xref: /dragonfly/contrib/gdtoa/gdtoaimp.h (revision 21c1c48a)
1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* This is a variation on dtoa.c that converts arbitary binary
30    floating-point formats to and from decimal notation.  It uses
31    double-precision arithmetic internally, so there are still
32    various #ifdefs that adapt the calculations to the native
33    double-precision arithmetic (any of IEEE, VAX D_floating,
34    or IBM mainframe arithmetic).
35 
36    Please send bug reports to David M. Gay (dmg at acm dot org,
37    with " at " changed at "@" and " dot " changed to ".").
38  */
39 
40 /* On a machine with IEEE extended-precision registers, it is
41  * necessary to specify double-precision (53-bit) rounding precision
42  * before invoking strtod or dtoa.  If the machine uses (the equivalent
43  * of) Intel 80x87 arithmetic, the call
44  *	_control87(PC_53, MCW_PC);
45  * does this with many compilers.  Whether this or another call is
46  * appropriate depends on the compiler; for this to work, it may be
47  * necessary to #include "float.h" or another system-dependent header
48  * file.
49  */
50 
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52  *
53  * This strtod returns a nearest machine number to the input decimal
54  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
55  * broken by the IEEE round-even rule.  Otherwise ties are broken by
56  * biased rounding (add half and chop).
57  *
58  * Inspired loosely by William D. Clinger's paper "How to Read Floating
59  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60  *
61  * Modifications:
62  *
63  *	1. We only require IEEE, IBM, or VAX double-precision
64  *		arithmetic (not IEEE double-extended).
65  *	2. We get by with floating-point arithmetic in a case that
66  *		Clinger missed -- when we're computing d * 10^n
67  *		for a small integer d and the integer n is not too
68  *		much larger than 22 (the maximum integer k for which
69  *		we can represent 10^k exactly), we may be able to
70  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
71  *	3. Rather than a bit-at-a-time adjustment of the binary
72  *		result in the hard case, we use floating-point
73  *		arithmetic to determine the adjustment to within
74  *		one bit; only in really hard cases do we need to
75  *		compute a second residual.
76  *	4. Because of 3., we don't need a large table of powers of 10
77  *		for ten-to-e (just some small tables, e.g. of 10^k
78  *		for 0 <= k <= 22).
79  */
80 
81 /*
82  * #define IEEE_8087 for IEEE-arithmetic machines where the least
83  *	significant byte has the lowest address.
84  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85  *	significant byte has the lowest address.
86  * #define Long int on machines with 32-bit ints and 64-bit longs.
87  * #define Sudden_Underflow for IEEE-format machines without gradual
88  *	underflow (i.e., that flush to zero on underflow).
89  * #define IBM for IBM mainframe-style floating-point arithmetic.
90  * #define VAX for VAX-style floating-point arithmetic (D_floating).
91  * #define No_leftright to omit left-right logic in fast floating-point
92  *	computation of dtoa.
93  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95  *	that use extended-precision instructions to compute rounded
96  *	products and quotients) with IBM.
97  * #define ROUND_BIASED for IEEE-format with biased rounding.
98  * #define Inaccurate_Divide for IEEE-format with correctly rounded
99  *	products but inaccurate quotients, e.g., for Intel i860.
100  * #define NO_LONG_LONG on machines that do not have a "long long"
101  *	integer type (of >= 64 bits).  On such machines, you can
102  *	#define Just_16 to store 16 bits per 32-bit Long when doing
103  *	high-precision integer arithmetic.  Whether this speeds things
104  *	up or slows things down depends on the machine and the number
105  *	being converted.  If long long is available and the name is
106  *	something other than "long long", #define Llong to be the name,
107  *	and if "unsigned Llong" does not work as an unsigned version of
108  *	Llong, #define #ULLong to be the corresponding unsigned type.
109  * #define KR_headers for old-style C function headers.
110  * #define Bad_float_h if your system lacks a float.h or if it does not
111  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114  *	if memory is available and otherwise does something you deem
115  *	appropriate.  If MALLOC is undefined, malloc will be invoked
116  *	directly -- and assumed always to succeed.
117  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118  *	memory allocations from a private pool of memory when possible.
119  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
120  *	unless #defined to be a different length.  This default length
121  *	suffices to get rid of MALLOC calls except for unusual cases,
122  *	such as decimal-to-binary conversion of a very long string of
123  *	digits.  When converting IEEE double precision values, the
124  *	longest string gdtoa can return is about 751 bytes long.  For
125  *	conversions by strtod of strings of 800 digits and all gdtoa
126  *	conversions of IEEE doubles in single-threaded executions with
127  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
130  *	#defined automatically on IEEE systems.  On such systems,
131  *	when INFNAN_CHECK is #defined, strtod checks
132  *	for Infinity and NaN (case insensitively).
133  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134  *	strtodg also accepts (case insensitively) strings of the form
135  *	NaN(x), where x is a string of hexadecimal digits (optionally
136  *	preceded by 0x or 0X) and spaces; if there is only one string
137  *	of hexadecimal digits, it is taken for the fraction bits of the
138  *	resulting NaN; if there are two or more strings of hexadecimal
139  *	digits, each string is assigned to the next available sequence
140  *	of 32-bit words of fractions bits (starting with the most
141  *	significant), right-aligned in each sequence.
142  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
143  *	is consumed even when ... has the wrong form (in which case the
144  *	"(...)" is consumed but ignored).
145  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
146  *	multiple threads.  In this case, you must provide (or suitably
147  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
148  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
149  *	in pow5mult, ensures lazy evaluation of only one copy of high
150  *	powers of 5; omitting this lock would introduce a small
151  *	probability of wasting memory, but would otherwise be harmless.)
152  *	You must also invoke freedtoa(s) to free the value s returned by
153  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
154  * #define IMPRECISE_INEXACT if you do not care about the setting of
155  *	the STRTOG_Inexact bits in the special case of doing IEEE double
156  *	precision conversions (which could also be done by the strtod in
157  *	dtoa.c).
158  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
159  *	floating-point constants.
160  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
161  *	strtodg.c).
162  * #define NO_STRING_H to use private versions of memcpy.
163  *	On some K&R systems, it may also be necessary to
164  *	#define DECLARE_SIZE_T in this case.
165  * #define YES_ALIAS to permit aliasing certain double values with
166  *	arrays of ULongs.  This leads to slightly better code with
167  *	some compilers and was always used prior to 19990916, but it
168  *	is not strictly legal and can cause trouble with aggressively
169  *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
170  * #define USE_LOCALE to use the current locale's decimal_point value.
171  */
172 
173 #ifndef GDTOAIMP_H_INCLUDED
174 #define GDTOAIMP_H_INCLUDED
175 
176 #define	Long	int
177 
178 #define USE_LOCALE
179 #define Honor_FLT_ROUNDS
180 
181 #include "gdtoa.h"
182 #include "gd_qnan.h"
183 #ifdef Honor_FLT_ROUNDS
184 #include <fenv.h>
185 #endif
186 
187 #ifdef DEBUG
188 #include "stdio.h"
189 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
190 #endif
191 
192 #include "limits.h"
193 #include "stdlib.h"
194 #include "string.h"
195 #include "libc_private.h"
196 
197 #include "namespace.h"
198 #include <pthread.h>
199 #include "un-namespace.h"
200 
201 #ifdef KR_headers
202 #define Char char
203 #else
204 #define Char void
205 #endif
206 
207 #ifdef MALLOC
208 extern Char *MALLOC ANSI((size_t));
209 #else
210 #define MALLOC malloc
211 #endif
212 
213 #undef IEEE_Arith
214 #undef Avoid_Underflow
215 #ifdef IEEE_MC68k
216 #define IEEE_Arith
217 #endif
218 #ifdef IEEE_8087
219 #define IEEE_Arith
220 #endif
221 
222 #include "errno.h"
223 #ifdef Bad_float_h
224 
225 #ifdef IEEE_Arith
226 #define DBL_DIG 15
227 #define DBL_MAX_10_EXP 308
228 #define DBL_MAX_EXP 1024
229 #define FLT_RADIX 2
230 #define DBL_MAX 1.7976931348623157e+308
231 #endif
232 
233 #ifdef IBM
234 #define DBL_DIG 16
235 #define DBL_MAX_10_EXP 75
236 #define DBL_MAX_EXP 63
237 #define FLT_RADIX 16
238 #define DBL_MAX 7.2370055773322621e+75
239 #endif
240 
241 #ifdef VAX
242 #define DBL_DIG 16
243 #define DBL_MAX_10_EXP 38
244 #define DBL_MAX_EXP 127
245 #define FLT_RADIX 2
246 #define DBL_MAX 1.7014118346046923e+38
247 #define n_bigtens 2
248 #endif
249 
250 #ifndef LONG_MAX
251 #define LONG_MAX 2147483647
252 #endif
253 
254 #else /* ifndef Bad_float_h */
255 #include "float.h"
256 #endif /* Bad_float_h */
257 
258 #ifdef IEEE_Arith
259 #define Scale_Bit 0x10
260 #define n_bigtens 5
261 #endif
262 
263 #ifdef IBM
264 #define n_bigtens 3
265 #endif
266 
267 #ifdef VAX
268 #define n_bigtens 2
269 #endif
270 
271 #ifndef __MATH_H__
272 #include "math.h"
273 #endif
274 
275 #ifdef __cplusplus
276 extern "C" {
277 #endif
278 
279 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
280 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
281 #endif
282 
283 typedef union { double d; ULong L[2]; } U;
284 
285 #ifdef YES_ALIAS
286 #define dval(x) x
287 #ifdef IEEE_8087
288 #define word0(x) ((ULong *)&x)[1]
289 #define word1(x) ((ULong *)&x)[0]
290 #else
291 #define word0(x) ((ULong *)&x)[0]
292 #define word1(x) ((ULong *)&x)[1]
293 #endif
294 #else /* !YES_ALIAS */
295 #ifdef IEEE_8087
296 #define word0(x) ((U*)&x)->L[1]
297 #define word1(x) ((U*)&x)->L[0]
298 #else
299 #define word0(x) ((U*)&x)->L[0]
300 #define word1(x) ((U*)&x)->L[1]
301 #endif
302 #define dval(x) ((U*)&x)->d
303 #endif /* YES_ALIAS */
304 
305 /* The following definition of Storeinc is appropriate for MIPS processors.
306  * An alternative that might be better on some machines is
307  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
308  */
309 #if defined(IEEE_8087) + defined(VAX)
310 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
311 ((unsigned short *)a)[0] = (unsigned short)c, a++)
312 #else
313 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
314 ((unsigned short *)a)[1] = (unsigned short)c, a++)
315 #endif
316 
317 /* #define P DBL_MANT_DIG */
318 /* Ten_pmax = floor(P*log(2)/log(5)) */
319 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
320 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
321 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
322 
323 #ifdef IEEE_Arith
324 #define Exp_shift  20
325 #define Exp_shift1 20
326 #define Exp_msk1    0x100000
327 #define Exp_msk11   0x100000
328 #define Exp_mask  0x7ff00000
329 #define P 53
330 #define Bias 1023
331 #define Emin (-1022)
332 #define Exp_1  0x3ff00000
333 #define Exp_11 0x3ff00000
334 #define Ebits 11
335 #define Frac_mask  0xfffff
336 #define Frac_mask1 0xfffff
337 #define Ten_pmax 22
338 #define Bletch 0x10
339 #define Bndry_mask  0xfffff
340 #define Bndry_mask1 0xfffff
341 #define LSB 1
342 #define Sign_bit 0x80000000
343 #define Log2P 1
344 #define Tiny0 0
345 #define Tiny1 1
346 #define Quick_max 14
347 #define Int_max 14
348 
349 #ifndef Flt_Rounds
350 #ifdef FLT_ROUNDS
351 #define Flt_Rounds FLT_ROUNDS
352 #else
353 #define Flt_Rounds 1
354 #endif
355 #endif /*Flt_Rounds*/
356 
357 #else /* ifndef IEEE_Arith */
358 #undef  Sudden_Underflow
359 #define Sudden_Underflow
360 #ifdef IBM
361 #undef Flt_Rounds
362 #define Flt_Rounds 0
363 #define Exp_shift  24
364 #define Exp_shift1 24
365 #define Exp_msk1   0x1000000
366 #define Exp_msk11  0x1000000
367 #define Exp_mask  0x7f000000
368 #define P 14
369 #define Bias 65
370 #define Exp_1  0x41000000
371 #define Exp_11 0x41000000
372 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
373 #define Frac_mask  0xffffff
374 #define Frac_mask1 0xffffff
375 #define Bletch 4
376 #define Ten_pmax 22
377 #define Bndry_mask  0xefffff
378 #define Bndry_mask1 0xffffff
379 #define LSB 1
380 #define Sign_bit 0x80000000
381 #define Log2P 4
382 #define Tiny0 0x100000
383 #define Tiny1 0
384 #define Quick_max 14
385 #define Int_max 15
386 #else /* VAX */
387 #undef Flt_Rounds
388 #define Flt_Rounds 1
389 #define Exp_shift  23
390 #define Exp_shift1 7
391 #define Exp_msk1    0x80
392 #define Exp_msk11   0x800000
393 #define Exp_mask  0x7f80
394 #define P 56
395 #define Bias 129
396 #define Exp_1  0x40800000
397 #define Exp_11 0x4080
398 #define Ebits 8
399 #define Frac_mask  0x7fffff
400 #define Frac_mask1 0xffff007f
401 #define Ten_pmax 24
402 #define Bletch 2
403 #define Bndry_mask  0xffff007f
404 #define Bndry_mask1 0xffff007f
405 #define LSB 0x10000
406 #define Sign_bit 0x8000
407 #define Log2P 1
408 #define Tiny0 0x80
409 #define Tiny1 0
410 #define Quick_max 15
411 #define Int_max 15
412 #endif /* IBM, VAX */
413 #endif /* IEEE_Arith */
414 
415 #ifndef IEEE_Arith
416 #define ROUND_BIASED
417 #endif
418 
419 #ifdef RND_PRODQUOT
420 #define rounded_product(a,b) a = rnd_prod(a, b)
421 #define rounded_quotient(a,b) a = rnd_quot(a, b)
422 #ifdef KR_headers
423 extern double rnd_prod(), rnd_quot();
424 #else
425 extern double rnd_prod(double, double), rnd_quot(double, double);
426 #endif
427 #else
428 #define rounded_product(a,b) a *= b
429 #define rounded_quotient(a,b) a /= b
430 #endif
431 
432 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
433 #define Big1 0xffffffff
434 
435 #undef  Pack_16
436 #ifndef Pack_32
437 #define Pack_32
438 #endif
439 
440 #ifdef NO_LONG_LONG
441 #undef ULLong
442 #ifdef Just_16
443 #undef Pack_32
444 #define Pack_16
445 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
446  * This makes some inner loops simpler and sometimes saves work
447  * during multiplications, but it often seems to make things slightly
448  * slower.  Hence the default is now to store 32 bits per Long.
449  */
450 #endif
451 #else	/* long long available */
452 #ifndef Llong
453 #define Llong long long
454 #endif
455 #ifndef ULLong
456 #define ULLong unsigned Llong
457 #endif
458 #endif /* NO_LONG_LONG */
459 
460 #ifdef Pack_32
461 #define ULbits 32
462 #define kshift 5
463 #define kmask 31
464 #define ALL_ON 0xffffffff
465 #else
466 #define ULbits 16
467 #define kshift 4
468 #define kmask 15
469 #define ALL_ON 0xffff
470 #endif
471 
472 #define MULTIPLE_THREADS
473 extern pthread_mutex_t __gdtoa_locks[2];
474 #define ACQUIRE_DTOA_LOCK(n)	do {				\
475 	if (__isthreaded)					\
476 		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
477 } while(0)
478 #define FREE_DTOA_LOCK(n)	do {				\
479 	if (__isthreaded)					\
480 		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
481 } while(0)
482 
483 #define Kmax 15
484 
485  struct
486 Bigint {
487 	struct Bigint *next;
488 	int k, maxwds, sign, wds;
489 	ULong x[1];
490 	};
491 
492  typedef struct Bigint Bigint;
493 
494 #ifdef NO_STRING_H
495 #ifdef DECLARE_SIZE_T
496 typedef unsigned int size_t;
497 #endif
498 extern void memcpy_D2A ANSI((void*, const void*, size_t));
499 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
500 #else /* !NO_STRING_H */
501 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
502 #endif /* NO_STRING_H */
503 
504 /*
505  * Paranoia: Protect exported symbols, including ones in files we don't
506  * compile right now.  The standard strtof and strtod survive.
507  */
508 #define	dtoa		__dtoa
509 #define	gdtoa		__gdtoa
510 #define	freedtoa	__freedtoa
511 #define	strtodg		__strtodg
512 #define	g_ddfmt		__g_ddfmt
513 #define	g_dfmt		__g_dfmt
514 #define	g_ffmt		__g_ffmt
515 #define	g_Qfmt		__g_Qfmt
516 #define	g_xfmt		__g_xfmt
517 #define	g_xLfmt		__g_xLfmt
518 #define	strtoId		__strtoId
519 #define	strtoIdd	__strtoIdd
520 #define	strtoIf		__strtoIf
521 #define	strtoIQ		__strtoIQ
522 #define	strtoIx		__strtoIx
523 #define	strtoIxL	__strtoIxL
524 #define	strtord		__strtord
525 #define	strtordd	__strtordd
526 #define	strtorf		__strtorf
527 #define	strtorQ		__strtorQ
528 #define	strtorx		__strtorx
529 #define	strtorxL	__strtorxL
530 #define	strtodI		__strtodI
531 #define	strtopd		__strtopd
532 #define	strtopdd	__strtopdd
533 #define	strtopf		__strtopf
534 #define	strtopQ		__strtopQ
535 #define	strtopx		__strtopx
536 #define	strtopxL	__strtopxL
537 
538 /* Protect gdtoa-internal symbols */
539 #define	Balloc		__Balloc_D2A
540 #define	Bfree		__Bfree_D2A
541 #define	ULtoQ		__ULtoQ_D2A
542 #define	ULtof		__ULtof_D2A
543 #define	ULtod		__ULtod_D2A
544 #define	ULtodd		__ULtodd_D2A
545 #define	ULtox		__ULtox_D2A
546 #define	ULtoxL		__ULtoxL_D2A
547 #define	any_on		__any_on_D2A
548 #define	b2d		__b2d_D2A
549 #define	bigtens		__bigtens_D2A
550 #define	cmp		__cmp_D2A
551 #define	copybits	__copybits_D2A
552 #define	d2b		__d2b_D2A
553 #define	decrement	__decrement_D2A
554 #define	diff		__diff_D2A
555 #define	dtoa_result	__dtoa_result_D2A
556 #define	g__fmt		__g__fmt_D2A
557 #define	gethex		__gethex_D2A
558 #define	hexdig		__hexdig_D2A
559 #define	hexdig_init_D2A	__hexdig_init_D2A
560 #define	hexnan		__hexnan_D2A
561 #define	hi0bits(x)	__hi0bits_D2A((ULong)(x))
562 #define	hi0bits_D2A	__hi0bits_D2A
563 #define	i2b		__i2b_D2A
564 #define	increment	__increment_D2A
565 #define	lo0bits		__lo0bits_D2A
566 #define	lshift		__lshift_D2A
567 #define	match		__match_D2A
568 #define	mult		__mult_D2A
569 #define	multadd		__multadd_D2A
570 #define	nrv_alloc	__nrv_alloc_D2A
571 #define	pow5mult	__pow5mult_D2A
572 #define	quorem		__quorem_D2A
573 #define	ratio		__ratio_D2A
574 #define	rshift		__rshift_D2A
575 #define	rv_alloc	__rv_alloc_D2A
576 #define	s2b		__s2b_D2A
577 #define	set_ones	__set_ones_D2A
578 #define	strcp		__strcp_D2A
579 #define	strcp_D2A	__strcp_D2A
580 #define	strtoIg		__strtoIg_D2A
581 #define	sum		__sum_D2A
582 #define	tens		__tens_D2A
583 #define	tinytens	__tinytens_D2A
584 #define	tinytens	__tinytens_D2A
585 #define	trailz		__trailz_D2A
586 #define	ulp		__ulp_D2A
587 
588  extern char *dtoa_result;
589  extern CONST double bigtens[], tens[], tinytens[];
590  extern unsigned char hexdig[];
591 
592  extern Bigint *Balloc ANSI((int));
593  extern void Bfree ANSI((Bigint*));
594  extern void ULtof ANSI((ULong*, ULong*, Long, int));
595  extern void ULtod ANSI((ULong*, ULong*, Long, int));
596  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
597  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
598  extern void ULtox ANSI((UShort*, ULong*, Long, int));
599  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
600  extern ULong any_on ANSI((Bigint*, int));
601  extern double b2d ANSI((Bigint*, int*));
602  extern int cmp ANSI((Bigint*, Bigint*));
603  extern void copybits ANSI((ULong*, int, Bigint*));
604  extern Bigint *d2b ANSI((double, int*, int*));
605  extern void decrement ANSI((Bigint*));
606  extern Bigint *diff ANSI((Bigint*, Bigint*));
607  extern char *dtoa ANSI((double d, int mode, int ndigits,
608 			int *decpt, int *sign, char **rve));
609  extern void freedtoa ANSI((char*));
610  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
611  extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
612 			  int mode, int ndigits, int *decpt, char **rve));
613  extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
614  extern void hexdig_init_D2A(Void);
615  extern int hexnan ANSI((CONST char**, FPI*, ULong*));
616  extern int hi0bits_D2A ANSI((ULong));
617  extern Bigint *i2b ANSI((int));
618  extern Bigint *increment ANSI((Bigint*));
619  extern int lo0bits ANSI((ULong*));
620  extern Bigint *lshift ANSI((Bigint*, int));
621  extern int match ANSI((CONST char**, char*));
622  extern Bigint *mult ANSI((Bigint*, Bigint*));
623  extern Bigint *multadd ANSI((Bigint*, int, int));
624  extern char *nrv_alloc ANSI((char*, char **, int));
625  extern Bigint *pow5mult ANSI((Bigint*, int));
626  extern int quorem ANSI((Bigint*, Bigint*));
627  extern double ratio ANSI((Bigint*, Bigint*));
628  extern void rshift ANSI((Bigint*, int));
629  extern char *rv_alloc ANSI((int));
630  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
631  extern Bigint *set_ones ANSI((Bigint*, int));
632  extern char *strcp ANSI((char*, const char*));
633  extern int strtodg ANSI((CONST char*, char**, FPI*, Long*, ULong*));
634 
635  extern int strtoId ANSI((CONST char *, char **, double *, double *));
636  extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
637  extern int strtoIf ANSI((CONST char *, char **, float *, float *));
638  extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
639  extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
640  extern int strtoIx ANSI((CONST char *, char **, void *, void *));
641  extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
642  extern double strtod ANSI((const char *s00, char **se));
643  extern int strtopQ ANSI((CONST char *, char **, Void *));
644  extern int strtopf ANSI((CONST char *, char **, float *));
645  extern int strtopd ANSI((CONST char *, char **, double *));
646  extern int strtopdd ANSI((CONST char *, char **, double *));
647  extern int strtopx ANSI((CONST char *, char **, Void *));
648  extern int strtopxL ANSI((CONST char *, char **, Void *));
649  extern int strtord ANSI((CONST char *, char **, int, double *));
650  extern int strtordd ANSI((CONST char *, char **, int, double *));
651  extern int strtorf ANSI((CONST char *, char **, int, float *));
652  extern int strtorQ ANSI((CONST char *, char **, int, void *));
653  extern int strtorx ANSI((CONST char *, char **, int, void *));
654  extern int strtorxL ANSI((CONST char *, char **, int, void *));
655  extern Bigint *sum ANSI((Bigint*, Bigint*));
656  extern int trailz ANSI((Bigint*));
657  extern double ulp ANSI((double));
658 
659 #ifdef __cplusplus
660 }
661 #endif
662 /*
663  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
664  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
665  * respectively), but now are determined by compiling and running
666  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
667  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
668  * and -DNAN_WORD1=...  values if necessary.  This should still work.
669  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
670  */
671 #ifdef IEEE_Arith
672 #ifndef NO_INFNAN_CHECK
673 #undef INFNAN_CHECK
674 #define INFNAN_CHECK
675 #endif
676 #ifdef IEEE_MC68k
677 #define _0 0
678 #define _1 1
679 #ifndef NAN_WORD0
680 #define NAN_WORD0 d_QNAN0
681 #endif
682 #ifndef NAN_WORD1
683 #define NAN_WORD1 d_QNAN1
684 #endif
685 #else
686 #define _0 1
687 #define _1 0
688 #ifndef NAN_WORD0
689 #define NAN_WORD0 d_QNAN1
690 #endif
691 #ifndef NAN_WORD1
692 #define NAN_WORD1 d_QNAN0
693 #endif
694 #endif
695 #else
696 #undef INFNAN_CHECK
697 #endif
698 
699 #undef SI
700 #ifdef Sudden_Underflow
701 #define SI 1
702 #else
703 #define SI 0
704 #endif
705 
706 #endif /* GDTOAIMP_H_INCLUDED */
707