                  inside the loop.  */
5167 	      if (translate)
5168                 while (range > lim
5169                        && !fastmap[(unsigned char)
5170 				   translate[(unsigned char) *d++]])
5171                   range--;
5172 	      else
5173                 while (range > lim && !fastmap[(unsigned char) *d++])
5174                   range--;
5175 
5176 	      startpos += irange - range;
5177 	    }
5178 	  else				/* Searching backwards.  */
5179 	    {
5180 	      register CHAR_T c = (size1 == 0 || startpos >= size1
5181 				      ? string2[startpos - size1]
5182 				      : string1[startpos]);
5183 
5184 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5185 		goto advance;
5186 	    }
5187 	}
5188 
5189       /* If can't match the null string, and that's all we have left, fail.  */
5190       if (range >= 0 && startpos == total_size && fastmap
5191           && !bufp->can_be_null)
5192        {
5193 #ifdef WCHAR
5194          FREE_WCS_BUFFERS ();
5195 #endif
5196          return -1;
5197        }
5198 
5199 #ifdef WCHAR
5200       val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5201 				     size2, startpos, regs, stop,
5202 				     wcs_string1, wcs_size1,
5203 				     wcs_string2, wcs_size2,
5204 				     mbs_offset1, mbs_offset2);
5205 #else /* BYTE */
5206       val = byte_re_match_2_internal (bufp, string1, size1, string2,
5207 				      size2, startpos, regs, stop);
5208 #endif /* BYTE */
5209 
5210 #ifndef REGEX_MALLOC
5211 # ifdef C_ALLOCA
5212       alloca (0);
5213 # endif
5214 #endif
5215 
5216       if (val >= 0)
5217 	{
5218 #ifdef WCHAR
5219 	  FREE_WCS_BUFFERS ();
5220 #endif
5221 	  return startpos;
5222 	}
5223 
5224       if (val == -2)
5225 	{
5226 #ifdef WCHAR
5227 	  FREE_WCS_BUFFERS ();
5228 #endif
5229 	  return -2;
5230 	}
5231 
5232     advance:
5233       if (!range)
5234         break;
5235       else if (range > 0)
5236         {
5237           range--;
5238           startpos++;
5239         }
5240       else
5241         {
5242           range++;
5243           startpos--;
5244         }
5245     }
5246 #ifdef WCHAR
5247   FREE_WCS_BUFFERS ();
5248 #endif
5249   return -1;
5250 }
5251 
5252 #ifdef WCHAR
5253 /* This converts PTR, a pointer into one of the search wchar_t strings
5254    `string1' and `string2' into an multibyte string offset from the
5255    beginning of that string. We use mbs_offset to optimize.
5256    See convert_mbs_to_wcs.  */
5257 # define POINTER_TO_OFFSET(ptr)						\
5258   (FIRST_STRING_P (ptr)							\
5259    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5260    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5261 		 + csize1)))
5262 #else /* BYTE */
5263 /* This converts PTR, a pointer into one of the search strings `string1'
5264    and `string2' into an offset from the beginning of that string.  */
5265 # define POINTER_TO_OFFSET(ptr)			\
5266   (FIRST_STRING_P (ptr)				\
5267    ? ((regoff_t) ((ptr) - string1))		\
5268    : ((regoff_t) ((ptr) - string2 + size1)))
5269 #endif /* WCHAR */
5270 
5271 /* Macros for dealing with the split strings in re_match_2.  */
5272 
5273 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5274 
5275 /* Call before fetching a character with *d.  This switches over to
5276    string2 if necessary.  */
5277 #define PREFETCH()							\
5278   while (d == dend)						    	\
5279     {									\
5280       /* End of string2 => fail.  */					\
5281       if (dend == end_match_2) 						\
5282         goto fail;							\
5283       /* End of string1 => advance to string2.  */ 			\
5284       d = string2;						        \
5285       dend = end_match_2;						\
5286     }
5287 
5288 /* Test if at very beginning or at very end of the virtual concatenation
5289    of `string1' and `string2'.  If only one string, it's `string2'.  */
5290 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5291 #define AT_STRINGS_END(d) ((d) == end2)
5292 
5293 
5294 /* Test if D points to a character which is word-constituent.  We have
5295    two special cases to check for: if past the end of string1, look at
5296    the first character in string2; and if before the beginning of
5297    string2, look at the last character in string1.  */
5298 #ifdef WCHAR
5299 /* Use internationalized API instead of SYNTAX.  */
5300 # define WORDCHAR_P(d)							\
5301   (iswalnum ((wint_t)((d) == end1 ? *string2				\
5302            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5303    || ((d) == end1 ? *string2						\
5304        : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5305 #else /* BYTE */
5306 # define WORDCHAR_P(d)							\
5307   (SYNTAX ((d) == end1 ? *string2					\
5308            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5309    == Sword)
5310 #endif /* WCHAR */
5311 
5312 /* Disabled due to a compiler bug -- see comment at case wordbound */
5313 #if 0
5314 /* Test if the character before D and the one at D differ with respect
5315    to being word-constituent.  */
5316 #define AT_WORD_BOUNDARY(d)						\
5317   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5318    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5319 #endif
5320 
5321 /* Free everything we malloc.  */
5322 #ifdef MATCH_MAY_ALLOCATE
5323 # ifdef WCHAR
5324 #  define FREE_VARIABLES()						\
5325   do {									\
5326     REGEX_FREE_STACK (fail_stack.stack);				\
5327     FREE_VAR (regstart);						\
5328     FREE_VAR (regend);							\
5329     FREE_VAR (old_regstart);						\
5330     FREE_VAR (old_regend);						\
5331     FREE_VAR (best_regstart);						\
5332     FREE_VAR (best_regend);						\
5333     FREE_VAR (reg_info);						\
5334     FREE_VAR (reg_dummy);						\
5335     FREE_VAR (reg_info_dummy);						\
5336     if (!cant_free_wcs_buf)						\
5337       {									\
5338         FREE_VAR (string1);						\
5339         FREE_VAR (string2);						\
5340         FREE_VAR (mbs_offset1);						\
5341         FREE_VAR (mbs_offset2);						\
5342       }									\
5343   } while (0)
5344 # else /* BYTE */
5345 #  define FREE_VARIABLES()						\
5346   do {									\
5347     REGEX_FREE_STACK (fail_stack.stack);				\
5348     FREE_VAR (regstart);						\
5349     FREE_VAR (regend);							\
5350     FREE_VAR (old_regstart);						\
5351     FREE_VAR (old_regend);						\
5352     FREE_VAR (best_regstart);						\
5353     FREE_VAR (best_regend);						\
5354     FREE_VAR (reg_info);						\
5355     FREE_VAR (reg_dummy);						\
5356     FREE_VAR (reg_info_dummy);						\
5357   } while (0)
5358 # endif /* WCHAR */
5359 #else
5360 # ifdef WCHAR
5361 #  define FREE_VARIABLES()						\
5362   do {									\
5363     if (!cant_free_wcs_buf)						\
5364       {									\
5365         FREE_VAR (string1);						\
5366         FREE_VAR (string2);						\
5367         FREE_VAR (mbs_offset1);						\
5368         FREE_VAR (mbs_offset2);						\
5369       }									\
5370   } while (0)
5371 # else /* BYTE */
5372 #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5373 # endif /* WCHAR */
5374 #endif /* not MATCH_MAY_ALLOCATE */
5375 
5376 /* These values must meet several constraints.  They must not be valid
5377    register values; since we have a limit of 255 registers (because
5378    we use only one byte in the pattern for the register number), we can
5379    use numbers larger than 255.  They must differ by 1, because of
5380    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5381    be larger than the value for the highest register, so we do not try
5382    to actually save any registers when none are active.  */
5383 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5384 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5385 
5386 #else /* not INSIDE_RECURSION */
5387 /* Matching routines.  */
5388 
5389 #ifndef emacs   /* Emacs never uses this.  */
5390 /* re_match is like re_match_2 except it takes only a single string.  */
5391 
5392 int
5393 re_match (struct re_pattern_buffer *bufp, const char *string,
5394           int size, int pos, struct re_registers *regs)
5395 {
5396   int result;
5397 # ifdef MBS_SUPPORT
5398   if (MB_CUR_MAX != 1)
5399     result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5400 				      pos, regs, size,
5401 				      NULL, 0, NULL, 0, NULL, NULL);
5402   else
5403 # endif
5404     result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5405 				  pos, regs, size);
5406 # ifndef REGEX_MALLOC
5407 #  ifdef C_ALLOCA
5408   alloca (0);
5409 #  endif
5410 # endif
5411   return result;
5412 }
5413 # ifdef _LIBC
5414 weak_alias (__re_match, re_match)
5415 # endif
5416 #endif /* not emacs */
5417 
5418 #endif /* not INSIDE_RECURSION */
5419 
5420 #ifdef INSIDE_RECURSION
5421 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5422                                                   UCHAR_T *end,
5423 					PREFIX(register_info_type) *reg_info);
5424 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5425                                                 UCHAR_T *end,
5426 					PREFIX(register_info_type) *reg_info);
5427 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5428                                                       UCHAR_T *end,
5429 					PREFIX(register_info_type) *reg_info);
5430 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5431                                    int len, char *translate);
5432 #else /* not INSIDE_RECURSION */
5433 
5434 /* re_match_2 matches the compiled pattern in BUFP against the
5435    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5436    and SIZE2, respectively).  We start matching at POS, and stop
5437    matching at STOP.
5438 
5439    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5440    store offsets for the substring each group matched in REGS.  See the
5441    documentation for exactly how many groups we fill.
5442 
5443    We return -1 if no match, -2 if an internal error (such as the
5444    failure stack overflowing).  Otherwise, we return the length of the
5445    matched substring.  */
5446 
5447 int
5448 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5449             const char *string2, int size2, int pos,
5450             struct re_registers *regs, int stop)
5451 {
5452   int result;
5453 # ifdef MBS_SUPPORT
5454   if (MB_CUR_MAX != 1)
5455     result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5456 				      pos, regs, stop,
5457 				      NULL, 0, NULL, 0, NULL, NULL);
5458   else
5459 # endif
5460     result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5461 				  pos, regs, stop);
5462 
5463 #ifndef REGEX_MALLOC
5464 # ifdef C_ALLOCA
5465   alloca (0);
5466 # endif
5467 #endif
5468   return result;
5469 }
5470 #ifdef _LIBC
5471 weak_alias (__re_match_2, re_match_2)
5472 #endif
5473 
5474 #endif /* not INSIDE_RECURSION */
5475 
5476 #ifdef INSIDE_RECURSION
5477 
5478 #ifdef WCHAR
5479 static int count_mbs_length (int *, int);
5480 
5481 /* This check the substring (from 0, to length) of the multibyte string,
5482    to which offset_buffer correspond. And count how many wchar_t_characters
5483    the substring occupy. We use offset_buffer to optimization.
5484    See convert_mbs_to_wcs.  */
5485 
5486 static int
5487 count_mbs_length(int *offset_buffer, int length)
5488 {
5489   int upper, lower;
5490 
5491   /* Check whether the size is valid.  */
5492   if (length < 0)
5493     return -1;
5494 
5495   if (offset_buffer == NULL)
5496     return 0;
5497 
5498   /* If there are no multibyte character, offset_buffer[i] == i.
5499    Optmize for this case.  */
5500   if (offset_buffer[length] == length)
5501     return length;
5502 
5503   /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5504   upper = length;
5505   lower = 0;
5506 
5507   while (true)
5508     {
5509       int middle = (lower + upper) / 2;
5510       if (middle == lower || middle == upper)
5511 	break;
5512       if (offset_buffer[middle] > length)
5513 	upper = middle;
5514       else if (offset_buffer[middle] < length)
5515 	lower = middle;
5516       else
5517 	return middle;
5518     }
5519 
5520   return -1;
5521 }
5522 #endif /* WCHAR */
5523 
5524 /* This is a separate function so that we can force an alloca cleanup
5525    afterwards.  */
5526 #ifdef WCHAR
5527 static int
5528 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5529                          const char *cstring1, int csize1,
5530                          const char *cstring2, int csize2,
5531                          int pos,
5532 			 struct re_registers *regs,
5533                          int stop,
5534      /* string1 == string2 == NULL means string1/2, size1/2 and
5535 	mbs_offset1/2 need seting up in this function.  */
5536      /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5537                          wchar_t *string1, int size1,
5538                          wchar_t *string2, int size2,
5539      /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5540 			 int *mbs_offset1, int *mbs_offset2)
5541 #else /* BYTE */
5542 static int
5543 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5544                           const char *string1, int size1,
5545                           const char *string2, int size2,
5546                           int pos,
5547 			  struct re_registers *regs, int stop)
5548 #endif /* BYTE */
5549 {
5550   /* General temporaries.  */
5551   int mcnt;
5552   UCHAR_T *p1;
5553 #ifdef WCHAR
5554   /* They hold whether each wchar_t is binary data or not.  */
5555   char *is_binary = NULL;
5556   /* If true, we can't free string1/2, mbs_offset1/2.  */
5557   int cant_free_wcs_buf = 1;
5558 #endif /* WCHAR */
5559 
5560   /* Just past the end of the corresponding string.  */
5561   const CHAR_T *end1, *end2;
5562 
5563   /* Pointers into string1 and string2, just past the last characters in
5564      each to consider matching.  */
5565   const CHAR_T *end_match_1, *end_match_2;
5566 
5567   /* Where we are in the data, and the end of the current string.  */
5568   const CHAR_T *d, *dend;
5569 
5570   /* Where we are in the pattern, and the end of the pattern.  */
5571 #ifdef WCHAR
5572   UCHAR_T *pattern, *p;
5573   register UCHAR_T *pend;
5574 #else /* BYTE */
5575   UCHAR_T *p = bufp->buffer;
5576   register UCHAR_T *pend = p + bufp->used;
5577 #endif /* WCHAR */
5578 
5579   /* Mark the opcode just after a start_memory, so we can test for an
5580      empty subpattern when we get to the stop_memory.  */
5581   UCHAR_T *just_past_start_mem = 0;
5582 
5583   /* We use this to map every character in the string.  */
5584   RE_TRANSLATE_TYPE translate = bufp->translate;
5585 
5586   /* Failure point stack.  Each place that can handle a failure further
5587      down the line pushes a failure point on this stack.  It consists of
5588      restart, regend, and reg_info for all registers corresponding to
5589      the subexpressions we're currently inside, plus the number of such
5590      registers, and, finally, two char *'s.  The first char * is where
5591      to resume scanning the pattern; the second one is where to resume
5592      scanning the strings.  If the latter is zero, the failure point is
5593      a ``dummy''; if a failure happens and the failure point is a dummy,
5594      it gets discarded and the next next one is tried.  */
5595 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5596   PREFIX(fail_stack_type) fail_stack;
5597 #endif
5598 #ifdef DEBUG
5599   static unsigned failure_id;
5600   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5601 #endif
5602 
5603 #ifdef REL_ALLOC
5604   /* This holds the pointer to the failure stack, when
5605      it is allocated relocatably.  */
5606   fail_stack_elt_t *failure_stack_ptr;
5607 #endif
5608 
5609   /* We fill all the registers internally, independent of what we
5610      return, for use in backreferences.  The number here includes
5611      an element for register zero.  */
5612   size_t num_regs = bufp->re_nsub + 1;
5613 
5614   /* The currently active registers.  */
5615   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5616   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5617 
5618   /* Information on the contents of registers. These are pointers into
5619      the input strings; they record just what was matched (on this
5620      attempt) by a subexpression part of the pattern, that is, the
5621      regnum-th regstart pointer points to where in the pattern we began
5622      matching and the regnum-th regend points to right after where we
5623      stopped matching the regnum-th subexpression.  (The zeroth register
5624      keeps track of what the whole pattern matches.)  */
5625 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5626   const CHAR_T **regstart, **regend;
5627 #endif
5628 
5629   /* If a group that's operated upon by a repetition operator fails to
5630      match anything, then the register for its start will need to be
5631      restored because it will have been set to wherever in the string we
5632      are when we last see its open-group operator.  Similarly for a
5633      register's end.  */
5634 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5635   const CHAR_T **old_regstart, **old_regend;
5636 #endif
5637 
5638   /* The is_active field of reg_info helps us keep track of which (possibly
5639      nested) subexpressions we are currently in. The matched_something
5640      field of reg_info[reg_num] helps us tell whether or not we have
5641      matched any of the pattern so far this time through the reg_num-th
5642      subexpression.  These two fields get reset each time through any
5643      loop their register is in.  */
5644 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5645   PREFIX(register_info_type) *reg_info;
5646 #endif
5647 
5648   /* The following record the register info as found in the above
5649      variables when we find a match better than any we've seen before.
5650      This happens as we backtrack through the failure points, which in
5651      turn happens only if we have not yet matched the entire string. */
5652   unsigned best_regs_set = false;
5653 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5654   const CHAR_T **best_regstart, **best_regend;
5655 #endif
5656 
5657   /* Logically, this is `best_regend[0]'.  But we don't want to have to
5658      allocate space for that if we're not allocating space for anything
5659      else (see below).  Also, we never need info about register 0 for
5660      any of the other register vectors, and it seems rather a kludge to
5661      treat `best_regend' differently than the rest.  So we keep track of
5662      the end of the best match so far in a separate variable.  We
5663      initialize this to NULL so that when we backtrack the first time
5664      and need to test it, it's not garbage.  */
5665   const CHAR_T *match_end = NULL;
5666 
5667   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5668   int set_regs_matched_done = 0;
5669 
5670   /* Used when we pop values we don't care about.  */
5671 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5672   const CHAR_T **reg_dummy;
5673   PREFIX(register_info_type) *reg_info_dummy;
5674 #endif
5675 
5676 #ifdef DEBUG
5677   /* Counts the total number of registers pushed.  */
5678   unsigned num_regs_pushed = 0;
5679 #endif
5680 
5681   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5682 
5683   INIT_FAIL_STACK ();
5684 
5685 #ifdef MATCH_MAY_ALLOCATE
5686   /* Do not bother to initialize all the register variables if there are
5687      no groups in the pattern, as it takes a fair amount of time.  If
5688      there are groups, we include space for register 0 (the whole
5689      pattern), even though we never use it, since it simplifies the
5690      array indexing.  We should fix this.  */
5691   if (bufp->re_nsub)
5692     {
5693       regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5694       regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5695       old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696       old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697       best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698       best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699       reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5700       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5701       reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702 
5703       if (!(regstart && regend && old_regstart && old_regend && reg_info
5704             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5705         {
5706           FREE_VARIABLES ();
5707           return -2;
5708         }
5709     }
5710   else
5711     {
5712       /* We must initialize all our variables to NULL, so that
5713          `FREE_VARIABLES' doesn't try to free them.  */
5714       regstart = regend = old_regstart = old_regend = best_regstart
5715         = best_regend = reg_dummy = NULL;
5716       reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5717     }
5718 #endif /* MATCH_MAY_ALLOCATE */
5719 
5720   /* The starting position is bogus.  */
5721 #ifdef WCHAR
5722   if (pos < 0 || pos > csize1 + csize2)
5723 #else /* BYTE */
5724   if (pos < 0 || pos > size1 + size2)
5725 #endif
5726     {
5727       FREE_VARIABLES ();
5728       return -1;
5729     }
5730 
5731 #ifdef WCHAR
5732   /* Allocate wchar_t array for string1 and string2 and
5733      fill them with converted string.  */
5734   if (string1 == NULL && string2 == NULL)
5735     {
5736       /* We need seting up buffers here.  */
5737 
5738       /* We must free wcs buffers in this function.  */
5739       cant_free_wcs_buf = 0;
5740 
5741       if (csize1 != 0)
5742 	{
5743 	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5744 	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5745 	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5746 	  if (!string1 || !mbs_offset1 || !is_binary)
5747 	    {
5748 	      FREE_VAR (string1);
5749 	      FREE_VAR (mbs_offset1);
5750 	      FREE_VAR (is_binary);
5751 	      return -2;
5752 	    }
5753 	}
5754       if (csize2 != 0)
5755 	{
5756 	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5757 	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5758 	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5759 	  if (!string2 || !mbs_offset2 || !is_binary)
5760 	    {
5761 	      FREE_VAR (string1);
5762 	      FREE_VAR (mbs_offset1);
5763 	      FREE_VAR (string2);
5764 	      FREE_VAR (mbs_offset2);
5765 	      FREE_VAR (is_binary);
5766 	      return -2;
5767 	    }
5768 	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5769 				     mbs_offset2, is_binary);
5770 	  string2[size2] = L'\0'; /* for a sentinel  */
5771 	  FREE_VAR (is_binary);
5772 	}
5773     }
5774 
5775   /* We need to cast pattern to (wchar_t*), because we casted this compiled
5776      pattern to (char*) in regex_compile.  */
5777   p = pattern = (CHAR_T*)bufp->buffer;
5778   pend = (CHAR_T*)(bufp->buffer + bufp->used);
5779 
5780 #endif /* WCHAR */
5781 
5782   /* Initialize subexpression text positions to -1 to mark ones that no
5783      start_memory/stop_memory has been seen for. Also initialize the
5784      register information struct.  */
5785   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5786     {
5787       regstart[mcnt] = regend[mcnt]
5788         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5789 
5790       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5791       IS_ACTIVE (reg_info[mcnt]) = 0;
5792       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5793       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5794     }
5795 
5796   /* We move `string1' into `string2' if the latter's empty -- but not if
5797      `string1' is null.  */
5798   if (size2 == 0 && string1 != NULL)
5799     {
5800       string2 = string1;
5801       size2 = size1;
5802       string1 = 0;
5803       size1 = 0;
5804 #ifdef WCHAR
5805       mbs_offset2 = mbs_offset1;
5806       csize2 = csize1;
5807       mbs_offset1 = NULL;
5808       csize1 = 0;
5809 #endif
5810     }
5811   end1 = string1 + size1;
5812   end2 = string2 + size2;
5813 
5814   /* Compute where to stop matching, within the two strings.  */
5815 #ifdef WCHAR
5816   if (stop <= csize1)
5817     {
5818       mcnt = count_mbs_length(mbs_offset1, stop);
5819       end_match_1 = string1 + mcnt;
5820       end_match_2 = string2;
5821     }
5822   else
5823     {
5824       if (stop > csize1 + csize2)
5825 	stop = csize1 + csize2;
5826       end_match_1 = end1;
5827       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5828       end_match_2 = string2 + mcnt;
5829     }
5830   if (mcnt < 0)
5831     { /* count_mbs_length return error.  */
5832       FREE_VARIABLES ();
5833       return -1;
5834     }
5835 #else
5836   if (stop <= size1)
5837     {
5838       end_match_1 = string1 + stop;
5839       end_match_2 = string2;
5840     }
5841   else
5842     {
5843       end_match_1 = end1;
5844       end_match_2 = string2 + stop - size1;
5845     }
5846 #endif /* WCHAR */
5847 
5848   /* `p' scans through the pattern as `d' scans through the data.
5849      `dend' is the end of the input string that `d' points within.  `d'
5850      is advanced into the following input string whenever necessary, but
5851      this happens before fetching; therefore, at the beginning of the
5852      loop, `d' can be pointing at the end of a string, but it cannot
5853      equal `string2'.  */
5854 #ifdef WCHAR
5855   if (size1 > 0 && pos <= csize1)
5856     {
5857       mcnt = count_mbs_length(mbs_offset1, pos);
5858       d = string1 + mcnt;
5859       dend = end_match_1;
5860     }
5861   else
5862     {
5863       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5864       d = string2 + mcnt;
5865       dend = end_match_2;
5866     }
5867 
5868   if (mcnt < 0)
5869     { /* count_mbs_length return error.  */
5870       FREE_VARIABLES ();
5871       return -1;
5872     }
5873 #else
5874   if (size1 > 0 && pos <= size1)
5875     {
5876       d = string1 + pos;
5877       dend = end_match_1;
5878     }
5879   else
5880     {
5881       d = string2 + pos - size1;
5882       dend = end_match_2;
5883     }
5884 #endif /* WCHAR */
5885 
5886   DEBUG_PRINT1 ("The compiled pattern is:\n");
5887   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5888   DEBUG_PRINT1 ("The string to match is: `");
5889   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5890   DEBUG_PRINT1 ("'\n");
5891 
5892   /* This loops over pattern commands.  It exits by returning from the
5893      function if the match is complete, or it drops through if the match
5894      fails at this starting point in the input data.  */
5895   for (;;)
5896     {
5897 #ifdef _LIBC
5898       DEBUG_PRINT2 ("\n%p: ", p);
5899 #else
5900       DEBUG_PRINT2 ("\n0x%x: ", p);
5901 #endif
5902 
5903       if (p == pend)
5904 	{ /* End of pattern means we might have succeeded.  */
5905           DEBUG_PRINT1 ("end of pattern ... ");
5906 
5907 	  /* If we haven't matched the entire string, and we want the
5908              longest match, try backtracking.  */
5909           if (d != end_match_2)
5910 	    {
5911 	      /* 1 if this match ends in the same string (string1 or string2)
5912 		 as the best previous match.  */
5913 	      boolean same_str_p;
5914 
5915 	      /* 1 if this match is the best seen so far.  */
5916 	      boolean best_match_p;
5917 
5918               same_str_p = (FIRST_STRING_P (match_end)
5919                             == MATCHING_IN_FIRST_STRING);
5920 
5921 	      /* AIX compiler got confused when this was combined
5922 		 with the previous declaration.  */
5923 	      if (same_str_p)
5924 		best_match_p = d > match_end;
5925 	      else
5926 		best_match_p = !MATCHING_IN_FIRST_STRING;
5927 
5928               DEBUG_PRINT1 ("backtracking.\n");
5929 
5930               if (!FAIL_STACK_EMPTY ())
5931                 { /* More failure points to try.  */
5932 
5933                   /* If exceeds best match so far, save it.  */
5934                   if (!best_regs_set || best_match_p)
5935                     {
5936                       best_regs_set = true;
5937                       match_end = d;
5938 
5939                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5940 
5941                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5942                         {
5943                           best_regstart[mcnt] = regstart[mcnt];
5944                           best_regend[mcnt] = regend[mcnt];
5945                         }
5946                     }
5947                   goto fail;
5948                 }
5949 
5950               /* If no failure points, don't restore garbage.  And if
5951                  last match is real best match, don't restore second
5952                  best one. */
5953               else if (best_regs_set && !best_match_p)
5954                 {
5955   	        restore_best_regs:
5956                   /* Restore best match.  It may happen that `dend ==
5957                      end_match_1' while the restored d is in string2.
5958                      For example, the pattern `x.*y.*z' against the
5959                      strings `x-' and `y-z-', if the two strings are
5960                      not consecutive in memory.  */
5961                   DEBUG_PRINT1 ("Restoring best registers.\n");
5962 
5963                   d = match_end;
5964                   dend = ((d >= string1 && d <= end1)
5965 		           ? end_match_1 : end_match_2);
5966 
5967 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5968 		    {
5969 		      regstart[mcnt] = best_regstart[mcnt];
5970 		      regend[mcnt] = best_regend[mcnt];
5971 		    }
5972                 }
5973             } /* d != end_match_2 */
5974 
5975 	succeed_label:
5976           DEBUG_PRINT1 ("Accepting match.\n");
5977           /* If caller wants register contents data back, do it.  */
5978           if (regs && !bufp->no_sub)
5979 	    {
5980 	      /* Have the register data arrays been allocated?  */
5981               if (bufp->regs_allocated == REGS_UNALLOCATED)
5982                 { /* No.  So allocate them with malloc.  We need one
5983                      extra element beyond `num_regs' for the `-1' marker
5984                      GNU code uses.  */
5985                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5986                   regs->start = TALLOC (regs->num_regs, regoff_t);
5987                   regs->end = TALLOC (regs->num_regs, regoff_t);
5988                   if (regs->start == NULL || regs->end == NULL)
5989 		    {
5990 		      FREE_VARIABLES ();
5991 		      return -2;
5992 		    }
5993                   bufp->regs_allocated = REGS_REALLOCATE;
5994                 }
5995               else if (bufp->regs_allocated == REGS_REALLOCATE)
5996                 { /* Yes.  If we need more elements than were already
5997                      allocated, reallocate them.  If we need fewer, just
5998                      leave it alone.  */
5999                   if (regs->num_regs < num_regs + 1)
6000                     {
6001                       regs->num_regs = num_regs + 1;
6002                       RETALLOC (regs->start, regs->num_regs, regoff_t);
6003                       RETALLOC (regs->end, regs->num_regs, regoff_t);
6004                       if (regs->start == NULL || regs->end == NULL)
6005 			{
6006 			  FREE_VARIABLES ();
6007 			  return -2;
6008 			}
6009                     }
6010                 }
6011               else
6012 		{
6013 		  /* These braces fend off a "empty body in an else-statement"
6014 		     warning under GCC when assert expands to nothing.  */
6015 		  assert (bufp->regs_allocated == REGS_FIXED);
6016 		}
6017 
6018               /* Convert the pointer data in `regstart' and `regend' to
6019                  indices.  Register zero has to be set differently,
6020                  since we haven't kept track of any info for it.  */
6021               if (regs->num_regs > 0)
6022                 {
6023                   regs->start[0] = pos;
6024 #ifdef WCHAR
6025 		  if (MATCHING_IN_FIRST_STRING)
6026 		    regs->end[0] = mbs_offset1 != NULL ?
6027 					mbs_offset1[d-string1] : 0;
6028 		  else
6029 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6030 					     mbs_offset2[d-string2] : 0);
6031 #else
6032                   regs->end[0] = (MATCHING_IN_FIRST_STRING
6033 				  ? ((regoff_t) (d - string1))
6034 			          : ((regoff_t) (d - string2 + size1)));
6035 #endif /* WCHAR */
6036                 }
6037 
6038               /* Go through the first `min (num_regs, regs->num_regs)'
6039                  registers, since that is all we initialized.  */
6040 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6041 		   mcnt++)
6042 		{
6043                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6044                     regs->start[mcnt] = regs->end[mcnt] = -1;
6045                   else
6046                     {
6047 		      regs->start[mcnt]
6048 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6049                       regs->end[mcnt]
6050 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6051                     }
6052 		}
6053 
6054               /* If the regs structure we return has more elements than
6055                  were in the pattern, set the extra elements to -1.  If
6056                  we (re)allocated the registers, this is the case,
6057                  because we always allocate enough to have at least one
6058                  -1 at the end.  */
6059               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6060                 regs->start[mcnt] = regs->end[mcnt] = -1;
6061 	    } /* regs && !bufp->no_sub */
6062 
6063           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6064                         nfailure_points_pushed, nfailure_points_popped,
6065                         nfailure_points_pushed - nfailure_points_popped);
6066           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6067 
6068 #ifdef WCHAR
6069 	  if (MATCHING_IN_FIRST_STRING)
6070 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6071 	  else
6072 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6073 			csize1;
6074           mcnt -= pos;
6075 #else
6076           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6077 			    ? string1
6078 			    : string2 - size1);
6079 #endif /* WCHAR */
6080 
6081           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6082 
6083           FREE_VARIABLES ();
6084           return mcnt;
6085         }
6086 
6087       /* Otherwise match next pattern command.  */
6088       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6089 	{
6090         /* Ignore these.  Used to ignore the n of succeed_n's which
6091            currently have n == 0.  */
6092         case no_op:
6093           DEBUG_PRINT1 ("EXECUTING no_op.\n");
6094           break;
6095 
6096 	case succeed:
6097           DEBUG_PRINT1 ("EXECUTING succeed.\n");
6098 	  goto succeed_label;
6099 
6100         /* Match the next n pattern characters exactly.  The following
6101            byte in the pattern defines n, and the n bytes after that
6102            are the characters to match.  */
6103 	case exactn:
6104 #ifdef MBS_SUPPORT
6105 	case exactn_bin:
6106 #endif
6107 	  mcnt = *p++;
6108           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6109 
6110           /* This is written out as an if-else so we don't waste time
6111              testing `translate' inside the loop.  */
6112           if (translate)
6113 	    {
6114 	      do
6115 		{
6116 		  PREFETCH ();
6117 #ifdef WCHAR
6118 		  if (*d <= 0xff)
6119 		    {
6120 		      if ((UCHAR_T) translate[(unsigned char) *d++]
6121 			  != (UCHAR_T) *p++)
6122 			goto fail;
6123 		    }
6124 		  else
6125 		    {
6126 		      if (*d++ != (CHAR_T) *p++)
6127 			goto fail;
6128 		    }
6129 #else
6130 		  if ((UCHAR_T) translate[(unsigned char) *d++]
6131 		      != (UCHAR_T) *p++)
6132                     goto fail;
6133 #endif /* WCHAR */
6134 		}
6135 	      while (--mcnt);
6136 	    }
6137 	  else
6138 	    {
6139 	      do
6140 		{
6141 		  PREFETCH ();
6142 		  if (*d++ != (CHAR_T) *p++) goto fail;
6143 		}
6144 	      while (--mcnt);
6145 	    }
6146 	  SET_REGS_MATCHED ();
6147           break;
6148 
6149 
6150         /* Match any character except possibly a newline or a null.  */
6151 	case anychar:
6152           DEBUG_PRINT1 ("EXECUTING anychar.\n");
6153 
6154           PREFETCH ();
6155 
6156           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6157               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6158 	    goto fail;
6159 
6160           SET_REGS_MATCHED ();
6161           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6162           d++;
6163 	  break;
6164 
6165 
6166 	case charset:
6167 	case charset_not:
6168 	  {
6169 	    register UCHAR_T c;
6170 #ifdef WCHAR
6171 	    unsigned int i, char_class_length, coll_symbol_length,
6172               equiv_class_length, ranges_length, chars_length, length;
6173 	    CHAR_T *workp, *workp2, *charset_top;
6174 #define WORK_BUFFER_SIZE 128
6175             CHAR_T str_buf[WORK_BUFFER_SIZE];
6176 # ifdef _LIBC
6177 	    uint32_t nrules;
6178 # endif /* _LIBC */
6179 #endif /* WCHAR */
6180 	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6181 
6182             DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6183 	    PREFETCH ();
6184 	    c = TRANSLATE (*d); /* The character to match.  */
6185 #ifdef WCHAR
6186 # ifdef _LIBC
6187 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6188 # endif /* _LIBC */
6189 	    charset_top = p - 1;
6190 	    char_class_length = *p++;
6191 	    coll_symbol_length = *p++;
6192 	    equiv_class_length = *p++;
6193 	    ranges_length = *p++;
6194 	    chars_length = *p++;
6195 	    /* p points charset[6], so the address of the next instruction
6196 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6197 	       where l=length of char_classes, m=length of collating_symbol,
6198 	       n=equivalence_class, o=length of char_range,
6199 	       p'=length of character.  */
6200 	    workp = p;
6201 	    /* Update p to indicate the next instruction.  */
6202 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6203               2*ranges_length + chars_length;
6204 
6205             /* match with char_class?  */
6206 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6207 	      {
6208 		wctype_t wctype;
6209 		uintptr_t alignedp = ((uintptr_t)workp
6210 				      + __alignof__(wctype_t) - 1)
6211 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6212 		wctype = *((wctype_t*)alignedp);
6213 		workp += CHAR_CLASS_SIZE;
6214 # ifdef _LIBC
6215 		if (__iswctype((wint_t)c, wctype))
6216 		  goto char_set_matched;
6217 # else
6218 		if (iswctype((wint_t)c, wctype))
6219 		  goto char_set_matched;
6220 # endif
6221 	      }
6222 
6223             /* match with collating_symbol?  */
6224 # ifdef _LIBC
6225 	    if (nrules != 0)
6226 	      {
6227 		const unsigned char *extra = (const unsigned char *)
6228 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6229 
6230 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6231 		     workp++)
6232 		  {
6233 		    int32_t *wextra;
6234 		    wextra = (int32_t*)(extra + *workp++);
6235 		    for (i = 0; i < *wextra; ++i)
6236 		      if (TRANSLATE(d[i]) != wextra[1 + i])
6237 			break;
6238 
6239 		    if (i == *wextra)
6240 		      {
6241 			/* Update d, however d will be incremented at
6242 			   char_set_matched:, we decrement d here.  */
6243 			d += i - 1;
6244 			goto char_set_matched;
6245 		      }
6246 		  }
6247 	      }
6248 	    else /* (nrules == 0) */
6249 # endif
6250 	      /* If we can't look up collation data, we use wcscoll
6251 		 instead.  */
6252 	      {
6253 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6254 		  {
6255 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6256 # ifdef _LIBC
6257 		    length = __wcslen (workp);
6258 # else
6259 		    length = wcslen (workp);
6260 # endif
6261 
6262 		    /* If wcscoll(the collating symbol, whole string) > 0,
6263 		       any substring of the string never match with the
6264 		       collating symbol.  */
6265 # ifdef _LIBC
6266 		    if (__wcscoll (workp, d) > 0)
6267 # else
6268 		    if (wcscoll (workp, d) > 0)
6269 # endif
6270 		      {
6271 			workp += length + 1;
6272 			continue;
6273 		      }
6274 
6275 		    /* First, we compare the collating symbol with
6276 		       the first character of the string.
6277 		       If it don't match, we add the next character to
6278 		       the compare buffer in turn.  */
6279 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6280 		      {
6281 			int match;
6282 			if (d == dend)
6283 			  {
6284 			    if (dend == end_match_2)
6285 			      break;
6286 			    d = string2;
6287 			    dend = end_match_2;
6288 			  }
6289 
6290 			/* add next character to the compare buffer.  */
6291 			str_buf[i] = TRANSLATE(*d);
6292 			str_buf[i+1] = '\0';
6293 
6294 # ifdef _LIBC
6295 			match = __wcscoll (workp, str_buf);
6296 # else
6297 			match = wcscoll (workp, str_buf);
6298 # endif
6299 			if (match == 0)
6300 			  goto char_set_matched;
6301 
6302 			if (match < 0)
6303 			  /* (str_buf > workp) indicate (str_buf + X > workp),
6304 			     because for all X (str_buf + X > str_buf).
6305 			     So we don't need continue this loop.  */
6306 			  break;
6307 
6308 			/* Otherwise(str_buf < workp),
6309 			   (str_buf+next_character) may equals (workp).
6310 			   So we continue this loop.  */
6311 		      }
6312 		    /* not matched */
6313 		    d = backup_d;
6314 		    dend = backup_dend;
6315 		    workp += length + 1;
6316 		  }
6317               }
6318             /* match with equivalence_class?  */
6319 # ifdef _LIBC
6320 	    if (nrules != 0)
6321 	      {
6322                 const CHAR_T *backup_d = d, *backup_dend = dend;
6323 		/* Try to match the equivalence class against
6324 		   those known to the collate implementation.  */
6325 		const int32_t *table;
6326 		const int32_t *weights;
6327 		const int32_t *extra;
6328 		const int32_t *indirect;
6329 		int32_t idx, idx2;
6330 		wint_t *cp;
6331 		size_t len;
6332 
6333 		/* This #include defines a local function!  */
6334 #  include <locale/weightwc.h>
6335 
6336 		table = (const int32_t *)
6337 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6338 		weights = (const wint_t *)
6339 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6340 		extra = (const wint_t *)
6341 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6342 		indirect = (const int32_t *)
6343 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6344 
6345 		/* Write 1 collating element to str_buf, and
6346 		   get its index.  */
6347 		idx2 = 0;
6348 
6349 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6350 		  {
6351 		    cp = (wint_t*)str_buf;
6352 		    if (d == dend)
6353 		      {
6354 			if (dend == end_match_2)
6355 			  break;
6356 			d = string2;
6357 			dend = end_match_2;
6358 		      }
6359 		    str_buf[i] = TRANSLATE(*(d+i));
6360 		    str_buf[i+1] = '\0'; /* sentinel */
6361 		    idx2 = findidx ((const wint_t**)&cp);
6362 		  }
6363 
6364 		/* Update d, however d will be incremented at
6365 		   char_set_matched:, we decrement d here.  */
6366 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6367 		if (d >= dend)
6368 		  {
6369 		    if (dend == end_match_2)
6370 			d = dend;
6371 		    else
6372 		      {
6373 			d = string2;
6374 			dend = end_match_2;
6375 		      }
6376 		  }
6377 
6378 		len = weights[idx2];
6379 
6380 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6381 		     workp++)
6382 		  {
6383 		    idx = (int32_t)*workp;
6384 		    /* We already checked idx != 0 in regex_compile. */
6385 
6386 		    if (idx2 != 0 && len == weights[idx])
6387 		      {
6388 			int cnt = 0;
6389 			while (cnt < len && (weights[idx + 1 + cnt]
6390 					     == weights[idx2 + 1 + cnt]))
6391 			  ++cnt;
6392 
6393 			if (cnt == len)
6394 			  goto char_set_matched;
6395 		      }
6396 		  }
6397 		/* not matched */
6398                 d = backup_d;
6399                 dend = backup_dend;
6400 	      }
6401 	    else /* (nrules == 0) */
6402 # endif
6403 	      /* If we can't look up collation data, we use wcscoll
6404 		 instead.  */
6405 	      {
6406 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6407 		  {
6408 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6409 # ifdef _LIBC
6410 		    length = __wcslen (workp);
6411 # else
6412 		    length = wcslen (workp);
6413 # endif
6414 
6415 		    /* If wcscoll(the collating symbol, whole string) > 0,
6416 		       any substring of the string never match with the
6417 		       collating symbol.  */
6418 # ifdef _LIBC
6419 		    if (__wcscoll (workp, d) > 0)
6420 # else
6421 		    if (wcscoll (workp, d) > 0)
6422 # endif
6423 		      {
6424 			workp += length + 1;
6425 			break;
6426 		      }
6427 
6428 		    /* First, we compare the equivalence class with
6429 		       the first character of the string.
6430 		       If it don't match, we add the next character to
6431 		       the compare buffer in turn.  */
6432 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6433 		      {
6434 			int match;
6435 			if (d == dend)
6436 			  {
6437 			    if (dend == end_match_2)
6438 			      break;
6439 			    d = string2;
6440 			    dend = end_match_2;
6441 			  }
6442 
6443 			/* add next character to the compare buffer.  */
6444 			str_buf[i] = TRANSLATE(*d);
6445 			str_buf[i+1] = '\0';
6446 
6447 # ifdef _LIBC
6448 			match = __wcscoll (workp, str_buf);
6449 # else
6450 			match = wcscoll (workp, str_buf);
6451 # endif
6452 
6453 			if (match == 0)
6454 			  goto char_set_matched;
6455 
6456 			if (match < 0)
6457 			/* (str_buf > workp) indicate (str_buf + X > workp),
6458 			   because for all X (str_buf + X > str_buf).
6459 			   So we don't need continue this loop.  */
6460 			  break;
6461 
6462 			/* Otherwise(str_buf < workp),
6463 			   (str_buf+next_character) may equals (workp).
6464 			   So we continue this loop.  */
6465 		      }
6466 		    /* not matched */
6467 		    d = backup_d;
6468 		    dend = backup_dend;
6469 		    workp += length + 1;
6470 		  }
6471 	      }
6472 
6473             /* match with char_range?  */
6474 # ifdef _LIBC
6475 	    if (nrules != 0)
6476 	      {
6477 		uint32_t collseqval;
6478 		const char *collseq = (const char *)
6479 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6480 
6481 		collseqval = collseq_table_lookup (collseq, c);
6482 
6483 		for (; workp < p - chars_length ;)
6484 		  {
6485 		    uint32_t start_val, end_val;
6486 
6487 		    /* We already compute the collation sequence value
6488 		       of the characters (or collating symbols).  */
6489 		    start_val = (uint32_t) *workp++; /* range_start */
6490 		    end_val = (uint32_t) *workp++; /* range_end */
6491 
6492 		    if (start_val <= collseqval && collseqval <= end_val)
6493 		      goto char_set_matched;
6494 		  }
6495 	      }
6496 	    else
6497 # endif
6498 	      {
6499 		/* We set range_start_char at str_buf[0], range_end_char
6500 		   at str_buf[4], and compared char at str_buf[2].  */
6501 		str_buf[1] = 0;
6502 		str_buf[2] = c;
6503 		str_buf[3] = 0;
6504 		str_buf[5] = 0;
6505 		for (; workp < p - chars_length ;)
6506 		  {
6507 		    wchar_t *range_start_char, *range_end_char;
6508 
6509 		    /* match if (range_start_char <= c <= range_end_char).  */
6510 
6511 		    /* If range_start(or end) < 0, we assume -range_start(end)
6512 		       is the offset of the collating symbol which is specified
6513 		       as the character of the range start(end).  */
6514 
6515 		    /* range_start */
6516 		    if (*workp < 0)
6517 		      range_start_char = charset_top - (*workp++);
6518 		    else
6519 		      {
6520 			str_buf[0] = *workp++;
6521 			range_start_char = str_buf;
6522 		      }
6523 
6524 		    /* range_end */
6525 		    if (*workp < 0)
6526 		      range_end_char = charset_top - (*workp++);
6527 		    else
6528 		      {
6529 			str_buf[4] = *workp++;
6530 			range_end_char = str_buf + 4;
6531 		      }
6532 
6533 # ifdef _LIBC
6534 		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6535 			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6536 # else
6537 		    if (wcscoll (range_start_char, str_buf+2) <= 0
6538 			&& wcscoll (str_buf+2, range_end_char) <= 0)
6539 # endif
6540 		      goto char_set_matched;
6541 		  }
6542 	      }
6543 
6544             /* match with char?  */
6545 	    for (; workp < p ; workp++)
6546 	      if (c == *workp)
6547 		goto char_set_matched;
6548 
6549 	    negate = !negate;
6550 
6551 	  char_set_matched:
6552 	    if (negate) goto fail;
6553 #else
6554             /* Cast to `unsigned' instead of `unsigned char' in case the
6555                bit list is a full 32 bytes long.  */
6556 	    if (c < (unsigned) (*p * BYTEWIDTH)
6557 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6558 	      negate = !negate;
6559 
6560 	    p += 1 + *p;
6561 
6562 	    if (!negate) goto fail;
6563 #undef WORK_BUFFER_SIZE
6564 #endif /* WCHAR */
6565 	    SET_REGS_MATCHED ();
6566             d++;
6567 	    break;
6568 	  }
6569 
6570 
6571         /* The beginning of a group is represented by start_memory.
6572            The arguments are the register number in the next byte, and the
6573            number of groups inner to this one in the next.  The text
6574            matched within the group is recorded (in the internal
6575            registers data structure) under the register number.  */
6576         case start_memory:
6577 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6578 			(long int) *p, (long int) p[1]);
6579 
6580           /* Find out if this group can match the empty string.  */
6581 	  p1 = p;		/* To send to group_match_null_string_p.  */
6582 
6583           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6584             REG_MATCH_NULL_STRING_P (reg_info[*p])
6585               = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6586 
6587           /* Save the position in the string where we were the last time
6588              we were at this open-group operator in case the group is
6589              operated upon by a repetition operator, e.g., with `(a*)*b'
6590              against `ab'; then we want to ignore where we are now in
6591              the string in case this attempt to match fails.  */
6592           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6593                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6594                              : regstart[*p];
6595 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6596 			 POINTER_TO_OFFSET (old_regstart[*p]));
6597 
6598           regstart[*p] = d;
6599 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6600 
6601           IS_ACTIVE (reg_info[*p]) = 1;
6602           MATCHED_SOMETHING (reg_info[*p]) = 0;
6603 
6604 	  /* Clear this whenever we change the register activity status.  */
6605 	  set_regs_matched_done = 0;
6606 
6607           /* This is the new highest active register.  */
6608           highest_active_reg = *p;
6609 
6610           /* If nothing was active before, this is the new lowest active
6611              register.  */
6612           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6613             lowest_active_reg = *p;
6614 
6615           /* Move past the register number and inner group count.  */
6616           p += 2;
6617 	  just_past_start_mem = p;
6618 
6619           break;
6620 
6621 
6622         /* The stop_memory opcode represents the end of a group.  Its
6623            arguments are the same as start_memory's: the register
6624            number, and the number of inner groups.  */
6625 	case stop_memory:
6626 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6627 			(long int) *p, (long int) p[1]);
6628 
6629           /* We need to save the string position the last time we were at
6630              this close-group operator in case the group is operated
6631              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6632              against `aba'; then we want to ignore where we are now in
6633              the string in case this attempt to match fails.  */
6634           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6635                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
6636 			   : regend[*p];
6637 	  DEBUG_PRINT2 ("      old_regend: %d\n",
6638 			 POINTER_TO_OFFSET (old_regend[*p]));
6639 
6640           regend[*p] = d;
6641 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6642 
6643           /* This register isn't active anymore.  */
6644           IS_ACTIVE (reg_info[*p]) = 0;
6645 
6646 	  /* Clear this whenever we change the register activity status.  */
6647 	  set_regs_matched_done = 0;
6648 
6649           /* If this was the only register active, nothing is active
6650              anymore.  */
6651           if (lowest_active_reg == highest_active_reg)
6652             {
6653               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6654               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6655             }
6656           else
6657             { /* We must scan for the new highest active register, since
6658                  it isn't necessarily one less than now: consider
6659                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6660                  new highest active register is 1.  */
6661               UCHAR_T r = *p - 1;
6662               while (r > 0 && !IS_ACTIVE (reg_info[r]))
6663                 r--;
6664 
6665               /* If we end up at register zero, that means that we saved
6666                  the registers as the result of an `on_failure_jump', not
6667                  a `start_memory', and we jumped to past the innermost
6668                  `stop_memory'.  For example, in ((.)*) we save
6669                  registers 1 and 2 as a result of the *, but when we pop
6670                  back to the second ), we are at the stop_memory 1.
6671                  Thus, nothing is active.  */
6672 	      if (r == 0)
6673                 {
6674                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6675                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6676                 }
6677               else
6678                 highest_active_reg = r;
6679             }
6680 
6681           /* If just failed to match something this time around with a
6682              group that's operated on by a repetition operator, try to
6683              force exit from the ``loop'', and restore the register
6684              information for this group that we had before trying this
6685              last match.  */
6686           if ((!MATCHED_SOMETHING (reg_info[*p])
6687                || just_past_start_mem == p - 1)
6688 	      && (p + 2) < pend)
6689             {
6690               boolean is_a_jump_n = false;
6691 
6692               p1 = p + 2;
6693               mcnt = 0;
6694               switch ((re_opcode_t) *p1++)
6695                 {
6696                   case jump_n:
6697 		    is_a_jump_n = true;
6698                   case pop_failure_jump:
6699 		  case maybe_pop_jump:
6700 		  case jump:
6701 		  case dummy_failure_jump:
6702                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6703 		    if (is_a_jump_n)
6704 		      p1 += OFFSET_ADDRESS_SIZE;
6705                     break;
6706 
6707                   default:
6708                     /* do nothing */ ;
6709                 }
6710 	      p1 += mcnt;
6711 
6712               /* If the next operation is a jump backwards in the pattern
6713 	         to an on_failure_jump right before the start_memory
6714                  corresponding to this stop_memory, exit from the loop
6715                  by forcing a failure after pushing on the stack the
6716                  on_failure_jump's jump in the pattern, and d.  */
6717               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6718                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6719 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6720 		{
6721                   /* If this group ever matched anything, then restore
6722                      what its registers were before trying this last
6723                      failed match, e.g., with `(a*)*b' against `ab' for
6724                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
6725                      against `aba' for regend[3].
6726 
6727                      Also restore the registers for inner groups for,
6728                      e.g., `((a*)(b*))*' against `aba' (register 3 would
6729                      otherwise get trashed).  */
6730 
6731                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6732 		    {
6733 		      unsigned r;
6734 
6735                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6736 
6737 		      /* Restore this and inner groups' (if any) registers.  */
6738                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6739 			   r++)
6740                         {
6741                           regstart[r] = old_regstart[r];
6742 
6743                           /* xx why this test?  */
6744                           if (old_regend[r] >= regstart[r])
6745                             regend[r] = old_regend[r];
6746                         }
6747                     }
6748 		  p1++;
6749                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6750                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6751 
6752                   goto fail;
6753                 }
6754             }
6755 
6756           /* Move past the register number and the inner group count.  */
6757           p += 2;
6758           break;
6759 
6760 
6761 	/* \<digit> has been turned into a `duplicate' command which is
6762            followed by the numeric value of <digit> as the register number.  */
6763         case duplicate:
6764 	  {
6765 	    register const CHAR_T *d2, *dend2;
6766 	    int regno = *p++;   /* Get which register to match against.  */
6767 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6768 
6769 	    /* Can't back reference a group which we've never matched.  */
6770             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6771               goto fail;
6772 
6773             /* Where in input to try to start matching.  */
6774             d2 = regstart[regno];
6775 
6776             /* Where to stop matching; if both the place to start and
6777                the place to stop matching are in the same string, then
6778                set to the place to stop, otherwise, for now have to use
6779                the end of the first string.  */
6780 
6781             dend2 = ((FIRST_STRING_P (regstart[regno])
6782 		      == FIRST_STRING_P (regend[regno]))
6783 		     ? regend[regno] : end_match_1);
6784 	    for (;;)
6785 	      {
6786 		/* If necessary, advance to next segment in register
6787                    contents.  */
6788 		while (d2 == dend2)
6789 		  {
6790 		    if (dend2 == end_match_2) break;
6791 		    if (dend2 == regend[regno]) break;
6792 
6793                     /* End of string1 => advance to string2. */
6794                     d2 = string2;
6795                     dend2 = regend[regno];
6796 		  }
6797 		/* At end of register contents => success */
6798 		if (d2 == dend2) break;
6799 
6800 		/* If necessary, advance to next segment in data.  */
6801 		PREFETCH ();
6802 
6803 		/* How many characters left in this segment to match.  */
6804 		mcnt = dend - d;
6805 
6806 		/* Want how many consecutive characters we can match in
6807                    one shot, so, if necessary, adjust the count.  */
6808                 if (mcnt > dend2 - d2)
6809 		  mcnt = dend2 - d2;
6810 
6811 		/* Compare that many; failure if mismatch, else move
6812                    past them.  */
6813 		if (translate
6814                     ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6815                     : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6816 		  goto fail;
6817 		d += mcnt, d2 += mcnt;
6818 
6819 		/* Do this because we've match some characters.  */
6820 		SET_REGS_MATCHED ();
6821 	      }
6822 	  }
6823 	  break;
6824 
6825 
6826         /* begline matches the empty string at the beginning of the string
6827            (unless `not_bol' is set in `bufp'), and, if
6828            `newline_anchor' is set, after newlines.  */
6829 	case begline:
6830           DEBUG_PRINT1 ("EXECUTING begline.\n");
6831 
6832           if (AT_STRINGS_BEG (d))
6833             {
6834               if (!bufp->not_bol) break;
6835             }
6836           else if (d[-1] == '\n' && bufp->newline_anchor)
6837             {
6838               break;
6839             }
6840           /* In all other cases, we fail.  */
6841           goto fail;
6842 
6843 
6844         /* endline is the dual of begline.  */
6845 	case endline:
6846           DEBUG_PRINT1 ("EXECUTING endline.\n");
6847 
6848           if (AT_STRINGS_END (d))
6849             {
6850               if (!bufp->not_eol) break;
6851             }
6852 
6853           /* We have to ``prefetch'' the next character.  */
6854           else if ((d == end1 ? *string2 : *d) == '\n'
6855                    && bufp->newline_anchor)
6856             {
6857               break;
6858             }
6859           goto fail;
6860 
6861 
6862 	/* Match at the very beginning of the data.  */
6863         case begbuf:
6864           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6865           if (AT_STRINGS_BEG (d))
6866             break;
6867           goto fail;
6868 
6869 
6870 	/* Match at the very end of the data.  */
6871         case endbuf:
6872           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6873 	  if (AT_STRINGS_END (d))
6874 	    break;
6875           goto fail;
6876 
6877 
6878         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6879            pushes NULL as the value for the string on the stack.  Then
6880            `pop_failure_point' will keep the current value for the
6881            string, instead of restoring it.  To see why, consider
6882            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6883            then the . fails against the \n.  But the next thing we want
6884            to do is match the \n against the \n; if we restored the
6885            string value, we would be back at the foo.
6886 
6887            Because this is used only in specific cases, we don't need to
6888            check all the things that `on_failure_jump' does, to make
6889            sure the right things get saved on the stack.  Hence we don't
6890            share its code.  The only reason to push anything on the
6891            stack at all is that otherwise we would have to change
6892            `anychar's code to do something besides goto fail in this
6893            case; that seems worse than this.  */
6894         case on_failure_keep_string_jump:
6895           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6896 
6897           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6898 #ifdef _LIBC
6899           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6900 #else
6901           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6902 #endif
6903 
6904           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6905           break;
6906 
6907 
6908 	/* Uses of on_failure_jump:
6909 
6910            Each alternative starts with an on_failure_jump that points
6911            to the beginning of the next alternative.  Each alternative
6912            except the last ends with a jump that in effect jumps past
6913            the rest of the alternatives.  (They really jump to the
6914            ending jump of the following alternative, because tensioning
6915            these jumps is a hassle.)
6916 
6917            Repeats start with an on_failure_jump that points past both
6918            the repetition text and either the following jump or
6919            pop_failure_jump back to this on_failure_jump.  */
6920 	case on_failure_jump:
6921         on_failure:
6922           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6923 
6924           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6925 #ifdef _LIBC
6926           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6927 #else
6928           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6929 #endif
6930 
6931           /* If this on_failure_jump comes right before a group (i.e.,
6932              the original * applied to a group), save the information
6933              for that group and all inner ones, so that if we fail back
6934              to this point, the group's information will be correct.
6935              For example, in \(a*\)*\1, we need the preceding group,
6936              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6937 
6938           /* We can't use `p' to check ahead because we push
6939              a failure point to `p + mcnt' after we do this.  */
6940           p1 = p;
6941 
6942           /* We need to skip no_op's before we look for the
6943              start_memory in case this on_failure_jump is happening as
6944              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6945              against aba.  */
6946           while (p1 < pend && (re_opcode_t) *p1 == no_op)
6947             p1++;
6948 
6949           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6950             {
6951               /* We have a new highest active register now.  This will
6952                  get reset at the start_memory we are about to get to,
6953                  but we will have saved all the registers relevant to
6954                  this repetition op, as described above.  */
6955               highest_active_reg = *(p1 + 1) + *(p1 + 2);
6956               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6957                 lowest_active_reg = *(p1 + 1);
6958             }
6959 
6960           DEBUG_PRINT1 (":\n");
6961           PUSH_FAILURE_POINT (p + mcnt, d, -2);
6962           break;
6963 
6964 
6965         /* A smart repeat ends with `maybe_pop_jump'.
6966 	   We change it to either `pop_failure_jump' or `jump'.  */
6967         case maybe_pop_jump:
6968           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6969           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6970           {
6971 	    register UCHAR_T *p2 = p;
6972 
6973             /* Compare the beginning of the repeat with what in the
6974                pattern follows its end. If we can establish that there
6975                is nothing that they would both match, i.e., that we
6976                would have to backtrack because of (as in, e.g., `a*a')
6977                then we can change to pop_failure_jump, because we'll
6978                never have to backtrack.
6979 
6980                This is not true in the case of alternatives: in
6981                `(a|ab)*' we do need to backtrack to the `ab' alternative
6982                (e.g., if the string was `ab').  But instead of trying to
6983                detect that here, the alternative has put on a dummy
6984                failure point which is what we will end up popping.  */
6985 
6986 	    /* Skip over open/close-group commands.
6987 	       If what follows this loop is a ...+ construct,
6988 	       look at what begins its body, since we will have to
6989 	       match at least one of that.  */
6990 	    while (1)
6991 	      {
6992 		if (p2 + 2 < pend
6993 		    && ((re_opcode_t) *p2 == stop_memory
6994 			|| (re_opcode_t) *p2 == start_memory))
6995 		  p2 += 3;
6996 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6997 			 && (re_opcode_t) *p2 == dummy_failure_jump)
6998 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6999 		else
7000 		  break;
7001 	      }
7002 
7003 	    p1 = p + mcnt;
7004 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7005 	       to the `maybe_finalize_jump' of this case.  Examine what
7006 	       follows.  */
7007 
7008             /* If we're at the end of the pattern, we can change.  */
7009             if (p2 == pend)
7010 	      {
7011 		/* Consider what happens when matching ":\(.*\)"
7012 		   against ":/".  I don't really understand this code
7013 		   yet.  */
7014   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7015 		  pop_failure_jump;
7016                 DEBUG_PRINT1
7017                   ("  End of pattern: change to `pop_failure_jump'.\n");
7018               }
7019 
7020             else if ((re_opcode_t) *p2 == exactn
7021 #ifdef MBS_SUPPORT
7022 		     || (re_opcode_t) *p2 == exactn_bin
7023 #endif
7024 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7025 	      {
7026 		register UCHAR_T c
7027                   = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7028 
7029                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7030 #ifdef MBS_SUPPORT
7031 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7032 #endif
7033 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7034                   {
7035   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7036 		      pop_failure_jump;
7037 #ifdef WCHAR
7038 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7039 				    (wint_t) c,
7040 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7041 #else
7042 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7043 				    (char) c,
7044 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7045 #endif
7046                   }
7047 
7048 #ifndef WCHAR
7049 		else if ((re_opcode_t) p1[3] == charset
7050 			 || (re_opcode_t) p1[3] == charset_not)
7051 		  {
7052 		    int negate = (re_opcode_t) p1[3] == charset_not;
7053 
7054 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7055 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7056 		      negate = !negate;
7057 
7058                     /* `negate' is equal to 1 if c would match, which means
7059                         that we can't change to pop_failure_jump.  */
7060 		    if (!negate)
7061                       {
7062   		        p[-3] = (unsigned char) pop_failure_jump;
7063                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7064                       }
7065 		  }
7066 #endif /* not WCHAR */
7067 	      }
7068 #ifndef WCHAR
7069             else if ((re_opcode_t) *p2 == charset)
7070 	      {
7071 		/* We win if the first character of the loop is not part
7072                    of the charset.  */
7073                 if ((re_opcode_t) p1[3] == exactn
7074  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7075  			  && (p2[2 + p1[5] / BYTEWIDTH]
7076  			      & (1 << (p1[5] % BYTEWIDTH)))))
7077 		  {
7078 		    p[-3] = (unsigned char) pop_failure_jump;
7079 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7080                   }
7081 
7082 		else if ((re_opcode_t) p1[3] == charset_not)
7083 		  {
7084 		    int idx;
7085 		    /* We win if the charset_not inside the loop
7086 		       lists every character listed in the charset after.  */
7087 		    for (idx = 0; idx < (int) p2[1]; idx++)
7088 		      if (! (p2[2 + idx] == 0
7089 			     || (idx < (int) p1[4]
7090 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7091 			break;
7092 
7093 		    if (idx == p2[1])
7094                       {
7095   		        p[-3] = (unsigned char) pop_failure_jump;
7096                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7097                       }
7098 		  }
7099 		else if ((re_opcode_t) p1[3] == charset)
7100 		  {
7101 		    int idx;
7102 		    /* We win if the charset inside the loop
7103 		       has no overlap with the one after the loop.  */
7104 		    for (idx = 0;
7105 			 idx < (int) p2[1] && idx < (int) p1[4];
7106 			 idx++)
7107 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7108 			break;
7109 
7110 		    if (idx == p2[1] || idx == p1[4])
7111                       {
7112   		        p[-3] = (unsigned char) pop_failure_jump;
7113                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7114                       }
7115 		  }
7116 	      }
7117 #endif /* not WCHAR */
7118 	  }
7119 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7120 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7121 	    {
7122 	      p[-1] = (UCHAR_T) jump;
7123               DEBUG_PRINT1 ("  Match => jump.\n");
7124 	      goto unconditional_jump;
7125 	    }
7126         /* Note fall through.  */
7127 
7128 
7129 	/* The end of a simple repeat has a pop_failure_jump back to
7130            its matching on_failure_jump, where the latter will push a
7131            failure point.  The pop_failure_jump takes off failure
7132            points put on by this pop_failure_jump's matching
7133            on_failure_jump; we got through the pattern to here from the
7134            matching on_failure_jump, so didn't fail.  */
7135         case pop_failure_jump:
7136           {
7137             /* We need to pass separate storage for the lowest and
7138                highest registers, even though we don't care about the
7139                actual values.  Otherwise, we will restore only one
7140                register from the stack, since lowest will == highest in
7141                `pop_failure_point'.  */
7142             active_reg_t dummy_low_reg, dummy_high_reg;
7143             UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7144             const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7145 
7146             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7147             POP_FAILURE_POINT (sdummy, pdummy,
7148                                dummy_low_reg, dummy_high_reg,
7149                                reg_dummy, reg_dummy, reg_info_dummy);
7150           }
7151 	  /* Note fall through.  */
7152 
7153 	unconditional_jump:
7154 #ifdef _LIBC
7155 	  DEBUG_PRINT2 ("\n%p: ", p);
7156 #else
7157 	  DEBUG_PRINT2 ("\n0x%x: ", p);
7158 #endif
7159           /* Note fall through.  */
7160 
7161         /* Unconditionally jump (without popping any failure points).  */
7162         case jump:
7163 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7164           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7165 	  p += mcnt;				/* Do the jump.  */
7166 #ifdef _LIBC
7167           DEBUG_PRINT2 ("(to %p).\n", p);
7168 #else
7169           DEBUG_PRINT2 ("(to 0x%x).\n", p);
7170 #endif
7171 	  break;
7172 
7173 
7174         /* We need this opcode so we can detect where alternatives end
7175            in `group_match_null_string_p' et al.  */
7176         case jump_past_alt:
7177           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7178           goto unconditional_jump;
7179 
7180 
7181         /* Normally, the on_failure_jump pushes a failure point, which
7182            then gets popped at pop_failure_jump.  We will end up at
7183            pop_failure_jump, also, and with a pattern of, say, `a+', we
7184            are skipping over the on_failure_jump, so we have to push
7185            something meaningless for pop_failure_jump to pop.  */
7186         case dummy_failure_jump:
7187           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7188           /* It doesn't matter what we push for the string here.  What
7189              the code at `fail' tests is the value for the pattern.  */
7190           PUSH_FAILURE_POINT (NULL, NULL, -2);
7191           goto unconditional_jump;
7192 
7193 
7194         /* At the end of an alternative, we need to push a dummy failure
7195            point in case we are followed by a `pop_failure_jump', because
7196            we don't want the failure point for the alternative to be
7197            popped.  For example, matching `(a|ab)*' against `aab'
7198            requires that we match the `ab' alternative.  */
7199         case push_dummy_failure:
7200           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7201           /* See comments just above at `dummy_failure_jump' about the
7202              two zeroes.  */
7203           PUSH_FAILURE_POINT (NULL, NULL, -2);
7204           break;
7205 
7206         /* Have to succeed matching what follows at least n times.
7207            After that, handle like `on_failure_jump'.  */
7208         case succeed_n:
7209           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7210           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7211 
7212           assert (mcnt >= 0);
7213           /* Originally, this is how many times we HAVE to succeed.  */
7214           if (mcnt > 0)
7215             {
7216                mcnt--;
7217 	       p += OFFSET_ADDRESS_SIZE;
7218                STORE_NUMBER_AND_INCR (p, mcnt);
7219 #ifdef _LIBC
7220                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7221 			     , mcnt);
7222 #else
7223                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7224 			     , mcnt);
7225 #endif
7226             }
7227 	  else if (mcnt == 0)
7228             {
7229 #ifdef _LIBC
7230               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7231 			    p + OFFSET_ADDRESS_SIZE);
7232 #else
7233               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7234 			    p + OFFSET_ADDRESS_SIZE);
7235 #endif /* _LIBC */
7236 
7237 #ifdef WCHAR
7238 	      p[1] = (UCHAR_T) no_op;
7239 #else
7240 	      p[2] = (UCHAR_T) no_op;
7241               p[3] = (UCHAR_T) no_op;
7242 #endif /* WCHAR */
7243               goto on_failure;
7244             }
7245           break;
7246 
7247         case jump_n:
7248           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7249           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7250 
7251           /* Originally, this is how many times we CAN jump.  */
7252           if (mcnt)
7253             {
7254                mcnt--;
7255                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7256 
7257 #ifdef _LIBC
7258                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7259 			     mcnt);
7260 #else
7261                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7262 			     mcnt);
7263 #endif /* _LIBC */
7264 	       goto unconditional_jump;
7265             }
7266           /* If don't have to jump any more, skip over the rest of command.  */
7267 	  else
7268 	    p += 2 * OFFSET_ADDRESS_SIZE;
7269           break;
7270 
7271 	case set_number_at:
7272 	  {
7273             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7274 
7275             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7276             p1 = p + mcnt;
7277             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7278 #ifdef _LIBC
7279             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7280 #else
7281             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7282 #endif
7283 	    STORE_NUMBER (p1, mcnt);
7284             break;
7285           }
7286 
7287 #if 0
7288 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7289 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7290 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7291 	   macro and introducing temporary variables works around the bug.  */
7292 
7293 	case wordbound:
7294 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7295 	  if (AT_WORD_BOUNDARY (d))
7296 	    break;
7297 	  goto fail;
7298 
7299 	case notwordbound:
7300 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7301 	  if (AT_WORD_BOUNDARY (d))
7302 	    goto fail;
7303 	  break;
7304 #else
7305 	case wordbound:
7306 	{
7307 	  boolean prevchar, thischar;
7308 
7309 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7310 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7311 	    break;
7312 
7313 	  prevchar = WORDCHAR_P (d - 1);
7314 	  thischar = WORDCHAR_P (d);
7315 	  if (prevchar != thischar)
7316 	    break;
7317 	  goto fail;
7318 	}
7319 
7320       case notwordbound:
7321 	{
7322 	  boolean prevchar, thischar;
7323 
7324 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7325 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7326 	    goto fail;
7327 
7328 	  prevchar = WORDCHAR_P (d - 1);
7329 	  thischar = WORDCHAR_P (d);
7330 	  if (prevchar != thischar)
7331 	    goto fail;
7332 	  break;
7333 	}
7334 #endif
7335 
7336 	case wordbeg:
7337           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7338 	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7339 	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7340 	    break;
7341           goto fail;
7342 
7343 	case wordend:
7344           DEBUG_PRINT1 ("EXECUTING wordend.\n");
7345 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7346               && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7347 	    break;
7348           goto fail;
7349 
7350 #ifdef emacs
7351   	case before_dot:
7352           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7353  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7354   	    goto fail;
7355   	  break;
7356 
7357   	case at_dot:
7358           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7359  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7360   	    goto fail;
7361   	  break;
7362 
7363   	case after_dot:
7364           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7365           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7366   	    goto fail;
7367   	  break;
7368 
7369 	case syntaxspec:
7370           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7371 	  mcnt = *p++;
7372 	  goto matchsyntax;
7373 
7374         case wordchar:
7375           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7376 	  mcnt = (int) Sword;
7377         matchsyntax:
7378 	  PREFETCH ();
7379 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7380 	  d++;
7381 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7382 	    goto fail;
7383           SET_REGS_MATCHED ();
7384 	  break;
7385 
7386 	case notsyntaxspec:
7387           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7388 	  mcnt = *p++;
7389 	  goto matchnotsyntax;
7390 
7391         case notwordchar:
7392           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7393 	  mcnt = (int) Sword;
7394         matchnotsyntax:
7395 	  PREFETCH ();
7396 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7397 	  d++;
7398 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7399 	    goto fail;
7400 	  SET_REGS_MATCHED ();
7401           break;
7402 
7403 #else /* not emacs */
7404 	case wordchar:
7405           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7406 	  PREFETCH ();
7407           if (!WORDCHAR_P (d))
7408             goto fail;
7409 	  SET_REGS_MATCHED ();
7410           d++;
7411 	  break;
7412 
7413 	case notwordchar:
7414           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7415 	  PREFETCH ();
7416 	  if (WORDCHAR_P (d))
7417             goto fail;
7418           SET_REGS_MATCHED ();
7419           d++;
7420 	  break;
7421 #endif /* not emacs */
7422 
7423         default:
7424           abort ();
7425 	}
7426       continue;  /* Successfully executed one pattern command; keep going.  */
7427 
7428 
7429     /* We goto here if a matching operation fails. */
7430     fail:
7431       if (!FAIL_STACK_EMPTY ())
7432 	{ /* A restart point is known.  Restore to that state.  */
7433           DEBUG_PRINT1 ("\nFAIL:\n");
7434           POP_FAILURE_POINT (d, p,
7435                              lowest_active_reg, highest_active_reg,
7436                              regstart, regend, reg_info);
7437 
7438           /* If this failure point is a dummy, try the next one.  */
7439           if (!p)
7440 	    goto fail;
7441 
7442           /* If we failed to the end of the pattern, don't examine *p.  */
7443 	  assert (p <= pend);
7444           if (p < pend)
7445             {
7446               boolean is_a_jump_n = false;
7447 
7448               /* If failed to a backwards jump that's part of a repetition
7449                  loop, need to pop this failure point and use the next one.  */
7450               switch ((re_opcode_t) *p)
7451                 {
7452                 case jump_n:
7453                   is_a_jump_n = true;
7454                 case maybe_pop_jump:
7455                 case pop_failure_jump:
7456                 case jump:
7457                   p1 = p + 1;
7458                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7459                   p1 += mcnt;
7460 
7461                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7462                       || (!is_a_jump_n
7463                           && (re_opcode_t) *p1 == on_failure_jump))
7464                     goto fail;
7465                   break;
7466                 default:
7467                   /* do nothing */ ;
7468                 }
7469             }
7470 
7471           if (d >= string1 && d <= end1)
7472 	    dend = end_match_1;
7473         }
7474       else
7475         break;   /* Matching at this starting point really fails.  */
7476     } /* for (;;) */
7477 
7478   if (best_regs_set)
7479     goto restore_best_regs;
7480 
7481   FREE_VARIABLES ();
7482 
7483   return -1;         			/* Failure to match.  */
7484 } /* re_match_2 */
7485 
7486 /* Subroutine definitions for re_match_2.  */
7487 
7488 
7489 /* We are passed P pointing to a register number after a start_memory.
7490 
7491    Return true if the pattern up to the corresponding stop_memory can
7492    match the empty string, and false otherwise.
7493 
7494    If we find the matching stop_memory, sets P to point to one past its number.
7495    Otherwise, sets P to an undefined byte less than or equal to END.
7496 
7497    We don't handle duplicates properly (yet).  */
7498 
7499 static boolean
7500 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7501                                    PREFIX(register_info_type) *reg_info)
7502 {
7503   int mcnt;
7504   /* Point to after the args to the start_memory.  */
7505   UCHAR_T *p1 = *p + 2;
7506 
7507   while (p1 < end)
7508     {
7509       /* Skip over opcodes that can match nothing, and return true or
7510 	 false, as appropriate, when we get to one that can't, or to the
7511          matching stop_memory.  */
7512 
7513       switch ((re_opcode_t) *p1)
7514         {
7515         /* Could be either a loop or a series of alternatives.  */
7516         case on_failure_jump:
7517           p1++;
7518           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7519 
7520           /* If the next operation is not a jump backwards in the
7521 	     pattern.  */
7522 
7523 	  if (mcnt >= 0)
7524 	    {
7525               /* Go through the on_failure_jumps of the alternatives,
7526                  seeing if any of the alternatives cannot match nothing.
7527                  The last alternative starts with only a jump,
7528                  whereas the rest start with on_failure_jump and end
7529                  with a jump, e.g., here is the pattern for `a|b|c':
7530 
7531                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7532                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7533                  /exactn/1/c
7534 
7535                  So, we have to first go through the first (n-1)
7536                  alternatives and then deal with the last one separately.  */
7537 
7538 
7539               /* Deal with the first (n-1) alternatives, which start
7540                  with an on_failure_jump (see above) that jumps to right
7541                  past a jump_past_alt.  */
7542 
7543               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7544 		     jump_past_alt)
7545                 {
7546                   /* `mcnt' holds how many bytes long the alternative
7547                      is, including the ending `jump_past_alt' and
7548                      its number.  */
7549 
7550                   if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7551 						(1 + OFFSET_ADDRESS_SIZE),
7552 						reg_info))
7553                     return false;
7554 
7555                   /* Move to right after this alternative, including the
7556 		     jump_past_alt.  */
7557                   p1 += mcnt;
7558 
7559                   /* Break if it's the beginning of an n-th alternative
7560                      that doesn't begin with an on_failure_jump.  */
7561                   if ((re_opcode_t) *p1 != on_failure_jump)
7562                     break;
7563 
7564 		  /* Still have to check that it's not an n-th
7565 		     alternative that starts with an on_failure_jump.  */
7566 		  p1++;
7567                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7568                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7569 		      jump_past_alt)
7570                     {
7571 		      /* Get to the beginning of the n-th alternative.  */
7572                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
7573                       break;
7574                     }
7575                 }
7576 
7577               /* Deal with the last alternative: go back and get number
7578                  of the `jump_past_alt' just before it.  `mcnt' contains
7579                  the length of the alternative.  */
7580               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7581 
7582               if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7583                 return false;
7584 
7585               p1 += mcnt;	/* Get past the n-th alternative.  */
7586             } /* if mcnt > 0 */
7587           break;
7588 
7589 
7590         case stop_memory:
7591 	  assert (p1[1] == **p);
7592           *p = p1 + 2;
7593           return true;
7594 
7595 
7596         default:
7597           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7598             return false;
7599         }
7600     } /* while p1 < end */
7601 
7602   return false;
7603 } /* group_match_null_string_p */
7604 
7605 
7606 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7607    It expects P to be the first byte of a single alternative and END one
7608    byte past the last. The alternative can contain groups.  */
7609 
7610 static boolean
7611 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7612                                  PREFIX(register_info_type) *reg_info)
7613 {
7614   int mcnt;
7615   UCHAR_T *p1 = p;
7616 
7617   while (p1 < end)
7618     {
7619       /* Skip over opcodes that can match nothing, and break when we get
7620          to one that can't.  */
7621 
7622       switch ((re_opcode_t) *p1)
7623         {
7624 	/* It's a loop.  */
7625         case on_failure_jump:
7626           p1++;
7627           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7628           p1 += mcnt;
7629           break;
7630 
7631 	default:
7632           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7633             return false;
7634         }
7635     }  /* while p1 < end */
7636 
7637   return true;
7638 } /* alt_match_null_string_p */
7639 
7640 
7641 /* Deals with the ops common to group_match_null_string_p and
7642    alt_match_null_string_p.
7643 
7644    Sets P to one after the op and its arguments, if any.  */
7645 
7646 static boolean
7647 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7648                                        PREFIX(register_info_type) *reg_info)
7649 {
7650   int mcnt;
7651   boolean ret;
7652   int reg_no;
7653   UCHAR_T *p1 = *p;
7654 
7655   switch ((re_opcode_t) *p1++)
7656     {
7657     case no_op:
7658     case begline:
7659     case endline:
7660     case begbuf:
7661     case endbuf:
7662     case wordbeg:
7663     case wordend:
7664     case wordbound:
7665     case notwordbound:
7666 #ifdef emacs
7667     case before_dot:
7668     case at_dot:
7669     case after_dot:
7670 #endif
7671       break;
7672 
7673     case start_memory:
7674       reg_no = *p1;
7675       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7676       ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7677 
7678       /* Have to set this here in case we're checking a group which
7679          contains a group and a back reference to it.  */
7680 
7681       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7682         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7683 
7684       if (!ret)
7685         return false;
7686       break;
7687 
7688     /* If this is an optimized succeed_n for zero times, make the jump.  */
7689     case jump:
7690       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7691       if (mcnt >= 0)
7692         p1 += mcnt;
7693       else
7694         return false;
7695       break;
7696 
7697     case succeed_n:
7698       /* Get to the number of times to succeed.  */
7699       p1 += OFFSET_ADDRESS_SIZE;
7700       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7701 
7702       if (mcnt == 0)
7703         {
7704           p1 -= 2 * OFFSET_ADDRESS_SIZE;
7705           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7706           p1 += mcnt;
7707         }
7708       else
7709         return false;
7710       break;
7711 
7712     case duplicate:
7713       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7714         return false;
7715       break;
7716 
7717     case set_number_at:
7718       p1 += 2 * OFFSET_ADDRESS_SIZE;
7719 
7720     default:
7721       /* All other opcodes mean we cannot match the empty string.  */
7722       return false;
7723   }
7724 
7725   *p = p1;
7726   return true;
7727 } /* common_op_match_null_string_p */
7728 
7729 
7730 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7731    bytes; nonzero otherwise.  */
7732 
7733 static int
7734 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7735                         RE_TRANSLATE_TYPE translate)
7736 {
7737   register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7738   register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7739   while (len)
7740     {
7741 #ifdef WCHAR
7742       if (((*p1<=0xff)?translate[*p1++]:*p1++)
7743 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7744 	return 1;
7745 #else /* BYTE */
7746       if (translate[*p1++] != translate[*p2++]) return 1;
7747 #endif /* WCHAR */
7748       len--;
7749     }
7750   return 0;
7751 }
7752 
7753 
7754 #else /* not INSIDE_RECURSION */
7755 
7756 /* Entry points for GNU code.  */
7757 
7758 /* re_compile_pattern is the GNU regular expression compiler: it
7759    compiles PATTERN (of length SIZE) and puts the result in BUFP.
7760    Returns 0 if the pattern was valid, otherwise an error string.
7761 
7762    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7763    are set in BUFP on entry.
7764 
7765    We call regex_compile to do the actual compilation.  */
7766 
7767 const char *
7768 re_compile_pattern (const char *pattern, size_t length,
7769                     struct re_pattern_buffer *bufp)
7770 {
7771   reg_errcode_t ret;
7772 
7773   /* GNU code is written to assume at least RE_NREGS registers will be set
7774      (and at least one extra will be -1).  */
7775   bufp->regs_allocated = REGS_UNALLOCATED;
7776 
7777   /* And GNU code determines whether or not to get register information
7778      by passing null for the REGS argument to re_match, etc., not by
7779      setting no_sub.  */
7780   bufp->no_sub = 0;
7781 
7782   /* Match anchors at newline.  */
7783   bufp->newline_anchor = 1;
7784 
7785 # ifdef MBS_SUPPORT
7786   if (MB_CUR_MAX != 1)
7787     ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7788   else
7789 # endif
7790     ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7791 
7792   if (!ret)
7793     return NULL;
7794   return gettext (re_error_msgid[(int) ret]);
7795 }
7796 #ifdef _LIBC
7797 weak_alias (__re_compile_pattern, re_compile_pattern)
7798 #endif
7799 
7800 /* Entry points compatible with 4.2 BSD regex library.  We don't define
7801    them unless specifically requested.  */
7802 
7803 #if defined _REGEX_RE_COMP || defined _LIBC
7804 
7805 /* BSD has one and only one pattern buffer.  */
7806 static struct re_pattern_buffer re_comp_buf;
7807 
7808 char *
7809 #ifdef _LIBC
7810 /* Make these definitions weak in libc, so POSIX programs can redefine
7811    these names if they don't use our functions, and still use
7812    regcomp/regexec below without link errors.  */
7813 weak_function
7814 #endif
7815 re_comp (const char *s)
7816 {
7817   reg_errcode_t ret;
7818 
7819   if (!s)
7820     {
7821       if (!re_comp_buf.buffer)
7822 	return (char *) gettext ("No previous regular expression");
7823       return 0;
7824     }
7825 
7826   if (!re_comp_buf.buffer)
7827     {
7828       re_comp_buf.buffer = (unsigned char *) malloc (200);
7829       if (re_comp_buf.buffer == NULL)
7830         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7831       re_comp_buf.allocated = 200;
7832 
7833       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7834       if (re_comp_buf.fastmap == NULL)
7835 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7836     }
7837 
7838   /* Since `re_exec' always passes NULL for the `regs' argument, we
7839      don't need to initialize the pattern buffer fields which affect it.  */
7840 
7841   /* Match anchors at newlines.  */
7842   re_comp_buf.newline_anchor = 1;
7843 
7844 # ifdef MBS_SUPPORT
7845   if (MB_CUR_MAX != 1)
7846     ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7847   else
7848 # endif
7849     ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7850 
7851   if (!ret)
7852     return NULL;
7853 
7854   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7855   return (char *) gettext (re_error_msgid[(int) ret]);
7856 }
7857 
7858 
7859 int
7860 #ifdef _LIBC
7861 weak_function
7862 #endif
7863 re_exec (const char *s)
7864 {
7865   const int len = strlen (s);
7866   return
7867     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7868 }
7869 
7870 #endif /* _REGEX_RE_COMP */
7871 
7872 /* POSIX.2 functions.  Don't define these for Emacs.  */
7873 
7874 #ifndef emacs
7875 
7876 /* regcomp takes a regular expression as a string and compiles it.
7877 
7878    PREG is a regex_t *.  We do not expect any fields to be initialized,
7879    since POSIX says we shouldn't.  Thus, we set
7880 
7881      `buffer' to the compiled pattern;
7882      `used' to the length of the compiled pattern;
7883      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7884        REG_EXTENDED bit in CFLAGS is set; otherwise, to
7885        RE_SYNTAX_POSIX_BASIC;
7886      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7887      `fastmap' to an allocated space for the fastmap;
7888      `fastmap_accurate' to zero;
7889      `re_nsub' to the number of subexpressions in PATTERN.
7890 
7891    PATTERN is the address of the pattern string.
7892 
7893    CFLAGS is a series of bits which affect compilation.
7894 
7895      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7896      use POSIX basic syntax.
7897 
7898      If REG_NEWLINE is set, then . and [^...] don't match newline.
7899      Also, regexec will try a match beginning after every newline.
7900 
7901      If REG_ICASE is set, then we considers upper- and lowercase
7902      versions of letters to be equivalent when matching.
7903 
7904      If REG_NOSUB is set, then when PREG is passed to regexec, that
7905      routine will report only success or failure, and nothing about the
7906      registers.
7907 
7908    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7909    the return codes and their meanings.)  */
7910 
7911 int
7912 regcomp (regex_t *preg, const char *pattern, int cflags)
7913 {
7914   reg_errcode_t ret;
7915   reg_syntax_t syntax
7916     = (cflags & REG_EXTENDED) ?
7917       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7918 
7919   /* regex_compile will allocate the space for the compiled pattern.  */
7920   preg->buffer = 0;
7921   preg->allocated = 0;
7922   preg->used = 0;
7923 
7924   /* Try to allocate space for the fastmap.  */
7925   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7926 
7927   if (cflags & REG_ICASE)
7928     {
7929       int i;
7930 
7931       preg->translate
7932 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7933 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7934       if (preg->translate == NULL)
7935         return (int) REG_ESPACE;
7936 
7937       /* Map uppercase characters to corresponding lowercase ones.  */
7938       for (i = 0; i < CHAR_SET_SIZE; i++)
7939         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7940     }
7941   else
7942     preg->translate = NULL;
7943 
7944   /* If REG_NEWLINE is set, newlines are treated differently.  */
7945   if (cflags & REG_NEWLINE)
7946     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7947       syntax &= ~RE_DOT_NEWLINE;
7948       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7949       /* It also changes the matching behavior.  */
7950       preg->newline_anchor = 1;
7951     }
7952   else
7953     preg->newline_anchor = 0;
7954 
7955   preg->no_sub = !!(cflags & REG_NOSUB);
7956 
7957   /* POSIX says a null character in the pattern terminates it, so we
7958      can use strlen here in compiling the pattern.  */
7959 # ifdef MBS_SUPPORT
7960   if (MB_CUR_MAX != 1)
7961     ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7962   else
7963 # endif
7964     ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7965 
7966   /* POSIX doesn't distinguish between an unmatched open-group and an
7967      unmatched close-group: both are REG_EPAREN.  */
7968   if (ret == REG_ERPAREN) ret = REG_EPAREN;
7969 
7970   if (ret == REG_NOERROR && preg->fastmap)
7971     {
7972       /* Compute the fastmap now, since regexec cannot modify the pattern
7973 	 buffer.  */
7974       if (re_compile_fastmap (preg) == -2)
7975 	{
7976 	  /* Some error occurred while computing the fastmap, just forget
7977 	     about it.  */
7978 	  free (preg->fastmap);
7979 	  preg->fastmap = NULL;
7980 	}
7981     }
7982 
7983   return (int) ret;
7984 }
7985 #ifdef _LIBC
7986 weak_alias (__regcomp, regcomp)
7987 #endif
7988 
7989 
7990 /* regexec searches for a given pattern, specified by PREG, in the
7991    string STRING.
7992 
7993    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7994    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7995    least NMATCH elements, and we set them to the offsets of the
7996    corresponding matched substrings.
7997 
7998    EFLAGS specifies `execution flags' which affect matching: if
7999    REG_NOTBOL is set, then ^ does not match at the beginning of the
8000    string; if REG_NOTEOL is set, then $ does not match at the end.
8001 
8002    We return 0 if we find a match and REG_NOMATCH if not.  */
8003 
8004 int
8005 regexec (const regex_t *preg, const char *string, size_t nmatch,
8006          regmatch_t pmatch[], int eflags)
8007 {
8008   int ret;
8009   struct re_registers regs;
8010   regex_t private_preg;
8011   int len = strlen (string);
8012   boolean want_reg_info = !preg->no_sub && nmatch > 0;
8013 
8014   private_preg = *preg;
8015 
8016   private_preg.not_bol = !!(eflags & REG_NOTBOL);
8017   private_preg.not_eol = !!(eflags & REG_NOTEOL);
8018 
8019   /* The user has told us exactly how many registers to return
8020      information about, via `nmatch'.  We have to pass that on to the
8021      matching routines.  */
8022   private_preg.regs_allocated = REGS_FIXED;
8023 
8024   if (want_reg_info)
8025     {
8026       regs.num_regs = nmatch;
8027       regs.start = TALLOC (nmatch * 2, regoff_t);
8028       if (regs.start == NULL)
8029         return (int) REG_NOMATCH;
8030       regs.end = regs.start + nmatch;
8031     }
8032 
8033   /* Perform the searching operation.  */
8034   ret = re_search (&private_preg, string, len,
8035                    /* start: */ 0, /* range: */ len,
8036                    want_reg_info ? &regs : (struct re_registers *) 0);
8037 
8038   /* Copy the register information to the POSIX structure.  */
8039   if (want_reg_info)
8040     {
8041       if (ret >= 0)
8042         {
8043           unsigned r;
8044 
8045           for (r = 0; r < nmatch; r++)
8046             {
8047               pmatch[r].rm_so = regs.start[r];
8048               pmatch[r].rm_eo = regs.end[r];
8049             }
8050         }
8051 
8052       /* If we needed the temporary register info, free the space now.  */
8053       free (regs.start);
8054     }
8055 
8056   /* We want zero return to mean success, unlike `re_search'.  */
8057   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8058 }
8059 #ifdef _LIBC
8060 weak_alias (__regexec, regexec)
8061 #endif
8062 
8063 
8064 /* Returns a message corresponding to an error code, ERRCODE, returned
8065    from either regcomp or regexec.   We don't use PREG here.  */
8066 
8067 size_t
8068 regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8069           char *errbuf, size_t errbuf_size)
8070 {
8071   const char *msg;
8072   size_t msg_size;
8073 
8074   if (errcode < 0
8075       || errcode >= (int) (sizeof (re_error_msgid)
8076 			   / sizeof (re_error_msgid[0])))
8077     /* Only error codes returned by the rest of the code should be passed
8078        to this routine.  If we are given anything else, or if other regex
8079        code generates an invalid error code, then the program has a bug.
8080        Dump core so we can fix it.  */
8081     abort ();
8082 
8083   msg = gettext (re_error_msgid[errcode]);
8084 
8085   msg_size = strlen (msg) + 1; /* Includes the null.  */
8086 
8087   if (errbuf_size != 0)
8088     {
8089       if (msg_size > errbuf_size)
8090         {
8091 #if defined HAVE_MEMPCPY || defined _LIBC
8092 	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8093 #else
8094           memcpy (errbuf, msg, errbuf_size - 1);
8095           errbuf[errbuf_size - 1] = 0;
8096 #endif
8097         }
8098       else
8099         memcpy (errbuf, msg, msg_size);
8100     }
8101 
8102   return msg_size;
8103 }
8104 #ifdef _LIBC
8105 weak_alias (__regerror, regerror)
8106 #endif
8107 
8108 
8109 /* Free dynamically allocated space used by PREG.  */
8110 
8111 void
8112 regfree (regex_t *preg)
8113 {
8114   if (preg->buffer != NULL)
8115     free (preg->buffer);
8116   preg->buffer = NULL;
8117 
8118   preg->allocated = 0;
8119   preg->used = 0;
8120 
8121   if (preg->fastmap != NULL)
8122     free (preg->fastmap);
8123   preg->fastmap = NULL;
8124   preg->fastmap_accurate = 0;
8125 
8126   if (preg->translate != NULL)
8127     free (preg->translate);
8128   preg->translate = NULL;
8129 }
8130 #ifdef _LIBC
8131 weak_alias (__regfree, regfree)
8132 #endif
8133 
8134 #endif /* not emacs  */
8135 
8136 #endif /* not INSIDE_RECURSION */
8137 
8138 
8139 #undef STORE_NUMBER
8140 #undef STORE_NUMBER_AND_INCR
8141 #undef EXTRACT_NUMBER
8142 #undef EXTRACT_NUMBER_AND_INCR
8143 
8144 #undef DEBUG_PRINT_COMPILED_PATTERN
8145 #undef DEBUG_PRINT_DOUBLE_STRING
8146 
8147 #undef INIT_FAIL_STACK
8148 #undef RESET_FAIL_STACK
8149 #undef DOUBLE_FAIL_STACK
8150 #undef PUSH_PATTERN_OP
8151 #undef PUSH_FAILURE_POINTER
8152 #undef PUSH_FAILURE_INT
8153 #undef PUSH_FAILURE_ELT
8154 #undef POP_FAILURE_POINTER
8155 #undef POP_FAILURE_INT
8156 #undef POP_FAILURE_ELT
8157 #undef DEBUG_PUSH
8158 #undef DEBUG_POP
8159 #undef PUSH_FAILURE_POINT
8160 #undef POP_FAILURE_POINT
8161 
8162 #undef REG_UNSET_VALUE
8163 #undef REG_UNSET
8164 
8165 #undef PATFETCH
8166 #undef PATFETCH_RAW
8167 #undef PATUNFETCH
8168 #undef TRANSLATE
8169 
8170 #undef INIT_BUF_SIZE
8171 #undef GET_BUFFER_SPACE
8172 #undef BUF_PUSH
8173 #undef BUF_PUSH_2
8174 #undef BUF_PUSH_3
8175 #undef STORE_JUMP
8176 #undef STORE_JUMP2
8177 #undef INSERT_JUMP
8178 #undef INSERT_JUMP2
8179 #undef EXTEND_BUFFER
8180 #undef GET_UNSIGNED_NUMBER
8181 #undef FREE_STACK_RETURN
8182 
8183 # undef POINTER_TO_OFFSET
8184 # undef MATCHING_IN_FRST_STRING
8185 # undef PREFETCH
8186 # undef AT_STRINGS_BEG
8187 # undef AT_STRINGS_END
8188 # undef WORDCHAR_P
8189 # undef FREE_VAR
8190 # undef FREE_VARIABLES
8191 # undef NO_HIGHEST_ACTIVE_REG
8192 # undef NO_LOWEST_ACTIVE_REG
8193 
8194 # undef CHAR_T
8195 # undef UCHAR_T
8196 # undef COMPILED_BUFFER_VAR
8197 # undef OFFSET_ADDRESS_SIZE
8198 # undef CHAR_CLASS_SIZE
8199 # undef PREFIX
8200 # undef ARG_PREFIX
8201 # undef PUT_CHAR
8202 # undef BYTE
8203 # undef WCHAR
8204 
8205 # define DEFINED_ONCE
8206