1 /* mpn_gcdext -- Extended Greatest Common Divisor.
2 
3 Copyright 1996, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009 Free Software
4 Foundation, Inc.
5 
6 This file is part of the GNU MP Library.
7 
8 The GNU MP Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
12 
13 The GNU MP Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16 License for more details.
17 
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */
20 
21 #include "gmp.h"
22 #include "gmp-impl.h"
23 #include "longlong.h"
24 
25 /* Temporary storage: 3*(n+1) for u. n+1 for the matrix-vector
26    multiplications (if hgcd2 succeeds). If hgcd fails, n+1 limbs are
27    needed for the division, with most n for the quotient, and n+1 for
28    the product q u0. In all, 4n + 3. */
29 
30 mp_size_t
31 mpn_gcdext_lehmer_n (mp_ptr gp, mp_ptr up, mp_size_t *usize,
32 		     mp_ptr ap, mp_ptr bp, mp_size_t n,
33 		     mp_ptr tp)
34 {
35   mp_size_t ualloc = n + 1;
36 
37   /* Keeps track of the second row of the reduction matrix
38    *
39    *   M = (v0, v1 ; u0, u1)
40    *
41    * which correspond to the first column of the inverse
42    *
43    *   M^{-1} = (u1, -v1; -u0, v0)
44    */
45 
46   mp_size_t un;
47   mp_ptr u0;
48   mp_ptr u1;
49   mp_ptr u2;
50 
51   MPN_ZERO (tp, 3*ualloc);
52   u0 = tp; tp += ualloc;
53   u1 = tp; tp += ualloc;
54   u2 = tp; tp += ualloc;
55 
56   u1[0] = 1; un = 1;
57 
58   /* FIXME: Handle n == 2 differently, after the loop? */
59   while (n >= 2)
60     {
61       struct hgcd_matrix1 M;
62       mp_limb_t ah, al, bh, bl;
63       mp_limb_t mask;
64 
65       mask = ap[n-1] | bp[n-1];
66       ASSERT (mask > 0);
67 
68       if (mask & GMP_NUMB_HIGHBIT)
69 	{
70 	  ah = ap[n-1]; al = ap[n-2];
71 	  bh = bp[n-1]; bl = bp[n-2];
72 	}
73       else if (n == 2)
74 	{
75 	  /* We use the full inputs without truncation, so we can
76 	     safely shift left. */
77 	  int shift;
78 
79 	  count_leading_zeros (shift, mask);
80 	  ah = MPN_EXTRACT_NUMB (shift, ap[1], ap[0]);
81 	  al = ap[0] << shift;
82 	  bh = MPN_EXTRACT_NUMB (shift, bp[1], bp[0]);
83 	  bl = bp[0] << shift;
84 	}
85       else
86 	{
87 	  int shift;
88 
89 	  count_leading_zeros (shift, mask);
90 	  ah = MPN_EXTRACT_NUMB (shift, ap[n-1], ap[n-2]);
91 	  al = MPN_EXTRACT_NUMB (shift, ap[n-2], ap[n-3]);
92 	  bh = MPN_EXTRACT_NUMB (shift, bp[n-1], bp[n-2]);
93 	  bl = MPN_EXTRACT_NUMB (shift, bp[n-2], bp[n-3]);
94 	}
95 
96       /* Try an mpn_nhgcd2 step */
97       if (mpn_hgcd2 (ah, al, bh, bl, &M))
98 	{
99 	  n = mpn_hgcd_mul_matrix1_inverse_vector (&M, tp, ap, bp, n);
100 	  MP_PTR_SWAP (ap, tp);
101 	  un = mpn_hgcd_mul_matrix1_vector(&M, u2, u0, u1, un);
102 	  MP_PTR_SWAP (u0, u2);
103 	}
104       else
105 	{
106 	  /* mpn_hgcd2 has failed. Then either one of a or b is very
107 	     small, or the difference is very small. Perform one
108 	     subtraction followed by one division. */
109 	  mp_size_t gn;
110 	  mp_size_t updated_un = un;
111 
112 	  /* Temporary storage n for the quotient and ualloc for the
113 	     new cofactor. */
114 	  n = mpn_gcdext_subdiv_step (gp, &gn, up, usize, ap, bp, n,
115 				      u0, u1, &updated_un, tp, u2);
116 	  if (n == 0)
117 	    return gn;
118 
119 	  un = updated_un;
120 	}
121     }
122   ASSERT_ALWAYS (ap[0] > 0);
123   ASSERT_ALWAYS (bp[0] > 0);
124 
125   if (ap[0] == bp[0])
126     {
127       int c;
128 
129       /* Which cofactor to return now? Candidates are +u1 and -u0,
130 	 depending on which of a and b was most recently reduced,
131 	 which we don't keep track of. So compare and get the smallest
132 	 one. */
133 
134       gp[0] = ap[0];
135 
136       MPN_CMP (c, u0, u1, un);
137       ASSERT (c != 0 || (un == 1 && u0[0] == 1 && u1[0] == 1));
138       if (c < 0)
139 	{
140 	  MPN_NORMALIZE (u0, un);
141 	  MPN_COPY (up, u0, un);
142 	  *usize = -un;
143 	}
144       else
145 	{
146 	  MPN_NORMALIZE_NOT_ZERO (u1, un);
147 	  MPN_COPY (up, u1, un);
148 	  *usize = un;
149 	}
150       return 1;
151     }
152   else
153     {
154       mp_limb_t uh, vh;
155       mp_limb_signed_t u;
156       mp_limb_signed_t v;
157       int negate;
158 
159       gp[0] = mpn_gcdext_1 (&u, &v, ap[0], bp[0]);
160 
161       /* Set up = u u1 - v u0. Keep track of size, un grows by one or
162 	 two limbs. */
163 
164       if (u == 0)
165 	{
166 	  ASSERT (v == 1);
167 	  MPN_NORMALIZE (u0, un);
168 	  MPN_COPY (up, u0, un);
169 	  *usize = -un;
170 	  return 1;
171 	}
172       else if (v == 0)
173 	{
174 	  ASSERT (u == 1);
175 	  MPN_NORMALIZE (u1, un);
176 	  MPN_COPY (up, u1, un);
177 	  *usize = un;
178 	  return 1;
179 	}
180       else if (u > 0)
181 	{
182 	  negate = 0;
183 	  ASSERT (v < 0);
184 	  v = -v;
185 	}
186       else
187 	{
188 	  negate = 1;
189 	  ASSERT (v > 0);
190 	  u = -u;
191 	}
192 
193       uh = mpn_mul_1 (up, u1, un, u);
194       vh = mpn_addmul_1 (up, u0, un, v);
195 
196       if ( (uh | vh) > 0)
197 	{
198 	  uh += vh;
199 	  up[un++] = uh;
200 	  if (uh < vh)
201 	    up[un++] = 1;
202 	}
203 
204       MPN_NORMALIZE_NOT_ZERO (up, un);
205 
206       *usize = negate ? -un : un;
207       return 1;
208     }
209 }
210