xref: /dragonfly/contrib/gdb-7/libiberty/regex.c (revision ef2b2b9d)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5 
6    Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7    2002, 2005, 2010, 2013 Free Software Foundation, Inc.
8    This file is part of the GNU C Library.
9 
10    The GNU C Library is free software; you can redistribute it and/or
11    modify it under the terms of the GNU Lesser General Public
12    License as published by the Free Software Foundation; either
13    version 2.1 of the License, or (at your option) any later version.
14 
15    The GNU C Library is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18    Lesser General Public License for more details.
19 
20    You should have received a copy of the GNU Lesser General Public
21    License along with the GNU C Library; if not, write to the Free
22    Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23    02110-1301 USA.  */
24 
25 /* This file has been modified for usage in libiberty.  It includes "xregex.h"
26    instead of <regex.h>.  The "xregex.h" header file renames all external
27    routines with an "x" prefix so they do not collide with the native regex
28    routines or with other components regex routines. */
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
31   #pragma alloca
32 #endif
33 
34 #undef	_GNU_SOURCE
35 #define _GNU_SOURCE
36 
37 #ifndef INSIDE_RECURSION
38 # ifdef HAVE_CONFIG_H
39 #  include <config.h>
40 # endif
41 #endif
42 
43 #include <ansidecl.h>
44 
45 #ifndef INSIDE_RECURSION
46 
47 # if defined STDC_HEADERS && !defined emacs
48 #  include <stddef.h>
49 #  define PTR_INT_TYPE ptrdiff_t
50 # else
51 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
52 #  include <sys/types.h>
53 #  define PTR_INT_TYPE long
54 # endif
55 
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57 
58 /* For platform which support the ISO C amendement 1 functionality we
59    support user defined character classes.  */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
62 #  include <wchar.h>
63 #  include <wctype.h>
64 # endif
65 
66 # ifdef _LIBC
67 /* We have to keep the namespace clean.  */
68 #  define regfree(preg) __regfree (preg)
69 #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 #  define regerror(errcode, preg, errbuf, errbuf_size) \
72 	__regerror(errcode, preg, errbuf, errbuf_size)
73 #  define re_set_registers(bu, re, nu, st, en) \
74 	__re_set_registers (bu, re, nu, st, en)
75 #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 #  define re_match(bufp, string, size, pos, regs) \
78 	__re_match (bufp, string, size, pos, regs)
79 #  define re_search(bufp, string, size, startpos, range, regs) \
80 	__re_search (bufp, string, size, startpos, range, regs)
81 #  define re_compile_pattern(pattern, length, bufp) \
82 	__re_compile_pattern (pattern, length, bufp)
83 #  define re_set_syntax(syntax) __re_set_syntax (syntax)
84 #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87 
88 #  define btowc __btowc
89 
90 /* We are also using some library internals.  */
91 #  include <locale/localeinfo.h>
92 #  include <locale/elem-hash.h>
93 #  include <langinfo.h>
94 #  include <locale/coll-lookup.h>
95 # endif
96 
97 /* This is for other GNU distributions with internationalized messages.  */
98 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
99 #  include <libintl.h>
100 #  ifdef _LIBC
101 #   undef gettext
102 #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103 #  endif
104 # else
105 #  define gettext(msgid) (msgid)
106 # endif
107 
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110    strings.  */
111 #  define gettext_noop(String) String
112 # endif
113 
114 /* The `emacs' switch turns on certain matching commands
115    that make sense only in Emacs. */
116 # ifdef emacs
117 
118 #  include "lisp.h"
119 #  include "buffer.h"
120 #  include "syntax.h"
121 
122 # else  /* not emacs */
123 
124 /* If we are not linking with Emacs proper,
125    we can't use the relocating allocator
126    even if config.h says that we can.  */
127 #  undef REL_ALLOC
128 
129 #  if defined STDC_HEADERS || defined _LIBC
130 #   include <stdlib.h>
131 #  else
132 char *malloc ();
133 char *realloc ();
134 #  endif
135 
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137    If nothing else has been done, use the method below.  */
138 #  ifdef INHIBIT_STRING_HEADER
139 #   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 #    if !defined bzero && !defined bcopy
141 #     undef INHIBIT_STRING_HEADER
142 #    endif
143 #   endif
144 #  endif
145 
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147    This is used in most programs--a few other programs avoid this
148    by defining INHIBIT_STRING_HEADER.  */
149 #  ifndef INHIBIT_STRING_HEADER
150 #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151 #    include <string.h>
152 #    ifndef bzero
153 #     ifndef _LIBC
154 #      define bzero(s, n)	(memset (s, '\0', n), (s))
155 #     else
156 #      define bzero(s, n)	__bzero (s, n)
157 #     endif
158 #    endif
159 #   else
160 #    include <strings.h>
161 #    ifndef memcmp
162 #     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
163 #    endif
164 #    ifndef memcpy
165 #     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
166 #    endif
167 #   endif
168 #  endif
169 
170 /* Define the syntax stuff for \<, \>, etc.  */
171 
172 /* This must be nonzero for the wordchar and notwordchar pattern
173    commands in re_match_2.  */
174 #  ifndef Sword
175 #   define Sword 1
176 #  endif
177 
178 #  ifdef SWITCH_ENUM_BUG
179 #   define SWITCH_ENUM_CAST(x) ((int)(x))
180 #  else
181 #   define SWITCH_ENUM_CAST(x) (x)
182 #  endif
183 
184 # endif /* not emacs */
185 
186 # if defined _LIBC || HAVE_LIMITS_H
187 #  include <limits.h>
188 # endif
189 
190 # ifndef MB_LEN_MAX
191 #  define MB_LEN_MAX 1
192 # endif
193 
194 /* Get the interface, including the syntax bits.  */
195 # include "xregex.h"  /* change for libiberty */
196 
197 /* isalpha etc. are used for the character classes.  */
198 # include <ctype.h>
199 
200 /* Jim Meyering writes:
201 
202    "... Some ctype macros are valid only for character codes that
203    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204    using /bin/cc or gcc but without giving an ansi option).  So, all
205    ctype uses should be through macros like ISPRINT...  If
206    STDC_HEADERS is defined, then autoconf has verified that the ctype
207    macros don't need to be guarded with references to isascii. ...
208    Defining isascii to 1 should let any compiler worth its salt
209    eliminate the && through constant folding."
210    Solaris defines some of these symbols so we must undefine them first.  */
211 
212 # undef ISASCII
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 #  define ISASCII(c) 1
215 # else
216 #  define ISASCII(c) isascii(c)
217 # endif
218 
219 # ifdef isblank
220 #  define ISBLANK(c) (ISASCII (c) && isblank (c))
221 # else
222 #  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223 # endif
224 # ifdef isgraph
225 #  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226 # else
227 #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228 # endif
229 
230 # undef ISPRINT
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241 
242 # ifdef _tolower
243 #  define TOLOWER(c) _tolower(c)
244 # else
245 #  define TOLOWER(c) tolower(c)
246 # endif
247 
248 # ifndef NULL
249 #  define NULL (void *)0
250 # endif
251 
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253    since ours (we hope) works properly with all combinations of
254    machines, compilers, `char' and `unsigned char' argument types.
255    (Per Bothner suggested the basic approach.)  */
256 # undef SIGN_EXTEND_CHAR
257 # if __STDC__
258 #  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else  /* not __STDC__ */
260 /* As in Harbison and Steele.  */
261 #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262 # endif
263 
264 # ifndef emacs
265 /* How many characters in the character set.  */
266 #  define CHAR_SET_SIZE 256
267 
268 #  ifdef SYNTAX_TABLE
269 
270 extern char *re_syntax_table;
271 
272 #  else /* not SYNTAX_TABLE */
273 
274 static char re_syntax_table[CHAR_SET_SIZE];
275 
276 static void init_syntax_once (void);
277 
278 static void
279 init_syntax_once (void)
280 {
281    register int c;
282    static int done = 0;
283 
284    if (done)
285      return;
286    bzero (re_syntax_table, sizeof re_syntax_table);
287 
288    for (c = 0; c < CHAR_SET_SIZE; ++c)
289      if (ISALNUM (c))
290 	re_syntax_table[c] = Sword;
291 
292    re_syntax_table['_'] = Sword;
293 
294    done = 1;
295 }
296 
297 #  endif /* not SYNTAX_TABLE */
298 
299 #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300 
301 # endif /* emacs */
302 
303 /* Integer type for pointers.  */
304 # if !defined _LIBC && !defined HAVE_UINTPTR_T
305 typedef unsigned long int uintptr_t;
306 # endif
307 
308 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
309    use `alloca' instead of `malloc'.  This is because using malloc in
310    re_search* or re_match* could cause memory leaks when C-g is used in
311    Emacs; also, malloc is slower and causes storage fragmentation.  On
312    the other hand, malloc is more portable, and easier to debug.
313 
314    Because we sometimes use alloca, some routines have to be macros,
315    not functions -- `alloca'-allocated space disappears at the end of the
316    function it is called in.  */
317 
318 # ifdef REGEX_MALLOC
319 
320 #  define REGEX_ALLOCATE malloc
321 #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 #  define REGEX_FREE free
323 
324 # else /* not REGEX_MALLOC  */
325 
326 /* Emacs already defines alloca, sometimes.  */
327 #  ifndef alloca
328 
329 /* Make alloca work the best possible way.  */
330 #   ifdef __GNUC__
331 #    define alloca __builtin_alloca
332 #   else /* not __GNUC__ */
333 #    if HAVE_ALLOCA_H
334 #     include <alloca.h>
335 #    endif /* HAVE_ALLOCA_H */
336 #   endif /* not __GNUC__ */
337 
338 #  endif /* not alloca */
339 
340 #  define REGEX_ALLOCATE alloca
341 
342 /* Assumes a `char *destination' variable.  */
343 #  define REGEX_REALLOCATE(source, osize, nsize)			\
344   (destination = (char *) alloca (nsize),				\
345    memcpy (destination, source, osize))
346 
347 /* No need to do anything to free, after alloca.  */
348 #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
349 
350 # endif /* not REGEX_MALLOC */
351 
352 /* Define how to allocate the failure stack.  */
353 
354 # if defined REL_ALLOC && defined REGEX_MALLOC
355 
356 #  define REGEX_ALLOCATE_STACK(size)				\
357   r_alloc (&failure_stack_ptr, (size))
358 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
359   r_re_alloc (&failure_stack_ptr, (nsize))
360 #  define REGEX_FREE_STACK(ptr)					\
361   r_alloc_free (&failure_stack_ptr)
362 
363 # else /* not using relocating allocator */
364 
365 #  ifdef REGEX_MALLOC
366 
367 #   define REGEX_ALLOCATE_STACK malloc
368 #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 #   define REGEX_FREE_STACK free
370 
371 #  else /* not REGEX_MALLOC */
372 
373 #   define REGEX_ALLOCATE_STACK alloca
374 
375 #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
376    REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything.  */
378 #   define REGEX_FREE_STACK(arg)
379 
380 #  endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
382 
383 
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385    `string1' or just past its end.  This works if PTR is NULL, which is
386    a good thing.  */
387 # define FIRST_STRING_P(ptr) 					\
388   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389 
390 /* (Re)Allocate N items of type T using malloc, or fail.  */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396 
397 # define BYTEWIDTH 8 /* In bits.  */
398 
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400 
401 # undef MAX
402 # undef MIN
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
405 
406 typedef char boolean;
407 # define false 0
408 # define true 1
409 
410 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
411                                          reg_syntax_t syntax,
412                                          struct re_pattern_buffer *bufp);
413 
414 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
415                                      const char *string1, int size1,
416                                      const char *string2, int size2,
417                                      int pos,
418                                      struct re_registers *regs,
419                                      int stop);
420 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
421                              const char *string1, int size1,
422                              const char *string2, int size2,
423                              int startpos, int range,
424                              struct re_registers *regs, int stop);
425 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
426 
427 #ifdef MBS_SUPPORT
428 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
429                                         reg_syntax_t syntax,
430                                         struct re_pattern_buffer *bufp);
431 
432 
433 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
434                                     const char *cstring1, int csize1,
435                                     const char *cstring2, int csize2,
436                                     int pos,
437                                     struct re_registers *regs,
438                                     int stop,
439                                     wchar_t *string1, int size1,
440                                     wchar_t *string2, int size2,
441                                     int *mbs_offset1, int *mbs_offset2);
442 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
443                             const char *string1, int size1,
444                             const char *string2, int size2,
445                             int startpos, int range,
446                             struct re_registers *regs, int stop);
447 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
448 #endif
449 
450 /* These are the command codes that appear in compiled regular
451    expressions.  Some opcodes are followed by argument bytes.  A
452    command code can specify any interpretation whatsoever for its
453    arguments.  Zero bytes may appear in the compiled regular expression.  */
454 
455 typedef enum
456 {
457   no_op = 0,
458 
459   /* Succeed right away--no more backtracking.  */
460   succeed,
461 
462         /* Followed by one byte giving n, then by n literal bytes.  */
463   exactn,
464 
465 # ifdef MBS_SUPPORT
466 	/* Same as exactn, but contains binary data.  */
467   exactn_bin,
468 # endif
469 
470         /* Matches any (more or less) character.  */
471   anychar,
472 
473         /* Matches any one char belonging to specified set.  First
474            following byte is number of bitmap bytes.  Then come bytes
475            for a bitmap saying which chars are in.  Bits in each byte
476            are ordered low-bit-first.  A character is in the set if its
477            bit is 1.  A character too large to have a bit in the map is
478            automatically not in the set.  */
479         /* ifdef MBS_SUPPORT, following element is length of character
480 	   classes, length of collating symbols, length of equivalence
481 	   classes, length of character ranges, and length of characters.
482 	   Next, character class element, collating symbols elements,
483 	   equivalence class elements, range elements, and character
484 	   elements follow.
485 	   See regex_compile function.  */
486   charset,
487 
488         /* Same parameters as charset, but match any character that is
489            not one of those specified.  */
490   charset_not,
491 
492         /* Start remembering the text that is matched, for storing in a
493            register.  Followed by one byte with the register number, in
494            the range 0 to one less than the pattern buffer's re_nsub
495            field.  Then followed by one byte with the number of groups
496            inner to this one.  (This last has to be part of the
497            start_memory only because we need it in the on_failure_jump
498            of re_match_2.)  */
499   start_memory,
500 
501         /* Stop remembering the text that is matched and store it in a
502            memory register.  Followed by one byte with the register
503            number, in the range 0 to one less than `re_nsub' in the
504            pattern buffer, and one byte with the number of inner groups,
505            just like `start_memory'.  (We need the number of inner
506            groups here because we don't have any easy way of finding the
507            corresponding start_memory when we're at a stop_memory.)  */
508   stop_memory,
509 
510         /* Match a duplicate of something remembered. Followed by one
511            byte containing the register number.  */
512   duplicate,
513 
514         /* Fail unless at beginning of line.  */
515   begline,
516 
517         /* Fail unless at end of line.  */
518   endline,
519 
520         /* Succeeds if at beginning of buffer (if emacs) or at beginning
521            of string to be matched (if not).  */
522   begbuf,
523 
524         /* Analogously, for end of buffer/string.  */
525   endbuf,
526 
527         /* Followed by two byte relative address to which to jump.  */
528   jump,
529 
530 	/* Same as jump, but marks the end of an alternative.  */
531   jump_past_alt,
532 
533         /* Followed by two-byte relative address of place to resume at
534            in case of failure.  */
535         /* ifdef MBS_SUPPORT, the size of address is 1.  */
536   on_failure_jump,
537 
538         /* Like on_failure_jump, but pushes a placeholder instead of the
539            current string position when executed.  */
540   on_failure_keep_string_jump,
541 
542         /* Throw away latest failure point and then jump to following
543            two-byte relative address.  */
544         /* ifdef MBS_SUPPORT, the size of address is 1.  */
545   pop_failure_jump,
546 
547         /* Change to pop_failure_jump if know won't have to backtrack to
548            match; otherwise change to jump.  This is used to jump
549            back to the beginning of a repeat.  If what follows this jump
550            clearly won't match what the repeat does, such that we can be
551            sure that there is no use backtracking out of repetitions
552            already matched, then we change it to a pop_failure_jump.
553            Followed by two-byte address.  */
554         /* ifdef MBS_SUPPORT, the size of address is 1.  */
555   maybe_pop_jump,
556 
557         /* Jump to following two-byte address, and push a dummy failure
558            point. This failure point will be thrown away if an attempt
559            is made to use it for a failure.  A `+' construct makes this
560            before the first repeat.  Also used as an intermediary kind
561            of jump when compiling an alternative.  */
562         /* ifdef MBS_SUPPORT, the size of address is 1.  */
563   dummy_failure_jump,
564 
565 	/* Push a dummy failure point and continue.  Used at the end of
566 	   alternatives.  */
567   push_dummy_failure,
568 
569         /* Followed by two-byte relative address and two-byte number n.
570            After matching N times, jump to the address upon failure.  */
571         /* ifdef MBS_SUPPORT, the size of address is 1.  */
572   succeed_n,
573 
574         /* Followed by two-byte relative address, and two-byte number n.
575            Jump to the address N times, then fail.  */
576         /* ifdef MBS_SUPPORT, the size of address is 1.  */
577   jump_n,
578 
579         /* Set the following two-byte relative address to the
580            subsequent two-byte number.  The address *includes* the two
581            bytes of number.  */
582         /* ifdef MBS_SUPPORT, the size of address is 1.  */
583   set_number_at,
584 
585   wordchar,	/* Matches any word-constituent character.  */
586   notwordchar,	/* Matches any char that is not a word-constituent.  */
587 
588   wordbeg,	/* Succeeds if at word beginning.  */
589   wordend,	/* Succeeds if at word end.  */
590 
591   wordbound,	/* Succeeds if at a word boundary.  */
592   notwordbound	/* Succeeds if not at a word boundary.  */
593 
594 # ifdef emacs
595   ,before_dot,	/* Succeeds if before point.  */
596   at_dot,	/* Succeeds if at point.  */
597   after_dot,	/* Succeeds if after point.  */
598 
599 	/* Matches any character whose syntax is specified.  Followed by
600            a byte which contains a syntax code, e.g., Sword.  */
601   syntaxspec,
602 
603 	/* Matches any character whose syntax is not that specified.  */
604   notsyntaxspec
605 # endif /* emacs */
606 } re_opcode_t;
607 #endif /* not INSIDE_RECURSION */
608 
609 
610 #ifdef BYTE
611 # define CHAR_T char
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # define PREFIX(name) byte_##name
616 # define ARG_PREFIX(name) name
617 # define PUT_CHAR(c) putchar (c)
618 #else
619 # ifdef WCHAR
620 #  define CHAR_T wchar_t
621 #  define UCHAR_T wchar_t
622 #  define COMPILED_BUFFER_VAR wc_buffer
623 #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624 #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625 #  define PREFIX(name) wcs_##name
626 #  define ARG_PREFIX(name) c##name
627 /* Should we use wide stream??  */
628 #  define PUT_CHAR(c) printf ("%C", c);
629 #  define TRUE 1
630 #  define FALSE 0
631 # else
632 #  ifdef MBS_SUPPORT
633 #   define WCHAR
634 #   define INSIDE_RECURSION
635 #   include "regex.c"
636 #   undef INSIDE_RECURSION
637 #  endif
638 #  define BYTE
639 #  define INSIDE_RECURSION
640 #  include "regex.c"
641 #  undef INSIDE_RECURSION
642 # endif
643 #endif
644 
645 #ifdef INSIDE_RECURSION
646 /* Common operations on the compiled pattern.  */
647 
648 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
649 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
650 
651 # ifdef WCHAR
652 #  define STORE_NUMBER(destination, number)				\
653   do {									\
654     *(destination) = (UCHAR_T)(number);				\
655   } while (0)
656 # else /* BYTE */
657 #  define STORE_NUMBER(destination, number)				\
658   do {									\
659     (destination)[0] = (number) & 0377;					\
660     (destination)[1] = (number) >> 8;					\
661   } while (0)
662 # endif /* WCHAR */
663 
664 /* Same as STORE_NUMBER, except increment DESTINATION to
665    the byte after where the number is stored.  Therefore, DESTINATION
666    must be an lvalue.  */
667 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
668 
669 # define STORE_NUMBER_AND_INCR(destination, number)			\
670   do {									\
671     STORE_NUMBER (destination, number);					\
672     (destination) += OFFSET_ADDRESS_SIZE;				\
673   } while (0)
674 
675 /* Put into DESTINATION a number stored in two contiguous bytes starting
676    at SOURCE.  */
677 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
678 
679 # ifdef WCHAR
680 #  define EXTRACT_NUMBER(destination, source)				\
681   do {									\
682     (destination) = *(source);						\
683   } while (0)
684 # else /* BYTE */
685 #  define EXTRACT_NUMBER(destination, source)				\
686   do {									\
687     (destination) = *(source) & 0377;					\
688     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
689   } while (0)
690 # endif
691 
692 # ifdef DEBUG
693 static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
694 static void
695 PREFIX(extract_number) (int *dest, UCHAR_T *source)
696 {
697 #  ifdef WCHAR
698   *dest = *source;
699 #  else /* BYTE */
700   int temp = SIGN_EXTEND_CHAR (*(source + 1));
701   *dest = *source & 0377;
702   *dest += temp << 8;
703 #  endif
704 }
705 
706 #  ifndef EXTRACT_MACROS /* To debug the macros.  */
707 #   undef EXTRACT_NUMBER
708 #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
709 #  endif /* not EXTRACT_MACROS */
710 
711 # endif /* DEBUG */
712 
713 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
714    SOURCE must be an lvalue.  */
715 
716 # define EXTRACT_NUMBER_AND_INCR(destination, source)			\
717   do {									\
718     EXTRACT_NUMBER (destination, source);				\
719     (source) += OFFSET_ADDRESS_SIZE; 					\
720   } while (0)
721 
722 # ifdef DEBUG
723 static void PREFIX(extract_number_and_incr) (int *destination,
724                                              UCHAR_T **source);
725 static void
726 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
727 {
728   PREFIX(extract_number) (destination, *source);
729   *source += OFFSET_ADDRESS_SIZE;
730 }
731 
732 #  ifndef EXTRACT_MACROS
733 #   undef EXTRACT_NUMBER_AND_INCR
734 #   define EXTRACT_NUMBER_AND_INCR(dest, src) \
735   PREFIX(extract_number_and_incr) (&dest, &src)
736 #  endif /* not EXTRACT_MACROS */
737 
738 # endif /* DEBUG */
739 
740 
741 
742 /* If DEBUG is defined, Regex prints many voluminous messages about what
743    it is doing (if the variable `debug' is nonzero).  If linked with the
744    main program in `iregex.c', you can enter patterns and strings
745    interactively.  And if linked with the main program in `main.c' and
746    the other test files, you can run the already-written tests.  */
747 
748 # ifdef DEBUG
749 
750 #  ifndef DEFINED_ONCE
751 
752 /* We use standard I/O for debugging.  */
753 #   include <stdio.h>
754 
755 /* It is useful to test things that ``must'' be true when debugging.  */
756 #   include <assert.h>
757 
758 static int debug;
759 
760 #   define DEBUG_STATEMENT(e) e
761 #   define DEBUG_PRINT1(x) if (debug) printf (x)
762 #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
763 #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
764 #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
765 #  endif /* not DEFINED_ONCE */
766 
767 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
768   if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
769 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
770   if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
771 
772 
773 /* Print the fastmap in human-readable form.  */
774 
775 #  ifndef DEFINED_ONCE
776 void
777 print_fastmap (char *fastmap)
778 {
779   unsigned was_a_range = 0;
780   unsigned i = 0;
781 
782   while (i < (1 << BYTEWIDTH))
783     {
784       if (fastmap[i++])
785 	{
786 	  was_a_range = 0;
787           putchar (i - 1);
788           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
789             {
790               was_a_range = 1;
791               i++;
792             }
793 	  if (was_a_range)
794             {
795               printf ("-");
796               putchar (i - 1);
797             }
798         }
799     }
800   putchar ('\n');
801 }
802 #  endif /* not DEFINED_ONCE */
803 
804 
805 /* Print a compiled pattern string in human-readable form, starting at
806    the START pointer into it and ending just before the pointer END.  */
807 
808 void
809 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
810 {
811   int mcnt, mcnt2;
812   UCHAR_T *p1;
813   UCHAR_T *p = start;
814   UCHAR_T *pend = end;
815 
816   if (start == NULL)
817     {
818       printf ("(null)\n");
819       return;
820     }
821 
822   /* Loop over pattern commands.  */
823   while (p < pend)
824     {
825 #  ifdef _LIBC
826       printf ("%td:\t", p - start);
827 #  else
828       printf ("%ld:\t", (long int) (p - start));
829 #  endif
830 
831       switch ((re_opcode_t) *p++)
832 	{
833         case no_op:
834           printf ("/no_op");
835           break;
836 
837 	case exactn:
838 	  mcnt = *p++;
839           printf ("/exactn/%d", mcnt);
840           do
841 	    {
842               putchar ('/');
843 	      PUT_CHAR (*p++);
844             }
845           while (--mcnt);
846           break;
847 
848 #  ifdef MBS_SUPPORT
849 	case exactn_bin:
850 	  mcnt = *p++;
851 	  printf ("/exactn_bin/%d", mcnt);
852           do
853 	    {
854 	      printf("/%lx", (long int) *p++);
855             }
856           while (--mcnt);
857           break;
858 #  endif /* MBS_SUPPORT */
859 
860 	case start_memory:
861           mcnt = *p++;
862           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
863           break;
864 
865 	case stop_memory:
866           mcnt = *p++;
867 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
868           break;
869 
870 	case duplicate:
871 	  printf ("/duplicate/%ld", (long int) *p++);
872 	  break;
873 
874 	case anychar:
875 	  printf ("/anychar");
876 	  break;
877 
878 	case charset:
879         case charset_not:
880           {
881 #  ifdef WCHAR
882 	    int i, length;
883 	    wchar_t *workp = p;
884 	    printf ("/charset [%s",
885 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
886 	    p += 5;
887 	    length = *workp++; /* the length of char_classes */
888 	    for (i=0 ; i<length ; i++)
889 	      printf("[:%lx:]", (long int) *p++);
890 	    length = *workp++; /* the length of collating_symbol */
891 	    for (i=0 ; i<length ;)
892 	      {
893 		printf("[.");
894 		while(*p != 0)
895 		  PUT_CHAR((i++,*p++));
896 		i++,p++;
897 		printf(".]");
898 	      }
899 	    length = *workp++; /* the length of equivalence_class */
900 	    for (i=0 ; i<length ;)
901 	      {
902 		printf("[=");
903 		while(*p != 0)
904 		  PUT_CHAR((i++,*p++));
905 		i++,p++;
906 		printf("=]");
907 	      }
908 	    length = *workp++; /* the length of char_range */
909 	    for (i=0 ; i<length ; i++)
910 	      {
911 		wchar_t range_start = *p++;
912 		wchar_t range_end = *p++;
913 		printf("%C-%C", range_start, range_end);
914 	      }
915 	    length = *workp++; /* the length of char */
916 	    for (i=0 ; i<length ; i++)
917 	      printf("%C", *p++);
918 	    putchar (']');
919 #  else
920             register int c, last = -100;
921 	    register int in_range = 0;
922 
923 	    printf ("/charset [%s",
924 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
925 
926             assert (p + *p < pend);
927 
928             for (c = 0; c < 256; c++)
929 	      if (c / 8 < *p
930 		  && (p[1 + (c/8)] & (1 << (c % 8))))
931 		{
932 		  /* Are we starting a range?  */
933 		  if (last + 1 == c && ! in_range)
934 		    {
935 		      putchar ('-');
936 		      in_range = 1;
937 		    }
938 		  /* Have we broken a range?  */
939 		  else if (last + 1 != c && in_range)
940               {
941 		      putchar (last);
942 		      in_range = 0;
943 		    }
944 
945 		  if (! in_range)
946 		    putchar (c);
947 
948 		  last = c;
949               }
950 
951 	    if (in_range)
952 	      putchar (last);
953 
954 	    putchar (']');
955 
956 	    p += 1 + *p;
957 #  endif /* WCHAR */
958 	  }
959 	  break;
960 
961 	case begline:
962 	  printf ("/begline");
963           break;
964 
965 	case endline:
966           printf ("/endline");
967           break;
968 
969 	case on_failure_jump:
970           PREFIX(extract_number_and_incr) (&mcnt, &p);
971 #  ifdef _LIBC
972   	  printf ("/on_failure_jump to %td", p + mcnt - start);
973 #  else
974   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
975 #  endif
976           break;
977 
978 	case on_failure_keep_string_jump:
979           PREFIX(extract_number_and_incr) (&mcnt, &p);
980 #  ifdef _LIBC
981   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
982 #  else
983   	  printf ("/on_failure_keep_string_jump to %ld",
984 		  (long int) (p + mcnt - start));
985 #  endif
986           break;
987 
988 	case dummy_failure_jump:
989           PREFIX(extract_number_and_incr) (&mcnt, &p);
990 #  ifdef _LIBC
991   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
992 #  else
993   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
994 #  endif
995           break;
996 
997 	case push_dummy_failure:
998           printf ("/push_dummy_failure");
999           break;
1000 
1001         case maybe_pop_jump:
1002           PREFIX(extract_number_and_incr) (&mcnt, &p);
1003 #  ifdef _LIBC
1004   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1005 #  else
1006   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1007 #  endif
1008 	  break;
1009 
1010         case pop_failure_jump:
1011 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1012 #  ifdef _LIBC
1013   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1014 #  else
1015   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1016 #  endif
1017 	  break;
1018 
1019         case jump_past_alt:
1020 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1021 #  ifdef _LIBC
1022   	  printf ("/jump_past_alt to %td", p + mcnt - start);
1023 #  else
1024   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1025 #  endif
1026 	  break;
1027 
1028         case jump:
1029 	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1030 #  ifdef _LIBC
1031   	  printf ("/jump to %td", p + mcnt - start);
1032 #  else
1033   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1034 #  endif
1035 	  break;
1036 
1037         case succeed_n:
1038           PREFIX(extract_number_and_incr) (&mcnt, &p);
1039 	  p1 = p + mcnt;
1040           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1041 #  ifdef _LIBC
1042 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1043 #  else
1044 	  printf ("/succeed_n to %ld, %d times",
1045 		  (long int) (p1 - start), mcnt2);
1046 #  endif
1047           break;
1048 
1049         case jump_n:
1050           PREFIX(extract_number_and_incr) (&mcnt, &p);
1051 	  p1 = p + mcnt;
1052           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1053 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1054           break;
1055 
1056         case set_number_at:
1057           PREFIX(extract_number_and_incr) (&mcnt, &p);
1058 	  p1 = p + mcnt;
1059           PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060 #  ifdef _LIBC
1061 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1062 #  else
1063 	  printf ("/set_number_at location %ld to %d",
1064 		  (long int) (p1 - start), mcnt2);
1065 #  endif
1066           break;
1067 
1068         case wordbound:
1069 	  printf ("/wordbound");
1070 	  break;
1071 
1072 	case notwordbound:
1073 	  printf ("/notwordbound");
1074           break;
1075 
1076 	case wordbeg:
1077 	  printf ("/wordbeg");
1078 	  break;
1079 
1080 	case wordend:
1081 	  printf ("/wordend");
1082 	  break;
1083 
1084 #  ifdef emacs
1085 	case before_dot:
1086 	  printf ("/before_dot");
1087           break;
1088 
1089 	case at_dot:
1090 	  printf ("/at_dot");
1091           break;
1092 
1093 	case after_dot:
1094 	  printf ("/after_dot");
1095           break;
1096 
1097 	case syntaxspec:
1098           printf ("/syntaxspec");
1099 	  mcnt = *p++;
1100 	  printf ("/%d", mcnt);
1101           break;
1102 
1103 	case notsyntaxspec:
1104           printf ("/notsyntaxspec");
1105 	  mcnt = *p++;
1106 	  printf ("/%d", mcnt);
1107 	  break;
1108 #  endif /* emacs */
1109 
1110 	case wordchar:
1111 	  printf ("/wordchar");
1112           break;
1113 
1114 	case notwordchar:
1115 	  printf ("/notwordchar");
1116           break;
1117 
1118 	case begbuf:
1119 	  printf ("/begbuf");
1120           break;
1121 
1122 	case endbuf:
1123 	  printf ("/endbuf");
1124           break;
1125 
1126         default:
1127           printf ("?%ld", (long int) *(p-1));
1128 	}
1129 
1130       putchar ('\n');
1131     }
1132 
1133 #  ifdef _LIBC
1134   printf ("%td:\tend of pattern.\n", p - start);
1135 #  else
1136   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1137 #  endif
1138 }
1139 
1140 
1141 void
1142 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1143 {
1144   UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1145 
1146   PREFIX(print_partial_compiled_pattern) (buffer, buffer
1147 				  + bufp->used / sizeof(UCHAR_T));
1148   printf ("%ld bytes used/%ld bytes allocated.\n",
1149 	  bufp->used, bufp->allocated);
1150 
1151   if (bufp->fastmap_accurate && bufp->fastmap)
1152     {
1153       printf ("fastmap: ");
1154       print_fastmap (bufp->fastmap);
1155     }
1156 
1157 #  ifdef _LIBC
1158   printf ("re_nsub: %Zd\t", bufp->re_nsub);
1159 #  else
1160   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1161 #  endif
1162   printf ("regs_alloc: %d\t", bufp->regs_allocated);
1163   printf ("can_be_null: %d\t", bufp->can_be_null);
1164   printf ("newline_anchor: %d\n", bufp->newline_anchor);
1165   printf ("no_sub: %d\t", bufp->no_sub);
1166   printf ("not_bol: %d\t", bufp->not_bol);
1167   printf ("not_eol: %d\t", bufp->not_eol);
1168   printf ("syntax: %lx\n", bufp->syntax);
1169   /* Perhaps we should print the translate table?  */
1170 }
1171 
1172 
1173 void
1174 PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1175                              int size1, const CHAR_T *string2, int size2)
1176 {
1177   int this_char;
1178 
1179   if (where == NULL)
1180     printf ("(null)");
1181   else
1182     {
1183       int cnt;
1184 
1185       if (FIRST_STRING_P (where))
1186         {
1187           for (this_char = where - string1; this_char < size1; this_char++)
1188 	    PUT_CHAR (string1[this_char]);
1189 
1190           where = string2;
1191         }
1192 
1193       cnt = 0;
1194       for (this_char = where - string2; this_char < size2; this_char++)
1195 	{
1196 	  PUT_CHAR (string2[this_char]);
1197 	  if (++cnt > 100)
1198 	    {
1199 	      fputs ("...", stdout);
1200 	      break;
1201 	    }
1202 	}
1203     }
1204 }
1205 
1206 #  ifndef DEFINED_ONCE
1207 void
1208 printchar (int c)
1209 {
1210   putc (c, stderr);
1211 }
1212 #  endif
1213 
1214 # else /* not DEBUG */
1215 
1216 #  ifndef DEFINED_ONCE
1217 #   undef assert
1218 #   define assert(e)
1219 
1220 #   define DEBUG_STATEMENT(e)
1221 #   define DEBUG_PRINT1(x)
1222 #   define DEBUG_PRINT2(x1, x2)
1223 #   define DEBUG_PRINT3(x1, x2, x3)
1224 #   define DEBUG_PRINT4(x1, x2, x3, x4)
1225 #  endif /* not DEFINED_ONCE */
1226 #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1227 #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1228 
1229 # endif /* not DEBUG */
1230 
1231 
1232 
1233 # ifdef WCHAR
1234 /* This  convert a multibyte string to a wide character string.
1235    And write their correspondances to offset_buffer(see below)
1236    and write whether each wchar_t is binary data to is_binary.
1237    This assume invalid multibyte sequences as binary data.
1238    We assume offset_buffer and is_binary is already allocated
1239    enough space.  */
1240 
1241 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1242 				  size_t len, int *offset_buffer,
1243 				  char *is_binary);
1244 static size_t
1245 convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1246                     int *offset_buffer, char *is_binary)
1247      /* It hold correspondances between src(char string) and
1248 	dest(wchar_t string) for optimization.
1249 	e.g. src  = "xxxyzz"
1250              dest = {'X', 'Y', 'Z'}
1251 	      (each "xxx", "y" and "zz" represent one multibyte character
1252 	       corresponding to 'X', 'Y' and 'Z'.)
1253 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1254 	  	        = {0, 3, 4, 6}
1255      */
1256 {
1257   wchar_t *pdest = dest;
1258   const unsigned char *psrc = src;
1259   size_t wc_count = 0;
1260 
1261   mbstate_t mbs;
1262   int i, consumed;
1263   size_t mb_remain = len;
1264   size_t mb_count = 0;
1265 
1266   /* Initialize the conversion state.  */
1267   memset (&mbs, 0, sizeof (mbstate_t));
1268 
1269   offset_buffer[0] = 0;
1270   for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1271 	 psrc += consumed)
1272     {
1273 #ifdef _LIBC
1274       consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1275 #else
1276       consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1277 #endif
1278 
1279       if (consumed <= 0)
1280 	/* failed to convert. maybe src contains binary data.
1281 	   So we consume 1 byte manualy.  */
1282 	{
1283 	  *pdest = *psrc;
1284 	  consumed = 1;
1285 	  is_binary[wc_count] = TRUE;
1286 	}
1287       else
1288 	is_binary[wc_count] = FALSE;
1289       /* In sjis encoding, we use yen sign as escape character in
1290 	 place of reverse solidus. So we convert 0x5c(yen sign in
1291 	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1292 	 solidus in UCS2).  */
1293       if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1294 	*pdest = (wchar_t) *psrc;
1295 
1296       offset_buffer[wc_count + 1] = mb_count += consumed;
1297     }
1298 
1299   /* Fill remain of the buffer with sentinel.  */
1300   for (i = wc_count + 1 ; i <= len ; i++)
1301     offset_buffer[i] = mb_count + 1;
1302 
1303   return wc_count;
1304 }
1305 
1306 # endif /* WCHAR */
1307 
1308 #else /* not INSIDE_RECURSION */
1309 
1310 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1311    also be assigned to arbitrarily: each pattern buffer stores its own
1312    syntax, so it can be changed between regex compilations.  */
1313 /* This has no initializer because initialized variables in Emacs
1314    become read-only after dumping.  */
1315 reg_syntax_t re_syntax_options;
1316 
1317 
1318 /* Specify the precise syntax of regexps for compilation.  This provides
1319    for compatibility for various utilities which historically have
1320    different, incompatible syntaxes.
1321 
1322    The argument SYNTAX is a bit mask comprised of the various bits
1323    defined in regex.h.  We return the old syntax.  */
1324 
1325 reg_syntax_t
1326 re_set_syntax (reg_syntax_t syntax)
1327 {
1328   reg_syntax_t ret = re_syntax_options;
1329 
1330   re_syntax_options = syntax;
1331 # ifdef DEBUG
1332   if (syntax & RE_DEBUG)
1333     debug = 1;
1334   else if (debug) /* was on but now is not */
1335     debug = 0;
1336 # endif /* DEBUG */
1337   return ret;
1338 }
1339 # ifdef _LIBC
1340 weak_alias (__re_set_syntax, re_set_syntax)
1341 # endif
1342 
1343 /* This table gives an error message for each of the error codes listed
1344    in regex.h.  Obviously the order here has to be same as there.
1345    POSIX doesn't require that we do anything for REG_NOERROR,
1346    but why not be nice?  */
1347 
1348 static const char *re_error_msgid[] =
1349   {
1350     gettext_noop ("Success"),	/* REG_NOERROR */
1351     gettext_noop ("No match"),	/* REG_NOMATCH */
1352     gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353     gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354     gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355     gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356     gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357     gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1358     gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359     gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360     gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361     gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1362     gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363     gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364     gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365     gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1366     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1367   };
1368 
1369 #endif /* INSIDE_RECURSION */
1370 
1371 #ifndef DEFINED_ONCE
1372 /* Avoiding alloca during matching, to placate r_alloc.  */
1373 
1374 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375    searching and matching functions should not call alloca.  On some
1376    systems, alloca is implemented in terms of malloc, and if we're
1377    using the relocating allocator routines, then malloc could cause a
1378    relocation, which might (if the strings being searched are in the
1379    ralloc heap) shift the data out from underneath the regexp
1380    routines.
1381 
1382    Here's another reason to avoid allocation: Emacs
1383    processes input from X in a signal handler; processing X input may
1384    call malloc; if input arrives while a matching routine is calling
1385    malloc, then we're scrod.  But Emacs can't just block input while
1386    calling matching routines; then we don't notice interrupts when
1387    they come in.  So, Emacs blocks input around all regexp calls
1388    except the matching calls, which it leaves unprotected, in the
1389    faith that they will not malloc.  */
1390 
1391 /* Normally, this is fine.  */
1392 # define MATCH_MAY_ALLOCATE
1393 
1394 /* When using GNU C, we are not REALLY using the C alloca, no matter
1395    what config.h may say.  So don't take precautions for it.  */
1396 # ifdef __GNUC__
1397 #  undef C_ALLOCA
1398 # endif
1399 
1400 /* The match routines may not allocate if (1) they would do it with malloc
1401    and (2) it's not safe for them to use malloc.
1402    Note that if REL_ALLOC is defined, matching would not use malloc for the
1403    failure stack, but we would still use it for the register vectors;
1404    so REL_ALLOC should not affect this.  */
1405 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1406 #  undef MATCH_MAY_ALLOCATE
1407 # endif
1408 #endif /* not DEFINED_ONCE */
1409 
1410 #ifdef INSIDE_RECURSION
1411 /* Failure stack declarations and macros; both re_compile_fastmap and
1412    re_match_2 use a failure stack.  These have to be macros because of
1413    REGEX_ALLOCATE_STACK.  */
1414 
1415 
1416 /* Number of failure points for which to initially allocate space
1417    when matching.  If this number is exceeded, we allocate more
1418    space, so it is not a hard limit.  */
1419 # ifndef INIT_FAILURE_ALLOC
1420 #  define INIT_FAILURE_ALLOC 5
1421 # endif
1422 
1423 /* Roughly the maximum number of failure points on the stack.  Would be
1424    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1425    This is a variable only so users of regex can assign to it; we never
1426    change it ourselves.  */
1427 
1428 # ifdef INT_IS_16BIT
1429 
1430 #  ifndef DEFINED_ONCE
1431 #   if defined MATCH_MAY_ALLOCATE
1432 /* 4400 was enough to cause a crash on Alpha OSF/1,
1433    whose default stack limit is 2mb.  */
1434 long int re_max_failures = 4000;
1435 #   else
1436 long int re_max_failures = 2000;
1437 #   endif
1438 #  endif
1439 
1440 union PREFIX(fail_stack_elt)
1441 {
1442   UCHAR_T *pointer;
1443   long int integer;
1444 };
1445 
1446 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1447 
1448 typedef struct
1449 {
1450   PREFIX(fail_stack_elt_t) *stack;
1451   unsigned long int size;
1452   unsigned long int avail;		/* Offset of next open position.  */
1453 } PREFIX(fail_stack_type);
1454 
1455 # else /* not INT_IS_16BIT */
1456 
1457 #  ifndef DEFINED_ONCE
1458 #   if defined MATCH_MAY_ALLOCATE
1459 /* 4400 was enough to cause a crash on Alpha OSF/1,
1460    whose default stack limit is 2mb.  */
1461 int re_max_failures = 4000;
1462 #   else
1463 int re_max_failures = 2000;
1464 #   endif
1465 #  endif
1466 
1467 union PREFIX(fail_stack_elt)
1468 {
1469   UCHAR_T *pointer;
1470   int integer;
1471 };
1472 
1473 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1474 
1475 typedef struct
1476 {
1477   PREFIX(fail_stack_elt_t) *stack;
1478   unsigned size;
1479   unsigned avail;			/* Offset of next open position.  */
1480 } PREFIX(fail_stack_type);
1481 
1482 # endif /* INT_IS_16BIT */
1483 
1484 # ifndef DEFINED_ONCE
1485 #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1486 #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1487 #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1488 # endif
1489 
1490 
1491 /* Define macros to initialize and free the failure stack.
1492    Do `return -2' if the alloc fails.  */
1493 
1494 # ifdef MATCH_MAY_ALLOCATE
1495 #  define INIT_FAIL_STACK()						\
1496   do {									\
1497     fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1498       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1499 									\
1500     if (fail_stack.stack == NULL)				\
1501       return -2;							\
1502 									\
1503     fail_stack.size = INIT_FAILURE_ALLOC;			\
1504     fail_stack.avail = 0;					\
1505   } while (0)
1506 
1507 #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1508 # else
1509 #  define INIT_FAIL_STACK()						\
1510   do {									\
1511     fail_stack.avail = 0;					\
1512   } while (0)
1513 
1514 #  define RESET_FAIL_STACK()
1515 # endif
1516 
1517 
1518 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1519 
1520    Return 1 if succeeds, and 0 if either ran out of memory
1521    allocating space for it or it was already too large.
1522 
1523    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1524 
1525 # define DOUBLE_FAIL_STACK(fail_stack)					\
1526   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1527    ? 0									\
1528    : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1529         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1530           (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1531           ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1532 									\
1533       (fail_stack).stack == NULL					\
1534       ? 0								\
1535       : ((fail_stack).size <<= 1, 					\
1536          1)))
1537 
1538 
1539 /* Push pointer POINTER on FAIL_STACK.
1540    Return 1 if was able to do so and 0 if ran out of memory allocating
1541    space to do so.  */
1542 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1543   ((FAIL_STACK_FULL ()							\
1544     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1545    ? 0									\
1546    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1547       1))
1548 
1549 /* Push a pointer value onto the failure stack.
1550    Assumes the variable `fail_stack'.  Probably should only
1551    be called from within `PUSH_FAILURE_POINT'.  */
1552 # define PUSH_FAILURE_POINTER(item)					\
1553   fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1554 
1555 /* This pushes an integer-valued item onto the failure stack.
1556    Assumes the variable `fail_stack'.  Probably should only
1557    be called from within `PUSH_FAILURE_POINT'.  */
1558 # define PUSH_FAILURE_INT(item)					\
1559   fail_stack.stack[fail_stack.avail++].integer = (item)
1560 
1561 /* Push a fail_stack_elt_t value onto the failure stack.
1562    Assumes the variable `fail_stack'.  Probably should only
1563    be called from within `PUSH_FAILURE_POINT'.  */
1564 # define PUSH_FAILURE_ELT(item)					\
1565   fail_stack.stack[fail_stack.avail++] =  (item)
1566 
1567 /* These three POP... operations complement the three PUSH... operations.
1568    All assume that `fail_stack' is nonempty.  */
1569 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1570 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1571 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1572 
1573 /* Used to omit pushing failure point id's when we're not debugging.  */
1574 # ifdef DEBUG
1575 #  define DEBUG_PUSH PUSH_FAILURE_INT
1576 #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1577 # else
1578 #  define DEBUG_PUSH(item)
1579 #  define DEBUG_POP(item_addr)
1580 # endif
1581 
1582 
1583 /* Push the information about the state we will need
1584    if we ever fail back to it.
1585 
1586    Requires variables fail_stack, regstart, regend, reg_info, and
1587    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1588    be declared.
1589 
1590    Does `return FAILURE_CODE' if runs out of memory.  */
1591 
1592 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1593   do {									\
1594     char *destination;							\
1595     /* Must be int, so when we don't save any registers, the arithmetic	\
1596        of 0 + -1 isn't done as unsigned.  */				\
1597     /* Can't be int, since there is not a shred of a guarantee that int	\
1598        is wide enough to hold a value of something to which pointer can	\
1599        be assigned */							\
1600     active_reg_t this_reg;						\
1601     									\
1602     DEBUG_STATEMENT (failure_id++);					\
1603     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1604     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1605     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1606     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1607 									\
1608     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1609     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1610 									\
1611     /* Ensure we have enough space allocated for what we will push.  */	\
1612     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1613       {									\
1614         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1615           return failure_code;						\
1616 									\
1617         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1618 		       (fail_stack).size);				\
1619         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1620       }									\
1621 									\
1622     /* Push the info, starting with the registers.  */			\
1623     DEBUG_PRINT1 ("\n");						\
1624 									\
1625     if (1)								\
1626       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1627 	   this_reg++)							\
1628 	{								\
1629 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1630 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1631 									\
1632 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1633 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1634 									\
1635 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1636 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1637 									\
1638 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1639 			reg_info[this_reg].word.pointer);		\
1640 	  DEBUG_PRINT2 (" match_null=%d",				\
1641 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1642 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1643 	  DEBUG_PRINT2 (" matched_something=%d",			\
1644 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1645 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1646 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1647 	  DEBUG_PRINT1 ("\n");						\
1648 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1649 	}								\
1650 									\
1651     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1652     PUSH_FAILURE_INT (lowest_active_reg);				\
1653 									\
1654     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1655     PUSH_FAILURE_INT (highest_active_reg);				\
1656 									\
1657     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1658     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1659     PUSH_FAILURE_POINTER (pattern_place);				\
1660 									\
1661     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1662     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1663 				 size2);				\
1664     DEBUG_PRINT1 ("'\n");						\
1665     PUSH_FAILURE_POINTER (string_place);				\
1666 									\
1667     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1668     DEBUG_PUSH (failure_id);						\
1669   } while (0)
1670 
1671 # ifndef DEFINED_ONCE
1672 /* This is the number of items that are pushed and popped on the stack
1673    for each register.  */
1674 #  define NUM_REG_ITEMS  3
1675 
1676 /* Individual items aside from the registers.  */
1677 #  ifdef DEBUG
1678 #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1679 #  else
1680 #   define NUM_NONREG_ITEMS 4
1681 #  endif
1682 
1683 /* We push at most this many items on the stack.  */
1684 /* We used to use (num_regs - 1), which is the number of registers
1685    this regexp will save; but that was changed to 5
1686    to avoid stack overflow for a regexp with lots of parens.  */
1687 #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1688 
1689 /* We actually push this many items.  */
1690 #  define NUM_FAILURE_ITEMS				\
1691   (((0							\
1692      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1693     * NUM_REG_ITEMS)					\
1694    + NUM_NONREG_ITEMS)
1695 
1696 /* How many items can still be added to the stack without overflowing it.  */
1697 #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1698 # endif /* not DEFINED_ONCE */
1699 
1700 
1701 /* Pops what PUSH_FAIL_STACK pushes.
1702 
1703    We restore into the parameters, all of which should be lvalues:
1704      STR -- the saved data position.
1705      PAT -- the saved pattern position.
1706      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1707      REGSTART, REGEND -- arrays of string positions.
1708      REG_INFO -- array of information about each subexpression.
1709 
1710    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1711    `pend', `string1', `size1', `string2', and `size2'.  */
1712 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1713 {									\
1714   DEBUG_STATEMENT (unsigned failure_id;)				\
1715   active_reg_t this_reg;						\
1716   const UCHAR_T *string_temp;						\
1717 									\
1718   assert (!FAIL_STACK_EMPTY ());					\
1719 									\
1720   /* Remove failure points and point to how many regs pushed.  */	\
1721   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1722   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1723   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1724 									\
1725   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1726 									\
1727   DEBUG_POP (&failure_id);						\
1728   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1729 									\
1730   /* If the saved string location is NULL, it came from an		\
1731      on_failure_keep_string_jump opcode, and we want to throw away the	\
1732      saved NULL, thus retaining our current position in the string.  */	\
1733   string_temp = POP_FAILURE_POINTER ();					\
1734   if (string_temp != NULL)						\
1735     str = (const CHAR_T *) string_temp;					\
1736 									\
1737   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1738   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1739   DEBUG_PRINT1 ("'\n");							\
1740 									\
1741   pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1742   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1743   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1744 									\
1745   /* Restore register info.  */						\
1746   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1747   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1748 									\
1749   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1750   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1751 									\
1752   if (1)								\
1753     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1754       {									\
1755 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1756 									\
1757 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1758 	DEBUG_PRINT2 ("      info: %p\n",				\
1759 		      reg_info[this_reg].word.pointer);			\
1760 									\
1761 	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1762 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1763 									\
1764 	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1765 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1766       }									\
1767   else									\
1768     {									\
1769       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1770 	{								\
1771 	  reg_info[this_reg].word.integer = 0;				\
1772 	  regend[this_reg] = 0;						\
1773 	  regstart[this_reg] = 0;					\
1774 	}								\
1775       highest_active_reg = high_reg;					\
1776     }									\
1777 									\
1778   set_regs_matched_done = 0;						\
1779   DEBUG_STATEMENT (nfailure_points_popped++);				\
1780 } /* POP_FAILURE_POINT */
1781 
1782 /* Structure for per-register (a.k.a. per-group) information.
1783    Other register information, such as the
1784    starting and ending positions (which are addresses), and the list of
1785    inner groups (which is a bits list) are maintained in separate
1786    variables.
1787 
1788    We are making a (strictly speaking) nonportable assumption here: that
1789    the compiler will pack our bit fields into something that fits into
1790    the type of `word', i.e., is something that fits into one item on the
1791    failure stack.  */
1792 
1793 
1794 /* Declarations and macros for re_match_2.  */
1795 
1796 typedef union
1797 {
1798   PREFIX(fail_stack_elt_t) word;
1799   struct
1800   {
1801       /* This field is one if this group can match the empty string,
1802          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1803 # define MATCH_NULL_UNSET_VALUE 3
1804     unsigned match_null_string_p : 2;
1805     unsigned is_active : 1;
1806     unsigned matched_something : 1;
1807     unsigned ever_matched_something : 1;
1808   } bits;
1809 } PREFIX(register_info_type);
1810 
1811 # ifndef DEFINED_ONCE
1812 #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1813 #  define IS_ACTIVE(R)  ((R).bits.is_active)
1814 #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1815 #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1816 
1817 
1818 /* Call this when have matched a real character; it sets `matched' flags
1819    for the subexpressions which we are currently inside.  Also records
1820    that those subexprs have matched.  */
1821 #  define SET_REGS_MATCHED()						\
1822   do									\
1823     {									\
1824       if (!set_regs_matched_done)					\
1825 	{								\
1826 	  active_reg_t r;						\
1827 	  set_regs_matched_done = 1;					\
1828 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1829 	    {								\
1830 	      MATCHED_SOMETHING (reg_info[r])				\
1831 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1832 		= 1;							\
1833 	    }								\
1834 	}								\
1835     }									\
1836   while (0)
1837 # endif /* not DEFINED_ONCE */
1838 
1839 /* Registers are set to a sentinel when they haven't yet matched.  */
1840 static CHAR_T PREFIX(reg_unset_dummy);
1841 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1842 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1843 
1844 /* Subroutine declarations and macros for regex_compile.  */
1845 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1846 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1847                                int arg1, int arg2);
1848 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1849                                 int arg, UCHAR_T *end);
1850 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1851                                 int arg1, int arg2, UCHAR_T *end);
1852 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1853                                          const CHAR_T *p,
1854                                          reg_syntax_t syntax);
1855 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1856                                          const CHAR_T *pend,
1857                                          reg_syntax_t syntax);
1858 # ifdef WCHAR
1859 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1860                                         const CHAR_T **p_ptr,
1861                                         const CHAR_T *pend,
1862                                         char *translate,
1863                                         reg_syntax_t syntax,
1864                                         UCHAR_T *b,
1865                                         CHAR_T *char_set);
1866 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1867 # else /* BYTE */
1868 static reg_errcode_t byte_compile_range (unsigned int range_start,
1869                                          const char **p_ptr,
1870                                          const char *pend,
1871                                          char *translate,
1872                                          reg_syntax_t syntax,
1873                                          unsigned char *b);
1874 # endif /* WCHAR */
1875 
1876 /* Fetch the next character in the uncompiled pattern---translating it
1877    if necessary.  Also cast from a signed character in the constant
1878    string passed to us by the user to an unsigned char that we can use
1879    as an array index (in, e.g., `translate').  */
1880 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1881    because it is impossible to allocate 4GB array for some encodings
1882    which have 4 byte character_set like UCS4.  */
1883 # ifndef PATFETCH
1884 #  ifdef WCHAR
1885 #   define PATFETCH(c)							\
1886   do {if (p == pend) return REG_EEND;					\
1887     c = (UCHAR_T) *p++;							\
1888     if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1889   } while (0)
1890 #  else /* BYTE */
1891 #   define PATFETCH(c)							\
1892   do {if (p == pend) return REG_EEND;					\
1893     c = (unsigned char) *p++;						\
1894     if (translate) c = (unsigned char) translate[c];			\
1895   } while (0)
1896 #  endif /* WCHAR */
1897 # endif
1898 
1899 /* Fetch the next character in the uncompiled pattern, with no
1900    translation.  */
1901 # define PATFETCH_RAW(c)						\
1902   do {if (p == pend) return REG_EEND;					\
1903     c = (UCHAR_T) *p++; 	       					\
1904   } while (0)
1905 
1906 /* Go backwards one character in the pattern.  */
1907 # define PATUNFETCH p--
1908 
1909 
1910 /* If `translate' is non-null, return translate[D], else just D.  We
1911    cast the subscript to translate because some data is declared as
1912    `char *', to avoid warnings when a string constant is passed.  But
1913    when we use a character as a subscript we must make it unsigned.  */
1914 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1915    because it is impossible to allocate 4GB array for some encodings
1916    which have 4 byte character_set like UCS4.  */
1917 
1918 # ifndef TRANSLATE
1919 #  ifdef WCHAR
1920 #   define TRANSLATE(d) \
1921   ((translate && ((UCHAR_T) (d)) <= 0xff) \
1922    ? (char) translate[(unsigned char) (d)] : (d))
1923 # else /* BYTE */
1924 #   define TRANSLATE(d) \
1925   (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1926 #  endif /* WCHAR */
1927 # endif
1928 
1929 
1930 /* Macros for outputting the compiled pattern into `buffer'.  */
1931 
1932 /* If the buffer isn't allocated when it comes in, use this.  */
1933 # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1934 
1935 /* Make sure we have at least N more bytes of space in buffer.  */
1936 # ifdef WCHAR
1937 #  define GET_BUFFER_SPACE(n)						\
1938     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1939             + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1940       EXTEND_BUFFER ()
1941 # else /* BYTE */
1942 #  define GET_BUFFER_SPACE(n)						\
1943     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1944       EXTEND_BUFFER ()
1945 # endif /* WCHAR */
1946 
1947 /* Make sure we have one more byte of buffer space and then add C to it.  */
1948 # define BUF_PUSH(c)							\
1949   do {									\
1950     GET_BUFFER_SPACE (1);						\
1951     *b++ = (UCHAR_T) (c);						\
1952   } while (0)
1953 
1954 
1955 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1956 # define BUF_PUSH_2(c1, c2)						\
1957   do {									\
1958     GET_BUFFER_SPACE (2);						\
1959     *b++ = (UCHAR_T) (c1);						\
1960     *b++ = (UCHAR_T) (c2);						\
1961   } while (0)
1962 
1963 
1964 /* As with BUF_PUSH_2, except for three bytes.  */
1965 # define BUF_PUSH_3(c1, c2, c3)						\
1966   do {									\
1967     GET_BUFFER_SPACE (3);						\
1968     *b++ = (UCHAR_T) (c1);						\
1969     *b++ = (UCHAR_T) (c2);						\
1970     *b++ = (UCHAR_T) (c3);						\
1971   } while (0)
1972 
1973 /* Store a jump with opcode OP at LOC to location TO.  We store a
1974    relative address offset by the three bytes the jump itself occupies.  */
1975 # define STORE_JUMP(op, loc, to) \
1976  PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1977 
1978 /* Likewise, for a two-argument jump.  */
1979 # define STORE_JUMP2(op, loc, to, arg) \
1980   PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1981 
1982 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1983 # define INSERT_JUMP(op, loc, to) \
1984   PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1985 
1986 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1987 # define INSERT_JUMP2(op, loc, to, arg) \
1988   PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1989 	      arg, b)
1990 
1991 /* This is not an arbitrary limit: the arguments which represent offsets
1992    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1993    be too small, many things would have to change.  */
1994 /* Any other compiler which, like MSC, has allocation limit below 2^16
1995    bytes will have to use approach similar to what was done below for
1996    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1997    reallocating to 0 bytes.  Such thing is not going to work too well.
1998    You have been warned!!  */
1999 # ifndef DEFINED_ONCE
2000 #  if defined _MSC_VER  && !defined WIN32
2001 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2002    The REALLOC define eliminates a flurry of conversion warnings,
2003    but is not required. */
2004 #   define MAX_BUF_SIZE  65500L
2005 #   define REALLOC(p,s) realloc ((p), (size_t) (s))
2006 #  else
2007 #   define MAX_BUF_SIZE (1L << 16)
2008 #   define REALLOC(p,s) realloc ((p), (s))
2009 #  endif
2010 
2011 /* Extend the buffer by twice its current size via realloc and
2012    reset the pointers that pointed into the old block to point to the
2013    correct places in the new one.  If extending the buffer results in it
2014    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2015 #  if __BOUNDED_POINTERS__
2016 #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2017 #   define MOVE_BUFFER_POINTER(P) \
2018   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2019 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2020   else						\
2021     {						\
2022       SET_HIGH_BOUND (b);			\
2023       SET_HIGH_BOUND (begalt);			\
2024       if (fixup_alt_jump)			\
2025 	SET_HIGH_BOUND (fixup_alt_jump);	\
2026       if (laststart)				\
2027 	SET_HIGH_BOUND (laststart);		\
2028       if (pending_exact)			\
2029 	SET_HIGH_BOUND (pending_exact);		\
2030     }
2031 #  else
2032 #   define MOVE_BUFFER_POINTER(P) (P) += incr
2033 #   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2034 #  endif
2035 # endif /* not DEFINED_ONCE */
2036 
2037 # ifdef WCHAR
2038 #  define EXTEND_BUFFER()						\
2039   do {									\
2040     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2041     int wchar_count;							\
2042     if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2043       return REG_ESIZE;							\
2044     bufp->allocated <<= 1;						\
2045     if (bufp->allocated > MAX_BUF_SIZE)					\
2046       bufp->allocated = MAX_BUF_SIZE;					\
2047     /* How many characters the new buffer can have?  */			\
2048     wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2049     if (wchar_count == 0) wchar_count = 1;				\
2050     /* Truncate the buffer to CHAR_T align.  */				\
2051     bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2052     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2053     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2054     if (COMPILED_BUFFER_VAR == NULL)					\
2055       return REG_ESPACE;						\
2056     /* If the buffer moved, move all the pointers into it.  */		\
2057     if (old_buffer != COMPILED_BUFFER_VAR)				\
2058       {									\
2059 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2060 	MOVE_BUFFER_POINTER (b);					\
2061 	MOVE_BUFFER_POINTER (begalt);					\
2062 	if (fixup_alt_jump)						\
2063 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2064 	if (laststart)							\
2065 	  MOVE_BUFFER_POINTER (laststart);				\
2066 	if (pending_exact)						\
2067 	  MOVE_BUFFER_POINTER (pending_exact);				\
2068       }									\
2069     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2070   } while (0)
2071 # else /* BYTE */
2072 #  define EXTEND_BUFFER()						\
2073   do {									\
2074     UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2075     if (bufp->allocated == MAX_BUF_SIZE)				\
2076       return REG_ESIZE;							\
2077     bufp->allocated <<= 1;						\
2078     if (bufp->allocated > MAX_BUF_SIZE)					\
2079       bufp->allocated = MAX_BUF_SIZE;					\
2080     bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2081 						bufp->allocated);	\
2082     if (COMPILED_BUFFER_VAR == NULL)					\
2083       return REG_ESPACE;						\
2084     /* If the buffer moved, move all the pointers into it.  */		\
2085     if (old_buffer != COMPILED_BUFFER_VAR)				\
2086       {									\
2087 	PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\
2088 	MOVE_BUFFER_POINTER (b);					\
2089 	MOVE_BUFFER_POINTER (begalt);					\
2090 	if (fixup_alt_jump)						\
2091 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2092 	if (laststart)							\
2093 	  MOVE_BUFFER_POINTER (laststart);				\
2094 	if (pending_exact)						\
2095 	  MOVE_BUFFER_POINTER (pending_exact);				\
2096       }									\
2097     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2098   } while (0)
2099 # endif /* WCHAR */
2100 
2101 # ifndef DEFINED_ONCE
2102 /* Since we have one byte reserved for the register number argument to
2103    {start,stop}_memory, the maximum number of groups we can report
2104    things about is what fits in that byte.  */
2105 #  define MAX_REGNUM 255
2106 
2107 /* But patterns can have more than `MAX_REGNUM' registers.  We just
2108    ignore the excess.  */
2109 typedef unsigned regnum_t;
2110 
2111 
2112 /* Macros for the compile stack.  */
2113 
2114 /* Since offsets can go either forwards or backwards, this type needs to
2115    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2116 /* int may be not enough when sizeof(int) == 2.  */
2117 typedef long pattern_offset_t;
2118 
2119 typedef struct
2120 {
2121   pattern_offset_t begalt_offset;
2122   pattern_offset_t fixup_alt_jump;
2123   pattern_offset_t inner_group_offset;
2124   pattern_offset_t laststart_offset;
2125   regnum_t regnum;
2126 } compile_stack_elt_t;
2127 
2128 
2129 typedef struct
2130 {
2131   compile_stack_elt_t *stack;
2132   unsigned size;
2133   unsigned avail;			/* Offset of next open position.  */
2134 } compile_stack_type;
2135 
2136 
2137 #  define INIT_COMPILE_STACK_SIZE 32
2138 
2139 #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2140 #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2141 
2142 /* The next available element.  */
2143 #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2144 
2145 # endif /* not DEFINED_ONCE */
2146 
2147 /* Set the bit for character C in a list.  */
2148 # ifndef DEFINED_ONCE
2149 #  define SET_LIST_BIT(c)                               \
2150   (b[((unsigned char) (c)) / BYTEWIDTH]               \
2151    |= 1 << (((unsigned char) c) % BYTEWIDTH))
2152 # endif /* DEFINED_ONCE */
2153 
2154 /* Get the next unsigned number in the uncompiled pattern.  */
2155 # define GET_UNSIGNED_NUMBER(num) \
2156   {									\
2157     while (p != pend)							\
2158       {									\
2159 	PATFETCH (c);							\
2160 	if (c < '0' || c > '9')						\
2161 	  break;							\
2162 	if (num <= RE_DUP_MAX)						\
2163 	  {								\
2164 	    if (num < 0)						\
2165 	      num = 0;							\
2166 	    num = num * 10 + c - '0';					\
2167 	  }								\
2168       }									\
2169   }
2170 
2171 # ifndef DEFINED_ONCE
2172 #  if defined _LIBC || WIDE_CHAR_SUPPORT
2173 /* The GNU C library provides support for user-defined character classes
2174    and the functions from ISO C amendement 1.  */
2175 #   ifdef CHARCLASS_NAME_MAX
2176 #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2177 #   else
2178 /* This shouldn't happen but some implementation might still have this
2179    problem.  Use a reasonable default value.  */
2180 #    define CHAR_CLASS_MAX_LENGTH 256
2181 #   endif
2182 
2183 #   ifdef _LIBC
2184 #    define IS_CHAR_CLASS(string) __wctype (string)
2185 #   else
2186 #    define IS_CHAR_CLASS(string) wctype (string)
2187 #   endif
2188 #  else
2189 #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2190 
2191 #   define IS_CHAR_CLASS(string)					\
2192    (STREQ (string, "alpha") || STREQ (string, "upper")			\
2193     || STREQ (string, "lower") || STREQ (string, "digit")		\
2194     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2195     || STREQ (string, "space") || STREQ (string, "print")		\
2196     || STREQ (string, "punct") || STREQ (string, "graph")		\
2197     || STREQ (string, "cntrl") || STREQ (string, "blank"))
2198 #  endif
2199 # endif /* DEFINED_ONCE */
2200 
2201 # ifndef MATCH_MAY_ALLOCATE
2202 
2203 /* If we cannot allocate large objects within re_match_2_internal,
2204    we make the fail stack and register vectors global.
2205    The fail stack, we grow to the maximum size when a regexp
2206    is compiled.
2207    The register vectors, we adjust in size each time we
2208    compile a regexp, according to the number of registers it needs.  */
2209 
2210 static PREFIX(fail_stack_type) fail_stack;
2211 
2212 /* Size with which the following vectors are currently allocated.
2213    That is so we can make them bigger as needed,
2214    but never make them smaller.  */
2215 #  ifdef DEFINED_ONCE
2216 static int regs_allocated_size;
2217 
2218 static const char **     regstart, **     regend;
2219 static const char ** old_regstart, ** old_regend;
2220 static const char **best_regstart, **best_regend;
2221 static const char **reg_dummy;
2222 #  endif /* DEFINED_ONCE */
2223 
2224 static PREFIX(register_info_type) *PREFIX(reg_info);
2225 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2226 
2227 /* Make the register vectors big enough for NUM_REGS registers,
2228    but don't make them smaller.  */
2229 
2230 static void
2231 PREFIX(regex_grow_registers) (int num_regs)
2232 {
2233   if (num_regs > regs_allocated_size)
2234     {
2235       RETALLOC_IF (regstart,	 num_regs, const char *);
2236       RETALLOC_IF (regend,	 num_regs, const char *);
2237       RETALLOC_IF (old_regstart, num_regs, const char *);
2238       RETALLOC_IF (old_regend,	 num_regs, const char *);
2239       RETALLOC_IF (best_regstart, num_regs, const char *);
2240       RETALLOC_IF (best_regend,	 num_regs, const char *);
2241       RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2242       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2243       RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2244 
2245       regs_allocated_size = num_regs;
2246     }
2247 }
2248 
2249 # endif /* not MATCH_MAY_ALLOCATE */
2250 
2251 # ifndef DEFINED_ONCE
2252 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2253                                        regnum_t regnum);
2254 # endif /* not DEFINED_ONCE */
2255 
2256 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2257    Returns one of error codes defined in `regex.h', or zero for success.
2258 
2259    Assumes the `allocated' (and perhaps `buffer') and `translate'
2260    fields are set in BUFP on entry.
2261 
2262    If it succeeds, results are put in BUFP (if it returns an error, the
2263    contents of BUFP are undefined):
2264      `buffer' is the compiled pattern;
2265      `syntax' is set to SYNTAX;
2266      `used' is set to the length of the compiled pattern;
2267      `fastmap_accurate' is zero;
2268      `re_nsub' is the number of subexpressions in PATTERN;
2269      `not_bol' and `not_eol' are zero;
2270 
2271    The `fastmap' and `newline_anchor' fields are neither
2272    examined nor set.  */
2273 
2274 /* Return, freeing storage we allocated.  */
2275 # ifdef WCHAR
2276 #  define FREE_STACK_RETURN(value)		\
2277   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2278 # else
2279 #  define FREE_STACK_RETURN(value)		\
2280   return (free (compile_stack.stack), value)
2281 # endif /* WCHAR */
2282 
2283 static reg_errcode_t
2284 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2285                        size_t ARG_PREFIX(size), reg_syntax_t syntax,
2286                        struct re_pattern_buffer *bufp)
2287 {
2288   /* We fetch characters from PATTERN here.  Even though PATTERN is
2289      `char *' (i.e., signed), we declare these variables as unsigned, so
2290      they can be reliably used as array indices.  */
2291   register UCHAR_T c, c1;
2292 
2293 #ifdef WCHAR
2294   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2295   CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2296   size_t size;
2297   /* offset buffer for optimization. See convert_mbs_to_wc.  */
2298   int *mbs_offset = NULL;
2299   /* It hold whether each wchar_t is binary data or not.  */
2300   char *is_binary = NULL;
2301   /* A flag whether exactn is handling binary data or not.  */
2302   char is_exactn_bin = FALSE;
2303 #endif /* WCHAR */
2304 
2305   /* A random temporary spot in PATTERN.  */
2306   const CHAR_T *p1;
2307 
2308   /* Points to the end of the buffer, where we should append.  */
2309   register UCHAR_T *b;
2310 
2311   /* Keeps track of unclosed groups.  */
2312   compile_stack_type compile_stack;
2313 
2314   /* Points to the current (ending) position in the pattern.  */
2315 #ifdef WCHAR
2316   const CHAR_T *p;
2317   const CHAR_T *pend;
2318 #else /* BYTE */
2319   const CHAR_T *p = pattern;
2320   const CHAR_T *pend = pattern + size;
2321 #endif /* WCHAR */
2322 
2323   /* How to translate the characters in the pattern.  */
2324   RE_TRANSLATE_TYPE translate = bufp->translate;
2325 
2326   /* Address of the count-byte of the most recently inserted `exactn'
2327      command.  This makes it possible to tell if a new exact-match
2328      character can be added to that command or if the character requires
2329      a new `exactn' command.  */
2330   UCHAR_T *pending_exact = 0;
2331 
2332   /* Address of start of the most recently finished expression.
2333      This tells, e.g., postfix * where to find the start of its
2334      operand.  Reset at the beginning of groups and alternatives.  */
2335   UCHAR_T *laststart = 0;
2336 
2337   /* Address of beginning of regexp, or inside of last group.  */
2338   UCHAR_T *begalt;
2339 
2340   /* Address of the place where a forward jump should go to the end of
2341      the containing expression.  Each alternative of an `or' -- except the
2342      last -- ends with a forward jump of this sort.  */
2343   UCHAR_T *fixup_alt_jump = 0;
2344 
2345   /* Counts open-groups as they are encountered.  Remembered for the
2346      matching close-group on the compile stack, so the same register
2347      number is put in the stop_memory as the start_memory.  */
2348   regnum_t regnum = 0;
2349 
2350 #ifdef WCHAR
2351   /* Initialize the wchar_t PATTERN and offset_buffer.  */
2352   p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2353   mbs_offset = TALLOC(csize + 1, int);
2354   is_binary = TALLOC(csize + 1, char);
2355   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2356     {
2357       free(pattern);
2358       free(mbs_offset);
2359       free(is_binary);
2360       return REG_ESPACE;
2361     }
2362   pattern[csize] = L'\0';	/* sentinel */
2363   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2364   pend = p + size;
2365   if (size < 0)
2366     {
2367       free(pattern);
2368       free(mbs_offset);
2369       free(is_binary);
2370       return REG_BADPAT;
2371     }
2372 #endif
2373 
2374 #ifdef DEBUG
2375   DEBUG_PRINT1 ("\nCompiling pattern: ");
2376   if (debug)
2377     {
2378       unsigned debug_count;
2379 
2380       for (debug_count = 0; debug_count < size; debug_count++)
2381         PUT_CHAR (pattern[debug_count]);
2382       putchar ('\n');
2383     }
2384 #endif /* DEBUG */
2385 
2386   /* Initialize the compile stack.  */
2387   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2388   if (compile_stack.stack == NULL)
2389     {
2390 #ifdef WCHAR
2391       free(pattern);
2392       free(mbs_offset);
2393       free(is_binary);
2394 #endif
2395       return REG_ESPACE;
2396     }
2397 
2398   compile_stack.size = INIT_COMPILE_STACK_SIZE;
2399   compile_stack.avail = 0;
2400 
2401   /* Initialize the pattern buffer.  */
2402   bufp->syntax = syntax;
2403   bufp->fastmap_accurate = 0;
2404   bufp->not_bol = bufp->not_eol = 0;
2405 
2406   /* Set `used' to zero, so that if we return an error, the pattern
2407      printer (for debugging) will think there's no pattern.  We reset it
2408      at the end.  */
2409   bufp->used = 0;
2410 
2411   /* Always count groups, whether or not bufp->no_sub is set.  */
2412   bufp->re_nsub = 0;
2413 
2414 #if !defined emacs && !defined SYNTAX_TABLE
2415   /* Initialize the syntax table.  */
2416    init_syntax_once ();
2417 #endif
2418 
2419   if (bufp->allocated == 0)
2420     {
2421       if (bufp->buffer)
2422 	{ /* If zero allocated, but buffer is non-null, try to realloc
2423              enough space.  This loses if buffer's address is bogus, but
2424              that is the user's responsibility.  */
2425 #ifdef WCHAR
2426 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2427 	     buffer.  */
2428           free(bufp->buffer);
2429           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2430 					UCHAR_T);
2431 #else
2432           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2433 #endif /* WCHAR */
2434         }
2435       else
2436         { /* Caller did not allocate a buffer.  Do it for them.  */
2437           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2438 					UCHAR_T);
2439         }
2440 
2441       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2442 #ifdef WCHAR
2443       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2444 #endif /* WCHAR */
2445       bufp->allocated = INIT_BUF_SIZE;
2446     }
2447 #ifdef WCHAR
2448   else
2449     COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2450 #endif
2451 
2452   begalt = b = COMPILED_BUFFER_VAR;
2453 
2454   /* Loop through the uncompiled pattern until we're at the end.  */
2455   while (p != pend)
2456     {
2457       PATFETCH (c);
2458 
2459       switch (c)
2460         {
2461         case '^':
2462           {
2463             if (   /* If at start of pattern, it's an operator.  */
2464                    p == pattern + 1
2465                    /* If context independent, it's an operator.  */
2466                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2467                    /* Otherwise, depends on what's come before.  */
2468                 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2469               BUF_PUSH (begline);
2470             else
2471               goto normal_char;
2472           }
2473           break;
2474 
2475 
2476         case '$':
2477           {
2478             if (   /* If at end of pattern, it's an operator.  */
2479                    p == pend
2480                    /* If context independent, it's an operator.  */
2481                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2482                    /* Otherwise, depends on what's next.  */
2483                 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2484                BUF_PUSH (endline);
2485              else
2486                goto normal_char;
2487            }
2488            break;
2489 
2490 
2491 	case '+':
2492         case '?':
2493           if ((syntax & RE_BK_PLUS_QM)
2494               || (syntax & RE_LIMITED_OPS))
2495             goto normal_char;
2496         handle_plus:
2497         case '*':
2498           /* If there is no previous pattern... */
2499           if (!laststart)
2500             {
2501               if (syntax & RE_CONTEXT_INVALID_OPS)
2502                 FREE_STACK_RETURN (REG_BADRPT);
2503               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2504                 goto normal_char;
2505             }
2506 
2507           {
2508             /* Are we optimizing this jump?  */
2509             boolean keep_string_p = false;
2510 
2511             /* 1 means zero (many) matches is allowed.  */
2512             char zero_times_ok = 0, many_times_ok = 0;
2513 
2514             /* If there is a sequence of repetition chars, collapse it
2515                down to just one (the right one).  We can't combine
2516                interval operators with these because of, e.g., `a{2}*',
2517                which should only match an even number of `a's.  */
2518 
2519             for (;;)
2520               {
2521                 zero_times_ok |= c != '+';
2522                 many_times_ok |= c != '?';
2523 
2524                 if (p == pend)
2525                   break;
2526 
2527                 PATFETCH (c);
2528 
2529                 if (c == '*'
2530                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2531                   ;
2532 
2533                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2534                   {
2535                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2536 
2537                     PATFETCH (c1);
2538                     if (!(c1 == '+' || c1 == '?'))
2539                       {
2540                         PATUNFETCH;
2541                         PATUNFETCH;
2542                         break;
2543                       }
2544 
2545                     c = c1;
2546                   }
2547                 else
2548                   {
2549                     PATUNFETCH;
2550                     break;
2551                   }
2552 
2553                 /* If we get here, we found another repeat character.  */
2554                }
2555 
2556             /* Star, etc. applied to an empty pattern is equivalent
2557                to an empty pattern.  */
2558             if (!laststart)
2559               break;
2560 
2561             /* Now we know whether or not zero matches is allowed
2562                and also whether or not two or more matches is allowed.  */
2563             if (many_times_ok)
2564               { /* More than one repetition is allowed, so put in at the
2565                    end a backward relative jump from `b' to before the next
2566                    jump we're going to put in below (which jumps from
2567                    laststart to after this jump).
2568 
2569                    But if we are at the `*' in the exact sequence `.*\n',
2570                    insert an unconditional jump backwards to the .,
2571                    instead of the beginning of the loop.  This way we only
2572                    push a failure point once, instead of every time
2573                    through the loop.  */
2574                 assert (p - 1 > pattern);
2575 
2576                 /* Allocate the space for the jump.  */
2577                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2578 
2579                 /* We know we are not at the first character of the pattern,
2580                    because laststart was nonzero.  And we've already
2581                    incremented `p', by the way, to be the character after
2582                    the `*'.  Do we have to do something analogous here
2583                    for null bytes, because of RE_DOT_NOT_NULL?  */
2584                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2585 		    && zero_times_ok
2586                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2587                     && !(syntax & RE_DOT_NEWLINE))
2588                   { /* We have .*\n.  */
2589                     STORE_JUMP (jump, b, laststart);
2590                     keep_string_p = true;
2591                   }
2592                 else
2593                   /* Anything else.  */
2594                   STORE_JUMP (maybe_pop_jump, b, laststart -
2595 			      (1 + OFFSET_ADDRESS_SIZE));
2596 
2597                 /* We've added more stuff to the buffer.  */
2598                 b += 1 + OFFSET_ADDRESS_SIZE;
2599               }
2600 
2601             /* On failure, jump from laststart to b + 3, which will be the
2602                end of the buffer after this jump is inserted.  */
2603 	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2604 	       'b + 3'.  */
2605             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2606             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2607                                        : on_failure_jump,
2608                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2609             pending_exact = 0;
2610             b += 1 + OFFSET_ADDRESS_SIZE;
2611 
2612             if (!zero_times_ok)
2613               {
2614                 /* At least one repetition is required, so insert a
2615                    `dummy_failure_jump' before the initial
2616                    `on_failure_jump' instruction of the loop. This
2617                    effects a skip over that instruction the first time
2618                    we hit that loop.  */
2619                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2620                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2621 			     2 + 2 * OFFSET_ADDRESS_SIZE);
2622                 b += 1 + OFFSET_ADDRESS_SIZE;
2623               }
2624             }
2625 	  break;
2626 
2627 
2628 	case '.':
2629           laststart = b;
2630           BUF_PUSH (anychar);
2631           break;
2632 
2633 
2634         case '[':
2635           {
2636             boolean had_char_class = false;
2637 #ifdef WCHAR
2638 	    CHAR_T range_start = 0xffffffff;
2639 #else
2640 	    unsigned int range_start = 0xffffffff;
2641 #endif
2642             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2643 
2644 #ifdef WCHAR
2645 	    /* We assume a charset(_not) structure as a wchar_t array.
2646 	       charset[0] = (re_opcode_t) charset(_not)
2647                charset[1] = l (= length of char_classes)
2648                charset[2] = m (= length of collating_symbols)
2649                charset[3] = n (= length of equivalence_classes)
2650 	       charset[4] = o (= length of char_ranges)
2651 	       charset[5] = p (= length of chars)
2652 
2653                charset[6] = char_class (wctype_t)
2654                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2655                          ...
2656                charset[l+5]  = char_class (wctype_t)
2657 
2658                charset[l+6]  = collating_symbol (wchar_t)
2659                             ...
2660                charset[l+m+5]  = collating_symbol (wchar_t)
2661 					ifdef _LIBC we use the index if
2662 					_NL_COLLATE_SYMB_EXTRAMB instead of
2663 					wchar_t string.
2664 
2665                charset[l+m+6]  = equivalence_classes (wchar_t)
2666                               ...
2667                charset[l+m+n+5]  = equivalence_classes (wchar_t)
2668 					ifdef _LIBC we use the index in
2669 					_NL_COLLATE_WEIGHT instead of
2670 					wchar_t string.
2671 
2672 	       charset[l+m+n+6] = range_start
2673 	       charset[l+m+n+7] = range_end
2674 	                       ...
2675 	       charset[l+m+n+2o+4] = range_start
2676 	       charset[l+m+n+2o+5] = range_end
2677 					ifdef _LIBC we use the value looked up
2678 					in _NL_COLLATE_COLLSEQ instead of
2679 					wchar_t character.
2680 
2681 	       charset[l+m+n+2o+6] = char
2682 	                          ...
2683 	       charset[l+m+n+2o+p+5] = char
2684 
2685 	     */
2686 
2687 	    /* We need at least 6 spaces: the opcode, the length of
2688                char_classes, the length of collating_symbols, the length of
2689                equivalence_classes, the length of char_ranges, the length of
2690                chars.  */
2691 	    GET_BUFFER_SPACE (6);
2692 
2693 	    /* Save b as laststart. And We use laststart as the pointer
2694 	       to the first element of the charset here.
2695 	       In other words, laststart[i] indicates charset[i].  */
2696             laststart = b;
2697 
2698             /* We test `*p == '^' twice, instead of using an if
2699                statement, so we only need one BUF_PUSH.  */
2700             BUF_PUSH (*p == '^' ? charset_not : charset);
2701             if (*p == '^')
2702               p++;
2703 
2704             /* Push the length of char_classes, the length of
2705                collating_symbols, the length of equivalence_classes, the
2706                length of char_ranges and the length of chars.  */
2707             BUF_PUSH_3 (0, 0, 0);
2708             BUF_PUSH_2 (0, 0);
2709 
2710             /* Remember the first position in the bracket expression.  */
2711             p1 = p;
2712 
2713             /* charset_not matches newline according to a syntax bit.  */
2714             if ((re_opcode_t) b[-6] == charset_not
2715                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2716 	      {
2717 		BUF_PUSH('\n');
2718 		laststart[5]++; /* Update the length of characters  */
2719 	      }
2720 
2721             /* Read in characters and ranges, setting map bits.  */
2722             for (;;)
2723               {
2724                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2725 
2726                 PATFETCH (c);
2727 
2728                 /* \ might escape characters inside [...] and [^...].  */
2729                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2730                   {
2731                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2732 
2733                     PATFETCH (c1);
2734 		    BUF_PUSH(c1);
2735 		    laststart[5]++; /* Update the length of chars  */
2736 		    range_start = c1;
2737                     continue;
2738                   }
2739 
2740                 /* Could be the end of the bracket expression.  If it's
2741                    not (i.e., when the bracket expression is `[]' so
2742                    far), the ']' character bit gets set way below.  */
2743                 if (c == ']' && p != p1 + 1)
2744                   break;
2745 
2746                 /* Look ahead to see if it's a range when the last thing
2747                    was a character class.  */
2748                 if (had_char_class && c == '-' && *p != ']')
2749                   FREE_STACK_RETURN (REG_ERANGE);
2750 
2751                 /* Look ahead to see if it's a range when the last thing
2752                    was a character: if this is a hyphen not at the
2753                    beginning or the end of a list, then it's the range
2754                    operator.  */
2755                 if (c == '-'
2756                     && !(p - 2 >= pattern && p[-2] == '[')
2757                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2758                     && *p != ']')
2759                   {
2760                     reg_errcode_t ret;
2761 		    /* Allocate the space for range_start and range_end.  */
2762 		    GET_BUFFER_SPACE (2);
2763 		    /* Update the pointer to indicate end of buffer.  */
2764                     b += 2;
2765                     ret = wcs_compile_range (range_start, &p, pend, translate,
2766                                          syntax, b, laststart);
2767                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2768                     range_start = 0xffffffff;
2769                   }
2770                 else if (p[0] == '-' && p[1] != ']')
2771                   { /* This handles ranges made up of characters only.  */
2772                     reg_errcode_t ret;
2773 
2774 		    /* Move past the `-'.  */
2775                     PATFETCH (c1);
2776 		    /* Allocate the space for range_start and range_end.  */
2777 		    GET_BUFFER_SPACE (2);
2778 		    /* Update the pointer to indicate end of buffer.  */
2779                     b += 2;
2780                     ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2781                                          laststart);
2782                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2783 		    range_start = 0xffffffff;
2784                   }
2785 
2786                 /* See if we're at the beginning of a possible character
2787                    class.  */
2788                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2789                   { /* Leave room for the null.  */
2790                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2791 
2792                     PATFETCH (c);
2793                     c1 = 0;
2794 
2795                     /* If pattern is `[[:'.  */
2796                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2797 
2798                     for (;;)
2799                       {
2800                         PATFETCH (c);
2801                         if ((c == ':' && *p == ']') || p == pend)
2802                           break;
2803 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2804 			  str[c1++] = c;
2805 			else
2806 			  /* This is in any case an invalid class name.  */
2807 			  str[0] = '\0';
2808                       }
2809                     str[c1] = '\0';
2810 
2811                     /* If isn't a word bracketed by `[:' and `:]':
2812                        undo the ending character, the letters, and leave
2813                        the leading `:' and `[' (but store them as character).  */
2814                     if (c == ':' && *p == ']')
2815                       {
2816 			wctype_t wt;
2817 			uintptr_t alignedp;
2818 
2819 			/* Query the character class as wctype_t.  */
2820 			wt = IS_CHAR_CLASS (str);
2821 			if (wt == 0)
2822 			  FREE_STACK_RETURN (REG_ECTYPE);
2823 
2824                         /* Throw away the ] at the end of the character
2825                            class.  */
2826                         PATFETCH (c);
2827 
2828                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829 
2830 			/* Allocate the space for character class.  */
2831                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2832 			/* Update the pointer to indicate end of buffer.  */
2833                         b += CHAR_CLASS_SIZE;
2834 			/* Move data which follow character classes
2835 			    not to violate the data.  */
2836                         insert_space(CHAR_CLASS_SIZE,
2837 				     laststart + 6 + laststart[1],
2838 				     b - 1);
2839 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2840 				    + __alignof__(wctype_t) - 1)
2841 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2842 			/* Store the character class.  */
2843                         *((wctype_t*)alignedp) = wt;
2844                         /* Update length of char_classes */
2845                         laststart[1] += CHAR_CLASS_SIZE;
2846 
2847                         had_char_class = true;
2848                       }
2849                     else
2850                       {
2851                         c1++;
2852                         while (c1--)
2853                           PATUNFETCH;
2854                         BUF_PUSH ('[');
2855                         BUF_PUSH (':');
2856                         laststart[5] += 2; /* Update the length of characters  */
2857 			range_start = ':';
2858                         had_char_class = false;
2859                       }
2860                   }
2861                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2862 							  || *p == '.'))
2863 		  {
2864 		    CHAR_T str[128];	/* Should be large enough.  */
2865 		    CHAR_T delim = *p; /* '=' or '.'  */
2866 # ifdef _LIBC
2867 		    uint32_t nrules =
2868 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2869 # endif
2870 		    PATFETCH (c);
2871 		    c1 = 0;
2872 
2873 		    /* If pattern is `[[=' or '[[.'.  */
2874 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2875 
2876 		    for (;;)
2877 		      {
2878 			PATFETCH (c);
2879 			if ((c == delim && *p == ']') || p == pend)
2880 			  break;
2881 			if (c1 < sizeof (str) - 1)
2882 			  str[c1++] = c;
2883 			else
2884 			  /* This is in any case an invalid class name.  */
2885 			  str[0] = '\0';
2886                       }
2887 		    str[c1] = '\0';
2888 
2889 		    if (c == delim && *p == ']' && str[0] != '\0')
2890 		      {
2891                         unsigned int i, offset;
2892 			/* If we have no collation data we use the default
2893 			   collation in which each character is in a class
2894 			   by itself.  It also means that ASCII is the
2895 			   character set and therefore we cannot have character
2896 			   with more than one byte in the multibyte
2897 			   representation.  */
2898 
2899                         /* If not defined _LIBC, we push the name and
2900 			   `\0' for the sake of matching performance.  */
2901 			int datasize = c1 + 1;
2902 
2903 # ifdef _LIBC
2904 			int32_t idx = 0;
2905 			if (nrules == 0)
2906 # endif
2907 			  {
2908 			    if (c1 != 1)
2909 			      FREE_STACK_RETURN (REG_ECOLLATE);
2910 			  }
2911 # ifdef _LIBC
2912 			else
2913 			  {
2914 			    const int32_t *table;
2915 			    const int32_t *weights;
2916 			    const int32_t *extra;
2917 			    const int32_t *indirect;
2918 			    wint_t *cp;
2919 
2920 			    /* This #include defines a local function!  */
2921 #  include <locale/weightwc.h>
2922 
2923 			    if(delim == '=')
2924 			      {
2925 				/* We push the index for equivalence class.  */
2926 				cp = (wint_t*)str;
2927 
2928 				table = (const int32_t *)
2929 				  _NL_CURRENT (LC_COLLATE,
2930 					       _NL_COLLATE_TABLEWC);
2931 				weights = (const int32_t *)
2932 				  _NL_CURRENT (LC_COLLATE,
2933 					       _NL_COLLATE_WEIGHTWC);
2934 				extra = (const int32_t *)
2935 				  _NL_CURRENT (LC_COLLATE,
2936 					       _NL_COLLATE_EXTRAWC);
2937 				indirect = (const int32_t *)
2938 				  _NL_CURRENT (LC_COLLATE,
2939 					       _NL_COLLATE_INDIRECTWC);
2940 
2941 				idx = findidx ((const wint_t**)&cp);
2942 				if (idx == 0 || cp < (wint_t*) str + c1)
2943 				  /* This is no valid character.  */
2944 				  FREE_STACK_RETURN (REG_ECOLLATE);
2945 
2946 				str[0] = (wchar_t)idx;
2947 			      }
2948 			    else /* delim == '.' */
2949 			      {
2950 				/* We push collation sequence value
2951 				   for collating symbol.  */
2952 				int32_t table_size;
2953 				const int32_t *symb_table;
2954 				const unsigned char *extra;
2955 				int32_t idx;
2956 				int32_t elem;
2957 				int32_t second;
2958 				int32_t hash;
2959 				char char_str[c1];
2960 
2961 				/* We have to convert the name to a single-byte
2962 				   string.  This is possible since the names
2963 				   consist of ASCII characters and the internal
2964 				   representation is UCS4.  */
2965 				for (i = 0; i < c1; ++i)
2966 				  char_str[i] = str[i];
2967 
2968 				table_size =
2969 				  _NL_CURRENT_WORD (LC_COLLATE,
2970 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2971 				symb_table = (const int32_t *)
2972 				  _NL_CURRENT (LC_COLLATE,
2973 					       _NL_COLLATE_SYMB_TABLEMB);
2974 				extra = (const unsigned char *)
2975 				  _NL_CURRENT (LC_COLLATE,
2976 					       _NL_COLLATE_SYMB_EXTRAMB);
2977 
2978 				/* Locate the character in the hashing table.  */
2979 				hash = elem_hash (char_str, c1);
2980 
2981 				idx = 0;
2982 				elem = hash % table_size;
2983 				second = hash % (table_size - 2);
2984 				while (symb_table[2 * elem] != 0)
2985 				  {
2986 				    /* First compare the hashing value.  */
2987 				    if (symb_table[2 * elem] == hash
2988 					&& c1 == extra[symb_table[2 * elem + 1]]
2989 					&& memcmp (char_str,
2990 						   &extra[symb_table[2 * elem + 1]
2991 							 + 1], c1) == 0)
2992 				      {
2993 					/* Yep, this is the entry.  */
2994 					idx = symb_table[2 * elem + 1];
2995 					idx += 1 + extra[idx];
2996 					break;
2997 				      }
2998 
2999 				    /* Next entry.  */
3000 				    elem += second;
3001 				  }
3002 
3003 				if (symb_table[2 * elem] != 0)
3004 				  {
3005 				    /* Compute the index of the byte sequence
3006 				       in the table.  */
3007 				    idx += 1 + extra[idx];
3008 				    /* Adjust for the alignment.  */
3009 				    idx = (idx + 3) & ~3;
3010 
3011 				    str[0] = (wchar_t) idx + 4;
3012 				  }
3013 				else if (symb_table[2 * elem] == 0 && c1 == 1)
3014 				  {
3015 				    /* No valid character.  Match it as a
3016 				       single byte character.  */
3017 				    had_char_class = false;
3018 				    BUF_PUSH(str[0]);
3019 				    /* Update the length of characters  */
3020 				    laststart[5]++;
3021 				    range_start = str[0];
3022 
3023 				    /* Throw away the ] at the end of the
3024 				       collating symbol.  */
3025 				    PATFETCH (c);
3026 				    /* exit from the switch block.  */
3027 				    continue;
3028 				  }
3029 				else
3030 				  FREE_STACK_RETURN (REG_ECOLLATE);
3031 			      }
3032 			    datasize = 1;
3033 			  }
3034 # endif
3035                         /* Throw away the ] at the end of the equivalence
3036                            class (or collating symbol).  */
3037                         PATFETCH (c);
3038 
3039 			/* Allocate the space for the equivalence class
3040 			   (or collating symbol) (and '\0' if needed).  */
3041                         GET_BUFFER_SPACE(datasize);
3042 			/* Update the pointer to indicate end of buffer.  */
3043                         b += datasize;
3044 
3045 			if (delim == '=')
3046 			  { /* equivalence class  */
3047 			    /* Calculate the offset of char_ranges,
3048 			       which is next to equivalence_classes.  */
3049 			    offset = laststart[1] + laststart[2]
3050 			      + laststart[3] +6;
3051 			    /* Insert space.  */
3052 			    insert_space(datasize, laststart + offset, b - 1);
3053 
3054 			    /* Write the equivalence_class and \0.  */
3055 			    for (i = 0 ; i < datasize ; i++)
3056 			      laststart[offset + i] = str[i];
3057 
3058 			    /* Update the length of equivalence_classes.  */
3059 			    laststart[3] += datasize;
3060 			    had_char_class = true;
3061 			  }
3062 			else /* delim == '.' */
3063 			  { /* collating symbol  */
3064 			    /* Calculate the offset of the equivalence_classes,
3065 			       which is next to collating_symbols.  */
3066 			    offset = laststart[1] + laststart[2] + 6;
3067 			    /* Insert space and write the collationg_symbol
3068 			       and \0.  */
3069 			    insert_space(datasize, laststart + offset, b-1);
3070 			    for (i = 0 ; i < datasize ; i++)
3071 			      laststart[offset + i] = str[i];
3072 
3073 			    /* In re_match_2_internal if range_start < -1, we
3074 			       assume -range_start is the offset of the
3075 			       collating symbol which is specified as
3076 			       the character of the range start.  So we assign
3077 			       -(laststart[1] + laststart[2] + 6) to
3078 			       range_start.  */
3079 			    range_start = -(laststart[1] + laststart[2] + 6);
3080 			    /* Update the length of collating_symbol.  */
3081 			    laststart[2] += datasize;
3082 			    had_char_class = false;
3083 			  }
3084 		      }
3085                     else
3086                       {
3087                         c1++;
3088                         while (c1--)
3089                           PATUNFETCH;
3090                         BUF_PUSH ('[');
3091                         BUF_PUSH (delim);
3092                         laststart[5] += 2; /* Update the length of characters  */
3093 			range_start = delim;
3094                         had_char_class = false;
3095                       }
3096 		  }
3097                 else
3098                   {
3099                     had_char_class = false;
3100 		    BUF_PUSH(c);
3101 		    laststart[5]++;  /* Update the length of characters  */
3102 		    range_start = c;
3103                   }
3104 	      }
3105 
3106 #else /* BYTE */
3107             /* Ensure that we have enough space to push a charset: the
3108                opcode, the length count, and the bitset; 34 bytes in all.  */
3109 	    GET_BUFFER_SPACE (34);
3110 
3111             laststart = b;
3112 
3113             /* We test `*p == '^' twice, instead of using an if
3114                statement, so we only need one BUF_PUSH.  */
3115             BUF_PUSH (*p == '^' ? charset_not : charset);
3116             if (*p == '^')
3117               p++;
3118 
3119             /* Remember the first position in the bracket expression.  */
3120             p1 = p;
3121 
3122             /* Push the number of bytes in the bitmap.  */
3123             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3124 
3125             /* Clear the whole map.  */
3126             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3127 
3128             /* charset_not matches newline according to a syntax bit.  */
3129             if ((re_opcode_t) b[-2] == charset_not
3130                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3131               SET_LIST_BIT ('\n');
3132 
3133             /* Read in characters and ranges, setting map bits.  */
3134             for (;;)
3135               {
3136                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3137 
3138                 PATFETCH (c);
3139 
3140                 /* \ might escape characters inside [...] and [^...].  */
3141                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3142                   {
3143                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3144 
3145                     PATFETCH (c1);
3146                     SET_LIST_BIT (c1);
3147 		    range_start = c1;
3148                     continue;
3149                   }
3150 
3151                 /* Could be the end of the bracket expression.  If it's
3152                    not (i.e., when the bracket expression is `[]' so
3153                    far), the ']' character bit gets set way below.  */
3154                 if (c == ']' && p != p1 + 1)
3155                   break;
3156 
3157                 /* Look ahead to see if it's a range when the last thing
3158                    was a character class.  */
3159                 if (had_char_class && c == '-' && *p != ']')
3160                   FREE_STACK_RETURN (REG_ERANGE);
3161 
3162                 /* Look ahead to see if it's a range when the last thing
3163                    was a character: if this is a hyphen not at the
3164                    beginning or the end of a list, then it's the range
3165                    operator.  */
3166                 if (c == '-'
3167                     && !(p - 2 >= pattern && p[-2] == '[')
3168                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3169                     && *p != ']')
3170                   {
3171                     reg_errcode_t ret
3172                       = byte_compile_range (range_start, &p, pend, translate,
3173 					    syntax, b);
3174                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3175 		    range_start = 0xffffffff;
3176                   }
3177 
3178                 else if (p[0] == '-' && p[1] != ']')
3179                   { /* This handles ranges made up of characters only.  */
3180                     reg_errcode_t ret;
3181 
3182 		    /* Move past the `-'.  */
3183                     PATFETCH (c1);
3184 
3185                     ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3186                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3187 		    range_start = 0xffffffff;
3188                   }
3189 
3190                 /* See if we're at the beginning of a possible character
3191                    class.  */
3192 
3193                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3194                   { /* Leave room for the null.  */
3195                     char str[CHAR_CLASS_MAX_LENGTH + 1];
3196 
3197                     PATFETCH (c);
3198                     c1 = 0;
3199 
3200                     /* If pattern is `[[:'.  */
3201                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3202 
3203                     for (;;)
3204                       {
3205                         PATFETCH (c);
3206                         if ((c == ':' && *p == ']') || p == pend)
3207                           break;
3208 			if (c1 < CHAR_CLASS_MAX_LENGTH)
3209 			  str[c1++] = c;
3210 			else
3211 			  /* This is in any case an invalid class name.  */
3212 			  str[0] = '\0';
3213                       }
3214                     str[c1] = '\0';
3215 
3216                     /* If isn't a word bracketed by `[:' and `:]':
3217                        undo the ending character, the letters, and leave
3218                        the leading `:' and `[' (but set bits for them).  */
3219                     if (c == ':' && *p == ']')
3220                       {
3221 # if defined _LIBC || WIDE_CHAR_SUPPORT
3222                         boolean is_lower = STREQ (str, "lower");
3223                         boolean is_upper = STREQ (str, "upper");
3224 			wctype_t wt;
3225                         int ch;
3226 
3227 			wt = IS_CHAR_CLASS (str);
3228 			if (wt == 0)
3229 			  FREE_STACK_RETURN (REG_ECTYPE);
3230 
3231                         /* Throw away the ] at the end of the character
3232                            class.  */
3233                         PATFETCH (c);
3234 
3235                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3236 
3237                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3238 			  {
3239 #  ifdef _LIBC
3240 			    if (__iswctype (__btowc (ch), wt))
3241 			      SET_LIST_BIT (ch);
3242 #  else
3243 			    if (iswctype (btowc (ch), wt))
3244 			      SET_LIST_BIT (ch);
3245 #  endif
3246 
3247 			    if (translate && (is_upper || is_lower)
3248 				&& (ISUPPER (ch) || ISLOWER (ch)))
3249 			      SET_LIST_BIT (ch);
3250 			  }
3251 
3252                         had_char_class = true;
3253 # else
3254                         int ch;
3255                         boolean is_alnum = STREQ (str, "alnum");
3256                         boolean is_alpha = STREQ (str, "alpha");
3257                         boolean is_blank = STREQ (str, "blank");
3258                         boolean is_cntrl = STREQ (str, "cntrl");
3259                         boolean is_digit = STREQ (str, "digit");
3260                         boolean is_graph = STREQ (str, "graph");
3261                         boolean is_lower = STREQ (str, "lower");
3262                         boolean is_print = STREQ (str, "print");
3263                         boolean is_punct = STREQ (str, "punct");
3264                         boolean is_space = STREQ (str, "space");
3265                         boolean is_upper = STREQ (str, "upper");
3266                         boolean is_xdigit = STREQ (str, "xdigit");
3267 
3268                         if (!IS_CHAR_CLASS (str))
3269 			  FREE_STACK_RETURN (REG_ECTYPE);
3270 
3271                         /* Throw away the ] at the end of the character
3272                            class.  */
3273                         PATFETCH (c);
3274 
3275                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3276 
3277                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3278                           {
3279 			    /* This was split into 3 if's to
3280 			       avoid an arbitrary limit in some compiler.  */
3281                             if (   (is_alnum  && ISALNUM (ch))
3282                                 || (is_alpha  && ISALPHA (ch))
3283                                 || (is_blank  && ISBLANK (ch))
3284                                 || (is_cntrl  && ISCNTRL (ch)))
3285 			      SET_LIST_BIT (ch);
3286 			    if (   (is_digit  && ISDIGIT (ch))
3287                                 || (is_graph  && ISGRAPH (ch))
3288                                 || (is_lower  && ISLOWER (ch))
3289                                 || (is_print  && ISPRINT (ch)))
3290 			      SET_LIST_BIT (ch);
3291 			    if (   (is_punct  && ISPUNCT (ch))
3292                                 || (is_space  && ISSPACE (ch))
3293                                 || (is_upper  && ISUPPER (ch))
3294                                 || (is_xdigit && ISXDIGIT (ch)))
3295 			      SET_LIST_BIT (ch);
3296 			    if (   translate && (is_upper || is_lower)
3297 				&& (ISUPPER (ch) || ISLOWER (ch)))
3298 			      SET_LIST_BIT (ch);
3299                           }
3300                         had_char_class = true;
3301 # endif	/* libc || wctype.h */
3302                       }
3303                     else
3304                       {
3305                         c1++;
3306                         while (c1--)
3307                           PATUNFETCH;
3308                         SET_LIST_BIT ('[');
3309                         SET_LIST_BIT (':');
3310 			range_start = ':';
3311                         had_char_class = false;
3312                       }
3313                   }
3314                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3315 		  {
3316 		    unsigned char str[MB_LEN_MAX + 1];
3317 # ifdef _LIBC
3318 		    uint32_t nrules =
3319 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3320 # endif
3321 
3322 		    PATFETCH (c);
3323 		    c1 = 0;
3324 
3325 		    /* If pattern is `[[='.  */
3326 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3327 
3328 		    for (;;)
3329 		      {
3330 			PATFETCH (c);
3331 			if ((c == '=' && *p == ']') || p == pend)
3332 			  break;
3333 			if (c1 < MB_LEN_MAX)
3334 			  str[c1++] = c;
3335 			else
3336 			  /* This is in any case an invalid class name.  */
3337 			  str[0] = '\0';
3338                       }
3339 		    str[c1] = '\0';
3340 
3341 		    if (c == '=' && *p == ']' && str[0] != '\0')
3342 		      {
3343 			/* If we have no collation data we use the default
3344 			   collation in which each character is in a class
3345 			   by itself.  It also means that ASCII is the
3346 			   character set and therefore we cannot have character
3347 			   with more than one byte in the multibyte
3348 			   representation.  */
3349 # ifdef _LIBC
3350 			if (nrules == 0)
3351 # endif
3352 			  {
3353 			    if (c1 != 1)
3354 			      FREE_STACK_RETURN (REG_ECOLLATE);
3355 
3356 			    /* Throw away the ] at the end of the equivalence
3357 			       class.  */
3358 			    PATFETCH (c);
3359 
3360 			    /* Set the bit for the character.  */
3361 			    SET_LIST_BIT (str[0]);
3362 			  }
3363 # ifdef _LIBC
3364 			else
3365 			  {
3366 			    /* Try to match the byte sequence in `str' against
3367 			       those known to the collate implementation.
3368 			       First find out whether the bytes in `str' are
3369 			       actually from exactly one character.  */
3370 			    const int32_t *table;
3371 			    const unsigned char *weights;
3372 			    const unsigned char *extra;
3373 			    const int32_t *indirect;
3374 			    int32_t idx;
3375 			    const unsigned char *cp = str;
3376 			    int ch;
3377 
3378 			    /* This #include defines a local function!  */
3379 #  include <locale/weight.h>
3380 
3381 			    table = (const int32_t *)
3382 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3383 			    weights = (const unsigned char *)
3384 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3385 			    extra = (const unsigned char *)
3386 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3387 			    indirect = (const int32_t *)
3388 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3389 
3390 			    idx = findidx (&cp);
3391 			    if (idx == 0 || cp < str + c1)
3392 			      /* This is no valid character.  */
3393 			      FREE_STACK_RETURN (REG_ECOLLATE);
3394 
3395 			    /* Throw away the ] at the end of the equivalence
3396 			       class.  */
3397 			    PATFETCH (c);
3398 
3399 			    /* Now we have to go throught the whole table
3400 			       and find all characters which have the same
3401 			       first level weight.
3402 
3403 			       XXX Note that this is not entirely correct.
3404 			       we would have to match multibyte sequences
3405 			       but this is not possible with the current
3406 			       implementation.  */
3407 			    for (ch = 1; ch < 256; ++ch)
3408 			      /* XXX This test would have to be changed if we
3409 				 would allow matching multibyte sequences.  */
3410 			      if (table[ch] > 0)
3411 				{
3412 				  int32_t idx2 = table[ch];
3413 				  size_t len = weights[idx2];
3414 
3415 				  /* Test whether the lenghts match.  */
3416 				  if (weights[idx] == len)
3417 				    {
3418 				      /* They do.  New compare the bytes of
3419 					 the weight.  */
3420 				      size_t cnt = 0;
3421 
3422 				      while (cnt < len
3423 					     && (weights[idx + 1 + cnt]
3424 						 == weights[idx2 + 1 + cnt]))
3425 					++cnt;
3426 
3427 				      if (cnt == len)
3428 					/* They match.  Mark the character as
3429 					   acceptable.  */
3430 					SET_LIST_BIT (ch);
3431 				    }
3432 				}
3433 			  }
3434 # endif
3435 			had_char_class = true;
3436 		      }
3437                     else
3438                       {
3439                         c1++;
3440                         while (c1--)
3441                           PATUNFETCH;
3442                         SET_LIST_BIT ('[');
3443                         SET_LIST_BIT ('=');
3444 			range_start = '=';
3445                         had_char_class = false;
3446                       }
3447 		  }
3448                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3449 		  {
3450 		    unsigned char str[128];	/* Should be large enough.  */
3451 # ifdef _LIBC
3452 		    uint32_t nrules =
3453 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3454 # endif
3455 
3456 		    PATFETCH (c);
3457 		    c1 = 0;
3458 
3459 		    /* If pattern is `[[.'.  */
3460 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3461 
3462 		    for (;;)
3463 		      {
3464 			PATFETCH (c);
3465 			if ((c == '.' && *p == ']') || p == pend)
3466 			  break;
3467 			if (c1 < sizeof (str))
3468 			  str[c1++] = c;
3469 			else
3470 			  /* This is in any case an invalid class name.  */
3471 			  str[0] = '\0';
3472                       }
3473 		    str[c1] = '\0';
3474 
3475 		    if (c == '.' && *p == ']' && str[0] != '\0')
3476 		      {
3477 			/* If we have no collation data we use the default
3478 			   collation in which each character is the name
3479 			   for its own class which contains only the one
3480 			   character.  It also means that ASCII is the
3481 			   character set and therefore we cannot have character
3482 			   with more than one byte in the multibyte
3483 			   representation.  */
3484 # ifdef _LIBC
3485 			if (nrules == 0)
3486 # endif
3487 			  {
3488 			    if (c1 != 1)
3489 			      FREE_STACK_RETURN (REG_ECOLLATE);
3490 
3491 			    /* Throw away the ] at the end of the equivalence
3492 			       class.  */
3493 			    PATFETCH (c);
3494 
3495 			    /* Set the bit for the character.  */
3496 			    SET_LIST_BIT (str[0]);
3497 			    range_start = ((const unsigned char *) str)[0];
3498 			  }
3499 # ifdef _LIBC
3500 			else
3501 			  {
3502 			    /* Try to match the byte sequence in `str' against
3503 			       those known to the collate implementation.
3504 			       First find out whether the bytes in `str' are
3505 			       actually from exactly one character.  */
3506 			    int32_t table_size;
3507 			    const int32_t *symb_table;
3508 			    const unsigned char *extra;
3509 			    int32_t idx;
3510 			    int32_t elem;
3511 			    int32_t second;
3512 			    int32_t hash;
3513 
3514 			    table_size =
3515 			      _NL_CURRENT_WORD (LC_COLLATE,
3516 						_NL_COLLATE_SYMB_HASH_SIZEMB);
3517 			    symb_table = (const int32_t *)
3518 			      _NL_CURRENT (LC_COLLATE,
3519 					   _NL_COLLATE_SYMB_TABLEMB);
3520 			    extra = (const unsigned char *)
3521 			      _NL_CURRENT (LC_COLLATE,
3522 					   _NL_COLLATE_SYMB_EXTRAMB);
3523 
3524 			    /* Locate the character in the hashing table.  */
3525 			    hash = elem_hash (str, c1);
3526 
3527 			    idx = 0;
3528 			    elem = hash % table_size;
3529 			    second = hash % (table_size - 2);
3530 			    while (symb_table[2 * elem] != 0)
3531 			      {
3532 				/* First compare the hashing value.  */
3533 				if (symb_table[2 * elem] == hash
3534 				    && c1 == extra[symb_table[2 * elem + 1]]
3535 				    && memcmp (str,
3536 					       &extra[symb_table[2 * elem + 1]
3537 						     + 1],
3538 					       c1) == 0)
3539 				  {
3540 				    /* Yep, this is the entry.  */
3541 				    idx = symb_table[2 * elem + 1];
3542 				    idx += 1 + extra[idx];
3543 				    break;
3544 				  }
3545 
3546 				/* Next entry.  */
3547 				elem += second;
3548 			      }
3549 
3550 			    if (symb_table[2 * elem] == 0)
3551 			      /* This is no valid character.  */
3552 			      FREE_STACK_RETURN (REG_ECOLLATE);
3553 
3554 			    /* Throw away the ] at the end of the equivalence
3555 			       class.  */
3556 			    PATFETCH (c);
3557 
3558 			    /* Now add the multibyte character(s) we found
3559 			       to the accept list.
3560 
3561 			       XXX Note that this is not entirely correct.
3562 			       we would have to match multibyte sequences
3563 			       but this is not possible with the current
3564 			       implementation.  Also, we have to match
3565 			       collating symbols, which expand to more than
3566 			       one file, as a whole and not allow the
3567 			       individual bytes.  */
3568 			    c1 = extra[idx++];
3569 			    if (c1 == 1)
3570 			      range_start = extra[idx];
3571 			    while (c1-- > 0)
3572 			      {
3573 				SET_LIST_BIT (extra[idx]);
3574 				++idx;
3575 			      }
3576 			  }
3577 # endif
3578 			had_char_class = false;
3579 		      }
3580                     else
3581                       {
3582                         c1++;
3583                         while (c1--)
3584                           PATUNFETCH;
3585                         SET_LIST_BIT ('[');
3586                         SET_LIST_BIT ('.');
3587 			range_start = '.';
3588                         had_char_class = false;
3589                       }
3590 		  }
3591                 else
3592                   {
3593                     had_char_class = false;
3594                     SET_LIST_BIT (c);
3595 		    range_start = c;
3596                   }
3597               }
3598 
3599             /* Discard any (non)matching list bytes that are all 0 at the
3600                end of the map.  Decrease the map-length byte too.  */
3601             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3602               b[-1]--;
3603             b += b[-1];
3604 #endif /* WCHAR */
3605           }
3606           break;
3607 
3608 
3609 	case '(':
3610           if (syntax & RE_NO_BK_PARENS)
3611             goto handle_open;
3612           else
3613             goto normal_char;
3614 
3615 
3616         case ')':
3617           if (syntax & RE_NO_BK_PARENS)
3618             goto handle_close;
3619           else
3620             goto normal_char;
3621 
3622 
3623         case '\n':
3624           if (syntax & RE_NEWLINE_ALT)
3625             goto handle_alt;
3626           else
3627             goto normal_char;
3628 
3629 
3630 	case '|':
3631           if (syntax & RE_NO_BK_VBAR)
3632             goto handle_alt;
3633           else
3634             goto normal_char;
3635 
3636 
3637         case '{':
3638            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3639              goto handle_interval;
3640            else
3641              goto normal_char;
3642 
3643 
3644         case '\\':
3645           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3646 
3647           /* Do not translate the character after the \, so that we can
3648              distinguish, e.g., \B from \b, even if we normally would
3649              translate, e.g., B to b.  */
3650           PATFETCH_RAW (c);
3651 
3652           switch (c)
3653             {
3654             case '(':
3655               if (syntax & RE_NO_BK_PARENS)
3656                 goto normal_backslash;
3657 
3658             handle_open:
3659               bufp->re_nsub++;
3660               regnum++;
3661 
3662               if (COMPILE_STACK_FULL)
3663                 {
3664                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
3665                             compile_stack_elt_t);
3666                   if (compile_stack.stack == NULL) return REG_ESPACE;
3667 
3668                   compile_stack.size <<= 1;
3669                 }
3670 
3671               /* These are the values to restore when we hit end of this
3672                  group.  They are all relative offsets, so that if the
3673                  whole pattern moves because of realloc, they will still
3674                  be valid.  */
3675               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3676               COMPILE_STACK_TOP.fixup_alt_jump
3677                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3678               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3679               COMPILE_STACK_TOP.regnum = regnum;
3680 
3681               /* We will eventually replace the 0 with the number of
3682                  groups inner to this one.  But do not push a
3683                  start_memory for groups beyond the last one we can
3684                  represent in the compiled pattern.  */
3685               if (regnum <= MAX_REGNUM)
3686                 {
3687                   COMPILE_STACK_TOP.inner_group_offset = b
3688 		    - COMPILED_BUFFER_VAR + 2;
3689                   BUF_PUSH_3 (start_memory, regnum, 0);
3690                 }
3691 
3692               compile_stack.avail++;
3693 
3694               fixup_alt_jump = 0;
3695               laststart = 0;
3696               begalt = b;
3697 	      /* If we've reached MAX_REGNUM groups, then this open
3698 		 won't actually generate any code, so we'll have to
3699 		 clear pending_exact explicitly.  */
3700 	      pending_exact = 0;
3701               break;
3702 
3703 
3704             case ')':
3705               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3706 
3707               if (COMPILE_STACK_EMPTY)
3708 		{
3709 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3710 		    goto normal_backslash;
3711 		  else
3712 		    FREE_STACK_RETURN (REG_ERPAREN);
3713 		}
3714 
3715             handle_close:
3716               if (fixup_alt_jump)
3717                 { /* Push a dummy failure point at the end of the
3718                      alternative for a possible future
3719                      `pop_failure_jump' to pop.  See comments at
3720                      `push_dummy_failure' in `re_match_2'.  */
3721                   BUF_PUSH (push_dummy_failure);
3722 
3723                   /* We allocated space for this jump when we assigned
3724                      to `fixup_alt_jump', in the `handle_alt' case below.  */
3725                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3726                 }
3727 
3728               /* See similar code for backslashed left paren above.  */
3729               if (COMPILE_STACK_EMPTY)
3730 		{
3731 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3732 		    goto normal_char;
3733 		  else
3734 		    FREE_STACK_RETURN (REG_ERPAREN);
3735 		}
3736 
3737               /* Since we just checked for an empty stack above, this
3738                  ``can't happen''.  */
3739               assert (compile_stack.avail != 0);
3740               {
3741                 /* We don't just want to restore into `regnum', because
3742                    later groups should continue to be numbered higher,
3743                    as in `(ab)c(de)' -- the second group is #2.  */
3744                 regnum_t this_group_regnum;
3745 
3746                 compile_stack.avail--;
3747                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3748                 fixup_alt_jump
3749                   = COMPILE_STACK_TOP.fixup_alt_jump
3750                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3751                     : 0;
3752                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3753                 this_group_regnum = COMPILE_STACK_TOP.regnum;
3754 		/* If we've reached MAX_REGNUM groups, then this open
3755 		   won't actually generate any code, so we'll have to
3756 		   clear pending_exact explicitly.  */
3757 		pending_exact = 0;
3758 
3759                 /* We're at the end of the group, so now we know how many
3760                    groups were inside this one.  */
3761                 if (this_group_regnum <= MAX_REGNUM)
3762                   {
3763 		    UCHAR_T *inner_group_loc
3764                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3765 
3766                     *inner_group_loc = regnum - this_group_regnum;
3767                     BUF_PUSH_3 (stop_memory, this_group_regnum,
3768                                 regnum - this_group_regnum);
3769                   }
3770               }
3771               break;
3772 
3773 
3774             case '|':					/* `\|'.  */
3775               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3776                 goto normal_backslash;
3777             handle_alt:
3778               if (syntax & RE_LIMITED_OPS)
3779                 goto normal_char;
3780 
3781               /* Insert before the previous alternative a jump which
3782                  jumps to this alternative if the former fails.  */
3783               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3784               INSERT_JUMP (on_failure_jump, begalt,
3785 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3786               pending_exact = 0;
3787               b += 1 + OFFSET_ADDRESS_SIZE;
3788 
3789               /* The alternative before this one has a jump after it
3790                  which gets executed if it gets matched.  Adjust that
3791                  jump so it will jump to this alternative's analogous
3792                  jump (put in below, which in turn will jump to the next
3793                  (if any) alternative's such jump, etc.).  The last such
3794                  jump jumps to the correct final destination.  A picture:
3795                           _____ _____
3796                           |   | |   |
3797                           |   v |   v
3798                          a | b   | c
3799 
3800                  If we are at `b', then fixup_alt_jump right now points to a
3801                  three-byte space after `a'.  We'll put in the jump, set
3802                  fixup_alt_jump to right after `b', and leave behind three
3803                  bytes which we'll fill in when we get to after `c'.  */
3804 
3805               if (fixup_alt_jump)
3806                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3807 
3808               /* Mark and leave space for a jump after this alternative,
3809                  to be filled in later either by next alternative or
3810                  when know we're at the end of a series of alternatives.  */
3811               fixup_alt_jump = b;
3812               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3813               b += 1 + OFFSET_ADDRESS_SIZE;
3814 
3815               laststart = 0;
3816               begalt = b;
3817               break;
3818 
3819 
3820             case '{':
3821               /* If \{ is a literal.  */
3822               if (!(syntax & RE_INTERVALS)
3823                      /* If we're at `\{' and it's not the open-interval
3824                         operator.  */
3825 		  || (syntax & RE_NO_BK_BRACES))
3826                 goto normal_backslash;
3827 
3828             handle_interval:
3829               {
3830                 /* If got here, then the syntax allows intervals.  */
3831 
3832                 /* At least (most) this many matches must be made.  */
3833                 int lower_bound = -1, upper_bound = -1;
3834 
3835 		/* Place in the uncompiled pattern (i.e., just after
3836 		   the '{') to go back to if the interval is invalid.  */
3837 		const CHAR_T *beg_interval = p;
3838 
3839                 if (p == pend)
3840 		  goto invalid_interval;
3841 
3842                 GET_UNSIGNED_NUMBER (lower_bound);
3843 
3844                 if (c == ',')
3845                   {
3846                     GET_UNSIGNED_NUMBER (upper_bound);
3847 		    if (upper_bound < 0)
3848 		      upper_bound = RE_DUP_MAX;
3849                   }
3850                 else
3851                   /* Interval such as `{1}' => match exactly once. */
3852                   upper_bound = lower_bound;
3853 
3854                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3855 		  goto invalid_interval;
3856 
3857                 if (!(syntax & RE_NO_BK_BRACES))
3858                   {
3859 		    if (c != '\\' || p == pend)
3860 		      goto invalid_interval;
3861                     PATFETCH (c);
3862                   }
3863 
3864                 if (c != '}')
3865 		  goto invalid_interval;
3866 
3867                 /* If it's invalid to have no preceding re.  */
3868                 if (!laststart)
3869                   {
3870 		    if (syntax & RE_CONTEXT_INVALID_OPS
3871 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3872                       FREE_STACK_RETURN (REG_BADRPT);
3873                     else if (syntax & RE_CONTEXT_INDEP_OPS)
3874                       laststart = b;
3875                     else
3876                       goto unfetch_interval;
3877                   }
3878 
3879                 /* We just parsed a valid interval.  */
3880 
3881                 if (RE_DUP_MAX < upper_bound)
3882 		  FREE_STACK_RETURN (REG_BADBR);
3883 
3884                 /* If the upper bound is zero, don't want to succeed at
3885                    all; jump from `laststart' to `b + 3', which will be
3886 		   the end of the buffer after we insert the jump.  */
3887 		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3888 		   instead of 'b + 3'.  */
3889                  if (upper_bound == 0)
3890                    {
3891                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3892                      INSERT_JUMP (jump, laststart, b + 1
3893 				  + OFFSET_ADDRESS_SIZE);
3894                      b += 1 + OFFSET_ADDRESS_SIZE;
3895                    }
3896 
3897                  /* Otherwise, we have a nontrivial interval.  When
3898                     we're all done, the pattern will look like:
3899                       set_number_at <jump count> <upper bound>
3900                       set_number_at <succeed_n count> <lower bound>
3901                       succeed_n <after jump addr> <succeed_n count>
3902                       <body of loop>
3903                       jump_n <succeed_n addr> <jump count>
3904                     (The upper bound and `jump_n' are omitted if
3905                     `upper_bound' is 1, though.)  */
3906                  else
3907                    { /* If the upper bound is > 1, we need to insert
3908                         more at the end of the loop.  */
3909                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3910 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3911 
3912                      GET_BUFFER_SPACE (nbytes);
3913 
3914                      /* Initialize lower bound of the `succeed_n', even
3915                         though it will be set during matching by its
3916                         attendant `set_number_at' (inserted next),
3917                         because `re_compile_fastmap' needs to know.
3918                         Jump to the `jump_n' we might insert below.  */
3919                      INSERT_JUMP2 (succeed_n, laststart,
3920                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
3921 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3922 				   , lower_bound);
3923                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924 
3925                      /* Code to initialize the lower bound.  Insert
3926                         before the `succeed_n'.  The `5' is the last two
3927                         bytes of this `set_number_at', plus 3 bytes of
3928                         the following `succeed_n'.  */
3929 		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3930 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3931 			of the following `succeed_n'.  */
3932                      PREFIX(insert_op2) (set_number_at, laststart, 1
3933 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3934                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3935 
3936                      if (upper_bound > 1)
3937                        { /* More than one repetition is allowed, so
3938                             append a backward jump to the `succeed_n'
3939                             that starts this interval.
3940 
3941                             When we've reached this during matching,
3942                             we'll have matched the interval once, so
3943                             jump back only `upper_bound - 1' times.  */
3944                          STORE_JUMP2 (jump_n, b, laststart
3945 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3946                                       upper_bound - 1);
3947                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3948 
3949                          /* The location we want to set is the second
3950                             parameter of the `jump_n'; that is `b-2' as
3951                             an absolute address.  `laststart' will be
3952                             the `set_number_at' we're about to insert;
3953                             `laststart+3' the number to set, the source
3954                             for the relative address.  But we are
3955                             inserting into the middle of the pattern --
3956                             so everything is getting moved up by 5.
3957                             Conclusion: (b - 2) - (laststart + 3) + 5,
3958                             i.e., b - laststart.
3959 
3960                             We insert this at the beginning of the loop
3961                             so that if we fail during matching, we'll
3962                             reinitialize the bounds.  */
3963                          PREFIX(insert_op2) (set_number_at, laststart,
3964 					     b - laststart,
3965 					     upper_bound - 1, b);
3966                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3967                        }
3968                    }
3969                 pending_exact = 0;
3970 		break;
3971 
3972 	      invalid_interval:
3973 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3974 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3975 	      unfetch_interval:
3976 		/* Match the characters as literals.  */
3977 		p = beg_interval;
3978 		c = '{';
3979 		if (syntax & RE_NO_BK_BRACES)
3980 		  goto normal_char;
3981 		else
3982 		  goto normal_backslash;
3983 	      }
3984 
3985 #ifdef emacs
3986             /* There is no way to specify the before_dot and after_dot
3987                operators.  rms says this is ok.  --karl  */
3988             case '=':
3989               BUF_PUSH (at_dot);
3990               break;
3991 
3992             case 's':
3993               laststart = b;
3994               PATFETCH (c);
3995               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3996               break;
3997 
3998             case 'S':
3999               laststart = b;
4000               PATFETCH (c);
4001               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4002               break;
4003 #endif /* emacs */
4004 
4005 
4006             case 'w':
4007 	      if (syntax & RE_NO_GNU_OPS)
4008 		goto normal_char;
4009               laststart = b;
4010               BUF_PUSH (wordchar);
4011               break;
4012 
4013 
4014             case 'W':
4015 	      if (syntax & RE_NO_GNU_OPS)
4016 		goto normal_char;
4017               laststart = b;
4018               BUF_PUSH (notwordchar);
4019               break;
4020 
4021 
4022             case '<':
4023 	      if (syntax & RE_NO_GNU_OPS)
4024 		goto normal_char;
4025               BUF_PUSH (wordbeg);
4026               break;
4027 
4028             case '>':
4029 	      if (syntax & RE_NO_GNU_OPS)
4030 		goto normal_char;
4031               BUF_PUSH (wordend);
4032               break;
4033 
4034             case 'b':
4035 	      if (syntax & RE_NO_GNU_OPS)
4036 		goto normal_char;
4037               BUF_PUSH (wordbound);
4038               break;
4039 
4040             case 'B':
4041 	      if (syntax & RE_NO_GNU_OPS)
4042 		goto normal_char;
4043               BUF_PUSH (notwordbound);
4044               break;
4045 
4046             case '`':
4047 	      if (syntax & RE_NO_GNU_OPS)
4048 		goto normal_char;
4049               BUF_PUSH (begbuf);
4050               break;
4051 
4052             case '\'':
4053 	      if (syntax & RE_NO_GNU_OPS)
4054 		goto normal_char;
4055               BUF_PUSH (endbuf);
4056               break;
4057 
4058             case '1': case '2': case '3': case '4': case '5':
4059             case '6': case '7': case '8': case '9':
4060               if (syntax & RE_NO_BK_REFS)
4061                 goto normal_char;
4062 
4063               c1 = c - '0';
4064 
4065               if (c1 > regnum)
4066                 FREE_STACK_RETURN (REG_ESUBREG);
4067 
4068               /* Can't back reference to a subexpression if inside of it.  */
4069               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4070                 goto normal_char;
4071 
4072               laststart = b;
4073               BUF_PUSH_2 (duplicate, c1);
4074               break;
4075 
4076 
4077             case '+':
4078             case '?':
4079               if (syntax & RE_BK_PLUS_QM)
4080                 goto handle_plus;
4081               else
4082                 goto normal_backslash;
4083 
4084             default:
4085             normal_backslash:
4086               /* You might think it would be useful for \ to mean
4087                  not to translate; but if we don't translate it
4088                  it will never match anything.  */
4089               c = TRANSLATE (c);
4090               goto normal_char;
4091             }
4092           break;
4093 
4094 
4095 	default:
4096         /* Expects the character in `c'.  */
4097 	normal_char:
4098 	      /* If no exactn currently being built.  */
4099           if (!pending_exact
4100 #ifdef WCHAR
4101 	      /* If last exactn handle binary(or character) and
4102 		 new exactn handle character(or binary).  */
4103 	      || is_exactn_bin != is_binary[p - 1 - pattern]
4104 #endif /* WCHAR */
4105 
4106               /* If last exactn not at current position.  */
4107               || pending_exact + *pending_exact + 1 != b
4108 
4109               /* We have only one byte following the exactn for the count.  */
4110 	      || *pending_exact == (1 << BYTEWIDTH) - 1
4111 
4112               /* If followed by a repetition operator.  */
4113               || *p == '*' || *p == '^'
4114 	      || ((syntax & RE_BK_PLUS_QM)
4115 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4116 		  : (*p == '+' || *p == '?'))
4117 	      || ((syntax & RE_INTERVALS)
4118                   && ((syntax & RE_NO_BK_BRACES)
4119 		      ? *p == '{'
4120                       : (p[0] == '\\' && p[1] == '{'))))
4121 	    {
4122 	      /* Start building a new exactn.  */
4123 
4124               laststart = b;
4125 
4126 #ifdef WCHAR
4127 	      /* Is this exactn binary data or character? */
4128 	      is_exactn_bin = is_binary[p - 1 - pattern];
4129 	      if (is_exactn_bin)
4130 		  BUF_PUSH_2 (exactn_bin, 0);
4131 	      else
4132 		  BUF_PUSH_2 (exactn, 0);
4133 #else
4134 	      BUF_PUSH_2 (exactn, 0);
4135 #endif /* WCHAR */
4136 	      pending_exact = b - 1;
4137             }
4138 
4139 	  BUF_PUSH (c);
4140           (*pending_exact)++;
4141 	  break;
4142         } /* switch (c) */
4143     } /* while p != pend */
4144 
4145 
4146   /* Through the pattern now.  */
4147 
4148   if (fixup_alt_jump)
4149     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4150 
4151   if (!COMPILE_STACK_EMPTY)
4152     FREE_STACK_RETURN (REG_EPAREN);
4153 
4154   /* If we don't want backtracking, force success
4155      the first time we reach the end of the compiled pattern.  */
4156   if (syntax & RE_NO_POSIX_BACKTRACKING)
4157     BUF_PUSH (succeed);
4158 
4159 #ifdef WCHAR
4160   free (pattern);
4161   free (mbs_offset);
4162   free (is_binary);
4163 #endif
4164   free (compile_stack.stack);
4165 
4166   /* We have succeeded; set the length of the buffer.  */
4167 #ifdef WCHAR
4168   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4169 #else
4170   bufp->used = b - bufp->buffer;
4171 #endif
4172 
4173 #ifdef DEBUG
4174   if (debug)
4175     {
4176       DEBUG_PRINT1 ("\nCompiled pattern: \n");
4177       PREFIX(print_compiled_pattern) (bufp);
4178     }
4179 #endif /* DEBUG */
4180 
4181 #ifndef MATCH_MAY_ALLOCATE
4182   /* Initialize the failure stack to the largest possible stack.  This
4183      isn't necessary unless we're trying to avoid calling alloca in
4184      the search and match routines.  */
4185   {
4186     int num_regs = bufp->re_nsub + 1;
4187 
4188     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4189        is strictly greater than re_max_failures, the largest possible stack
4190        is 2 * re_max_failures failure points.  */
4191     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4192       {
4193 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4194 
4195 # ifdef emacs
4196 	if (! fail_stack.stack)
4197 	  fail_stack.stack
4198 	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4199 				    * sizeof (PREFIX(fail_stack_elt_t)));
4200 	else
4201 	  fail_stack.stack
4202 	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4203 				     (fail_stack.size
4204 				      * sizeof (PREFIX(fail_stack_elt_t))));
4205 # else /* not emacs */
4206 	if (! fail_stack.stack)
4207 	  fail_stack.stack
4208 	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4209 				   * sizeof (PREFIX(fail_stack_elt_t)));
4210 	else
4211 	  fail_stack.stack
4212 	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4213 					    (fail_stack.size
4214 				     * sizeof (PREFIX(fail_stack_elt_t))));
4215 # endif /* not emacs */
4216       }
4217 
4218    PREFIX(regex_grow_registers) (num_regs);
4219   }
4220 #endif /* not MATCH_MAY_ALLOCATE */
4221 
4222   return REG_NOERROR;
4223 } /* regex_compile */
4224 
4225 /* Subroutines for `regex_compile'.  */
4226 
4227 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
4228 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4229 
4230 static void
4231 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4232 {
4233   *loc = (UCHAR_T) op;
4234   STORE_NUMBER (loc + 1, arg);
4235 }
4236 
4237 
4238 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4239 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4240 
4241 static void
4242 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4243 {
4244   *loc = (UCHAR_T) op;
4245   STORE_NUMBER (loc + 1, arg1);
4246   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4247 }
4248 
4249 
4250 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4251    for OP followed by two-byte integer parameter ARG.  */
4252 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4253 
4254 static void
4255 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4256 {
4257   register UCHAR_T *pfrom = end;
4258   register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4259 
4260   while (pfrom != loc)
4261     *--pto = *--pfrom;
4262 
4263   PREFIX(store_op1) (op, loc, arg);
4264 }
4265 
4266 
4267 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4268 /* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4269 
4270 static void
4271 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4272                     int arg2, UCHAR_T *end)
4273 {
4274   register UCHAR_T *pfrom = end;
4275   register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4276 
4277   while (pfrom != loc)
4278     *--pto = *--pfrom;
4279 
4280   PREFIX(store_op2) (op, loc, arg1, arg2);
4281 }
4282 
4283 
4284 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4285    after an alternative or a begin-subexpression.  We assume there is at
4286    least one character before the ^.  */
4287 
4288 static boolean
4289 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4290                           reg_syntax_t syntax)
4291 {
4292   const CHAR_T *prev = p - 2;
4293   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4294 
4295   return
4296        /* After a subexpression?  */
4297        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4298        /* After an alternative?  */
4299     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4300 }
4301 
4302 
4303 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4304    at least one character after the $, i.e., `P < PEND'.  */
4305 
4306 static boolean
4307 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4308                           reg_syntax_t syntax)
4309 {
4310   const CHAR_T *next = p;
4311   boolean next_backslash = *next == '\\';
4312   const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4313 
4314   return
4315        /* Before a subexpression?  */
4316        (syntax & RE_NO_BK_PARENS ? *next == ')'
4317         : next_backslash && next_next && *next_next == ')')
4318        /* Before an alternative?  */
4319     || (syntax & RE_NO_BK_VBAR ? *next == '|'
4320         : next_backslash && next_next && *next_next == '|');
4321 }
4322 
4323 #else /* not INSIDE_RECURSION */
4324 
4325 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4326    false if it's not.  */
4327 
4328 static boolean
4329 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4330 {
4331   int this_element;
4332 
4333   for (this_element = compile_stack.avail - 1;
4334        this_element >= 0;
4335        this_element--)
4336     if (compile_stack.stack[this_element].regnum == regnum)
4337       return true;
4338 
4339   return false;
4340 }
4341 #endif /* not INSIDE_RECURSION */
4342 
4343 #ifdef INSIDE_RECURSION
4344 
4345 #ifdef WCHAR
4346 /* This insert space, which size is "num", into the pattern at "loc".
4347    "end" must point the end of the allocated buffer.  */
4348 static void
4349 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4350 {
4351   register CHAR_T *pto = end;
4352   register CHAR_T *pfrom = end - num;
4353 
4354   while (pfrom >= loc)
4355     *pto-- = *pfrom--;
4356 }
4357 #endif /* WCHAR */
4358 
4359 #ifdef WCHAR
4360 static reg_errcode_t
4361 wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4362                    const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4363                    reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4364 {
4365   const CHAR_T *p = *p_ptr;
4366   CHAR_T range_start, range_end;
4367   reg_errcode_t ret;
4368 # ifdef _LIBC
4369   uint32_t nrules;
4370   uint32_t start_val, end_val;
4371 # endif
4372   if (p == pend)
4373     return REG_ERANGE;
4374 
4375 # ifdef _LIBC
4376   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4377   if (nrules != 0)
4378     {
4379       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4380 						       _NL_COLLATE_COLLSEQWC);
4381       const unsigned char *extra = (const unsigned char *)
4382 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4383 
4384       if (range_start_char < -1)
4385 	{
4386 	  /* range_start is a collating symbol.  */
4387 	  int32_t *wextra;
4388 	  /* Retreive the index and get collation sequence value.  */
4389 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4390 	  start_val = wextra[1 + *wextra];
4391 	}
4392       else
4393 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4394 
4395       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4396 
4397       /* Report an error if the range is empty and the syntax prohibits
4398 	 this.  */
4399       ret = ((syntax & RE_NO_EMPTY_RANGES)
4400 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4401 
4402       /* Insert space to the end of the char_ranges.  */
4403       insert_space(2, b - char_set[5] - 2, b - 1);
4404       *(b - char_set[5] - 2) = (wchar_t)start_val;
4405       *(b - char_set[5] - 1) = (wchar_t)end_val;
4406       char_set[4]++; /* ranges_index */
4407     }
4408   else
4409 # endif
4410     {
4411       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4412 	range_start_char;
4413       range_end = TRANSLATE (p[0]);
4414       /* Report an error if the range is empty and the syntax prohibits
4415 	 this.  */
4416       ret = ((syntax & RE_NO_EMPTY_RANGES)
4417 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4418 
4419       /* Insert space to the end of the char_ranges.  */
4420       insert_space(2, b - char_set[5] - 2, b - 1);
4421       *(b - char_set[5] - 2) = range_start;
4422       *(b - char_set[5] - 1) = range_end;
4423       char_set[4]++; /* ranges_index */
4424     }
4425   /* Have to increment the pointer into the pattern string, so the
4426      caller isn't still at the ending character.  */
4427   (*p_ptr)++;
4428 
4429   return ret;
4430 }
4431 #else /* BYTE */
4432 /* Read the ending character of a range (in a bracket expression) from the
4433    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4434    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4435    Then we set the translation of all bits between the starting and
4436    ending characters (inclusive) in the compiled pattern B.
4437 
4438    Return an error code.
4439 
4440    We use these short variable names so we can use the same macros as
4441    `regex_compile' itself.  */
4442 
4443 static reg_errcode_t
4444 byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4445                     const char *pend, RE_TRANSLATE_TYPE translate,
4446                     reg_syntax_t syntax, unsigned char *b)
4447 {
4448   unsigned this_char;
4449   const char *p = *p_ptr;
4450   reg_errcode_t ret;
4451 # if _LIBC
4452   const unsigned char *collseq;
4453   unsigned int start_colseq;
4454   unsigned int end_colseq;
4455 # else
4456   unsigned end_char;
4457 # endif
4458 
4459   if (p == pend)
4460     return REG_ERANGE;
4461 
4462   /* Have to increment the pointer into the pattern string, so the
4463      caller isn't still at the ending character.  */
4464   (*p_ptr)++;
4465 
4466   /* Report an error if the range is empty and the syntax prohibits this.  */
4467   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4468 
4469 # if _LIBC
4470   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4471 						 _NL_COLLATE_COLLSEQMB);
4472 
4473   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4474   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4475   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4476     {
4477       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4478 
4479       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4480 	{
4481 	  SET_LIST_BIT (TRANSLATE (this_char));
4482 	  ret = REG_NOERROR;
4483 	}
4484     }
4485 # else
4486   /* Here we see why `this_char' has to be larger than an `unsigned
4487      char' -- we would otherwise go into an infinite loop, since all
4488      characters <= 0xff.  */
4489   range_start_char = TRANSLATE (range_start_char);
4490   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491      and some compilers cast it to int implicitly, so following for_loop
4492      may fall to (almost) infinite loop.
4493      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494      To avoid this, we cast p[0] to unsigned int and truncate it.  */
4495   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4496 
4497   for (this_char = range_start_char; this_char <= end_char; ++this_char)
4498     {
4499       SET_LIST_BIT (TRANSLATE (this_char));
4500       ret = REG_NOERROR;
4501     }
4502 # endif
4503 
4504   return ret;
4505 }
4506 #endif /* WCHAR */
4507 
4508 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4510    characters can start a string that matches the pattern.  This fastmap
4511    is used by re_search to skip quickly over impossible starting points.
4512 
4513    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514    area as BUFP->fastmap.
4515 
4516    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517    the pattern buffer.
4518 
4519    Returns 0 if we succeed, -2 if an internal error.   */
4520 
4521 #ifdef WCHAR
4522 /* local function for re_compile_fastmap.
4523    truncate wchar_t character to char.  */
4524 static unsigned char truncate_wchar (CHAR_T c);
4525 
4526 static unsigned char
4527 truncate_wchar (CHAR_T c)
4528 {
4529   unsigned char buf[MB_CUR_MAX];
4530   mbstate_t state;
4531   int retval;
4532   memset (&state, '\0', sizeof (state));
4533 # ifdef _LIBC
4534   retval = __wcrtomb (buf, c, &state);
4535 # else
4536   retval = wcrtomb (buf, c, &state);
4537 # endif
4538   return retval > 0 ? buf[0] : (unsigned char) c;
4539 }
4540 #endif /* WCHAR */
4541 
4542 static int
4543 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4544 {
4545   int j, k;
4546 #ifdef MATCH_MAY_ALLOCATE
4547   PREFIX(fail_stack_type) fail_stack;
4548 #endif
4549 #ifndef REGEX_MALLOC
4550   char *destination;
4551 #endif
4552 
4553   register char *fastmap = bufp->fastmap;
4554 
4555 #ifdef WCHAR
4556   /* We need to cast pattern to (wchar_t*), because we casted this compiled
4557      pattern to (char*) in regex_compile.  */
4558   UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4559   register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4560 #else /* BYTE */
4561   UCHAR_T *pattern = bufp->buffer;
4562   register UCHAR_T *pend = pattern + bufp->used;
4563 #endif /* WCHAR */
4564   UCHAR_T *p = pattern;
4565 
4566 #ifdef REL_ALLOC
4567   /* This holds the pointer to the failure stack, when
4568      it is allocated relocatably.  */
4569   fail_stack_elt_t *failure_stack_ptr;
4570 #endif
4571 
4572   /* Assume that each path through the pattern can be null until
4573      proven otherwise.  We set this false at the bottom of switch
4574      statement, to which we get only if a particular path doesn't
4575      match the empty string.  */
4576   boolean path_can_be_null = true;
4577 
4578   /* We aren't doing a `succeed_n' to begin with.  */
4579   boolean succeed_n_p = false;
4580 
4581   assert (fastmap != NULL && p != NULL);
4582 
4583   INIT_FAIL_STACK ();
4584   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4585   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4586   bufp->can_be_null = 0;
4587 
4588   while (1)
4589     {
4590       if (p == pend || *p == (UCHAR_T) succeed)
4591 	{
4592 	  /* We have reached the (effective) end of pattern.  */
4593 	  if (!FAIL_STACK_EMPTY ())
4594 	    {
4595 	      bufp->can_be_null |= path_can_be_null;
4596 
4597 	      /* Reset for next path.  */
4598 	      path_can_be_null = true;
4599 
4600 	      p = fail_stack.stack[--fail_stack.avail].pointer;
4601 
4602 	      continue;
4603 	    }
4604 	  else
4605 	    break;
4606 	}
4607 
4608       /* We should never be about to go beyond the end of the pattern.  */
4609       assert (p < pend);
4610 
4611       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4612 	{
4613 
4614         /* I guess the idea here is to simply not bother with a fastmap
4615            if a backreference is used, since it's too hard to figure out
4616            the fastmap for the corresponding group.  Setting
4617            `can_be_null' stops `re_search_2' from using the fastmap, so
4618            that is all we do.  */
4619 	case duplicate:
4620 	  bufp->can_be_null = 1;
4621           goto done;
4622 
4623 
4624       /* Following are the cases which match a character.  These end
4625          with `break'.  */
4626 
4627 #ifdef WCHAR
4628 	case exactn:
4629           fastmap[truncate_wchar(p[1])] = 1;
4630 	  break;
4631 #else /* BYTE */
4632 	case exactn:
4633           fastmap[p[1]] = 1;
4634 	  break;
4635 #endif /* WCHAR */
4636 #ifdef MBS_SUPPORT
4637 	case exactn_bin:
4638 	  fastmap[p[1]] = 1;
4639 	  break;
4640 #endif
4641 
4642 #ifdef WCHAR
4643         /* It is hard to distinguish fastmap from (multi byte) characters
4644            which depends on current locale.  */
4645         case charset:
4646 	case charset_not:
4647 	case wordchar:
4648 	case notwordchar:
4649           bufp->can_be_null = 1;
4650           goto done;
4651 #else /* BYTE */
4652         case charset:
4653           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4654 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4655               fastmap[j] = 1;
4656 	  break;
4657 
4658 
4659 	case charset_not:
4660 	  /* Chars beyond end of map must be allowed.  */
4661 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4662             fastmap[j] = 1;
4663 
4664 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4665 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4666               fastmap[j] = 1;
4667           break;
4668 
4669 
4670 	case wordchar:
4671 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4672 	    if (SYNTAX (j) == Sword)
4673 	      fastmap[j] = 1;
4674 	  break;
4675 
4676 
4677 	case notwordchar:
4678 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4679 	    if (SYNTAX (j) != Sword)
4680 	      fastmap[j] = 1;
4681 	  break;
4682 #endif /* WCHAR */
4683 
4684         case anychar:
4685 	  {
4686 	    int fastmap_newline = fastmap['\n'];
4687 
4688 	    /* `.' matches anything ...  */
4689 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4690 	      fastmap[j] = 1;
4691 
4692 	    /* ... except perhaps newline.  */
4693 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4694 	      fastmap['\n'] = fastmap_newline;
4695 
4696 	    /* Return if we have already set `can_be_null'; if we have,
4697 	       then the fastmap is irrelevant.  Something's wrong here.  */
4698 	    else if (bufp->can_be_null)
4699 	      goto done;
4700 
4701 	    /* Otherwise, have to check alternative paths.  */
4702 	    break;
4703 	  }
4704 
4705 #ifdef emacs
4706         case syntaxspec:
4707 	  k = *p++;
4708 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4709 	    if (SYNTAX (j) == (enum syntaxcode) k)
4710 	      fastmap[j] = 1;
4711 	  break;
4712 
4713 
4714 	case notsyntaxspec:
4715 	  k = *p++;
4716 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4717 	    if (SYNTAX (j) != (enum syntaxcode) k)
4718 	      fastmap[j] = 1;
4719 	  break;
4720 
4721 
4722       /* All cases after this match the empty string.  These end with
4723          `continue'.  */
4724 
4725 
4726 	case before_dot:
4727 	case at_dot:
4728 	case after_dot:
4729           continue;
4730 #endif /* emacs */
4731 
4732 
4733         case no_op:
4734         case begline:
4735         case endline:
4736 	case begbuf:
4737 	case endbuf:
4738 	case wordbound:
4739 	case notwordbound:
4740 	case wordbeg:
4741 	case wordend:
4742         case push_dummy_failure:
4743           continue;
4744 
4745 
4746 	case jump_n:
4747         case pop_failure_jump:
4748 	case maybe_pop_jump:
4749 	case jump:
4750         case jump_past_alt:
4751 	case dummy_failure_jump:
4752           EXTRACT_NUMBER_AND_INCR (j, p);
4753 	  p += j;
4754 	  if (j > 0)
4755 	    continue;
4756 
4757           /* Jump backward implies we just went through the body of a
4758              loop and matched nothing.  Opcode jumped to should be
4759              `on_failure_jump' or `succeed_n'.  Just treat it like an
4760              ordinary jump.  For a * loop, it has pushed its failure
4761              point already; if so, discard that as redundant.  */
4762           if ((re_opcode_t) *p != on_failure_jump
4763 	      && (re_opcode_t) *p != succeed_n)
4764 	    continue;
4765 
4766           p++;
4767           EXTRACT_NUMBER_AND_INCR (j, p);
4768           p += j;
4769 
4770           /* If what's on the stack is where we are now, pop it.  */
4771           if (!FAIL_STACK_EMPTY ()
4772 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4773             fail_stack.avail--;
4774 
4775           continue;
4776 
4777 
4778         case on_failure_jump:
4779         case on_failure_keep_string_jump:
4780 	handle_on_failure_jump:
4781           EXTRACT_NUMBER_AND_INCR (j, p);
4782 
4783           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4784              end of the pattern.  We don't want to push such a point,
4785              since when we restore it above, entering the switch will
4786              increment `p' past the end of the pattern.  We don't need
4787              to push such a point since we obviously won't find any more
4788              fastmap entries beyond `pend'.  Such a pattern can match
4789              the null string, though.  */
4790           if (p + j < pend)
4791             {
4792               if (!PUSH_PATTERN_OP (p + j, fail_stack))
4793 		{
4794 		  RESET_FAIL_STACK ();
4795 		  return -2;
4796 		}
4797             }
4798           else
4799             bufp->can_be_null = 1;
4800 
4801           if (succeed_n_p)
4802             {
4803               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4804               succeed_n_p = false;
4805 	    }
4806 
4807           continue;
4808 
4809 
4810 	case succeed_n:
4811           /* Get to the number of times to succeed.  */
4812           p += OFFSET_ADDRESS_SIZE;
4813 
4814           /* Increment p past the n for when k != 0.  */
4815           EXTRACT_NUMBER_AND_INCR (k, p);
4816           if (k == 0)
4817 	    {
4818               p -= 2 * OFFSET_ADDRESS_SIZE;
4819   	      succeed_n_p = true;  /* Spaghetti code alert.  */
4820               goto handle_on_failure_jump;
4821             }
4822           continue;
4823 
4824 
4825 	case set_number_at:
4826           p += 2 * OFFSET_ADDRESS_SIZE;
4827           continue;
4828 
4829 
4830 	case start_memory:
4831         case stop_memory:
4832 	  p += 2;
4833 	  continue;
4834 
4835 
4836 	default:
4837           abort (); /* We have listed all the cases.  */
4838         } /* switch *p++ */
4839 
4840       /* Getting here means we have found the possible starting
4841          characters for one path of the pattern -- and that the empty
4842          string does not match.  We need not follow this path further.
4843          Instead, look at the next alternative (remembered on the
4844          stack), or quit if no more.  The test at the top of the loop
4845          does these things.  */
4846       path_can_be_null = false;
4847       p = pend;
4848     } /* while p */
4849 
4850   /* Set `can_be_null' for the last path (also the first path, if the
4851      pattern is empty).  */
4852   bufp->can_be_null |= path_can_be_null;
4853 
4854  done:
4855   RESET_FAIL_STACK ();
4856   return 0;
4857 }
4858 
4859 #else /* not INSIDE_RECURSION */
4860 
4861 int
4862 re_compile_fastmap (struct re_pattern_buffer *bufp)
4863 {
4864 # ifdef MBS_SUPPORT
4865   if (MB_CUR_MAX != 1)
4866     return wcs_re_compile_fastmap(bufp);
4867   else
4868 # endif
4869     return byte_re_compile_fastmap(bufp);
4870 } /* re_compile_fastmap */
4871 #ifdef _LIBC
4872 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4873 #endif
4874 
4875 
4876 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4877    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4878    this memory for recording register information.  STARTS and ENDS
4879    must be allocated using the malloc library routine, and must each
4880    be at least NUM_REGS * sizeof (regoff_t) bytes long.
4881 
4882    If NUM_REGS == 0, then subsequent matches should allocate their own
4883    register data.
4884 
4885    Unless this function is called, the first search or match using
4886    PATTERN_BUFFER will allocate its own register data, without
4887    freeing the old data.  */
4888 
4889 void
4890 re_set_registers (struct re_pattern_buffer *bufp,
4891                   struct re_registers *regs, unsigned num_regs,
4892                   regoff_t *starts, regoff_t *ends)
4893 {
4894   if (num_regs)
4895     {
4896       bufp->regs_allocated = REGS_REALLOCATE;
4897       regs->num_regs = num_regs;
4898       regs->start = starts;
4899       regs->end = ends;
4900     }
4901   else
4902     {
4903       bufp->regs_allocated = REGS_UNALLOCATED;
4904       regs->num_regs = 0;
4905       regs->start = regs->end = (regoff_t *) 0;
4906     }
4907 }
4908 #ifdef _LIBC
4909 weak_alias (__re_set_registers, re_set_registers)
4910 #endif
4911 
4912 /* Searching routines.  */
4913 
4914 /* Like re_search_2, below, but only one string is specified, and
4915    doesn't let you say where to stop matching.  */
4916 
4917 int
4918 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4919            int startpos, int range, struct re_registers *regs)
4920 {
4921   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4922 		      regs, size);
4923 }
4924 #ifdef _LIBC
4925 weak_alias (__re_search, re_search)
4926 #endif
4927 
4928 
4929 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4930    virtual concatenation of STRING1 and STRING2, starting first at index
4931    STARTPOS, then at STARTPOS + 1, and so on.
4932 
4933    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4934 
4935    RANGE is how far to scan while trying to match.  RANGE = 0 means try
4936    only at STARTPOS; in general, the last start tried is STARTPOS +
4937    RANGE.
4938 
4939    In REGS, return the indices of the virtual concatenation of STRING1
4940    and STRING2 that matched the entire BUFP->buffer and its contained
4941    subexpressions.
4942 
4943    Do not consider matching one past the index STOP in the virtual
4944    concatenation of STRING1 and STRING2.
4945 
4946    We return either the position in the strings at which the match was
4947    found, -1 if no match, or -2 if error (such as failure
4948    stack overflow).  */
4949 
4950 int
4951 re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4952              const char *string2, int size2, int startpos, int range,
4953              struct re_registers *regs, int stop)
4954 {
4955 # ifdef MBS_SUPPORT
4956   if (MB_CUR_MAX != 1)
4957     return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4958 			    range, regs, stop);
4959   else
4960 # endif
4961     return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962 			     range, regs, stop);
4963 } /* re_search_2 */
4964 #ifdef _LIBC
4965 weak_alias (__re_search_2, re_search_2)
4966 #endif
4967 
4968 #endif /* not INSIDE_RECURSION */
4969 
4970 #ifdef INSIDE_RECURSION
4971 
4972 #ifdef MATCH_MAY_ALLOCATE
4973 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4974 #else
4975 # define FREE_VAR(var) free (var); var = NULL
4976 #endif
4977 
4978 #ifdef WCHAR
4979 # define MAX_ALLOCA_SIZE	2000
4980 
4981 # define FREE_WCS_BUFFERS() \
4982   do {									      \
4983     if (size1 > MAX_ALLOCA_SIZE)					      \
4984       {									      \
4985 	free (wcs_string1);						      \
4986 	free (mbs_offset1);						      \
4987       }									      \
4988     else								      \
4989       {									      \
4990 	FREE_VAR (wcs_string1);						      \
4991 	FREE_VAR (mbs_offset1);						      \
4992       }									      \
4993     if (size2 > MAX_ALLOCA_SIZE) 					      \
4994       {									      \
4995 	free (wcs_string2);						      \
4996 	free (mbs_offset2);						      \
4997       }									      \
4998     else								      \
4999       {									      \
5000 	FREE_VAR (wcs_string2);						      \
5001 	FREE_VAR (mbs_offset2);						      \
5002       }									      \
5003   } while (0)
5004 
5005 #endif
5006 
5007 
5008 static int
5009 PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5010                      int size1, const char *string2, int size2,
5011                      int startpos, int range,
5012                      struct re_registers *regs, int stop)
5013 {
5014   int val;
5015   register char *fastmap = bufp->fastmap;
5016   register RE_TRANSLATE_TYPE translate = bufp->translate;
5017   int total_size = size1 + size2;
5018   int endpos = startpos + range;
5019 #ifdef WCHAR
5020   /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5021   wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5022   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5023   int wcs_size1 = 0, wcs_size2 = 0;
5024   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5025   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5026   /* They hold whether each wchar_t is binary data or not.  */
5027   char *is_binary = NULL;
5028 #endif /* WCHAR */
5029 
5030   /* Check for out-of-range STARTPOS.  */
5031   if (startpos < 0 || startpos > total_size)
5032     return -1;
5033 
5034   /* Fix up RANGE if it might eventually take us outside
5035      the virtual concatenation of STRING1 and STRING2.
5036      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5037   if (endpos < 0)
5038     range = 0 - startpos;
5039   else if (endpos > total_size)
5040     range = total_size - startpos;
5041 
5042   /* If the search isn't to be a backwards one, don't waste time in a
5043      search for a pattern that must be anchored.  */
5044   if (bufp->used > 0 && range > 0
5045       && ((re_opcode_t) bufp->buffer[0] == begbuf
5046 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5047 	  || ((re_opcode_t) bufp->buffer[0] == begline
5048 	      && !bufp->newline_anchor)))
5049     {
5050       if (startpos > 0)
5051 	return -1;
5052       else
5053 	range = 1;
5054     }
5055 
5056 #ifdef emacs
5057   /* In a forward search for something that starts with \=.
5058      don't keep searching past point.  */
5059   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5060     {
5061       range = PT - startpos;
5062       if (range <= 0)
5063 	return -1;
5064     }
5065 #endif /* emacs */
5066 
5067   /* Update the fastmap now if not correct already.  */
5068   if (fastmap && !bufp->fastmap_accurate)
5069     if (re_compile_fastmap (bufp) == -2)
5070       return -2;
5071 
5072 #ifdef WCHAR
5073   /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5074      fill them with converted string.  */
5075   if (size1 != 0)
5076     {
5077       if (size1 > MAX_ALLOCA_SIZE)
5078 	{
5079 	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5080 	  mbs_offset1 = TALLOC (size1 + 1, int);
5081 	  is_binary = TALLOC (size1 + 1, char);
5082 	}
5083       else
5084 	{
5085 	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5086 	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5087 	  is_binary = REGEX_TALLOC (size1 + 1, char);
5088 	}
5089       if (!wcs_string1 || !mbs_offset1 || !is_binary)
5090 	{
5091 	  if (size1 > MAX_ALLOCA_SIZE)
5092 	    {
5093 	      free (wcs_string1);
5094 	      free (mbs_offset1);
5095 	      free (is_binary);
5096 	    }
5097 	  else
5098 	    {
5099 	      FREE_VAR (wcs_string1);
5100 	      FREE_VAR (mbs_offset1);
5101 	      FREE_VAR (is_binary);
5102 	    }
5103 	  return -2;
5104 	}
5105       wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5106 				     mbs_offset1, is_binary);
5107       wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5108       if (size1 > MAX_ALLOCA_SIZE)
5109 	free (is_binary);
5110       else
5111 	FREE_VAR (is_binary);
5112     }
5113   if (size2 != 0)
5114     {
5115       if (size2 > MAX_ALLOCA_SIZE)
5116 	{
5117 	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5118 	  mbs_offset2 = TALLOC (size2 + 1, int);
5119 	  is_binary = TALLOC (size2 + 1, char);
5120 	}
5121       else
5122 	{
5123 	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5124 	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5125 	  is_binary = REGEX_TALLOC (size2 + 1, char);
5126 	}
5127       if (!wcs_string2 || !mbs_offset2 || !is_binary)
5128 	{
5129 	  FREE_WCS_BUFFERS ();
5130 	  if (size2 > MAX_ALLOCA_SIZE)
5131 	    free (is_binary);
5132 	  else
5133 	    FREE_VAR (is_binary);
5134 	  return -2;
5135 	}
5136       wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5137 				     mbs_offset2, is_binary);
5138       wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5139       if (size2 > MAX_ALLOCA_SIZE)
5140 	free (is_binary);
5141       else
5142 	FREE_VAR (is_binary);
5143     }
5144 #endif /* WCHAR */
5145 
5146 
5147   /* Loop through the string, looking for a place to start matching.  */
5148   for (;;)
5149     {
5150       /* If a fastmap is supplied, skip quickly over characters that
5151          cannot be the start of a match.  If the pattern can match the
5152          null string, however, we don't need to skip characters; we want
5153          the first null string.  */
5154       if (fastmap && startpos < total_size && !bufp->can_be_null)
5155 	{
5156 	  if (range > 0)	/* Searching forwards.  */
5157 	    {
5158 	      register const char *d;
5159 	      register int lim = 0;
5160 	      int irange = range;
5161 
5162               if (startpos < size1 && startpos + range >= size1)
5163                 lim = range - (size1 - startpos);
5164 
5165 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5166 
5167               /* Written out as an if-else to avoid testing `translate'
5168                  inside the loop.  */
5169 	      if (translate)
5170                 while (range > lim
5171                        && !fastmap[(unsigned char)
5172 				   translate[(unsigned char) *d++]])
5173                   range--;
5174 	      else
5175                 while (range > lim && !fastmap[(unsigned char) *d++])
5176                   range--;
5177 
5178 	      startpos += irange - range;
5179 	    }
5180 	  else				/* Searching backwards.  */
5181 	    {
5182 	      register CHAR_T c = (size1 == 0 || startpos >= size1
5183 				      ? string2[startpos - size1]
5184 				      : string1[startpos]);
5185 
5186 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5187 		goto advance;
5188 	    }
5189 	}
5190 
5191       /* If can't match the null string, and that's all we have left, fail.  */
5192       if (range >= 0 && startpos == total_size && fastmap
5193           && !bufp->can_be_null)
5194        {
5195 #ifdef WCHAR
5196          FREE_WCS_BUFFERS ();
5197 #endif
5198          return -1;
5199        }
5200 
5201 #ifdef WCHAR
5202       val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5203 				     size2, startpos, regs, stop,
5204 				     wcs_string1, wcs_size1,
5205 				     wcs_string2, wcs_size2,
5206 				     mbs_offset1, mbs_offset2);
5207 #else /* BYTE */
5208       val = byte_re_match_2_internal (bufp, string1, size1, string2,
5209 				      size2, startpos, regs, stop);
5210 #endif /* BYTE */
5211 
5212 #ifndef REGEX_MALLOC
5213 # ifdef C_ALLOCA
5214       alloca (0);
5215 # endif
5216 #endif
5217 
5218       if (val >= 0)
5219 	{
5220 #ifdef WCHAR
5221 	  FREE_WCS_BUFFERS ();
5222 #endif
5223 	  return startpos;
5224 	}
5225 
5226       if (val == -2)
5227 	{
5228 #ifdef WCHAR
5229 	  FREE_WCS_BUFFERS ();
5230 #endif
5231 	  return -2;
5232 	}
5233 
5234     advance:
5235       if (!range)
5236         break;
5237       else if (range > 0)
5238         {
5239           range--;
5240           startpos++;
5241         }
5242       else
5243         {
5244           range++;
5245           startpos--;
5246         }
5247     }
5248 #ifdef WCHAR
5249   FREE_WCS_BUFFERS ();
5250 #endif
5251   return -1;
5252 }
5253 
5254 #ifdef WCHAR
5255 /* This converts PTR, a pointer into one of the search wchar_t strings
5256    `string1' and `string2' into an multibyte string offset from the
5257    beginning of that string. We use mbs_offset to optimize.
5258    See convert_mbs_to_wcs.  */
5259 # define POINTER_TO_OFFSET(ptr)						\
5260   (FIRST_STRING_P (ptr)							\
5261    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5262    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5263 		 + csize1)))
5264 #else /* BYTE */
5265 /* This converts PTR, a pointer into one of the search strings `string1'
5266    and `string2' into an offset from the beginning of that string.  */
5267 # define POINTER_TO_OFFSET(ptr)			\
5268   (FIRST_STRING_P (ptr)				\
5269    ? ((regoff_t) ((ptr) - string1))		\
5270    : ((regoff_t) ((ptr) - string2 + size1)))
5271 #endif /* WCHAR */
5272 
5273 /* Macros for dealing with the split strings in re_match_2.  */
5274 
5275 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5276 
5277 /* Call before fetching a character with *d.  This switches over to
5278    string2 if necessary.  */
5279 #define PREFETCH()							\
5280   while (d == dend)						    	\
5281     {									\
5282       /* End of string2 => fail.  */					\
5283       if (dend == end_match_2) 						\
5284         goto fail;							\
5285       /* End of string1 => advance to string2.  */ 			\
5286       d = string2;						        \
5287       dend = end_match_2;						\
5288     }
5289 
5290 /* Test if at very beginning or at very end of the virtual concatenation
5291    of `string1' and `string2'.  If only one string, it's `string2'.  */
5292 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5293 #define AT_STRINGS_END(d) ((d) == end2)
5294 
5295 
5296 /* Test if D points to a character which is word-constituent.  We have
5297    two special cases to check for: if past the end of string1, look at
5298    the first character in string2; and if before the beginning of
5299    string2, look at the last character in string1.  */
5300 #ifdef WCHAR
5301 /* Use internationalized API instead of SYNTAX.  */
5302 # define WORDCHAR_P(d)							\
5303   (iswalnum ((wint_t)((d) == end1 ? *string2				\
5304            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5305    || ((d) == end1 ? *string2						\
5306        : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5307 #else /* BYTE */
5308 # define WORDCHAR_P(d)							\
5309   (SYNTAX ((d) == end1 ? *string2					\
5310            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5311    == Sword)
5312 #endif /* WCHAR */
5313 
5314 /* Disabled due to a compiler bug -- see comment at case wordbound */
5315 #if 0
5316 /* Test if the character before D and the one at D differ with respect
5317    to being word-constituent.  */
5318 #define AT_WORD_BOUNDARY(d)						\
5319   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5320    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5321 #endif
5322 
5323 /* Free everything we malloc.  */
5324 #ifdef MATCH_MAY_ALLOCATE
5325 # ifdef WCHAR
5326 #  define FREE_VARIABLES()						\
5327   do {									\
5328     REGEX_FREE_STACK (fail_stack.stack);				\
5329     FREE_VAR (regstart);						\
5330     FREE_VAR (regend);							\
5331     FREE_VAR (old_regstart);						\
5332     FREE_VAR (old_regend);						\
5333     FREE_VAR (best_regstart);						\
5334     FREE_VAR (best_regend);						\
5335     FREE_VAR (reg_info);						\
5336     FREE_VAR (reg_dummy);						\
5337     FREE_VAR (reg_info_dummy);						\
5338     if (!cant_free_wcs_buf)						\
5339       {									\
5340         FREE_VAR (string1);						\
5341         FREE_VAR (string2);						\
5342         FREE_VAR (mbs_offset1);						\
5343         FREE_VAR (mbs_offset2);						\
5344       }									\
5345   } while (0)
5346 # else /* BYTE */
5347 #  define FREE_VARIABLES()						\
5348   do {									\
5349     REGEX_FREE_STACK (fail_stack.stack);				\
5350     FREE_VAR (regstart);						\
5351     FREE_VAR (regend);							\
5352     FREE_VAR (old_regstart);						\
5353     FREE_VAR (old_regend);						\
5354     FREE_VAR (best_regstart);						\
5355     FREE_VAR (best_regend);						\
5356     FREE_VAR (reg_info);						\
5357     FREE_VAR (reg_dummy);						\
5358     FREE_VAR (reg_info_dummy);						\
5359   } while (0)
5360 # endif /* WCHAR */
5361 #else
5362 # ifdef WCHAR
5363 #  define FREE_VARIABLES()						\
5364   do {									\
5365     if (!cant_free_wcs_buf)						\
5366       {									\
5367         FREE_VAR (string1);						\
5368         FREE_VAR (string2);						\
5369         FREE_VAR (mbs_offset1);						\
5370         FREE_VAR (mbs_offset2);						\
5371       }									\
5372   } while (0)
5373 # else /* BYTE */
5374 #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5375 # endif /* WCHAR */
5376 #endif /* not MATCH_MAY_ALLOCATE */
5377 
5378 /* These values must meet several constraints.  They must not be valid
5379    register values; since we have a limit of 255 registers (because
5380    we use only one byte in the pattern for the register number), we can
5381    use numbers larger than 255.  They must differ by 1, because of
5382    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5383    be larger than the value for the highest register, so we do not try
5384    to actually save any registers when none are active.  */
5385 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5386 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5387 
5388 #else /* not INSIDE_RECURSION */
5389 /* Matching routines.  */
5390 
5391 #ifndef emacs   /* Emacs never uses this.  */
5392 /* re_match is like re_match_2 except it takes only a single string.  */
5393 
5394 int
5395 re_match (struct re_pattern_buffer *bufp, const char *string,
5396           int size, int pos, struct re_registers *regs)
5397 {
5398   int result;
5399 # ifdef MBS_SUPPORT
5400   if (MB_CUR_MAX != 1)
5401     result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5402 				      pos, regs, size,
5403 				      NULL, 0, NULL, 0, NULL, NULL);
5404   else
5405 # endif
5406     result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5407 				  pos, regs, size);
5408 # ifndef REGEX_MALLOC
5409 #  ifdef C_ALLOCA
5410   alloca (0);
5411 #  endif
5412 # endif
5413   return result;
5414 }
5415 # ifdef _LIBC
5416 weak_alias (__re_match, re_match)
5417 # endif
5418 #endif /* not emacs */
5419 
5420 #endif /* not INSIDE_RECURSION */
5421 
5422 #ifdef INSIDE_RECURSION
5423 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5424                                                   UCHAR_T *end,
5425 					PREFIX(register_info_type) *reg_info);
5426 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5427                                                 UCHAR_T *end,
5428 					PREFIX(register_info_type) *reg_info);
5429 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5430                                                       UCHAR_T *end,
5431 					PREFIX(register_info_type) *reg_info);
5432 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5433                                    int len, char *translate);
5434 #else /* not INSIDE_RECURSION */
5435 
5436 /* re_match_2 matches the compiled pattern in BUFP against the
5437    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5438    and SIZE2, respectively).  We start matching at POS, and stop
5439    matching at STOP.
5440 
5441    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5442    store offsets for the substring each group matched in REGS.  See the
5443    documentation for exactly how many groups we fill.
5444 
5445    We return -1 if no match, -2 if an internal error (such as the
5446    failure stack overflowing).  Otherwise, we return the length of the
5447    matched substring.  */
5448 
5449 int
5450 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5451             const char *string2, int size2, int pos,
5452             struct re_registers *regs, int stop)
5453 {
5454   int result;
5455 # ifdef MBS_SUPPORT
5456   if (MB_CUR_MAX != 1)
5457     result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5458 				      pos, regs, stop,
5459 				      NULL, 0, NULL, 0, NULL, NULL);
5460   else
5461 # endif
5462     result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5463 				  pos, regs, stop);
5464 
5465 #ifndef REGEX_MALLOC
5466 # ifdef C_ALLOCA
5467   alloca (0);
5468 # endif
5469 #endif
5470   return result;
5471 }
5472 #ifdef _LIBC
5473 weak_alias (__re_match_2, re_match_2)
5474 #endif
5475 
5476 #endif /* not INSIDE_RECURSION */
5477 
5478 #ifdef INSIDE_RECURSION
5479 
5480 #ifdef WCHAR
5481 static int count_mbs_length (int *, int);
5482 
5483 /* This check the substring (from 0, to length) of the multibyte string,
5484    to which offset_buffer correspond. And count how many wchar_t_characters
5485    the substring occupy. We use offset_buffer to optimization.
5486    See convert_mbs_to_wcs.  */
5487 
5488 static int
5489 count_mbs_length(int *offset_buffer, int length)
5490 {
5491   int upper, lower;
5492 
5493   /* Check whether the size is valid.  */
5494   if (length < 0)
5495     return -1;
5496 
5497   if (offset_buffer == NULL)
5498     return 0;
5499 
5500   /* If there are no multibyte character, offset_buffer[i] == i.
5501    Optmize for this case.  */
5502   if (offset_buffer[length] == length)
5503     return length;
5504 
5505   /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5506   upper = length;
5507   lower = 0;
5508 
5509   while (true)
5510     {
5511       int middle = (lower + upper) / 2;
5512       if (middle == lower || middle == upper)
5513 	break;
5514       if (offset_buffer[middle] > length)
5515 	upper = middle;
5516       else if (offset_buffer[middle] < length)
5517 	lower = middle;
5518       else
5519 	return middle;
5520     }
5521 
5522   return -1;
5523 }
5524 #endif /* WCHAR */
5525 
5526 /* This is a separate function so that we can force an alloca cleanup
5527    afterwards.  */
5528 #ifdef WCHAR
5529 static int
5530 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5531                          const char *cstring1, int csize1,
5532                          const char *cstring2, int csize2,
5533                          int pos,
5534 			 struct re_registers *regs,
5535                          int stop,
5536      /* string1 == string2 == NULL means string1/2, size1/2 and
5537 	mbs_offset1/2 need seting up in this function.  */
5538      /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5539                          wchar_t *string1, int size1,
5540                          wchar_t *string2, int size2,
5541      /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5542 			 int *mbs_offset1, int *mbs_offset2)
5543 #else /* BYTE */
5544 static int
5545 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5546                           const char *string1, int size1,
5547                           const char *string2, int size2,
5548                           int pos,
5549 			  struct re_registers *regs, int stop)
5550 #endif /* BYTE */
5551 {
5552   /* General temporaries.  */
5553   int mcnt;
5554   UCHAR_T *p1;
5555 #ifdef WCHAR
5556   /* They hold whether each wchar_t is binary data or not.  */
5557   char *is_binary = NULL;
5558   /* If true, we can't free string1/2, mbs_offset1/2.  */
5559   int cant_free_wcs_buf = 1;
5560 #endif /* WCHAR */
5561 
5562   /* Just past the end of the corresponding string.  */
5563   const CHAR_T *end1, *end2;
5564 
5565   /* Pointers into string1 and string2, just past the last characters in
5566      each to consider matching.  */
5567   const CHAR_T *end_match_1, *end_match_2;
5568 
5569   /* Where we are in the data, and the end of the current string.  */
5570   const CHAR_T *d, *dend;
5571 
5572   /* Where we are in the pattern, and the end of the pattern.  */
5573 #ifdef WCHAR
5574   UCHAR_T *pattern, *p;
5575   register UCHAR_T *pend;
5576 #else /* BYTE */
5577   UCHAR_T *p = bufp->buffer;
5578   register UCHAR_T *pend = p + bufp->used;
5579 #endif /* WCHAR */
5580 
5581   /* Mark the opcode just after a start_memory, so we can test for an
5582      empty subpattern when we get to the stop_memory.  */
5583   UCHAR_T *just_past_start_mem = 0;
5584 
5585   /* We use this to map every character in the string.  */
5586   RE_TRANSLATE_TYPE translate = bufp->translate;
5587 
5588   /* Failure point stack.  Each place that can handle a failure further
5589      down the line pushes a failure point on this stack.  It consists of
5590      restart, regend, and reg_info for all registers corresponding to
5591      the subexpressions we're currently inside, plus the number of such
5592      registers, and, finally, two char *'s.  The first char * is where
5593      to resume scanning the pattern; the second one is where to resume
5594      scanning the strings.  If the latter is zero, the failure point is
5595      a ``dummy''; if a failure happens and the failure point is a dummy,
5596      it gets discarded and the next next one is tried.  */
5597 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5598   PREFIX(fail_stack_type) fail_stack;
5599 #endif
5600 #ifdef DEBUG
5601   static unsigned failure_id;
5602   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5603 #endif
5604 
5605 #ifdef REL_ALLOC
5606   /* This holds the pointer to the failure stack, when
5607      it is allocated relocatably.  */
5608   fail_stack_elt_t *failure_stack_ptr;
5609 #endif
5610 
5611   /* We fill all the registers internally, independent of what we
5612      return, for use in backreferences.  The number here includes
5613      an element for register zero.  */
5614   size_t num_regs = bufp->re_nsub + 1;
5615 
5616   /* The currently active registers.  */
5617   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5618   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5619 
5620   /* Information on the contents of registers. These are pointers into
5621      the input strings; they record just what was matched (on this
5622      attempt) by a subexpression part of the pattern, that is, the
5623      regnum-th regstart pointer points to where in the pattern we began
5624      matching and the regnum-th regend points to right after where we
5625      stopped matching the regnum-th subexpression.  (The zeroth register
5626      keeps track of what the whole pattern matches.)  */
5627 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5628   const CHAR_T **regstart, **regend;
5629 #endif
5630 
5631   /* If a group that's operated upon by a repetition operator fails to
5632      match anything, then the register for its start will need to be
5633      restored because it will have been set to wherever in the string we
5634      are when we last see its open-group operator.  Similarly for a
5635      register's end.  */
5636 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5637   const CHAR_T **old_regstart, **old_regend;
5638 #endif
5639 
5640   /* The is_active field of reg_info helps us keep track of which (possibly
5641      nested) subexpressions we are currently in. The matched_something
5642      field of reg_info[reg_num] helps us tell whether or not we have
5643      matched any of the pattern so far this time through the reg_num-th
5644      subexpression.  These two fields get reset each time through any
5645      loop their register is in.  */
5646 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5647   PREFIX(register_info_type) *reg_info;
5648 #endif
5649 
5650   /* The following record the register info as found in the above
5651      variables when we find a match better than any we've seen before.
5652      This happens as we backtrack through the failure points, which in
5653      turn happens only if we have not yet matched the entire string. */
5654   unsigned best_regs_set = false;
5655 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5656   const CHAR_T **best_regstart, **best_regend;
5657 #endif
5658 
5659   /* Logically, this is `best_regend[0]'.  But we don't want to have to
5660      allocate space for that if we're not allocating space for anything
5661      else (see below).  Also, we never need info about register 0 for
5662      any of the other register vectors, and it seems rather a kludge to
5663      treat `best_regend' differently than the rest.  So we keep track of
5664      the end of the best match so far in a separate variable.  We
5665      initialize this to NULL so that when we backtrack the first time
5666      and need to test it, it's not garbage.  */
5667   const CHAR_T *match_end = NULL;
5668 
5669   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5670   int set_regs_matched_done = 0;
5671 
5672   /* Used when we pop values we don't care about.  */
5673 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5674   const CHAR_T **reg_dummy;
5675   PREFIX(register_info_type) *reg_info_dummy;
5676 #endif
5677 
5678 #ifdef DEBUG
5679   /* Counts the total number of registers pushed.  */
5680   unsigned num_regs_pushed = 0;
5681 #endif
5682 
5683   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5684 
5685   INIT_FAIL_STACK ();
5686 
5687 #ifdef MATCH_MAY_ALLOCATE
5688   /* Do not bother to initialize all the register variables if there are
5689      no groups in the pattern, as it takes a fair amount of time.  If
5690      there are groups, we include space for register 0 (the whole
5691      pattern), even though we never use it, since it simplifies the
5692      array indexing.  We should fix this.  */
5693   if (bufp->re_nsub)
5694     {
5695       regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5696       regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5697       old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5698       old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5699       best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5700       best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5701       reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5702       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5703       reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5704 
5705       if (!(regstart && regend && old_regstart && old_regend && reg_info
5706             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5707         {
5708           FREE_VARIABLES ();
5709           return -2;
5710         }
5711     }
5712   else
5713     {
5714       /* We must initialize all our variables to NULL, so that
5715          `FREE_VARIABLES' doesn't try to free them.  */
5716       regstart = regend = old_regstart = old_regend = best_regstart
5717         = best_regend = reg_dummy = NULL;
5718       reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5719     }
5720 #endif /* MATCH_MAY_ALLOCATE */
5721 
5722   /* The starting position is bogus.  */
5723 #ifdef WCHAR
5724   if (pos < 0 || pos > csize1 + csize2)
5725 #else /* BYTE */
5726   if (pos < 0 || pos > size1 + size2)
5727 #endif
5728     {
5729       FREE_VARIABLES ();
5730       return -1;
5731     }
5732 
5733 #ifdef WCHAR
5734   /* Allocate wchar_t array for string1 and string2 and
5735      fill them with converted string.  */
5736   if (string1 == NULL && string2 == NULL)
5737     {
5738       /* We need seting up buffers here.  */
5739 
5740       /* We must free wcs buffers in this function.  */
5741       cant_free_wcs_buf = 0;
5742 
5743       if (csize1 != 0)
5744 	{
5745 	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5746 	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5747 	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5748 	  if (!string1 || !mbs_offset1 || !is_binary)
5749 	    {
5750 	      FREE_VAR (string1);
5751 	      FREE_VAR (mbs_offset1);
5752 	      FREE_VAR (is_binary);
5753 	      return -2;
5754 	    }
5755 	}
5756       if (csize2 != 0)
5757 	{
5758 	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5759 	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5760 	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5761 	  if (!string2 || !mbs_offset2 || !is_binary)
5762 	    {
5763 	      FREE_VAR (string1);
5764 	      FREE_VAR (mbs_offset1);
5765 	      FREE_VAR (string2);
5766 	      FREE_VAR (mbs_offset2);
5767 	      FREE_VAR (is_binary);
5768 	      return -2;
5769 	    }
5770 	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5771 				     mbs_offset2, is_binary);
5772 	  string2[size2] = L'\0'; /* for a sentinel  */
5773 	  FREE_VAR (is_binary);
5774 	}
5775     }
5776 
5777   /* We need to cast pattern to (wchar_t*), because we casted this compiled
5778      pattern to (char*) in regex_compile.  */
5779   p = pattern = (CHAR_T*)bufp->buffer;
5780   pend = (CHAR_T*)(bufp->buffer + bufp->used);
5781 
5782 #endif /* WCHAR */
5783 
5784   /* Initialize subexpression text positions to -1 to mark ones that no
5785      start_memory/stop_memory has been seen for. Also initialize the
5786      register information struct.  */
5787   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5788     {
5789       regstart[mcnt] = regend[mcnt]
5790         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5791 
5792       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5793       IS_ACTIVE (reg_info[mcnt]) = 0;
5794       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5795       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796     }
5797 
5798   /* We move `string1' into `string2' if the latter's empty -- but not if
5799      `string1' is null.  */
5800   if (size2 == 0 && string1 != NULL)
5801     {
5802       string2 = string1;
5803       size2 = size1;
5804       string1 = 0;
5805       size1 = 0;
5806 #ifdef WCHAR
5807       mbs_offset2 = mbs_offset1;
5808       csize2 = csize1;
5809       mbs_offset1 = NULL;
5810       csize1 = 0;
5811 #endif
5812     }
5813   end1 = string1 + size1;
5814   end2 = string2 + size2;
5815 
5816   /* Compute where to stop matching, within the two strings.  */
5817 #ifdef WCHAR
5818   if (stop <= csize1)
5819     {
5820       mcnt = count_mbs_length(mbs_offset1, stop);
5821       end_match_1 = string1 + mcnt;
5822       end_match_2 = string2;
5823     }
5824   else
5825     {
5826       if (stop > csize1 + csize2)
5827 	stop = csize1 + csize2;
5828       end_match_1 = end1;
5829       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5830       end_match_2 = string2 + mcnt;
5831     }
5832   if (mcnt < 0)
5833     { /* count_mbs_length return error.  */
5834       FREE_VARIABLES ();
5835       return -1;
5836     }
5837 #else
5838   if (stop <= size1)
5839     {
5840       end_match_1 = string1 + stop;
5841       end_match_2 = string2;
5842     }
5843   else
5844     {
5845       end_match_1 = end1;
5846       end_match_2 = string2 + stop - size1;
5847     }
5848 #endif /* WCHAR */
5849 
5850   /* `p' scans through the pattern as `d' scans through the data.
5851      `dend' is the end of the input string that `d' points within.  `d'
5852      is advanced into the following input string whenever necessary, but
5853      this happens before fetching; therefore, at the beginning of the
5854      loop, `d' can be pointing at the end of a string, but it cannot
5855      equal `string2'.  */
5856 #ifdef WCHAR
5857   if (size1 > 0 && pos <= csize1)
5858     {
5859       mcnt = count_mbs_length(mbs_offset1, pos);
5860       d = string1 + mcnt;
5861       dend = end_match_1;
5862     }
5863   else
5864     {
5865       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5866       d = string2 + mcnt;
5867       dend = end_match_2;
5868     }
5869 
5870   if (mcnt < 0)
5871     { /* count_mbs_length return error.  */
5872       FREE_VARIABLES ();
5873       return -1;
5874     }
5875 #else
5876   if (size1 > 0 && pos <= size1)
5877     {
5878       d = string1 + pos;
5879       dend = end_match_1;
5880     }
5881   else
5882     {
5883       d = string2 + pos - size1;
5884       dend = end_match_2;
5885     }
5886 #endif /* WCHAR */
5887 
5888   DEBUG_PRINT1 ("The compiled pattern is:\n");
5889   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5890   DEBUG_PRINT1 ("The string to match is: `");
5891   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5892   DEBUG_PRINT1 ("'\n");
5893 
5894   /* This loops over pattern commands.  It exits by returning from the
5895      function if the match is complete, or it drops through if the match
5896      fails at this starting point in the input data.  */
5897   for (;;)
5898     {
5899 #ifdef _LIBC
5900       DEBUG_PRINT2 ("\n%p: ", p);
5901 #else
5902       DEBUG_PRINT2 ("\n0x%x: ", p);
5903 #endif
5904 
5905       if (p == pend)
5906 	{ /* End of pattern means we might have succeeded.  */
5907           DEBUG_PRINT1 ("end of pattern ... ");
5908 
5909 	  /* If we haven't matched the entire string, and we want the
5910              longest match, try backtracking.  */
5911           if (d != end_match_2)
5912 	    {
5913 	      /* 1 if this match ends in the same string (string1 or string2)
5914 		 as the best previous match.  */
5915 	      boolean same_str_p;
5916 
5917 	      /* 1 if this match is the best seen so far.  */
5918 	      boolean best_match_p;
5919 
5920               same_str_p = (FIRST_STRING_P (match_end)
5921                             == MATCHING_IN_FIRST_STRING);
5922 
5923 	      /* AIX compiler got confused when this was combined
5924 		 with the previous declaration.  */
5925 	      if (same_str_p)
5926 		best_match_p = d > match_end;
5927 	      else
5928 		best_match_p = !MATCHING_IN_FIRST_STRING;
5929 
5930               DEBUG_PRINT1 ("backtracking.\n");
5931 
5932               if (!FAIL_STACK_EMPTY ())
5933                 { /* More failure points to try.  */
5934 
5935                   /* If exceeds best match so far, save it.  */
5936                   if (!best_regs_set || best_match_p)
5937                     {
5938                       best_regs_set = true;
5939                       match_end = d;
5940 
5941                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5942 
5943                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5944                         {
5945                           best_regstart[mcnt] = regstart[mcnt];
5946                           best_regend[mcnt] = regend[mcnt];
5947                         }
5948                     }
5949                   goto fail;
5950                 }
5951 
5952               /* If no failure points, don't restore garbage.  And if
5953                  last match is real best match, don't restore second
5954                  best one. */
5955               else if (best_regs_set && !best_match_p)
5956                 {
5957   	        restore_best_regs:
5958                   /* Restore best match.  It may happen that `dend ==
5959                      end_match_1' while the restored d is in string2.
5960                      For example, the pattern `x.*y.*z' against the
5961                      strings `x-' and `y-z-', if the two strings are
5962                      not consecutive in memory.  */
5963                   DEBUG_PRINT1 ("Restoring best registers.\n");
5964 
5965                   d = match_end;
5966                   dend = ((d >= string1 && d <= end1)
5967 		           ? end_match_1 : end_match_2);
5968 
5969 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5970 		    {
5971 		      regstart[mcnt] = best_regstart[mcnt];
5972 		      regend[mcnt] = best_regend[mcnt];
5973 		    }
5974                 }
5975             } /* d != end_match_2 */
5976 
5977 	succeed_label:
5978           DEBUG_PRINT1 ("Accepting match.\n");
5979           /* If caller wants register contents data back, do it.  */
5980           if (regs && !bufp->no_sub)
5981 	    {
5982 	      /* Have the register data arrays been allocated?  */
5983               if (bufp->regs_allocated == REGS_UNALLOCATED)
5984                 { /* No.  So allocate them with malloc.  We need one
5985                      extra element beyond `num_regs' for the `-1' marker
5986                      GNU code uses.  */
5987                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5988                   regs->start = TALLOC (regs->num_regs, regoff_t);
5989                   regs->end = TALLOC (regs->num_regs, regoff_t);
5990                   if (regs->start == NULL || regs->end == NULL)
5991 		    {
5992 		      FREE_VARIABLES ();
5993 		      return -2;
5994 		    }
5995                   bufp->regs_allocated = REGS_REALLOCATE;
5996                 }
5997               else if (bufp->regs_allocated == REGS_REALLOCATE)
5998                 { /* Yes.  If we need more elements than were already
5999                      allocated, reallocate them.  If we need fewer, just
6000                      leave it alone.  */
6001                   if (regs->num_regs < num_regs + 1)
6002                     {
6003                       regs->num_regs = num_regs + 1;
6004                       RETALLOC (regs->start, regs->num_regs, regoff_t);
6005                       RETALLOC (regs->end, regs->num_regs, regoff_t);
6006                       if (regs->start == NULL || regs->end == NULL)
6007 			{
6008 			  FREE_VARIABLES ();
6009 			  return -2;
6010 			}
6011                     }
6012                 }
6013               else
6014 		{
6015 		  /* These braces fend off a "empty body in an else-statement"
6016 		     warning under GCC when assert expands to nothing.  */
6017 		  assert (bufp->regs_allocated == REGS_FIXED);
6018 		}
6019 
6020               /* Convert the pointer data in `regstart' and `regend' to
6021                  indices.  Register zero has to be set differently,
6022                  since we haven't kept track of any info for it.  */
6023               if (regs->num_regs > 0)
6024                 {
6025                   regs->start[0] = pos;
6026 #ifdef WCHAR
6027 		  if (MATCHING_IN_FIRST_STRING)
6028 		    regs->end[0] = mbs_offset1 != NULL ?
6029 					mbs_offset1[d-string1] : 0;
6030 		  else
6031 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6032 					     mbs_offset2[d-string2] : 0);
6033 #else
6034                   regs->end[0] = (MATCHING_IN_FIRST_STRING
6035 				  ? ((regoff_t) (d - string1))
6036 			          : ((regoff_t) (d - string2 + size1)));
6037 #endif /* WCHAR */
6038                 }
6039 
6040               /* Go through the first `min (num_regs, regs->num_regs)'
6041                  registers, since that is all we initialized.  */
6042 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6043 		   mcnt++)
6044 		{
6045                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6046                     regs->start[mcnt] = regs->end[mcnt] = -1;
6047                   else
6048                     {
6049 		      regs->start[mcnt]
6050 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6051                       regs->end[mcnt]
6052 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6053                     }
6054 		}
6055 
6056               /* If the regs structure we return has more elements than
6057                  were in the pattern, set the extra elements to -1.  If
6058                  we (re)allocated the registers, this is the case,
6059                  because we always allocate enough to have at least one
6060                  -1 at the end.  */
6061               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6062                 regs->start[mcnt] = regs->end[mcnt] = -1;
6063 	    } /* regs && !bufp->no_sub */
6064 
6065           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6066                         nfailure_points_pushed, nfailure_points_popped,
6067                         nfailure_points_pushed - nfailure_points_popped);
6068           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6069 
6070 #ifdef WCHAR
6071 	  if (MATCHING_IN_FIRST_STRING)
6072 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6073 	  else
6074 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6075 			csize1;
6076           mcnt -= pos;
6077 #else
6078           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6079 			    ? string1
6080 			    : string2 - size1);
6081 #endif /* WCHAR */
6082 
6083           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6084 
6085           FREE_VARIABLES ();
6086           return mcnt;
6087         }
6088 
6089       /* Otherwise match next pattern command.  */
6090       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6091 	{
6092         /* Ignore these.  Used to ignore the n of succeed_n's which
6093            currently have n == 0.  */
6094         case no_op:
6095           DEBUG_PRINT1 ("EXECUTING no_op.\n");
6096           break;
6097 
6098 	case succeed:
6099           DEBUG_PRINT1 ("EXECUTING succeed.\n");
6100 	  goto succeed_label;
6101 
6102         /* Match the next n pattern characters exactly.  The following
6103            byte in the pattern defines n, and the n bytes after that
6104            are the characters to match.  */
6105 	case exactn:
6106 #ifdef MBS_SUPPORT
6107 	case exactn_bin:
6108 #endif
6109 	  mcnt = *p++;
6110           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6111 
6112           /* This is written out as an if-else so we don't waste time
6113              testing `translate' inside the loop.  */
6114           if (translate)
6115 	    {
6116 	      do
6117 		{
6118 		  PREFETCH ();
6119 #ifdef WCHAR
6120 		  if (*d <= 0xff)
6121 		    {
6122 		      if ((UCHAR_T) translate[(unsigned char) *d++]
6123 			  != (UCHAR_T) *p++)
6124 			goto fail;
6125 		    }
6126 		  else
6127 		    {
6128 		      if (*d++ != (CHAR_T) *p++)
6129 			goto fail;
6130 		    }
6131 #else
6132 		  if ((UCHAR_T) translate[(unsigned char) *d++]
6133 		      != (UCHAR_T) *p++)
6134                     goto fail;
6135 #endif /* WCHAR */
6136 		}
6137 	      while (--mcnt);
6138 	    }
6139 	  else
6140 	    {
6141 	      do
6142 		{
6143 		  PREFETCH ();
6144 		  if (*d++ != (CHAR_T) *p++) goto fail;
6145 		}
6146 	      while (--mcnt);
6147 	    }
6148 	  SET_REGS_MATCHED ();
6149           break;
6150 
6151 
6152         /* Match any character except possibly a newline or a null.  */
6153 	case anychar:
6154           DEBUG_PRINT1 ("EXECUTING anychar.\n");
6155 
6156           PREFETCH ();
6157 
6158           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6159               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6160 	    goto fail;
6161 
6162           SET_REGS_MATCHED ();
6163           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6164           d++;
6165 	  break;
6166 
6167 
6168 	case charset:
6169 	case charset_not:
6170 	  {
6171 	    register UCHAR_T c;
6172 #ifdef WCHAR
6173 	    unsigned int i, char_class_length, coll_symbol_length,
6174               equiv_class_length, ranges_length, chars_length, length;
6175 	    CHAR_T *workp, *workp2, *charset_top;
6176 #define WORK_BUFFER_SIZE 128
6177             CHAR_T str_buf[WORK_BUFFER_SIZE];
6178 # ifdef _LIBC
6179 	    uint32_t nrules;
6180 # endif /* _LIBC */
6181 #endif /* WCHAR */
6182 	    boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6183 
6184             DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6185 	    PREFETCH ();
6186 	    c = TRANSLATE (*d); /* The character to match.  */
6187 #ifdef WCHAR
6188 # ifdef _LIBC
6189 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6190 # endif /* _LIBC */
6191 	    charset_top = p - 1;
6192 	    char_class_length = *p++;
6193 	    coll_symbol_length = *p++;
6194 	    equiv_class_length = *p++;
6195 	    ranges_length = *p++;
6196 	    chars_length = *p++;
6197 	    /* p points charset[6], so the address of the next instruction
6198 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6199 	       where l=length of char_classes, m=length of collating_symbol,
6200 	       n=equivalence_class, o=length of char_range,
6201 	       p'=length of character.  */
6202 	    workp = p;
6203 	    /* Update p to indicate the next instruction.  */
6204 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6205               2*ranges_length + chars_length;
6206 
6207             /* match with char_class?  */
6208 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6209 	      {
6210 		wctype_t wctype;
6211 		uintptr_t alignedp = ((uintptr_t)workp
6212 				      + __alignof__(wctype_t) - 1)
6213 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6214 		wctype = *((wctype_t*)alignedp);
6215 		workp += CHAR_CLASS_SIZE;
6216 # ifdef _LIBC
6217 		if (__iswctype((wint_t)c, wctype))
6218 		  goto char_set_matched;
6219 # else
6220 		if (iswctype((wint_t)c, wctype))
6221 		  goto char_set_matched;
6222 # endif
6223 	      }
6224 
6225             /* match with collating_symbol?  */
6226 # ifdef _LIBC
6227 	    if (nrules != 0)
6228 	      {
6229 		const unsigned char *extra = (const unsigned char *)
6230 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6231 
6232 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6233 		     workp++)
6234 		  {
6235 		    int32_t *wextra;
6236 		    wextra = (int32_t*)(extra + *workp++);
6237 		    for (i = 0; i < *wextra; ++i)
6238 		      if (TRANSLATE(d[i]) != wextra[1 + i])
6239 			break;
6240 
6241 		    if (i == *wextra)
6242 		      {
6243 			/* Update d, however d will be incremented at
6244 			   char_set_matched:, we decrement d here.  */
6245 			d += i - 1;
6246 			goto char_set_matched;
6247 		      }
6248 		  }
6249 	      }
6250 	    else /* (nrules == 0) */
6251 # endif
6252 	      /* If we can't look up collation data, we use wcscoll
6253 		 instead.  */
6254 	      {
6255 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6256 		  {
6257 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6258 # ifdef _LIBC
6259 		    length = __wcslen (workp);
6260 # else
6261 		    length = wcslen (workp);
6262 # endif
6263 
6264 		    /* If wcscoll(the collating symbol, whole string) > 0,
6265 		       any substring of the string never match with the
6266 		       collating symbol.  */
6267 # ifdef _LIBC
6268 		    if (__wcscoll (workp, d) > 0)
6269 # else
6270 		    if (wcscoll (workp, d) > 0)
6271 # endif
6272 		      {
6273 			workp += length + 1;
6274 			continue;
6275 		      }
6276 
6277 		    /* First, we compare the collating symbol with
6278 		       the first character of the string.
6279 		       If it don't match, we add the next character to
6280 		       the compare buffer in turn.  */
6281 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6282 		      {
6283 			int match;
6284 			if (d == dend)
6285 			  {
6286 			    if (dend == end_match_2)
6287 			      break;
6288 			    d = string2;
6289 			    dend = end_match_2;
6290 			  }
6291 
6292 			/* add next character to the compare buffer.  */
6293 			str_buf[i] = TRANSLATE(*d);
6294 			str_buf[i+1] = '\0';
6295 
6296 # ifdef _LIBC
6297 			match = __wcscoll (workp, str_buf);
6298 # else
6299 			match = wcscoll (workp, str_buf);
6300 # endif
6301 			if (match == 0)
6302 			  goto char_set_matched;
6303 
6304 			if (match < 0)
6305 			  /* (str_buf > workp) indicate (str_buf + X > workp),
6306 			     because for all X (str_buf + X > str_buf).
6307 			     So we don't need continue this loop.  */
6308 			  break;
6309 
6310 			/* Otherwise(str_buf < workp),
6311 			   (str_buf+next_character) may equals (workp).
6312 			   So we continue this loop.  */
6313 		      }
6314 		    /* not matched */
6315 		    d = backup_d;
6316 		    dend = backup_dend;
6317 		    workp += length + 1;
6318 		  }
6319               }
6320             /* match with equivalence_class?  */
6321 # ifdef _LIBC
6322 	    if (nrules != 0)
6323 	      {
6324                 const CHAR_T *backup_d = d, *backup_dend = dend;
6325 		/* Try to match the equivalence class against
6326 		   those known to the collate implementation.  */
6327 		const int32_t *table;
6328 		const int32_t *weights;
6329 		const int32_t *extra;
6330 		const int32_t *indirect;
6331 		int32_t idx, idx2;
6332 		wint_t *cp;
6333 		size_t len;
6334 
6335 		/* This #include defines a local function!  */
6336 #  include <locale/weightwc.h>
6337 
6338 		table = (const int32_t *)
6339 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6340 		weights = (const wint_t *)
6341 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6342 		extra = (const wint_t *)
6343 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6344 		indirect = (const int32_t *)
6345 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6346 
6347 		/* Write 1 collating element to str_buf, and
6348 		   get its index.  */
6349 		idx2 = 0;
6350 
6351 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6352 		  {
6353 		    cp = (wint_t*)str_buf;
6354 		    if (d == dend)
6355 		      {
6356 			if (dend == end_match_2)
6357 			  break;
6358 			d = string2;
6359 			dend = end_match_2;
6360 		      }
6361 		    str_buf[i] = TRANSLATE(*(d+i));
6362 		    str_buf[i+1] = '\0'; /* sentinel */
6363 		    idx2 = findidx ((const wint_t**)&cp);
6364 		  }
6365 
6366 		/* Update d, however d will be incremented at
6367 		   char_set_matched:, we decrement d here.  */
6368 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6369 		if (d >= dend)
6370 		  {
6371 		    if (dend == end_match_2)
6372 			d = dend;
6373 		    else
6374 		      {
6375 			d = string2;
6376 			dend = end_match_2;
6377 		      }
6378 		  }
6379 
6380 		len = weights[idx2];
6381 
6382 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6383 		     workp++)
6384 		  {
6385 		    idx = (int32_t)*workp;
6386 		    /* We already checked idx != 0 in regex_compile. */
6387 
6388 		    if (idx2 != 0 && len == weights[idx])
6389 		      {
6390 			int cnt = 0;
6391 			while (cnt < len && (weights[idx + 1 + cnt]
6392 					     == weights[idx2 + 1 + cnt]))
6393 			  ++cnt;
6394 
6395 			if (cnt == len)
6396 			  goto char_set_matched;
6397 		      }
6398 		  }
6399 		/* not matched */
6400                 d = backup_d;
6401                 dend = backup_dend;
6402 	      }
6403 	    else /* (nrules == 0) */
6404 # endif
6405 	      /* If we can't look up collation data, we use wcscoll
6406 		 instead.  */
6407 	      {
6408 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6409 		  {
6410 		    const CHAR_T *backup_d = d, *backup_dend = dend;
6411 # ifdef _LIBC
6412 		    length = __wcslen (workp);
6413 # else
6414 		    length = wcslen (workp);
6415 # endif
6416 
6417 		    /* If wcscoll(the collating symbol, whole string) > 0,
6418 		       any substring of the string never match with the
6419 		       collating symbol.  */
6420 # ifdef _LIBC
6421 		    if (__wcscoll (workp, d) > 0)
6422 # else
6423 		    if (wcscoll (workp, d) > 0)
6424 # endif
6425 		      {
6426 			workp += length + 1;
6427 			break;
6428 		      }
6429 
6430 		    /* First, we compare the equivalence class with
6431 		       the first character of the string.
6432 		       If it don't match, we add the next character to
6433 		       the compare buffer in turn.  */
6434 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6435 		      {
6436 			int match;
6437 			if (d == dend)
6438 			  {
6439 			    if (dend == end_match_2)
6440 			      break;
6441 			    d = string2;
6442 			    dend = end_match_2;
6443 			  }
6444 
6445 			/* add next character to the compare buffer.  */
6446 			str_buf[i] = TRANSLATE(*d);
6447 			str_buf[i+1] = '\0';
6448 
6449 # ifdef _LIBC
6450 			match = __wcscoll (workp, str_buf);
6451 # else
6452 			match = wcscoll (workp, str_buf);
6453 # endif
6454 
6455 			if (match == 0)
6456 			  goto char_set_matched;
6457 
6458 			if (match < 0)
6459 			/* (str_buf > workp) indicate (str_buf + X > workp),
6460 			   because for all X (str_buf + X > str_buf).
6461 			   So we don't need continue this loop.  */
6462 			  break;
6463 
6464 			/* Otherwise(str_buf < workp),
6465 			   (str_buf+next_character) may equals (workp).
6466 			   So we continue this loop.  */
6467 		      }
6468 		    /* not matched */
6469 		    d = backup_d;
6470 		    dend = backup_dend;
6471 		    workp += length + 1;
6472 		  }
6473 	      }
6474 
6475             /* match with char_range?  */
6476 # ifdef _LIBC
6477 	    if (nrules != 0)
6478 	      {
6479 		uint32_t collseqval;
6480 		const char *collseq = (const char *)
6481 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6482 
6483 		collseqval = collseq_table_lookup (collseq, c);
6484 
6485 		for (; workp < p - chars_length ;)
6486 		  {
6487 		    uint32_t start_val, end_val;
6488 
6489 		    /* We already compute the collation sequence value
6490 		       of the characters (or collating symbols).  */
6491 		    start_val = (uint32_t) *workp++; /* range_start */
6492 		    end_val = (uint32_t) *workp++; /* range_end */
6493 
6494 		    if (start_val <= collseqval && collseqval <= end_val)
6495 		      goto char_set_matched;
6496 		  }
6497 	      }
6498 	    else
6499 # endif
6500 	      {
6501 		/* We set range_start_char at str_buf[0], range_end_char
6502 		   at str_buf[4], and compared char at str_buf[2].  */
6503 		str_buf[1] = 0;
6504 		str_buf[2] = c;
6505 		str_buf[3] = 0;
6506 		str_buf[5] = 0;
6507 		for (; workp < p - chars_length ;)
6508 		  {
6509 		    wchar_t *range_start_char, *range_end_char;
6510 
6511 		    /* match if (range_start_char <= c <= range_end_char).  */
6512 
6513 		    /* If range_start(or end) < 0, we assume -range_start(end)
6514 		       is the offset of the collating symbol which is specified
6515 		       as the character of the range start(end).  */
6516 
6517 		    /* range_start */
6518 		    if (*workp < 0)
6519 		      range_start_char = charset_top - (*workp++);
6520 		    else
6521 		      {
6522 			str_buf[0] = *workp++;
6523 			range_start_char = str_buf;
6524 		      }
6525 
6526 		    /* range_end */
6527 		    if (*workp < 0)
6528 		      range_end_char = charset_top - (*workp++);
6529 		    else
6530 		      {
6531 			str_buf[4] = *workp++;
6532 			range_end_char = str_buf + 4;
6533 		      }
6534 
6535 # ifdef _LIBC
6536 		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6537 			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6538 # else
6539 		    if (wcscoll (range_start_char, str_buf+2) <= 0
6540 			&& wcscoll (str_buf+2, range_end_char) <= 0)
6541 # endif
6542 		      goto char_set_matched;
6543 		  }
6544 	      }
6545 
6546             /* match with char?  */
6547 	    for (; workp < p ; workp++)
6548 	      if (c == *workp)
6549 		goto char_set_matched;
6550 
6551 	    negate = !negate;
6552 
6553 	  char_set_matched:
6554 	    if (negate) goto fail;
6555 #else
6556             /* Cast to `unsigned' instead of `unsigned char' in case the
6557                bit list is a full 32 bytes long.  */
6558 	    if (c < (unsigned) (*p * BYTEWIDTH)
6559 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6560 	      negate = !negate;
6561 
6562 	    p += 1 + *p;
6563 
6564 	    if (!negate) goto fail;
6565 #undef WORK_BUFFER_SIZE
6566 #endif /* WCHAR */
6567 	    SET_REGS_MATCHED ();
6568             d++;
6569 	    break;
6570 	  }
6571 
6572 
6573         /* The beginning of a group is represented by start_memory.
6574            The arguments are the register number in the next byte, and the
6575            number of groups inner to this one in the next.  The text
6576            matched within the group is recorded (in the internal
6577            registers data structure) under the register number.  */
6578         case start_memory:
6579 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6580 			(long int) *p, (long int) p[1]);
6581 
6582           /* Find out if this group can match the empty string.  */
6583 	  p1 = p;		/* To send to group_match_null_string_p.  */
6584 
6585           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6586             REG_MATCH_NULL_STRING_P (reg_info[*p])
6587               = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6588 
6589           /* Save the position in the string where we were the last time
6590              we were at this open-group operator in case the group is
6591              operated upon by a repetition operator, e.g., with `(a*)*b'
6592              against `ab'; then we want to ignore where we are now in
6593              the string in case this attempt to match fails.  */
6594           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6595                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6596                              : regstart[*p];
6597 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6598 			 POINTER_TO_OFFSET (old_regstart[*p]));
6599 
6600           regstart[*p] = d;
6601 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6602 
6603           IS_ACTIVE (reg_info[*p]) = 1;
6604           MATCHED_SOMETHING (reg_info[*p]) = 0;
6605 
6606 	  /* Clear this whenever we change the register activity status.  */
6607 	  set_regs_matched_done = 0;
6608 
6609           /* This is the new highest active register.  */
6610           highest_active_reg = *p;
6611 
6612           /* If nothing was active before, this is the new lowest active
6613              register.  */
6614           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6615             lowest_active_reg = *p;
6616 
6617           /* Move past the register number and inner group count.  */
6618           p += 2;
6619 	  just_past_start_mem = p;
6620 
6621           break;
6622 
6623 
6624         /* The stop_memory opcode represents the end of a group.  Its
6625            arguments are the same as start_memory's: the register
6626            number, and the number of inner groups.  */
6627 	case stop_memory:
6628 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6629 			(long int) *p, (long int) p[1]);
6630 
6631           /* We need to save the string position the last time we were at
6632              this close-group operator in case the group is operated
6633              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6634              against `aba'; then we want to ignore where we are now in
6635              the string in case this attempt to match fails.  */
6636           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6637                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
6638 			   : regend[*p];
6639 	  DEBUG_PRINT2 ("      old_regend: %d\n",
6640 			 POINTER_TO_OFFSET (old_regend[*p]));
6641 
6642           regend[*p] = d;
6643 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6644 
6645           /* This register isn't active anymore.  */
6646           IS_ACTIVE (reg_info[*p]) = 0;
6647 
6648 	  /* Clear this whenever we change the register activity status.  */
6649 	  set_regs_matched_done = 0;
6650 
6651           /* If this was the only register active, nothing is active
6652              anymore.  */
6653           if (lowest_active_reg == highest_active_reg)
6654             {
6655               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6656               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6657             }
6658           else
6659             { /* We must scan for the new highest active register, since
6660                  it isn't necessarily one less than now: consider
6661                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6662                  new highest active register is 1.  */
6663               UCHAR_T r = *p - 1;
6664               while (r > 0 && !IS_ACTIVE (reg_info[r]))
6665                 r--;
6666 
6667               /* If we end up at register zero, that means that we saved
6668                  the registers as the result of an `on_failure_jump', not
6669                  a `start_memory', and we jumped to past the innermost
6670                  `stop_memory'.  For example, in ((.)*) we save
6671                  registers 1 and 2 as a result of the *, but when we pop
6672                  back to the second ), we are at the stop_memory 1.
6673                  Thus, nothing is active.  */
6674 	      if (r == 0)
6675                 {
6676                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6677                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6678                 }
6679               else
6680                 highest_active_reg = r;
6681             }
6682 
6683           /* If just failed to match something this time around with a
6684              group that's operated on by a repetition operator, try to
6685              force exit from the ``loop'', and restore the register
6686              information for this group that we had before trying this
6687              last match.  */
6688           if ((!MATCHED_SOMETHING (reg_info[*p])
6689                || just_past_start_mem == p - 1)
6690 	      && (p + 2) < pend)
6691             {
6692               boolean is_a_jump_n = false;
6693 
6694               p1 = p + 2;
6695               mcnt = 0;
6696               switch ((re_opcode_t) *p1++)
6697                 {
6698                   case jump_n:
6699 		    is_a_jump_n = true;
6700                   case pop_failure_jump:
6701 		  case maybe_pop_jump:
6702 		  case jump:
6703 		  case dummy_failure_jump:
6704                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6705 		    if (is_a_jump_n)
6706 		      p1 += OFFSET_ADDRESS_SIZE;
6707                     break;
6708 
6709                   default:
6710                     /* do nothing */ ;
6711                 }
6712 	      p1 += mcnt;
6713 
6714               /* If the next operation is a jump backwards in the pattern
6715 	         to an on_failure_jump right before the start_memory
6716                  corresponding to this stop_memory, exit from the loop
6717                  by forcing a failure after pushing on the stack the
6718                  on_failure_jump's jump in the pattern, and d.  */
6719               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6720                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6721 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6722 		{
6723                   /* If this group ever matched anything, then restore
6724                      what its registers were before trying this last
6725                      failed match, e.g., with `(a*)*b' against `ab' for
6726                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
6727                      against `aba' for regend[3].
6728 
6729                      Also restore the registers for inner groups for,
6730                      e.g., `((a*)(b*))*' against `aba' (register 3 would
6731                      otherwise get trashed).  */
6732 
6733                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6734 		    {
6735 		      unsigned r;
6736 
6737                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6738 
6739 		      /* Restore this and inner groups' (if any) registers.  */
6740                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6741 			   r++)
6742                         {
6743                           regstart[r] = old_regstart[r];
6744 
6745                           /* xx why this test?  */
6746                           if (old_regend[r] >= regstart[r])
6747                             regend[r] = old_regend[r];
6748                         }
6749                     }
6750 		  p1++;
6751                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6752                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6753 
6754                   goto fail;
6755                 }
6756             }
6757 
6758           /* Move past the register number and the inner group count.  */
6759           p += 2;
6760           break;
6761 
6762 
6763 	/* \<digit> has been turned into a `duplicate' command which is
6764            followed by the numeric value of <digit> as the register number.  */
6765         case duplicate:
6766 	  {
6767 	    register const CHAR_T *d2, *dend2;
6768 	    int regno = *p++;   /* Get which register to match against.  */
6769 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6770 
6771 	    /* Can't back reference a group which we've never matched.  */
6772             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6773               goto fail;
6774 
6775             /* Where in input to try to start matching.  */
6776             d2 = regstart[regno];
6777 
6778             /* Where to stop matching; if both the place to start and
6779                the place to stop matching are in the same string, then
6780                set to the place to stop, otherwise, for now have to use
6781                the end of the first string.  */
6782 
6783             dend2 = ((FIRST_STRING_P (regstart[regno])
6784 		      == FIRST_STRING_P (regend[regno]))
6785 		     ? regend[regno] : end_match_1);
6786 	    for (;;)
6787 	      {
6788 		/* If necessary, advance to next segment in register
6789                    contents.  */
6790 		while (d2 == dend2)
6791 		  {
6792 		    if (dend2 == end_match_2) break;
6793 		    if (dend2 == regend[regno]) break;
6794 
6795                     /* End of string1 => advance to string2. */
6796                     d2 = string2;
6797                     dend2 = regend[regno];
6798 		  }
6799 		/* At end of register contents => success */
6800 		if (d2 == dend2) break;
6801 
6802 		/* If necessary, advance to next segment in data.  */
6803 		PREFETCH ();
6804 
6805 		/* How many characters left in this segment to match.  */
6806 		mcnt = dend - d;
6807 
6808 		/* Want how many consecutive characters we can match in
6809                    one shot, so, if necessary, adjust the count.  */
6810                 if (mcnt > dend2 - d2)
6811 		  mcnt = dend2 - d2;
6812 
6813 		/* Compare that many; failure if mismatch, else move
6814                    past them.  */
6815 		if (translate
6816                     ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6817                     : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6818 		  goto fail;
6819 		d += mcnt, d2 += mcnt;
6820 
6821 		/* Do this because we've match some characters.  */
6822 		SET_REGS_MATCHED ();
6823 	      }
6824 	  }
6825 	  break;
6826 
6827 
6828         /* begline matches the empty string at the beginning of the string
6829            (unless `not_bol' is set in `bufp'), and, if
6830            `newline_anchor' is set, after newlines.  */
6831 	case begline:
6832           DEBUG_PRINT1 ("EXECUTING begline.\n");
6833 
6834           if (AT_STRINGS_BEG (d))
6835             {
6836               if (!bufp->not_bol) break;
6837             }
6838           else if (d[-1] == '\n' && bufp->newline_anchor)
6839             {
6840               break;
6841             }
6842           /* In all other cases, we fail.  */
6843           goto fail;
6844 
6845 
6846         /* endline is the dual of begline.  */
6847 	case endline:
6848           DEBUG_PRINT1 ("EXECUTING endline.\n");
6849 
6850           if (AT_STRINGS_END (d))
6851             {
6852               if (!bufp->not_eol) break;
6853             }
6854 
6855           /* We have to ``prefetch'' the next character.  */
6856           else if ((d == end1 ? *string2 : *d) == '\n'
6857                    && bufp->newline_anchor)
6858             {
6859               break;
6860             }
6861           goto fail;
6862 
6863 
6864 	/* Match at the very beginning of the data.  */
6865         case begbuf:
6866           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6867           if (AT_STRINGS_BEG (d))
6868             break;
6869           goto fail;
6870 
6871 
6872 	/* Match at the very end of the data.  */
6873         case endbuf:
6874           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6875 	  if (AT_STRINGS_END (d))
6876 	    break;
6877           goto fail;
6878 
6879 
6880         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6881            pushes NULL as the value for the string on the stack.  Then
6882            `pop_failure_point' will keep the current value for the
6883            string, instead of restoring it.  To see why, consider
6884            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6885            then the . fails against the \n.  But the next thing we want
6886            to do is match the \n against the \n; if we restored the
6887            string value, we would be back at the foo.
6888 
6889            Because this is used only in specific cases, we don't need to
6890            check all the things that `on_failure_jump' does, to make
6891            sure the right things get saved on the stack.  Hence we don't
6892            share its code.  The only reason to push anything on the
6893            stack at all is that otherwise we would have to change
6894            `anychar's code to do something besides goto fail in this
6895            case; that seems worse than this.  */
6896         case on_failure_keep_string_jump:
6897           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6898 
6899           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6900 #ifdef _LIBC
6901           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6902 #else
6903           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6904 #endif
6905 
6906           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6907           break;
6908 
6909 
6910 	/* Uses of on_failure_jump:
6911 
6912            Each alternative starts with an on_failure_jump that points
6913            to the beginning of the next alternative.  Each alternative
6914            except the last ends with a jump that in effect jumps past
6915            the rest of the alternatives.  (They really jump to the
6916            ending jump of the following alternative, because tensioning
6917            these jumps is a hassle.)
6918 
6919            Repeats start with an on_failure_jump that points past both
6920            the repetition text and either the following jump or
6921            pop_failure_jump back to this on_failure_jump.  */
6922 	case on_failure_jump:
6923         on_failure:
6924           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6925 
6926           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6927 #ifdef _LIBC
6928           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6929 #else
6930           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6931 #endif
6932 
6933           /* If this on_failure_jump comes right before a group (i.e.,
6934              the original * applied to a group), save the information
6935              for that group and all inner ones, so that if we fail back
6936              to this point, the group's information will be correct.
6937              For example, in \(a*\)*\1, we need the preceding group,
6938              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6939 
6940           /* We can't use `p' to check ahead because we push
6941              a failure point to `p + mcnt' after we do this.  */
6942           p1 = p;
6943 
6944           /* We need to skip no_op's before we look for the
6945              start_memory in case this on_failure_jump is happening as
6946              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6947              against aba.  */
6948           while (p1 < pend && (re_opcode_t) *p1 == no_op)
6949             p1++;
6950 
6951           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6952             {
6953               /* We have a new highest active register now.  This will
6954                  get reset at the start_memory we are about to get to,
6955                  but we will have saved all the registers relevant to
6956                  this repetition op, as described above.  */
6957               highest_active_reg = *(p1 + 1) + *(p1 + 2);
6958               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6959                 lowest_active_reg = *(p1 + 1);
6960             }
6961 
6962           DEBUG_PRINT1 (":\n");
6963           PUSH_FAILURE_POINT (p + mcnt, d, -2);
6964           break;
6965 
6966 
6967         /* A smart repeat ends with `maybe_pop_jump'.
6968 	   We change it to either `pop_failure_jump' or `jump'.  */
6969         case maybe_pop_jump:
6970           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6971           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6972           {
6973 	    register UCHAR_T *p2 = p;
6974 
6975             /* Compare the beginning of the repeat with what in the
6976                pattern follows its end. If we can establish that there
6977                is nothing that they would both match, i.e., that we
6978                would have to backtrack because of (as in, e.g., `a*a')
6979                then we can change to pop_failure_jump, because we'll
6980                never have to backtrack.
6981 
6982                This is not true in the case of alternatives: in
6983                `(a|ab)*' we do need to backtrack to the `ab' alternative
6984                (e.g., if the string was `ab').  But instead of trying to
6985                detect that here, the alternative has put on a dummy
6986                failure point which is what we will end up popping.  */
6987 
6988 	    /* Skip over open/close-group commands.
6989 	       If what follows this loop is a ...+ construct,
6990 	       look at what begins its body, since we will have to
6991 	       match at least one of that.  */
6992 	    while (1)
6993 	      {
6994 		if (p2 + 2 < pend
6995 		    && ((re_opcode_t) *p2 == stop_memory
6996 			|| (re_opcode_t) *p2 == start_memory))
6997 		  p2 += 3;
6998 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6999 			 && (re_opcode_t) *p2 == dummy_failure_jump)
7000 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7001 		else
7002 		  break;
7003 	      }
7004 
7005 	    p1 = p + mcnt;
7006 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7007 	       to the `maybe_finalize_jump' of this case.  Examine what
7008 	       follows.  */
7009 
7010             /* If we're at the end of the pattern, we can change.  */
7011             if (p2 == pend)
7012 	      {
7013 		/* Consider what happens when matching ":\(.*\)"
7014 		   against ":/".  I don't really understand this code
7015 		   yet.  */
7016   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7017 		  pop_failure_jump;
7018                 DEBUG_PRINT1
7019                   ("  End of pattern: change to `pop_failure_jump'.\n");
7020               }
7021 
7022             else if ((re_opcode_t) *p2 == exactn
7023 #ifdef MBS_SUPPORT
7024 		     || (re_opcode_t) *p2 == exactn_bin
7025 #endif
7026 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7027 	      {
7028 		register UCHAR_T c
7029                   = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7030 
7031                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7032 #ifdef MBS_SUPPORT
7033 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7034 #endif
7035 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7036                   {
7037   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7038 		      pop_failure_jump;
7039 #ifdef WCHAR
7040 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7041 				    (wint_t) c,
7042 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7043 #else
7044 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7045 				    (char) c,
7046 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7047 #endif
7048                   }
7049 
7050 #ifndef WCHAR
7051 		else if ((re_opcode_t) p1[3] == charset
7052 			 || (re_opcode_t) p1[3] == charset_not)
7053 		  {
7054 		    int negate = (re_opcode_t) p1[3] == charset_not;
7055 
7056 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7057 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7058 		      negate = !negate;
7059 
7060                     /* `negate' is equal to 1 if c would match, which means
7061                         that we can't change to pop_failure_jump.  */
7062 		    if (!negate)
7063                       {
7064   		        p[-3] = (unsigned char) pop_failure_jump;
7065                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7066                       }
7067 		  }
7068 #endif /* not WCHAR */
7069 	      }
7070 #ifndef WCHAR
7071             else if ((re_opcode_t) *p2 == charset)
7072 	      {
7073 		/* We win if the first character of the loop is not part
7074                    of the charset.  */
7075                 if ((re_opcode_t) p1[3] == exactn
7076  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7077  			  && (p2[2 + p1[5] / BYTEWIDTH]
7078  			      & (1 << (p1[5] % BYTEWIDTH)))))
7079 		  {
7080 		    p[-3] = (unsigned char) pop_failure_jump;
7081 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7082                   }
7083 
7084 		else if ((re_opcode_t) p1[3] == charset_not)
7085 		  {
7086 		    int idx;
7087 		    /* We win if the charset_not inside the loop
7088 		       lists every character listed in the charset after.  */
7089 		    for (idx = 0; idx < (int) p2[1]; idx++)
7090 		      if (! (p2[2 + idx] == 0
7091 			     || (idx < (int) p1[4]
7092 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7093 			break;
7094 
7095 		    if (idx == p2[1])
7096                       {
7097   		        p[-3] = (unsigned char) pop_failure_jump;
7098                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7099                       }
7100 		  }
7101 		else if ((re_opcode_t) p1[3] == charset)
7102 		  {
7103 		    int idx;
7104 		    /* We win if the charset inside the loop
7105 		       has no overlap with the one after the loop.  */
7106 		    for (idx = 0;
7107 			 idx < (int) p2[1] && idx < (int) p1[4];
7108 			 idx++)
7109 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7110 			break;
7111 
7112 		    if (idx == p2[1] || idx == p1[4])
7113                       {
7114   		        p[-3] = (unsigned char) pop_failure_jump;
7115                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7116                       }
7117 		  }
7118 	      }
7119 #endif /* not WCHAR */
7120 	  }
7121 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7122 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7123 	    {
7124 	      p[-1] = (UCHAR_T) jump;
7125               DEBUG_PRINT1 ("  Match => jump.\n");
7126 	      goto unconditional_jump;
7127 	    }
7128         /* Note fall through.  */
7129 
7130 
7131 	/* The end of a simple repeat has a pop_failure_jump back to
7132            its matching on_failure_jump, where the latter will push a
7133            failure point.  The pop_failure_jump takes off failure
7134            points put on by this pop_failure_jump's matching
7135            on_failure_jump; we got through the pattern to here from the
7136            matching on_failure_jump, so didn't fail.  */
7137         case pop_failure_jump:
7138           {
7139             /* We need to pass separate storage for the lowest and
7140                highest registers, even though we don't care about the
7141                actual values.  Otherwise, we will restore only one
7142                register from the stack, since lowest will == highest in
7143                `pop_failure_point'.  */
7144             active_reg_t dummy_low_reg, dummy_high_reg;
7145             UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7146             const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7147 
7148             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7149             POP_FAILURE_POINT (sdummy, pdummy,
7150                                dummy_low_reg, dummy_high_reg,
7151                                reg_dummy, reg_dummy, reg_info_dummy);
7152           }
7153 	  /* Note fall through.  */
7154 
7155 	unconditional_jump:
7156 #ifdef _LIBC
7157 	  DEBUG_PRINT2 ("\n%p: ", p);
7158 #else
7159 	  DEBUG_PRINT2 ("\n0x%x: ", p);
7160 #endif
7161           /* Note fall through.  */
7162 
7163         /* Unconditionally jump (without popping any failure points).  */
7164         case jump:
7165 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7166           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7167 	  p += mcnt;				/* Do the jump.  */
7168 #ifdef _LIBC
7169           DEBUG_PRINT2 ("(to %p).\n", p);
7170 #else
7171           DEBUG_PRINT2 ("(to 0x%x).\n", p);
7172 #endif
7173 	  break;
7174 
7175 
7176         /* We need this opcode so we can detect where alternatives end
7177            in `group_match_null_string_p' et al.  */
7178         case jump_past_alt:
7179           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7180           goto unconditional_jump;
7181 
7182 
7183         /* Normally, the on_failure_jump pushes a failure point, which
7184            then gets popped at pop_failure_jump.  We will end up at
7185            pop_failure_jump, also, and with a pattern of, say, `a+', we
7186            are skipping over the on_failure_jump, so we have to push
7187            something meaningless for pop_failure_jump to pop.  */
7188         case dummy_failure_jump:
7189           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7190           /* It doesn't matter what we push for the string here.  What
7191              the code at `fail' tests is the value for the pattern.  */
7192           PUSH_FAILURE_POINT (NULL, NULL, -2);
7193           goto unconditional_jump;
7194 
7195 
7196         /* At the end of an alternative, we need to push a dummy failure
7197            point in case we are followed by a `pop_failure_jump', because
7198            we don't want the failure point for the alternative to be
7199            popped.  For example, matching `(a|ab)*' against `aab'
7200            requires that we match the `ab' alternative.  */
7201         case push_dummy_failure:
7202           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7203           /* See comments just above at `dummy_failure_jump' about the
7204              two zeroes.  */
7205           PUSH_FAILURE_POINT (NULL, NULL, -2);
7206           break;
7207 
7208         /* Have to succeed matching what follows at least n times.
7209            After that, handle like `on_failure_jump'.  */
7210         case succeed_n:
7211           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7212           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7213 
7214           assert (mcnt >= 0);
7215           /* Originally, this is how many times we HAVE to succeed.  */
7216           if (mcnt > 0)
7217             {
7218                mcnt--;
7219 	       p += OFFSET_ADDRESS_SIZE;
7220                STORE_NUMBER_AND_INCR (p, mcnt);
7221 #ifdef _LIBC
7222                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7223 			     , mcnt);
7224 #else
7225                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7226 			     , mcnt);
7227 #endif
7228             }
7229 	  else if (mcnt == 0)
7230             {
7231 #ifdef _LIBC
7232               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7233 			    p + OFFSET_ADDRESS_SIZE);
7234 #else
7235               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7236 			    p + OFFSET_ADDRESS_SIZE);
7237 #endif /* _LIBC */
7238 
7239 #ifdef WCHAR
7240 	      p[1] = (UCHAR_T) no_op;
7241 #else
7242 	      p[2] = (UCHAR_T) no_op;
7243               p[3] = (UCHAR_T) no_op;
7244 #endif /* WCHAR */
7245               goto on_failure;
7246             }
7247           break;
7248 
7249         case jump_n:
7250           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7251           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7252 
7253           /* Originally, this is how many times we CAN jump.  */
7254           if (mcnt)
7255             {
7256                mcnt--;
7257                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7258 
7259 #ifdef _LIBC
7260                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7261 			     mcnt);
7262 #else
7263                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7264 			     mcnt);
7265 #endif /* _LIBC */
7266 	       goto unconditional_jump;
7267             }
7268           /* If don't have to jump any more, skip over the rest of command.  */
7269 	  else
7270 	    p += 2 * OFFSET_ADDRESS_SIZE;
7271           break;
7272 
7273 	case set_number_at:
7274 	  {
7275             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7276 
7277             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7278             p1 = p + mcnt;
7279             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7280 #ifdef _LIBC
7281             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7282 #else
7283             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7284 #endif
7285 	    STORE_NUMBER (p1, mcnt);
7286             break;
7287           }
7288 
7289 #if 0
7290 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7291 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7292 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7293 	   macro and introducing temporary variables works around the bug.  */
7294 
7295 	case wordbound:
7296 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7297 	  if (AT_WORD_BOUNDARY (d))
7298 	    break;
7299 	  goto fail;
7300 
7301 	case notwordbound:
7302 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7303 	  if (AT_WORD_BOUNDARY (d))
7304 	    goto fail;
7305 	  break;
7306 #else
7307 	case wordbound:
7308 	{
7309 	  boolean prevchar, thischar;
7310 
7311 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7312 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7313 	    break;
7314 
7315 	  prevchar = WORDCHAR_P (d - 1);
7316 	  thischar = WORDCHAR_P (d);
7317 	  if (prevchar != thischar)
7318 	    break;
7319 	  goto fail;
7320 	}
7321 
7322       case notwordbound:
7323 	{
7324 	  boolean prevchar, thischar;
7325 
7326 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7327 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7328 	    goto fail;
7329 
7330 	  prevchar = WORDCHAR_P (d - 1);
7331 	  thischar = WORDCHAR_P (d);
7332 	  if (prevchar != thischar)
7333 	    goto fail;
7334 	  break;
7335 	}
7336 #endif
7337 
7338 	case wordbeg:
7339           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7340 	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7341 	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7342 	    break;
7343           goto fail;
7344 
7345 	case wordend:
7346           DEBUG_PRINT1 ("EXECUTING wordend.\n");
7347 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7348               && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7349 	    break;
7350           goto fail;
7351 
7352 #ifdef emacs
7353   	case before_dot:
7354           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7355  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7356   	    goto fail;
7357   	  break;
7358 
7359   	case at_dot:
7360           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7361  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7362   	    goto fail;
7363   	  break;
7364 
7365   	case after_dot:
7366           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7367           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7368   	    goto fail;
7369   	  break;
7370 
7371 	case syntaxspec:
7372           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7373 	  mcnt = *p++;
7374 	  goto matchsyntax;
7375 
7376         case wordchar:
7377           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7378 	  mcnt = (int) Sword;
7379         matchsyntax:
7380 	  PREFETCH ();
7381 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7382 	  d++;
7383 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7384 	    goto fail;
7385           SET_REGS_MATCHED ();
7386 	  break;
7387 
7388 	case notsyntaxspec:
7389           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7390 	  mcnt = *p++;
7391 	  goto matchnotsyntax;
7392 
7393         case notwordchar:
7394           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7395 	  mcnt = (int) Sword;
7396         matchnotsyntax:
7397 	  PREFETCH ();
7398 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7399 	  d++;
7400 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7401 	    goto fail;
7402 	  SET_REGS_MATCHED ();
7403           break;
7404 
7405 #else /* not emacs */
7406 	case wordchar:
7407           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7408 	  PREFETCH ();
7409           if (!WORDCHAR_P (d))
7410             goto fail;
7411 	  SET_REGS_MATCHED ();
7412           d++;
7413 	  break;
7414 
7415 	case notwordchar:
7416           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7417 	  PREFETCH ();
7418 	  if (WORDCHAR_P (d))
7419             goto fail;
7420           SET_REGS_MATCHED ();
7421           d++;
7422 	  break;
7423 #endif /* not emacs */
7424 
7425         default:
7426           abort ();
7427 	}
7428       continue;  /* Successfully executed one pattern command; keep going.  */
7429 
7430 
7431     /* We goto here if a matching operation fails. */
7432     fail:
7433       if (!FAIL_STACK_EMPTY ())
7434 	{ /* A restart point is known.  Restore to that state.  */
7435           DEBUG_PRINT1 ("\nFAIL:\n");
7436           POP_FAILURE_POINT (d, p,
7437                              lowest_active_reg, highest_active_reg,
7438                              regstart, regend, reg_info);
7439 
7440           /* If this failure point is a dummy, try the next one.  */
7441           if (!p)
7442 	    goto fail;
7443 
7444           /* If we failed to the end of the pattern, don't examine *p.  */
7445 	  assert (p <= pend);
7446           if (p < pend)
7447             {
7448               boolean is_a_jump_n = false;
7449 
7450               /* If failed to a backwards jump that's part of a repetition
7451                  loop, need to pop this failure point and use the next one.  */
7452               switch ((re_opcode_t) *p)
7453                 {
7454                 case jump_n:
7455                   is_a_jump_n = true;
7456                 case maybe_pop_jump:
7457                 case pop_failure_jump:
7458                 case jump:
7459                   p1 = p + 1;
7460                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7461                   p1 += mcnt;
7462 
7463                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7464                       || (!is_a_jump_n
7465                           && (re_opcode_t) *p1 == on_failure_jump))
7466                     goto fail;
7467                   break;
7468                 default:
7469                   /* do nothing */ ;
7470                 }
7471             }
7472 
7473           if (d >= string1 && d <= end1)
7474 	    dend = end_match_1;
7475         }
7476       else
7477         break;   /* Matching at this starting point really fails.  */
7478     } /* for (;;) */
7479 
7480   if (best_regs_set)
7481     goto restore_best_regs;
7482 
7483   FREE_VARIABLES ();
7484 
7485   return -1;         			/* Failure to match.  */
7486 } /* re_match_2 */
7487 
7488 /* Subroutine definitions for re_match_2.  */
7489 
7490 
7491 /* We are passed P pointing to a register number after a start_memory.
7492 
7493    Return true if the pattern up to the corresponding stop_memory can
7494    match the empty string, and false otherwise.
7495 
7496    If we find the matching stop_memory, sets P to point to one past its number.
7497    Otherwise, sets P to an undefined byte less than or equal to END.
7498 
7499    We don't handle duplicates properly (yet).  */
7500 
7501 static boolean
7502 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7503                                    PREFIX(register_info_type) *reg_info)
7504 {
7505   int mcnt;
7506   /* Point to after the args to the start_memory.  */
7507   UCHAR_T *p1 = *p + 2;
7508 
7509   while (p1 < end)
7510     {
7511       /* Skip over opcodes that can match nothing, and return true or
7512 	 false, as appropriate, when we get to one that can't, or to the
7513          matching stop_memory.  */
7514 
7515       switch ((re_opcode_t) *p1)
7516         {
7517         /* Could be either a loop or a series of alternatives.  */
7518         case on_failure_jump:
7519           p1++;
7520           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7521 
7522           /* If the next operation is not a jump backwards in the
7523 	     pattern.  */
7524 
7525 	  if (mcnt >= 0)
7526 	    {
7527               /* Go through the on_failure_jumps of the alternatives,
7528                  seeing if any of the alternatives cannot match nothing.
7529                  The last alternative starts with only a jump,
7530                  whereas the rest start with on_failure_jump and end
7531                  with a jump, e.g., here is the pattern for `a|b|c':
7532 
7533                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7534                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7535                  /exactn/1/c
7536 
7537                  So, we have to first go through the first (n-1)
7538                  alternatives and then deal with the last one separately.  */
7539 
7540 
7541               /* Deal with the first (n-1) alternatives, which start
7542                  with an on_failure_jump (see above) that jumps to right
7543                  past a jump_past_alt.  */
7544 
7545               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7546 		     jump_past_alt)
7547                 {
7548                   /* `mcnt' holds how many bytes long the alternative
7549                      is, including the ending `jump_past_alt' and
7550                      its number.  */
7551 
7552                   if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7553 						(1 + OFFSET_ADDRESS_SIZE),
7554 						reg_info))
7555                     return false;
7556 
7557                   /* Move to right after this alternative, including the
7558 		     jump_past_alt.  */
7559                   p1 += mcnt;
7560 
7561                   /* Break if it's the beginning of an n-th alternative
7562                      that doesn't begin with an on_failure_jump.  */
7563                   if ((re_opcode_t) *p1 != on_failure_jump)
7564                     break;
7565 
7566 		  /* Still have to check that it's not an n-th
7567 		     alternative that starts with an on_failure_jump.  */
7568 		  p1++;
7569                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7570                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7571 		      jump_past_alt)
7572                     {
7573 		      /* Get to the beginning of the n-th alternative.  */
7574                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
7575                       break;
7576                     }
7577                 }
7578 
7579               /* Deal with the last alternative: go back and get number
7580                  of the `jump_past_alt' just before it.  `mcnt' contains
7581                  the length of the alternative.  */
7582               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7583 
7584               if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7585                 return false;
7586 
7587               p1 += mcnt;	/* Get past the n-th alternative.  */
7588             } /* if mcnt > 0 */
7589           break;
7590 
7591 
7592         case stop_memory:
7593 	  assert (p1[1] == **p);
7594           *p = p1 + 2;
7595           return true;
7596 
7597 
7598         default:
7599           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7600             return false;
7601         }
7602     } /* while p1 < end */
7603 
7604   return false;
7605 } /* group_match_null_string_p */
7606 
7607 
7608 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7609    It expects P to be the first byte of a single alternative and END one
7610    byte past the last. The alternative can contain groups.  */
7611 
7612 static boolean
7613 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7614                                  PREFIX(register_info_type) *reg_info)
7615 {
7616   int mcnt;
7617   UCHAR_T *p1 = p;
7618 
7619   while (p1 < end)
7620     {
7621       /* Skip over opcodes that can match nothing, and break when we get
7622          to one that can't.  */
7623 
7624       switch ((re_opcode_t) *p1)
7625         {
7626 	/* It's a loop.  */
7627         case on_failure_jump:
7628           p1++;
7629           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7630           p1 += mcnt;
7631           break;
7632 
7633 	default:
7634           if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7635             return false;
7636         }
7637     }  /* while p1 < end */
7638 
7639   return true;
7640 } /* alt_match_null_string_p */
7641 
7642 
7643 /* Deals with the ops common to group_match_null_string_p and
7644    alt_match_null_string_p.
7645 
7646    Sets P to one after the op and its arguments, if any.  */
7647 
7648 static boolean
7649 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7650                                        PREFIX(register_info_type) *reg_info)
7651 {
7652   int mcnt;
7653   boolean ret;
7654   int reg_no;
7655   UCHAR_T *p1 = *p;
7656 
7657   switch ((re_opcode_t) *p1++)
7658     {
7659     case no_op:
7660     case begline:
7661     case endline:
7662     case begbuf:
7663     case endbuf:
7664     case wordbeg:
7665     case wordend:
7666     case wordbound:
7667     case notwordbound:
7668 #ifdef emacs
7669     case before_dot:
7670     case at_dot:
7671     case after_dot:
7672 #endif
7673       break;
7674 
7675     case start_memory:
7676       reg_no = *p1;
7677       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7678       ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7679 
7680       /* Have to set this here in case we're checking a group which
7681          contains a group and a back reference to it.  */
7682 
7683       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7684         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7685 
7686       if (!ret)
7687         return false;
7688       break;
7689 
7690     /* If this is an optimized succeed_n for zero times, make the jump.  */
7691     case jump:
7692       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7693       if (mcnt >= 0)
7694         p1 += mcnt;
7695       else
7696         return false;
7697       break;
7698 
7699     case succeed_n:
7700       /* Get to the number of times to succeed.  */
7701       p1 += OFFSET_ADDRESS_SIZE;
7702       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703 
7704       if (mcnt == 0)
7705         {
7706           p1 -= 2 * OFFSET_ADDRESS_SIZE;
7707           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7708           p1 += mcnt;
7709         }
7710       else
7711         return false;
7712       break;
7713 
7714     case duplicate:
7715       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7716         return false;
7717       break;
7718 
7719     case set_number_at:
7720       p1 += 2 * OFFSET_ADDRESS_SIZE;
7721 
7722     default:
7723       /* All other opcodes mean we cannot match the empty string.  */
7724       return false;
7725   }
7726 
7727   *p = p1;
7728   return true;
7729 } /* common_op_match_null_string_p */
7730 
7731 
7732 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7733    bytes; nonzero otherwise.  */
7734 
7735 static int
7736 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7737                         RE_TRANSLATE_TYPE translate)
7738 {
7739   register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7740   register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7741   while (len)
7742     {
7743 #ifdef WCHAR
7744       if (((*p1<=0xff)?translate[*p1++]:*p1++)
7745 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7746 	return 1;
7747 #else /* BYTE */
7748       if (translate[*p1++] != translate[*p2++]) return 1;
7749 #endif /* WCHAR */
7750       len--;
7751     }
7752   return 0;
7753 }
7754 
7755 
7756 #else /* not INSIDE_RECURSION */
7757 
7758 /* Entry points for GNU code.  */
7759 
7760 /* re_compile_pattern is the GNU regular expression compiler: it
7761    compiles PATTERN (of length SIZE) and puts the result in BUFP.
7762    Returns 0 if the pattern was valid, otherwise an error string.
7763 
7764    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7765    are set in BUFP on entry.
7766 
7767    We call regex_compile to do the actual compilation.  */
7768 
7769 const char *
7770 re_compile_pattern (const char *pattern, size_t length,
7771                     struct re_pattern_buffer *bufp)
7772 {
7773   reg_errcode_t ret;
7774 
7775   /* GNU code is written to assume at least RE_NREGS registers will be set
7776      (and at least one extra will be -1).  */
7777   bufp->regs_allocated = REGS_UNALLOCATED;
7778 
7779   /* And GNU code determines whether or not to get register information
7780      by passing null for the REGS argument to re_match, etc., not by
7781      setting no_sub.  */
7782   bufp->no_sub = 0;
7783 
7784   /* Match anchors at newline.  */
7785   bufp->newline_anchor = 1;
7786 
7787 # ifdef MBS_SUPPORT
7788   if (MB_CUR_MAX != 1)
7789     ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7790   else
7791 # endif
7792     ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7793 
7794   if (!ret)
7795     return NULL;
7796   return gettext (re_error_msgid[(int) ret]);
7797 }
7798 #ifdef _LIBC
7799 weak_alias (__re_compile_pattern, re_compile_pattern)
7800 #endif
7801 
7802 /* Entry points compatible with 4.2 BSD regex library.  We don't define
7803    them unless specifically requested.  */
7804 
7805 #if defined _REGEX_RE_COMP || defined _LIBC
7806 
7807 /* BSD has one and only one pattern buffer.  */
7808 static struct re_pattern_buffer re_comp_buf;
7809 
7810 char *
7811 #ifdef _LIBC
7812 /* Make these definitions weak in libc, so POSIX programs can redefine
7813    these names if they don't use our functions, and still use
7814    regcomp/regexec below without link errors.  */
7815 weak_function
7816 #endif
7817 re_comp (const char *s)
7818 {
7819   reg_errcode_t ret;
7820 
7821   if (!s)
7822     {
7823       if (!re_comp_buf.buffer)
7824 	return (char *) gettext ("No previous regular expression");
7825       return 0;
7826     }
7827 
7828   if (!re_comp_buf.buffer)
7829     {
7830       re_comp_buf.buffer = (unsigned char *) malloc (200);
7831       if (re_comp_buf.buffer == NULL)
7832         return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7833       re_comp_buf.allocated = 200;
7834 
7835       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7836       if (re_comp_buf.fastmap == NULL)
7837 	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7838     }
7839 
7840   /* Since `re_exec' always passes NULL for the `regs' argument, we
7841      don't need to initialize the pattern buffer fields which affect it.  */
7842 
7843   /* Match anchors at newlines.  */
7844   re_comp_buf.newline_anchor = 1;
7845 
7846 # ifdef MBS_SUPPORT
7847   if (MB_CUR_MAX != 1)
7848     ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7849   else
7850 # endif
7851     ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7852 
7853   if (!ret)
7854     return NULL;
7855 
7856   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7857   return (char *) gettext (re_error_msgid[(int) ret]);
7858 }
7859 
7860 
7861 int
7862 #ifdef _LIBC
7863 weak_function
7864 #endif
7865 re_exec (const char *s)
7866 {
7867   const int len = strlen (s);
7868   return
7869     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7870 }
7871 
7872 #endif /* _REGEX_RE_COMP */
7873 
7874 /* POSIX.2 functions.  Don't define these for Emacs.  */
7875 
7876 #ifndef emacs
7877 
7878 /* regcomp takes a regular expression as a string and compiles it.
7879 
7880    PREG is a regex_t *.  We do not expect any fields to be initialized,
7881    since POSIX says we shouldn't.  Thus, we set
7882 
7883      `buffer' to the compiled pattern;
7884      `used' to the length of the compiled pattern;
7885      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7886        REG_EXTENDED bit in CFLAGS is set; otherwise, to
7887        RE_SYNTAX_POSIX_BASIC;
7888      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7889      `fastmap' to an allocated space for the fastmap;
7890      `fastmap_accurate' to zero;
7891      `re_nsub' to the number of subexpressions in PATTERN.
7892 
7893    PATTERN is the address of the pattern string.
7894 
7895    CFLAGS is a series of bits which affect compilation.
7896 
7897      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7898      use POSIX basic syntax.
7899 
7900      If REG_NEWLINE is set, then . and [^...] don't match newline.
7901      Also, regexec will try a match beginning after every newline.
7902 
7903      If REG_ICASE is set, then we considers upper- and lowercase
7904      versions of letters to be equivalent when matching.
7905 
7906      If REG_NOSUB is set, then when PREG is passed to regexec, that
7907      routine will report only success or failure, and nothing about the
7908      registers.
7909 
7910    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7911    the return codes and their meanings.)  */
7912 
7913 int
7914 regcomp (regex_t *preg, const char *pattern, int cflags)
7915 {
7916   reg_errcode_t ret;
7917   reg_syntax_t syntax
7918     = (cflags & REG_EXTENDED) ?
7919       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7920 
7921   /* regex_compile will allocate the space for the compiled pattern.  */
7922   preg->buffer = 0;
7923   preg->allocated = 0;
7924   preg->used = 0;
7925 
7926   /* Try to allocate space for the fastmap.  */
7927   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7928 
7929   if (cflags & REG_ICASE)
7930     {
7931       int i;
7932 
7933       preg->translate
7934 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7935 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7936       if (preg->translate == NULL)
7937         return (int) REG_ESPACE;
7938 
7939       /* Map uppercase characters to corresponding lowercase ones.  */
7940       for (i = 0; i < CHAR_SET_SIZE; i++)
7941         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7942     }
7943   else
7944     preg->translate = NULL;
7945 
7946   /* If REG_NEWLINE is set, newlines are treated differently.  */
7947   if (cflags & REG_NEWLINE)
7948     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7949       syntax &= ~RE_DOT_NEWLINE;
7950       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7951       /* It also changes the matching behavior.  */
7952       preg->newline_anchor = 1;
7953     }
7954   else
7955     preg->newline_anchor = 0;
7956 
7957   preg->no_sub = !!(cflags & REG_NOSUB);
7958 
7959   /* POSIX says a null character in the pattern terminates it, so we
7960      can use strlen here in compiling the pattern.  */
7961 # ifdef MBS_SUPPORT
7962   if (MB_CUR_MAX != 1)
7963     ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7964   else
7965 # endif
7966     ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7967 
7968   /* POSIX doesn't distinguish between an unmatched open-group and an
7969      unmatched close-group: both are REG_EPAREN.  */
7970   if (ret == REG_ERPAREN) ret = REG_EPAREN;
7971 
7972   if (ret == REG_NOERROR && preg->fastmap)
7973     {
7974       /* Compute the fastmap now, since regexec cannot modify the pattern
7975 	 buffer.  */
7976       if (re_compile_fastmap (preg) == -2)
7977 	{
7978 	  /* Some error occurred while computing the fastmap, just forget
7979 	     about it.  */
7980 	  free (preg->fastmap);
7981 	  preg->fastmap = NULL;
7982 	}
7983     }
7984 
7985   return (int) ret;
7986 }
7987 #ifdef _LIBC
7988 weak_alias (__regcomp, regcomp)
7989 #endif
7990 
7991 
7992 /* regexec searches for a given pattern, specified by PREG, in the
7993    string STRING.
7994 
7995    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7996    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7997    least NMATCH elements, and we set them to the offsets of the
7998    corresponding matched substrings.
7999 
8000    EFLAGS specifies `execution flags' which affect matching: if
8001    REG_NOTBOL is set, then ^ does not match at the beginning of the
8002    string; if REG_NOTEOL is set, then $ does not match at the end.
8003 
8004    We return 0 if we find a match and REG_NOMATCH if not.  */
8005 
8006 int
8007 regexec (const regex_t *preg, const char *string, size_t nmatch,
8008          regmatch_t pmatch[], int eflags)
8009 {
8010   int ret;
8011   struct re_registers regs;
8012   regex_t private_preg;
8013   int len = strlen (string);
8014   boolean want_reg_info = !preg->no_sub && nmatch > 0;
8015 
8016   private_preg = *preg;
8017 
8018   private_preg.not_bol = !!(eflags & REG_NOTBOL);
8019   private_preg.not_eol = !!(eflags & REG_NOTEOL);
8020 
8021   /* The user has told us exactly how many registers to return
8022      information about, via `nmatch'.  We have to pass that on to the
8023      matching routines.  */
8024   private_preg.regs_allocated = REGS_FIXED;
8025 
8026   if (want_reg_info)
8027     {
8028       regs.num_regs = nmatch;
8029       regs.start = TALLOC (nmatch * 2, regoff_t);
8030       if (regs.start == NULL)
8031         return (int) REG_NOMATCH;
8032       regs.end = regs.start + nmatch;
8033     }
8034 
8035   /* Perform the searching operation.  */
8036   ret = re_search (&private_preg, string, len,
8037                    /* start: */ 0, /* range: */ len,
8038                    want_reg_info ? &regs : (struct re_registers *) 0);
8039 
8040   /* Copy the register information to the POSIX structure.  */
8041   if (want_reg_info)
8042     {
8043       if (ret >= 0)
8044         {
8045           unsigned r;
8046 
8047           for (r = 0; r < nmatch; r++)
8048             {
8049               pmatch[r].rm_so = regs.start[r];
8050               pmatch[r].rm_eo = regs.end[r];
8051             }
8052         }
8053 
8054       /* If we needed the temporary register info, free the space now.  */
8055       free (regs.start);
8056     }
8057 
8058   /* We want zero return to mean success, unlike `re_search'.  */
8059   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8060 }
8061 #ifdef _LIBC
8062 weak_alias (__regexec, regexec)
8063 #endif
8064 
8065 
8066 /* Returns a message corresponding to an error code, ERRCODE, returned
8067    from either regcomp or regexec.   We don't use PREG here.  */
8068 
8069 size_t
8070 regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8071           char *errbuf, size_t errbuf_size)
8072 {
8073   const char *msg;
8074   size_t msg_size;
8075 
8076   if (errcode < 0
8077       || errcode >= (int) (sizeof (re_error_msgid)
8078 			   / sizeof (re_error_msgid[0])))
8079     /* Only error codes returned by the rest of the code should be passed
8080        to this routine.  If we are given anything else, or if other regex
8081        code generates an invalid error code, then the program has a bug.
8082        Dump core so we can fix it.  */
8083     abort ();
8084 
8085   msg = gettext (re_error_msgid[errcode]);
8086 
8087   msg_size = strlen (msg) + 1; /* Includes the null.  */
8088 
8089   if (errbuf_size != 0)
8090     {
8091       if (msg_size > errbuf_size)
8092         {
8093 #if defined HAVE_MEMPCPY || defined _LIBC
8094 	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8095 #else
8096           memcpy (errbuf, msg, errbuf_size - 1);
8097           errbuf[errbuf_size - 1] = 0;
8098 #endif
8099         }
8100       else
8101         memcpy (errbuf, msg, msg_size);
8102     }
8103 
8104   return msg_size;
8105 }
8106 #ifdef _LIBC
8107 weak_alias (__regerror, regerror)
8108 #endif
8109 
8110 
8111 /* Free dynamically allocated space used by PREG.  */
8112 
8113 void
8114 regfree (regex_t *preg)
8115 {
8116   free (preg->buffer);
8117   preg->buffer = NULL;
8118 
8119   preg->allocated = 0;
8120   preg->used = 0;
8121 
8122   free (preg->fastmap);
8123   preg->fastmap = NULL;
8124   preg->fastmap_accurate = 0;
8125 
8126   free (preg->translate);
8127   preg->translate = NULL;
8128 }
8129 #ifdef _LIBC
8130 weak_alias (__regfree, regfree)
8131 #endif
8132 
8133 #endif /* not emacs  */
8134 
8135 #endif /* not INSIDE_RECURSION */
8136 
8137 
8138 #undef STORE_NUMBER
8139 #undef STORE_NUMBER_AND_INCR
8140 #undef EXTRACT_NUMBER
8141 #undef EXTRACT_NUMBER_AND_INCR
8142 
8143 #undef DEBUG_PRINT_COMPILED_PATTERN
8144 #undef DEBUG_PRINT_DOUBLE_STRING
8145 
8146 #undef INIT_FAIL_STACK
8147 #undef RESET_FAIL_STACK
8148 #undef DOUBLE_FAIL_STACK
8149 #undef PUSH_PATTERN_OP
8150 #undef PUSH_FAILURE_POINTER
8151 #undef PUSH_FAILURE_INT
8152 #undef PUSH_FAILURE_ELT
8153 #undef POP_FAILURE_POINTER
8154 #undef POP_FAILURE_INT
8155 #undef POP_FAILURE_ELT
8156 #undef DEBUG_PUSH
8157 #undef DEBUG_POP
8158 #undef PUSH_FAILURE_POINT
8159 #undef POP_FAILURE_POINT
8160 
8161 #undef REG_UNSET_VALUE
8162 #undef REG_UNSET
8163 
8164 #undef PATFETCH
8165 #undef PATFETCH_RAW
8166 #undef PATUNFETCH
8167 #undef TRANSLATE
8168 
8169 #undef INIT_BUF_SIZE
8170 #undef GET_BUFFER_SPACE
8171 #undef BUF_PUSH
8172 #undef BUF_PUSH_2
8173 #undef BUF_PUSH_3
8174 #undef STORE_JUMP
8175 #undef STORE_JUMP2
8176 #undef INSERT_JUMP
8177 #undef INSERT_JUMP2
8178 #undef EXTEND_BUFFER
8179 #undef GET_UNSIGNED_NUMBER
8180 #undef FREE_STACK_RETURN
8181 
8182 # undef POINTER_TO_OFFSET
8183 # undef MATCHING_IN_FRST_STRING
8184 # undef PREFETCH
8185 # undef AT_STRINGS_BEG
8186 # undef AT_STRINGS_END
8187 # undef WORDCHAR_P
8188 # undef FREE_VAR
8189 # undef FREE_VARIABLES
8190 # undef NO_HIGHEST_ACTIVE_REG
8191 # undef NO_LOWEST_ACTIVE_REG
8192 
8193 # undef CHAR_T
8194 # undef UCHAR_T
8195 # undef COMPILED_BUFFER_VAR
8196 # undef OFFSET_ADDRESS_SIZE
8197 # undef CHAR_CLASS_SIZE
8198 # undef PREFIX
8199 # undef ARG_PREFIX
8200 # undef PUT_CHAR
8201 # undef BYTE
8202 # undef WCHAR
8203 
8204 # define DEFINED_ONCE
8205