xref: /dragonfly/contrib/gmp/mpn/generic/mu_div_qr.c (revision 9f7604d7)
1 /* mpn_mu_div_qr, mpn_preinv_mu_div_qr.
2 
3    Compute Q = floor(N / D) and R = N-QD.  N is nn limbs and D is dn limbs and
4    must be normalized, and Q must be nn-dn limbs.  The requirement that Q is
5    nn-dn limbs (and not nn-dn+1 limbs) was put in place in order to allow us to
6    let N be unmodified during the operation.
7 
8    Contributed to the GNU project by Torbjorn Granlund.
9 
10    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
11    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
12    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
13 
14 Copyright 2005, 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
15 
16 This file is part of the GNU MP Library.
17 
18 The GNU MP Library is free software; you can redistribute it and/or modify
19 it under the terms of the GNU Lesser General Public License as published by
20 the Free Software Foundation; either version 3 of the License, or (at your
21 option) any later version.
22 
23 The GNU MP Library is distributed in the hope that it will be useful, but
24 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
26 License for more details.
27 
28 You should have received a copy of the GNU Lesser General Public License
29 along with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.  */
30 
31 
32 /*
33    The idea of the algorithm used herein is to compute a smaller inverted value
34    than used in the standard Barrett algorithm, and thus save time in the
35    Newton iterations, and pay just a small price when using the inverted value
36    for developing quotient bits.  This algorithm was presented at ICMS 2006.
37 */
38 
39 /* CAUTION: This code and the code in mu_divappr_q.c should be edited in sync.
40 
41  Things to work on:
42 
43   * This isn't optimal when the quotient isn't needed, as it might take a lot
44     of space.  The computation is always needed, though, so there is no time to
45     save with special code.
46 
47   * The itch/scratch scheme isn't perhaps such a good idea as it once seemed,
48     demonstrated by the fact that the mpn_invertappr function's scratch needs
49     mean that we need to keep a large allocation long after it is needed.
50     Things are worse as mpn_mul_fft does not accept any scratch parameter,
51     which means we'll have a large memory hole while in mpn_mul_fft.  In
52     general, a peak scratch need in the beginning of a function isn't
53     well-handled by the itch/scratch scheme.
54 */
55 
56 #ifdef STAT
57 #undef STAT
58 #define STAT(x) x
59 #else
60 #define STAT(x)
61 #endif
62 
63 #include <stdlib.h>		/* for NULL */
64 #include "gmp.h"
65 #include "gmp-impl.h"
66 
67 
68 /* FIXME: The MU_DIV_QR_SKEW_THRESHOLD was not analysed properly.  It gives a
69    speedup according to old measurements, but does the decision mechanism
70    really make sense?  It seem like the quotient between dn and qn might be
71    what we really should be checking.  */
72 #ifndef MU_DIV_QR_SKEW_THRESHOLD
73 #define MU_DIV_QR_SKEW_THRESHOLD 100
74 #endif
75 
76 #ifdef CHECK				/* FIXME: Enable in minithres */
77 #undef  MU_DIV_QR_SKEW_THRESHOLD
78 #define MU_DIV_QR_SKEW_THRESHOLD 1
79 #endif
80 
81 
82 static mp_limb_t mpn_mu_div_qr2 (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr);
83 
84 
85 mp_limb_t
86 mpn_mu_div_qr (mp_ptr qp,
87 	       mp_ptr rp,
88 	       mp_srcptr np,
89 	       mp_size_t nn,
90 	       mp_srcptr dp,
91 	       mp_size_t dn,
92 	       mp_ptr scratch)
93 {
94   mp_size_t qn;
95   mp_limb_t cy, qh;
96 
97   qn = nn - dn;
98   if (qn + MU_DIV_QR_SKEW_THRESHOLD < dn)
99     {
100       /* |______________|_ign_first__|   dividend			  nn
101 		|_______|_ign_first__|   divisor			  dn
102 
103 		|______|	     quotient (prel)			  qn
104 
105 		 |___________________|   quotient * ignored-divisor-part  dn-1
106       */
107 
108       /* Compute a preliminary quotient and a partial remainder by dividing the
109 	 most significant limbs of each operand.  */
110       qh = mpn_mu_div_qr2 (qp, rp + nn - (2 * qn + 1),
111 			   np + nn - (2 * qn + 1), 2 * qn + 1,
112 			   dp + dn - (qn + 1), qn + 1,
113 			   scratch);
114 
115       /* Multiply the quotient by the divisor limbs ignored above.  */
116       if (dn - (qn + 1) > qn)
117 	mpn_mul (scratch, dp, dn - (qn + 1), qp, qn);  /* prod is dn-1 limbs */
118       else
119 	mpn_mul (scratch, qp, qn, dp, dn - (qn + 1));  /* prod is dn-1 limbs */
120 
121       if (qh)
122 	cy = mpn_add_n (scratch + qn, scratch + qn, dp, dn - (qn + 1));
123       else
124 	cy = 0;
125       scratch[dn - 1] = cy;
126 
127       cy = mpn_sub_n (rp, np, scratch, nn - (2 * qn + 1));
128       cy = mpn_sub_nc (rp + nn - (2 * qn + 1),
129 		       rp + nn - (2 * qn + 1),
130 		       scratch + nn - (2 * qn + 1),
131 		       qn + 1, cy);
132       if (cy)
133 	{
134 	  qh -= mpn_sub_1 (qp, qp, qn, 1);
135 	  mpn_add_n (rp, rp, dp, dn);
136 	}
137     }
138   else
139     {
140       qh = mpn_mu_div_qr2 (qp, rp, np, nn, dp, dn, scratch);
141     }
142 
143   return qh;
144 }
145 
146 static mp_limb_t
147 mpn_mu_div_qr2 (mp_ptr qp,
148 		mp_ptr rp,
149 		mp_srcptr np,
150 		mp_size_t nn,
151 		mp_srcptr dp,
152 		mp_size_t dn,
153 		mp_ptr scratch)
154 {
155   mp_size_t qn, in;
156   mp_limb_t cy, qh;
157   mp_ptr ip, tp;
158 
159   ASSERT (dn > 1);
160 
161   qn = nn - dn;
162 
163   /* Compute the inverse size.  */
164   in = mpn_mu_div_qr_choose_in (qn, dn, 0);
165   ASSERT (in <= dn);
166 
167 #if 1
168   /* This alternative inverse computation method gets slightly more accurate
169      results.  FIXMEs: (1) Temp allocation needs not analysed (2) itch function
170      not adapted (3) mpn_invertappr scratch needs not met.  */
171   ip = scratch;
172   tp = scratch + in + 1;
173 
174   /* compute an approximate inverse on (in+1) limbs */
175   if (dn == in)
176     {
177       MPN_COPY (tp + 1, dp, in);
178       tp[0] = 1;
179       mpn_invertappr (ip, tp, in + 1, NULL);
180       MPN_COPY_INCR (ip, ip + 1, in);
181     }
182   else
183     {
184       cy = mpn_add_1 (tp, dp + dn - (in + 1), in + 1, 1);
185       if (UNLIKELY (cy != 0))
186 	MPN_ZERO (ip, in);
187       else
188 	{
189 	  mpn_invertappr (ip, tp, in + 1, NULL);
190 	  MPN_COPY_INCR (ip, ip + 1, in);
191 	}
192     }
193 #else
194   /* This older inverse computation method gets slightly worse results than the
195      one above.  */
196   ip = scratch;
197   tp = scratch + in;
198 
199   /* Compute inverse of D to in+1 limbs, then round to 'in' limbs.  Ideally the
200      inversion function should do this automatically.  */
201   if (dn == in)
202     {
203       tp[in + 1] = 0;
204       MPN_COPY (tp + in + 2, dp, in);
205       mpn_invertappr (tp, tp + in + 1, in + 1, NULL);
206     }
207   else
208     {
209       mpn_invertappr (tp, dp + dn - (in + 1), in + 1, NULL);
210     }
211   cy = mpn_sub_1 (tp, tp, in + 1, GMP_NUMB_HIGHBIT);
212   if (UNLIKELY (cy != 0))
213     MPN_ZERO (tp + 1, in);
214   MPN_COPY (ip, tp + 1, in);
215 #endif
216 
217   qh = mpn_preinv_mu_div_qr (qp, rp, np, nn, dp, dn, ip, in, scratch + in);
218 
219   return qh;
220 }
221 
222 mp_limb_t
223 mpn_preinv_mu_div_qr (mp_ptr qp,
224 		      mp_ptr rp,
225 		      mp_srcptr np,
226 		      mp_size_t nn,
227 		      mp_srcptr dp,
228 		      mp_size_t dn,
229 		      mp_srcptr ip,
230 		      mp_size_t in,
231 		      mp_ptr scratch)
232 {
233   mp_size_t qn;
234   mp_limb_t cy, cx, qh;
235   mp_limb_t r;
236   mp_size_t tn, wn;
237 
238 #define tp           scratch
239 #define scratch_out  (scratch + tn)
240 
241   qn = nn - dn;
242 
243   np += qn;
244   qp += qn;
245 
246   qh = mpn_cmp (np, dp, dn) >= 0;
247   if (qh != 0)
248     mpn_sub_n (rp, np, dp, dn);
249   else
250     MPN_COPY (rp, np, dn);
251 
252   if (qn == 0)
253     return qh;			/* Degenerate use.  Should we allow this? */
254 
255   while (qn > 0)
256     {
257       if (qn < in)
258 	{
259 	  ip += in - qn;
260 	  in = qn;
261 	}
262       np -= in;
263       qp -= in;
264 
265       /* Compute the next block of quotient limbs by multiplying the inverse I
266 	 by the upper part of the partial remainder R.  */
267       mpn_mul_n (tp, rp + dn - in, ip, in);		/* mulhi  */
268       cy = mpn_add_n (qp, tp + in, rp + dn - in, in);	/* I's msb implicit */
269       ASSERT_ALWAYS (cy == 0);
270 
271       qn -= in;
272 
273       /* Compute the product of the quotient block and the divisor D, to be
274 	 subtracted from the partial remainder combined with new limbs from the
275 	 dividend N.  We only really need the low dn+1 limbs.  */
276 
277       if (BELOW_THRESHOLD (in, MUL_TO_MULMOD_BNM1_FOR_2NXN_THRESHOLD))
278 	mpn_mul (tp, dp, dn, qp, in);		/* dn+in limbs, high 'in' cancels */
279       else
280 	{
281 	  tn = mpn_mulmod_bnm1_next_size (dn + 1);
282 	  mpn_mulmod_bnm1 (tp, tn, dp, dn, qp, in, scratch_out);
283 	  wn = dn + in - tn;			/* number of wrapped limbs */
284 	  if (wn > 0)
285 	    {
286 	      cy = mpn_sub_n (tp, tp, rp + dn - wn, wn);
287 	      cy = mpn_sub_1 (tp + wn, tp + wn, tn - wn, cy);
288 	      cx = mpn_cmp (rp + dn - in, tp + dn, tn - dn) < 0;
289 	      ASSERT_ALWAYS (cx >= cy);
290 	      mpn_incr_u (tp, cx - cy);
291 	    }
292 	}
293 
294       r = rp[dn - in] - tp[dn];
295 
296       /* Subtract the product from the partial remainder combined with new
297 	 limbs from the dividend N, generating a new partial remainder R.  */
298       if (dn != in)
299 	{
300 	  cy = mpn_sub_n (tp, np, tp, in);	/* get next 'in' limbs from N */
301 	  cy = mpn_sub_nc (tp + in, rp, tp + in, dn - in, cy);
302 	  MPN_COPY (rp, tp, dn);		/* FIXME: try to avoid this */
303 	}
304       else
305 	{
306 	  cy = mpn_sub_n (rp, np, tp, in);	/* get next 'in' limbs from N */
307 	}
308 
309       STAT (int i; int err = 0;
310 	    static int errarr[5]; static int err_rec; static int tot);
311 
312       /* Check the remainder R and adjust the quotient as needed.  */
313       r -= cy;
314       while (r != 0)
315 	{
316 	  /* We loop 0 times with about 69% probability, 1 time with about 31%
317 	     probability, 2 times with about 0.6% probability, if inverse is
318 	     computed as recommended.  */
319 	  mpn_incr_u (qp, 1);
320 	  cy = mpn_sub_n (rp, rp, dp, dn);
321 	  r -= cy;
322 	  STAT (err++);
323 	}
324       if (mpn_cmp (rp, dp, dn) >= 0)
325 	{
326 	  /* This is executed with about 76% probability.  */
327 	  mpn_incr_u (qp, 1);
328 	  cy = mpn_sub_n (rp, rp, dp, dn);
329 	  STAT (err++);
330 	}
331 
332       STAT (
333 	    tot++;
334 	    errarr[err]++;
335 	    if (err > err_rec)
336 	      err_rec = err;
337 	    if (tot % 0x10000 == 0)
338 	      {
339 		for (i = 0; i <= err_rec; i++)
340 		  printf ("  %d(%.1f%%)", errarr[i], 100.0*errarr[i]/tot);
341 		printf ("\n");
342 	      }
343 	    );
344     }
345 
346   return qh;
347 }
348 
349 /* In case k=0 (automatic choice), we distinguish 3 cases:
350    (a) dn < qn:         in = ceil(qn / ceil(qn/dn))
351    (b) dn/3 < qn <= dn: in = ceil(qn / 2)
352    (c) qn < dn/3:       in = qn
353    In all cases we have in <= dn.
354  */
355 mp_size_t
356 mpn_mu_div_qr_choose_in (mp_size_t qn, mp_size_t dn, int k)
357 {
358   mp_size_t in;
359 
360   if (k == 0)
361     {
362       mp_size_t b;
363       if (qn > dn)
364 	{
365 	  /* Compute an inverse size that is a nice partition of the quotient.  */
366 	  b = (qn - 1) / dn + 1;	/* ceil(qn/dn), number of blocks */
367 	  in = (qn - 1) / b + 1;	/* ceil(qn/b) = ceil(qn / ceil(qn/dn)) */
368 	}
369       else if (3 * qn > dn)
370 	{
371 	  in = (qn - 1) / 2 + 1;	/* b = 2 */
372 	}
373       else
374 	{
375 	  in = (qn - 1) / 1 + 1;	/* b = 1 */
376 	}
377     }
378   else
379     {
380       mp_size_t xn;
381       xn = MIN (dn, qn);
382       in = (xn - 1) / k + 1;
383     }
384 
385   return in;
386 }
387 
388 mp_size_t
389 mpn_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, int mua_k)
390 {
391   mp_size_t itch_local = mpn_mulmod_bnm1_next_size (dn + 1);
392   mp_size_t in = mpn_mu_div_qr_choose_in (nn - dn, dn, mua_k);
393   mp_size_t itch_out = mpn_mulmod_bnm1_itch (itch_local, dn, in);
394 
395   return in + itch_local + itch_out;
396 }
397 
398 mp_size_t
399 mpn_preinv_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, mp_size_t in)
400 {
401   mp_size_t itch_local = mpn_mulmod_bnm1_next_size (dn + 1);
402   mp_size_t itch_out = mpn_mulmod_bnm1_itch (itch_local, dn, in);
403 
404   return itch_local + itch_out;
405 }
406