xref: /dragonfly/contrib/ldns/util.c (revision cf89a63b)
1 /*
2  * util.c
3  *
4  * some general memory functions
5  *
6  * a Net::DNS like library for C
7  *
8  * (c) NLnet Labs, 2004-2006
9  *
10  * See the file LICENSE for the license
11  */
12 
13 #include <ldns/config.h>
14 
15 #include <ldns/rdata.h>
16 #include <ldns/rr.h>
17 #include <ldns/util.h>
18 #include <strings.h>
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <sys/time.h>
22 #include <time.h>
23 
24 #ifdef HAVE_SSL
25 #include <openssl/rand.h>
26 #endif
27 
28 /* put this here tmp. for debugging */
29 void
30 xprintf_rdf(ldns_rdf *rd)
31 {
32 	/* assume printable string */
33 	fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
34 	fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
35 	fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
36 			(char*)ldns_rdf_data(rd));
37 }
38 
39 void
40 xprintf_rr(ldns_rr *rr)
41 {
42 	/* assume printable string */
43 	uint16_t count, i;
44 
45 	count = ldns_rr_rd_count(rr);
46 
47 	for(i = 0; i < count; i++) {
48 		fprintf(stderr, "print rd %u\n", (unsigned int) i);
49 		xprintf_rdf(rr->_rdata_fields[i]);
50 	}
51 }
52 
53 void xprintf_hex(uint8_t *data, size_t len)
54 {
55 	size_t i;
56 	for (i = 0; i < len; i++) {
57 		if (i > 0 && i % 20 == 0) {
58 			printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
59 		}
60 		printf("%02x ", (unsigned int) data[i]);
61 	}
62 	printf("\n");
63 }
64 
65 ldns_lookup_table *
66 ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
67 {
68 	while (table->name != NULL) {
69 		if (strcasecmp(name, table->name) == 0)
70 			return table;
71 		table++;
72 	}
73 	return NULL;
74 }
75 
76 ldns_lookup_table *
77 ldns_lookup_by_id(ldns_lookup_table *table, int id)
78 {
79 	while (table->name != NULL) {
80 		if (table->id == id)
81 			return table;
82 		table++;
83 	}
84 	return NULL;
85 }
86 
87 int
88 ldns_get_bit(uint8_t bits[], size_t index)
89 {
90 	/*
91 	 * The bits are counted from left to right, so bit #0 is the
92 	 * left most bit.
93 	 */
94 	return (int) (bits[index / 8] & (1 << (7 - index % 8)));
95 }
96 
97 int
98 ldns_get_bit_r(uint8_t bits[], size_t index)
99 {
100 	/*
101 	 * The bits are counted from right to left, so bit #0 is the
102 	 * right most bit.
103 	 */
104 	return (int) bits[index / 8] & (1 << (index % 8));
105 }
106 
107 void
108 ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
109 {
110 	if (bit_nr >= 0 && bit_nr < 8) {
111 		if (value) {
112 			*byte = *byte | (0x01 << bit_nr);
113 		} else {
114 			*byte = *byte & ~(0x01 << bit_nr);
115 		}
116 	}
117 }
118 
119 int
120 ldns_hexdigit_to_int(char ch)
121 {
122 	switch (ch) {
123 	case '0': return 0;
124 	case '1': return 1;
125 	case '2': return 2;
126 	case '3': return 3;
127 	case '4': return 4;
128 	case '5': return 5;
129 	case '6': return 6;
130 	case '7': return 7;
131 	case '8': return 8;
132 	case '9': return 9;
133 	case 'a': case 'A': return 10;
134 	case 'b': case 'B': return 11;
135 	case 'c': case 'C': return 12;
136 	case 'd': case 'D': return 13;
137 	case 'e': case 'E': return 14;
138 	case 'f': case 'F': return 15;
139 	default:
140 		return -1;
141 	}
142 }
143 
144 char
145 ldns_int_to_hexdigit(int i)
146 {
147 	switch (i) {
148 	case 0: return '0';
149 	case 1: return '1';
150 	case 2: return '2';
151 	case 3: return '3';
152 	case 4: return '4';
153 	case 5: return '5';
154 	case 6: return '6';
155 	case 7: return '7';
156 	case 8: return '8';
157 	case 9: return '9';
158 	case 10: return 'a';
159 	case 11: return 'b';
160 	case 12: return 'c';
161 	case 13: return 'd';
162 	case 14: return 'e';
163 	case 15: return 'f';
164 	default:
165 		abort();
166 	}
167 }
168 
169 int
170 ldns_hexstring_to_data(uint8_t *data, const char *str)
171 {
172 	size_t i;
173 
174 	if (!str || !data) {
175 		return -1;
176 	}
177 
178 	if (strlen(str) % 2 != 0) {
179 		return -2;
180 	}
181 
182 	for (i = 0; i < strlen(str) / 2; i++) {
183 		data[i] =
184 			16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
185 			(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
186 	}
187 
188 	return (int) i;
189 }
190 
191 const char *
192 ldns_version(void)
193 {
194 	return (char*)LDNS_VERSION;
195 }
196 
197 /* Number of days per month (except for February in leap years). */
198 static const int mdays[] = {
199 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
200 };
201 
202 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
203 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
204 
205 static int
206 is_leap_year(int year)
207 {
208 	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
209 	    || LDNS_MOD(year, 400) == 0);
210 }
211 
212 static int
213 leap_days(int y1, int y2)
214 {
215 	--y1;
216 	--y2;
217 	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
218 	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
219 	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
220 }
221 
222 /*
223  * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
224  */
225 time_t
226 mktime_from_utc(const struct tm *tm)
227 {
228 	int year = 1900 + tm->tm_year;
229 	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
230 	time_t hours;
231 	time_t minutes;
232 	time_t seconds;
233 	int i;
234 
235 	for (i = 0; i < tm->tm_mon; ++i) {
236 		days += mdays[i];
237 	}
238 	if (tm->tm_mon > 1 && is_leap_year(year)) {
239 		++days;
240 	}
241 	days += tm->tm_mday - 1;
242 
243 	hours = days * 24 + tm->tm_hour;
244 	minutes = hours * 60 + tm->tm_min;
245 	seconds = minutes * 60 + tm->tm_sec;
246 
247 	return seconds;
248 }
249 
250 #if SIZEOF_TIME_T <= 4
251 
252 static void
253 ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
254 {
255 	int year = 1970;
256 	int new_year;
257 
258 	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
259 		new_year = year + (int) LDNS_DIV(days, 366);
260 		if (year == new_year) {
261 			year += days < 0 ? -1 : 1;
262 		}
263 		days -= (new_year - year) * 365;
264 		days -= leap_days(year, new_year);
265 		year  = new_year;
266 	}
267 	result->tm_year = year;
268 	result->tm_yday = (int) days;
269 }
270 
271 /* Number of days per month in a leap year. */
272 static const int leap_year_mdays[] = {
273 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
274 };
275 
276 static void
277 ldns_mon_and_mday_from_year_and_yday(struct tm *result)
278 {
279 	int idays = result->tm_yday;
280 	const int *mon_lengths = is_leap_year(result->tm_year) ?
281 					leap_year_mdays : mdays;
282 
283 	result->tm_mon = 0;
284 	while  (idays >= mon_lengths[result->tm_mon]) {
285 		idays -= mon_lengths[result->tm_mon++];
286 	}
287 	result->tm_mday = idays + 1;
288 }
289 
290 static void
291 ldns_wday_from_year_and_yday(struct tm *result)
292 {
293 	result->tm_wday = 4 /* 1-1-1970 was a thursday */
294 			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
295 			+ leap_days(1970, result->tm_year)
296 			+ result->tm_yday;
297 	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
298 	if (result->tm_wday < 0) {
299 		result->tm_wday += 7;
300 	}
301 }
302 
303 static struct tm *
304 ldns_gmtime64_r(int64_t clock, struct tm *result)
305 {
306 	result->tm_isdst = 0;
307 	result->tm_sec   = (int) LDNS_MOD(clock, 60);
308 	clock            =       LDNS_DIV(clock, 60);
309 	result->tm_min   = (int) LDNS_MOD(clock, 60);
310 	clock            =       LDNS_DIV(clock, 60);
311 	result->tm_hour  = (int) LDNS_MOD(clock, 24);
312 	clock            =       LDNS_DIV(clock, 24);
313 
314 	ldns_year_and_yday_from_days_since_epoch(clock, result);
315 	ldns_mon_and_mday_from_year_and_yday(result);
316 	ldns_wday_from_year_and_yday(result);
317 	result->tm_year -= 1900;
318 
319 	return result;
320 }
321 
322 #endif /* SIZEOF_TIME_T <= 4 */
323 
324 static int64_t
325 ldns_serial_arithmitics_time(int32_t time, time_t now)
326 {
327 	int32_t offset = time - (int32_t) now;
328 	return (int64_t) now + offset;
329 }
330 
331 
332 struct tm *
333 ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
334 {
335 #if SIZEOF_TIME_T <= 4
336 	int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
337 	return  ldns_gmtime64_r(secs_since_epoch, result);
338 #else
339 	time_t  secs_since_epoch = ldns_serial_arithmitics_time(time, now);
340 	return  gmtime_r(&secs_since_epoch, result);
341 #endif
342 }
343 
344 /**
345  * Init the random source
346  * applications should call this if they need entropy data within ldns
347  * If openSSL is available, it is automatically seeded from /dev/urandom
348  * or /dev/random
349  *
350  * If you need more entropy, or have no openssl available, this function
351  * MUST be called at the start of the program
352  *
353  * If openssl *is* available, this function just adds more entropy
354  **/
355 int
356 ldns_init_random(FILE *fd, unsigned int size)
357 {
358 	/* if fp is given, seed srandom with data from file
359 	   otherwise use /dev/urandom */
360 	FILE *rand_f;
361 	uint8_t *seed;
362 	size_t read = 0;
363 	unsigned int seed_i;
364 	struct timeval tv;
365 
366 	/* we'll need at least sizeof(unsigned int) bytes for the
367 	   standard prng seed */
368 	if (size < (unsigned int) sizeof(seed_i)){
369 		size = (unsigned int) sizeof(seed_i);
370 	}
371 
372 	seed = LDNS_XMALLOC(uint8_t, size);
373         if(!seed) {
374 		return 1;
375         }
376 
377 	if (!fd) {
378 		if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
379 			/* no readable /dev/urandom, try /dev/random */
380 			if ((rand_f = fopen("/dev/random", "r")) == NULL) {
381 				/* no readable /dev/random either, and no entropy
382 				   source given. we'll have to improvise */
383 				for (read = 0; read < size; read++) {
384 					gettimeofday(&tv, NULL);
385 					seed[read] = (uint8_t) (tv.tv_usec % 256);
386 				}
387 			} else {
388 				read = fread(seed, 1, size, rand_f);
389 			}
390 		} else {
391 			read = fread(seed, 1, size, rand_f);
392 		}
393 	} else {
394 		rand_f = fd;
395 		read = fread(seed, 1, size, rand_f);
396 	}
397 
398 	if (read < size) {
399 		LDNS_FREE(seed);
400 		return 1;
401 	} else {
402 #ifdef HAVE_SSL
403 		/* Seed the OpenSSL prng (most systems have it seeded
404 		   automatically, in that case this call just adds entropy */
405 		RAND_seed(seed, (int) size);
406 #else
407 		/* Seed the standard prng, only uses the first
408 		 * unsigned sizeof(unsiged int) bytes found in the entropy pool
409 		 */
410 		memcpy(&seed_i, seed, sizeof(seed_i));
411 		srandom(seed_i);
412 #endif
413 		LDNS_FREE(seed);
414 	}
415 
416 	if (!fd) {
417                 if (rand_f) fclose(rand_f);
418 	}
419 
420 	return 0;
421 }
422 
423 /**
424  * Get random number.
425  *
426  */
427 uint16_t
428 ldns_get_random(void)
429 {
430         uint16_t rid = 0;
431 #ifdef HAVE_SSL
432         if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
433                 rid = (uint16_t) random();
434         }
435 #else
436         rid = (uint16_t) random();
437 #endif
438 	return rid;
439 }
440 
441 /*
442  * BubbleBabble code taken from OpenSSH
443  * Copyright (c) 2001 Carsten Raskgaard.  All rights reserved.
444  */
445 char *
446 ldns_bubblebabble(uint8_t *data, size_t len)
447 {
448 	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
449 	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
450 	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
451 	size_t i, j = 0, rounds, seed = 1;
452 	char *retval;
453 
454 	rounds = (len / 2) + 1;
455 	retval = LDNS_XMALLOC(char, rounds * 6);
456 	if(!retval) return NULL;
457 	retval[j++] = 'x';
458 	for (i = 0; i < rounds; i++) {
459 		size_t idx0, idx1, idx2, idx3, idx4;
460 		if ((i + 1 < rounds) || (len % 2 != 0)) {
461 			idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
462 			    seed) % 6;
463 			idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
464 			idx2 = ((((size_t)(data[2 * i])) & 3) +
465 			    (seed / 6)) % 6;
466 			retval[j++] = vowels[idx0];
467 			retval[j++] = consonants[idx1];
468 			retval[j++] = vowels[idx2];
469 			if ((i + 1) < rounds) {
470 				idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
471 				idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
472 				retval[j++] = consonants[idx3];
473 				retval[j++] = '-';
474 				retval[j++] = consonants[idx4];
475 				seed = ((seed * 5) +
476 				    ((((size_t)(data[2 * i])) * 7) +
477 				    ((size_t)(data[(2 * i) + 1])))) % 36;
478 			}
479 		} else {
480 			idx0 = seed % 6;
481 			idx1 = 16;
482 			idx2 = seed / 6;
483 			retval[j++] = vowels[idx0];
484 			retval[j++] = consonants[idx1];
485 			retval[j++] = vowels[idx2];
486 		}
487 	}
488 	retval[j++] = 'x';
489 	retval[j++] = '\0';
490 	return retval;
491 }
492