xref: /dragonfly/contrib/gdtoa/gdtoaimp.h (revision 299d9671)
1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* This is a variation on dtoa.c that converts arbitary binary
30    floating-point formats to and from decimal notation.  It uses
31    double-precision arithmetic internally, so there are still
32    various #ifdefs that adapt the calculations to the native
33    double-precision arithmetic (any of IEEE, VAX D_floating,
34    or IBM mainframe arithmetic).
35 
36    Please send bug reports to David M. Gay (dmg at acm dot org,
37    with " at " changed at "@" and " dot " changed to ".").
38  */
39 
40 /* On a machine with IEEE extended-precision registers, it is
41  * necessary to specify double-precision (53-bit) rounding precision
42  * before invoking strtod or dtoa.  If the machine uses (the equivalent
43  * of) Intel 80x87 arithmetic, the call
44  *	_control87(PC_53, MCW_PC);
45  * does this with many compilers.  Whether this or another call is
46  * appropriate depends on the compiler; for this to work, it may be
47  * necessary to #include "float.h" or another system-dependent header
48  * file.
49  */
50 
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52  *
53  * This strtod returns a nearest machine number to the input decimal
54  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
55  * broken by the IEEE round-even rule.  Otherwise ties are broken by
56  * biased rounding (add half and chop).
57  *
58  * Inspired loosely by William D. Clinger's paper "How to Read Floating
59  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60  *
61  * Modifications:
62  *
63  *	1. We only require IEEE, IBM, or VAX double-precision
64  *		arithmetic (not IEEE double-extended).
65  *	2. We get by with floating-point arithmetic in a case that
66  *		Clinger missed -- when we're computing d * 10^n
67  *		for a small integer d and the integer n is not too
68  *		much larger than 22 (the maximum integer k for which
69  *		we can represent 10^k exactly), we may be able to
70  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
71  *	3. Rather than a bit-at-a-time adjustment of the binary
72  *		result in the hard case, we use floating-point
73  *		arithmetic to determine the adjustment to within
74  *		one bit; only in really hard cases do we need to
75  *		compute a second residual.
76  *	4. Because of 3., we don't need a large table of powers of 10
77  *		for ten-to-e (just some small tables, e.g. of 10^k
78  *		for 0 <= k <= 22).
79  */
80 
81 /*
82  * #define IEEE_8087 for IEEE-arithmetic machines where the least
83  *	significant byte has the lowest address.
84  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85  *	significant byte has the lowest address.
86  * #define Long int on machines with 32-bit ints and 64-bit longs.
87  * #define Sudden_Underflow for IEEE-format machines without gradual
88  *	underflow (i.e., that flush to zero on underflow).
89  * #define IBM for IBM mainframe-style floating-point arithmetic.
90  * #define VAX for VAX-style floating-point arithmetic (D_floating).
91  * #define No_leftright to omit left-right logic in fast floating-point
92  *	computation of dtoa.
93  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95  *	that use extended-precision instructions to compute rounded
96  *	products and quotients) with IBM.
97  * #define ROUND_BIASED for IEEE-format with biased rounding.
98  * #define Inaccurate_Divide for IEEE-format with correctly rounded
99  *	products but inaccurate quotients, e.g., for Intel i860.
100  * #define NO_LONG_LONG on machines that do not have a "long long"
101  *	integer type (of >= 64 bits).  On such machines, you can
102  *	#define Just_16 to store 16 bits per 32-bit Long when doing
103  *	high-precision integer arithmetic.  Whether this speeds things
104  *	up or slows things down depends on the machine and the number
105  *	being converted.  If long long is available and the name is
106  *	something other than "long long", #define Llong to be the name,
107  *	and if "unsigned Llong" does not work as an unsigned version of
108  *	Llong, #define #ULLong to be the corresponding unsigned type.
109  * #define KR_headers for old-style C function headers.
110  * #define Bad_float_h if your system lacks a float.h or if it does not
111  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114  *	if memory is available and otherwise does something you deem
115  *	appropriate.  If MALLOC is undefined, malloc will be invoked
116  *	directly -- and assumed always to succeed.
117  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118  *	memory allocations from a private pool of memory when possible.
119  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
120  *	unless #defined to be a different length.  This default length
121  *	suffices to get rid of MALLOC calls except for unusual cases,
122  *	such as decimal-to-binary conversion of a very long string of
123  *	digits.  When converting IEEE double precision values, the
124  *	longest string gdtoa can return is about 751 bytes long.  For
125  *	conversions by strtod of strings of 800 digits and all gdtoa
126  *	conversions of IEEE doubles in single-threaded executions with
127  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
130  *	#defined automatically on IEEE systems.  On such systems,
131  *	when INFNAN_CHECK is #defined, strtod checks
132  *	for Infinity and NaN (case insensitively).
133  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
134  *	strtodg also accepts (case insensitively) strings of the form
135  *	NaN(x), where x is a string of hexadecimal digits (optionally
136  *	preceded by 0x or 0X) and spaces; if there is only one string
137  *	of hexadecimal digits, it is taken for the fraction bits of the
138  *	resulting NaN; if there are two or more strings of hexadecimal
139  *	digits, each string is assigned to the next available sequence
140  *	of 32-bit words of fractions bits (starting with the most
141  *	significant), right-aligned in each sequence.
142  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
143  *	is consumed even when ... has the wrong form (in which case the
144  *	"(...)" is consumed but ignored).
145  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
146  *	multiple threads.  In this case, you must provide (or suitably
147  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
148  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
149  *	in pow5mult, ensures lazy evaluation of only one copy of high
150  *	powers of 5; omitting this lock would introduce a small
151  *	probability of wasting memory, but would otherwise be harmless.)
152  *	You must also invoke freedtoa(s) to free the value s returned by
153  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
154  * #define IMPRECISE_INEXACT if you do not care about the setting of
155  *	the STRTOG_Inexact bits in the special case of doing IEEE double
156  *	precision conversions (which could also be done by the strtod in
157  *	dtoa.c).
158  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
159  *	floating-point constants.
160  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
161  *	strtodg.c).
162  * #define NO_STRING_H to use private versions of memcpy.
163  *	On some K&R systems, it may also be necessary to
164  *	#define DECLARE_SIZE_T in this case.
165  * #define YES_ALIAS to permit aliasing certain double values with
166  *	arrays of ULongs.  This leads to slightly better code with
167  *	some compilers and was always used prior to 19990916, but it
168  *	is not strictly legal and can cause trouble with aggressively
169  *	optimizing compilers (e.g., gcc 2.95.1 under -O2).
170  * #define USE_LOCALE to use the current locale's decimal_point value.
171  */
172 
173 #ifndef GDTOAIMP_H_INCLUDED
174 #define GDTOAIMP_H_INCLUDED
175 #include "gdtoa.h"
176 #include "gd_qnan.h"
177 #ifdef Honor_FLT_ROUNDS
178 #include <fenv.h>
179 #endif
180 
181 #ifdef DEBUG
182 #include "stdio.h"
183 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
184 #endif
185 
186 #include "stdlib.h"
187 #include "string.h"
188 
189 #ifdef KR_headers
190 #define Char char
191 #else
192 #define Char void
193 #endif
194 
195 #ifdef MALLOC
196 extern Char *MALLOC ANSI((size_t));
197 #else
198 #define MALLOC malloc
199 #endif
200 
201 #undef IEEE_Arith
202 #undef Avoid_Underflow
203 #ifdef IEEE_MC68k
204 #define IEEE_Arith
205 #endif
206 #ifdef IEEE_8087
207 #define IEEE_Arith
208 #endif
209 
210 #include "errno.h"
211 #ifdef Bad_float_h
212 
213 #ifdef IEEE_Arith
214 #define DBL_DIG 15
215 #define DBL_MAX_10_EXP 308
216 #define DBL_MAX_EXP 1024
217 #define FLT_RADIX 2
218 #define DBL_MAX 1.7976931348623157e+308
219 #endif
220 
221 #ifdef IBM
222 #define DBL_DIG 16
223 #define DBL_MAX_10_EXP 75
224 #define DBL_MAX_EXP 63
225 #define FLT_RADIX 16
226 #define DBL_MAX 7.2370055773322621e+75
227 #endif
228 
229 #ifdef VAX
230 #define DBL_DIG 16
231 #define DBL_MAX_10_EXP 38
232 #define DBL_MAX_EXP 127
233 #define FLT_RADIX 2
234 #define DBL_MAX 1.7014118346046923e+38
235 #define n_bigtens 2
236 #endif
237 
238 #ifndef LONG_MAX
239 #define LONG_MAX 2147483647
240 #endif
241 
242 #else /* ifndef Bad_float_h */
243 #include "float.h"
244 #endif /* Bad_float_h */
245 
246 #ifdef IEEE_Arith
247 #define Scale_Bit 0x10
248 #define n_bigtens 5
249 #endif
250 
251 #ifdef IBM
252 #define n_bigtens 3
253 #endif
254 
255 #ifdef VAX
256 #define n_bigtens 2
257 #endif
258 
259 #ifndef __MATH_H__
260 #include "math.h"
261 #endif
262 
263 #ifdef __cplusplus
264 extern "C" {
265 #endif
266 
267 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
268 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
269 #endif
270 
271 typedef union { double d; ULong L[2]; } U;
272 
273 #ifdef YES_ALIAS
274 #define dval(x) x
275 #ifdef IEEE_8087
276 #define word0(x) ((ULong *)&x)[1]
277 #define word1(x) ((ULong *)&x)[0]
278 #else
279 #define word0(x) ((ULong *)&x)[0]
280 #define word1(x) ((ULong *)&x)[1]
281 #endif
282 #else /* !YES_ALIAS */
283 #ifdef IEEE_8087
284 #define word0(x) ((U*)&x)->L[1]
285 #define word1(x) ((U*)&x)->L[0]
286 #else
287 #define word0(x) ((U*)&x)->L[0]
288 #define word1(x) ((U*)&x)->L[1]
289 #endif
290 #define dval(x) ((U*)&x)->d
291 #endif /* YES_ALIAS */
292 
293 /* The following definition of Storeinc is appropriate for MIPS processors.
294  * An alternative that might be better on some machines is
295  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
296  */
297 #if defined(IEEE_8087) + defined(VAX)
298 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
299 ((unsigned short *)a)[0] = (unsigned short)c, a++)
300 #else
301 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
302 ((unsigned short *)a)[1] = (unsigned short)c, a++)
303 #endif
304 
305 /* #define P DBL_MANT_DIG */
306 /* Ten_pmax = floor(P*log(2)/log(5)) */
307 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
308 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
309 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
310 
311 #ifdef IEEE_Arith
312 #define Exp_shift  20
313 #define Exp_shift1 20
314 #define Exp_msk1    0x100000
315 #define Exp_msk11   0x100000
316 #define Exp_mask  0x7ff00000
317 #define P 53
318 #define Bias 1023
319 #define Emin (-1022)
320 #define Exp_1  0x3ff00000
321 #define Exp_11 0x3ff00000
322 #define Ebits 11
323 #define Frac_mask  0xfffff
324 #define Frac_mask1 0xfffff
325 #define Ten_pmax 22
326 #define Bletch 0x10
327 #define Bndry_mask  0xfffff
328 #define Bndry_mask1 0xfffff
329 #define LSB 1
330 #define Sign_bit 0x80000000
331 #define Log2P 1
332 #define Tiny0 0
333 #define Tiny1 1
334 #define Quick_max 14
335 #define Int_max 14
336 
337 #ifndef Flt_Rounds
338 #ifdef FLT_ROUNDS
339 #define Flt_Rounds FLT_ROUNDS
340 #else
341 #define Flt_Rounds 1
342 #endif
343 #endif /*Flt_Rounds*/
344 
345 #else /* ifndef IEEE_Arith */
346 #undef  Sudden_Underflow
347 #define Sudden_Underflow
348 #ifdef IBM
349 #undef Flt_Rounds
350 #define Flt_Rounds 0
351 #define Exp_shift  24
352 #define Exp_shift1 24
353 #define Exp_msk1   0x1000000
354 #define Exp_msk11  0x1000000
355 #define Exp_mask  0x7f000000
356 #define P 14
357 #define Bias 65
358 #define Exp_1  0x41000000
359 #define Exp_11 0x41000000
360 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
361 #define Frac_mask  0xffffff
362 #define Frac_mask1 0xffffff
363 #define Bletch 4
364 #define Ten_pmax 22
365 #define Bndry_mask  0xefffff
366 #define Bndry_mask1 0xffffff
367 #define LSB 1
368 #define Sign_bit 0x80000000
369 #define Log2P 4
370 #define Tiny0 0x100000
371 #define Tiny1 0
372 #define Quick_max 14
373 #define Int_max 15
374 #else /* VAX */
375 #undef Flt_Rounds
376 #define Flt_Rounds 1
377 #define Exp_shift  23
378 #define Exp_shift1 7
379 #define Exp_msk1    0x80
380 #define Exp_msk11   0x800000
381 #define Exp_mask  0x7f80
382 #define P 56
383 #define Bias 129
384 #define Exp_1  0x40800000
385 #define Exp_11 0x4080
386 #define Ebits 8
387 #define Frac_mask  0x7fffff
388 #define Frac_mask1 0xffff007f
389 #define Ten_pmax 24
390 #define Bletch 2
391 #define Bndry_mask  0xffff007f
392 #define Bndry_mask1 0xffff007f
393 #define LSB 0x10000
394 #define Sign_bit 0x8000
395 #define Log2P 1
396 #define Tiny0 0x80
397 #define Tiny1 0
398 #define Quick_max 15
399 #define Int_max 15
400 #endif /* IBM, VAX */
401 #endif /* IEEE_Arith */
402 
403 #ifndef IEEE_Arith
404 #define ROUND_BIASED
405 #endif
406 
407 #ifdef RND_PRODQUOT
408 #define rounded_product(a,b) a = rnd_prod(a, b)
409 #define rounded_quotient(a,b) a = rnd_quot(a, b)
410 #ifdef KR_headers
411 extern double rnd_prod(), rnd_quot();
412 #else
413 extern double rnd_prod(double, double), rnd_quot(double, double);
414 #endif
415 #else
416 #define rounded_product(a,b) a *= b
417 #define rounded_quotient(a,b) a /= b
418 #endif
419 
420 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
421 #define Big1 0xffffffff
422 
423 #undef  Pack_16
424 #ifndef Pack_32
425 #define Pack_32
426 #endif
427 
428 #ifdef NO_LONG_LONG
429 #undef ULLong
430 #ifdef Just_16
431 #undef Pack_32
432 #define Pack_16
433 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
434  * This makes some inner loops simpler and sometimes saves work
435  * during multiplications, but it often seems to make things slightly
436  * slower.  Hence the default is now to store 32 bits per Long.
437  */
438 #endif
439 #else	/* long long available */
440 #ifndef Llong
441 #define Llong long long
442 #endif
443 #ifndef ULLong
444 #define ULLong unsigned Llong
445 #endif
446 #endif /* NO_LONG_LONG */
447 
448 #ifdef Pack_32
449 #define ULbits 32
450 #define kshift 5
451 #define kmask 31
452 #define ALL_ON 0xffffffff
453 #else
454 #define ULbits 16
455 #define kshift 4
456 #define kmask 15
457 #define ALL_ON 0xffff
458 #endif
459 
460 #ifndef MULTIPLE_THREADS
461 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
462 #define FREE_DTOA_LOCK(n)	/*nothing*/
463 #endif
464 
465 #define Kmax 15
466 
467  struct
468 Bigint {
469 	struct Bigint *next;
470 	int k, maxwds, sign, wds;
471 	ULong x[1];
472 	};
473 
474  typedef struct Bigint Bigint;
475 
476 #ifdef NO_STRING_H
477 #ifdef DECLARE_SIZE_T
478 typedef unsigned int size_t;
479 #endif
480 extern void memcpy_D2A ANSI((void*, const void*, size_t));
481 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
482 #else /* !NO_STRING_H */
483 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
484 #endif /* NO_STRING_H */
485 
486 #define Balloc Balloc_D2A
487 #define Bfree Bfree_D2A
488 #define ULtoQ ULtoQ_D2A
489 #define ULtof ULtof_D2A
490 #define ULtod ULtod_D2A
491 #define ULtodd ULtodd_D2A
492 #define ULtox ULtox_D2A
493 #define ULtoxL ULtoxL_D2A
494 #define any_on any_on_D2A
495 #define b2d b2d_D2A
496 #define bigtens bigtens_D2A
497 #define cmp cmp_D2A
498 #define copybits copybits_D2A
499 #define d2b d2b_D2A
500 #define decrement decrement_D2A
501 #define diff diff_D2A
502 #define dtoa_result dtoa_result_D2A
503 #define g__fmt g__fmt_D2A
504 #define gethex gethex_D2A
505 #define hexdig hexdig_D2A
506 #define hexnan hexnan_D2A
507 #define hi0bits(x) hi0bits_D2A((ULong)(x))
508 #define i2b i2b_D2A
509 #define increment increment_D2A
510 #define lo0bits lo0bits_D2A
511 #define lshift lshift_D2A
512 #define match match_D2A
513 #define mult mult_D2A
514 #define multadd multadd_D2A
515 #define nrv_alloc nrv_alloc_D2A
516 #define pow5mult pow5mult_D2A
517 #define quorem quorem_D2A
518 #define ratio ratio_D2A
519 #define rshift rshift_D2A
520 #define rv_alloc rv_alloc_D2A
521 #define s2b s2b_D2A
522 #define set_ones set_ones_D2A
523 #define strcp strcp_D2A
524 #define strtoIg strtoIg_D2A
525 #define sum sum_D2A
526 #define tens tens_D2A
527 #define tinytens tinytens_D2A
528 #define tinytens tinytens_D2A
529 #define trailz trailz_D2A
530 #define ulp ulp_D2A
531 
532  extern char *dtoa_result;
533  extern CONST double bigtens[], tens[], tinytens[];
534  extern unsigned char hexdig[];
535 
536  extern Bigint *Balloc ANSI((int));
537  extern void Bfree ANSI((Bigint*));
538  extern void ULtof ANSI((ULong*, ULong*, Long, int));
539  extern void ULtod ANSI((ULong*, ULong*, Long, int));
540  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
541  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
542  extern void ULtox ANSI((UShort*, ULong*, Long, int));
543  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
544  extern ULong any_on ANSI((Bigint*, int));
545  extern double b2d ANSI((Bigint*, int*));
546  extern int cmp ANSI((Bigint*, Bigint*));
547  extern void copybits ANSI((ULong*, int, Bigint*));
548  extern Bigint *d2b ANSI((double, int*, int*));
549  extern void decrement ANSI((Bigint*));
550  extern Bigint *diff ANSI((Bigint*, Bigint*));
551  extern char *dtoa ANSI((double d, int mode, int ndigits,
552 			int *decpt, int *sign, char **rve));
553  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
554  extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
555  extern void hexdig_init_D2A(Void);
556  extern int hexnan ANSI((CONST char**, FPI*, ULong*));
557  extern int hi0bits_D2A ANSI((ULong));
558  extern Bigint *i2b ANSI((int));
559  extern Bigint *increment ANSI((Bigint*));
560  extern int lo0bits ANSI((ULong*));
561  extern Bigint *lshift ANSI((Bigint*, int));
562  extern int match ANSI((CONST char**, char*));
563  extern Bigint *mult ANSI((Bigint*, Bigint*));
564  extern Bigint *multadd ANSI((Bigint*, int, int));
565  extern char *nrv_alloc ANSI((char*, char **, int));
566  extern Bigint *pow5mult ANSI((Bigint*, int));
567  extern int quorem ANSI((Bigint*, Bigint*));
568  extern double ratio ANSI((Bigint*, Bigint*));
569  extern void rshift ANSI((Bigint*, int));
570  extern char *rv_alloc ANSI((int));
571  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
572  extern Bigint *set_ones ANSI((Bigint*, int));
573  extern char *strcp ANSI((char*, const char*));
574  extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
575  extern double strtod ANSI((const char *s00, char **se));
576  extern Bigint *sum ANSI((Bigint*, Bigint*));
577  extern int trailz ANSI((Bigint*));
578  extern double ulp ANSI((double));
579 
580 #ifdef __cplusplus
581 }
582 #endif
583 /*
584  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
585  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
586  * respectively), but now are determined by compiling and running
587  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
588  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
589  * and -DNAN_WORD1=...  values if necessary.  This should still work.
590  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
591  */
592 #ifdef IEEE_Arith
593 #ifndef NO_INFNAN_CHECK
594 #undef INFNAN_CHECK
595 #define INFNAN_CHECK
596 #endif
597 #ifdef IEEE_MC68k
598 #define _0 0
599 #define _1 1
600 #ifndef NAN_WORD0
601 #define NAN_WORD0 d_QNAN0
602 #endif
603 #ifndef NAN_WORD1
604 #define NAN_WORD1 d_QNAN1
605 #endif
606 #else
607 #define _0 1
608 #define _1 0
609 #ifndef NAN_WORD0
610 #define NAN_WORD0 d_QNAN1
611 #endif
612 #ifndef NAN_WORD1
613 #define NAN_WORD1 d_QNAN0
614 #endif
615 #endif
616 #else
617 #undef INFNAN_CHECK
618 #endif
619 
620 #undef SI
621 #ifdef Sudden_Underflow
622 #define SI 1
623 #else
624 #define SI 0
625 #endif
626 
627 #endif /* GDTOAIMP_H_INCLUDED */
628