xref: /dragonfly/contrib/ldns/util.c (revision f2c43266)
1 /*
2  * util.c
3  *
4  * some general memory functions
5  *
6  * a Net::DNS like library for C
7  *
8  * (c) NLnet Labs, 2004-2006
9  *
10  * See the file LICENSE for the license
11  */
12 
13 #include <ldns/config.h>
14 
15 #include <ldns/rdata.h>
16 #include <ldns/rr.h>
17 #include <ldns/util.h>
18 #include <strings.h>
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <sys/time.h>
22 #include <time.h>
23 
24 #ifdef HAVE_SSL
25 #include <openssl/rand.h>
26 #endif
27 
28 /* put this here tmp. for debugging */
29 void
30 xprintf_rdf(ldns_rdf *rd)
31 {
32 	/* assume printable string */
33 	fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
34 	fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
35 	fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
36 			(char*)ldns_rdf_data(rd));
37 }
38 
39 void
40 xprintf_rr(ldns_rr *rr)
41 {
42 	/* assume printable string */
43 	uint16_t count, i;
44 
45 	count = ldns_rr_rd_count(rr);
46 
47 	for(i = 0; i < count; i++) {
48 		fprintf(stderr, "print rd %u\n", (unsigned int) i);
49 		xprintf_rdf(rr->_rdata_fields[i]);
50 	}
51 }
52 
53 void xprintf_hex(uint8_t *data, size_t len)
54 {
55 	size_t i;
56 	for (i = 0; i < len; i++) {
57 		if (i > 0 && i % 20 == 0) {
58 			printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
59 		}
60 		printf("%02x ", (unsigned int) data[i]);
61 	}
62 	printf("\n");
63 }
64 
65 ldns_lookup_table *
66 ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
67 {
68 	while (table->name != NULL) {
69 		if (strcasecmp(name, table->name) == 0)
70 			return table;
71 		table++;
72 	}
73 	return NULL;
74 }
75 
76 ldns_lookup_table *
77 ldns_lookup_by_id(ldns_lookup_table *table, int id)
78 {
79 	while (table->name != NULL) {
80 		if (table->id == id)
81 			return table;
82 		table++;
83 	}
84 	return NULL;
85 }
86 
87 int
88 ldns_get_bit(uint8_t bits[], size_t index)
89 {
90 	/*
91 	 * The bits are counted from left to right, so bit #0 is the
92 	 * left most bit.
93 	 */
94 	return (int) (bits[index / 8] & (1 << (7 - index % 8)));
95 }
96 
97 int
98 ldns_get_bit_r(uint8_t bits[], size_t index)
99 {
100 	/*
101 	 * The bits are counted from right to left, so bit #0 is the
102 	 * right most bit.
103 	 */
104 	return (int) bits[index / 8] & (1 << (index % 8));
105 }
106 
107 void
108 ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
109 {
110 	/*
111 	 * The bits are counted from right to left, so bit #0 is the
112 	 * right most bit.
113 	 */
114 	if (bit_nr >= 0 && bit_nr < 8) {
115 		if (value) {
116 			*byte = *byte | (0x01 << bit_nr);
117 		} else {
118 			*byte = *byte & ~(0x01 << bit_nr);
119 		}
120 	}
121 }
122 
123 int
124 ldns_hexdigit_to_int(char ch)
125 {
126 	switch (ch) {
127 	case '0': return 0;
128 	case '1': return 1;
129 	case '2': return 2;
130 	case '3': return 3;
131 	case '4': return 4;
132 	case '5': return 5;
133 	case '6': return 6;
134 	case '7': return 7;
135 	case '8': return 8;
136 	case '9': return 9;
137 	case 'a': case 'A': return 10;
138 	case 'b': case 'B': return 11;
139 	case 'c': case 'C': return 12;
140 	case 'd': case 'D': return 13;
141 	case 'e': case 'E': return 14;
142 	case 'f': case 'F': return 15;
143 	default:
144 		return -1;
145 	}
146 }
147 
148 char
149 ldns_int_to_hexdigit(int i)
150 {
151 	switch (i) {
152 	case 0: return '0';
153 	case 1: return '1';
154 	case 2: return '2';
155 	case 3: return '3';
156 	case 4: return '4';
157 	case 5: return '5';
158 	case 6: return '6';
159 	case 7: return '7';
160 	case 8: return '8';
161 	case 9: return '9';
162 	case 10: return 'a';
163 	case 11: return 'b';
164 	case 12: return 'c';
165 	case 13: return 'd';
166 	case 14: return 'e';
167 	case 15: return 'f';
168 	default:
169 		abort();
170 	}
171 }
172 
173 int
174 ldns_hexstring_to_data(uint8_t *data, const char *str)
175 {
176 	size_t i;
177 
178 	if (!str || !data) {
179 		return -1;
180 	}
181 
182 	if (strlen(str) % 2 != 0) {
183 		return -2;
184 	}
185 
186 	for (i = 0; i < strlen(str) / 2; i++) {
187 		data[i] =
188 			16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
189 			(uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
190 	}
191 
192 	return (int) i;
193 }
194 
195 const char *
196 ldns_version(void)
197 {
198 	return (char*)LDNS_VERSION;
199 }
200 
201 /* Number of days per month (except for February in leap years). */
202 static const int mdays[] = {
203 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
204 };
205 
206 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
207 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) -  1 ) : ((x) / (y)))
208 
209 static int
210 is_leap_year(int year)
211 {
212 	return LDNS_MOD(year,   4) == 0 && (LDNS_MOD(year, 100) != 0
213 	    || LDNS_MOD(year, 400) == 0);
214 }
215 
216 static int
217 leap_days(int y1, int y2)
218 {
219 	--y1;
220 	--y2;
221 	return (LDNS_DIV(y2,   4) - LDNS_DIV(y1,   4)) -
222 	       (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
223 	       (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
224 }
225 
226 /*
227  * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
228  */
229 time_t
230 ldns_mktime_from_utc(const struct tm *tm)
231 {
232 	int year = 1900 + tm->tm_year;
233 	time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
234 	time_t hours;
235 	time_t minutes;
236 	time_t seconds;
237 	int i;
238 
239 	for (i = 0; i < tm->tm_mon; ++i) {
240 		days += mdays[i];
241 	}
242 	if (tm->tm_mon > 1 && is_leap_year(year)) {
243 		++days;
244 	}
245 	days += tm->tm_mday - 1;
246 
247 	hours = days * 24 + tm->tm_hour;
248 	minutes = hours * 60 + tm->tm_min;
249 	seconds = minutes * 60 + tm->tm_sec;
250 
251 	return seconds;
252 }
253 
254 time_t
255 mktime_from_utc(const struct tm *tm)
256 {
257 	return ldns_mktime_from_utc(tm);
258 }
259 
260 #if SIZEOF_TIME_T <= 4
261 
262 static void
263 ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
264 {
265 	int year = 1970;
266 	int new_year;
267 
268 	while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
269 		new_year = year + (int) LDNS_DIV(days, 365);
270 		days -= (new_year - year) * 365;
271 		days -= leap_days(year, new_year);
272 		year  = new_year;
273 	}
274 	result->tm_year = year;
275 	result->tm_yday = (int) days;
276 }
277 
278 /* Number of days per month in a leap year. */
279 static const int leap_year_mdays[] = {
280 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
281 };
282 
283 static void
284 ldns_mon_and_mday_from_year_and_yday(struct tm *result)
285 {
286 	int idays = result->tm_yday;
287 	const int *mon_lengths = is_leap_year(result->tm_year) ?
288 					leap_year_mdays : mdays;
289 
290 	result->tm_mon = 0;
291 	while  (idays >= mon_lengths[result->tm_mon]) {
292 		idays -= mon_lengths[result->tm_mon++];
293 	}
294 	result->tm_mday = idays + 1;
295 }
296 
297 static void
298 ldns_wday_from_year_and_yday(struct tm *result)
299 {
300 	result->tm_wday = 4 /* 1-1-1970 was a thursday */
301 			+ LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
302 			+ leap_days(1970, result->tm_year)
303 			+ result->tm_yday;
304 	result->tm_wday = LDNS_MOD(result->tm_wday, 7);
305 	if (result->tm_wday < 0) {
306 		result->tm_wday += 7;
307 	}
308 }
309 
310 static struct tm *
311 ldns_gmtime64_r(int64_t clock, struct tm *result)
312 {
313 	result->tm_isdst = 0;
314 	result->tm_sec   = (int) LDNS_MOD(clock, 60);
315 	clock            =       LDNS_DIV(clock, 60);
316 	result->tm_min   = (int) LDNS_MOD(clock, 60);
317 	clock            =       LDNS_DIV(clock, 60);
318 	result->tm_hour  = (int) LDNS_MOD(clock, 24);
319 	clock            =       LDNS_DIV(clock, 24);
320 
321 	ldns_year_and_yday_from_days_since_epoch(clock, result);
322 	ldns_mon_and_mday_from_year_and_yday(result);
323 	ldns_wday_from_year_and_yday(result);
324 	result->tm_year -= 1900;
325 
326 	return result;
327 }
328 
329 #endif /* SIZEOF_TIME_T <= 4 */
330 
331 static int64_t
332 ldns_serial_arithmitics_time(int32_t time, time_t now)
333 {
334 	int32_t offset = time - (int32_t) now;
335 	return (int64_t) now + offset;
336 }
337 
338 
339 struct tm *
340 ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
341 {
342 #if SIZEOF_TIME_T <= 4
343 	int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
344 	return  ldns_gmtime64_r(secs_since_epoch, result);
345 #else
346 	time_t  secs_since_epoch = ldns_serial_arithmitics_time(time, now);
347 	return  gmtime_r(&secs_since_epoch, result);
348 #endif
349 }
350 
351 /**
352  * Init the random source
353  * applications should call this if they need entropy data within ldns
354  * If openSSL is available, it is automatically seeded from /dev/urandom
355  * or /dev/random
356  *
357  * If you need more entropy, or have no openssl available, this function
358  * MUST be called at the start of the program
359  *
360  * If openssl *is* available, this function just adds more entropy
361  **/
362 int
363 ldns_init_random(FILE *fd, unsigned int size)
364 {
365 	/* if fp is given, seed srandom with data from file
366 	   otherwise use /dev/urandom */
367 	FILE *rand_f;
368 	uint8_t *seed;
369 	size_t read = 0;
370 	unsigned int seed_i;
371 	struct timeval tv;
372 
373 	/* we'll need at least sizeof(unsigned int) bytes for the
374 	   standard prng seed */
375 	if (size < (unsigned int) sizeof(seed_i)){
376 		size = (unsigned int) sizeof(seed_i);
377 	}
378 
379 	seed = LDNS_XMALLOC(uint8_t, size);
380         if(!seed) {
381 		return 1;
382         }
383 
384 	if (!fd) {
385 		if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
386 			/* no readable /dev/urandom, try /dev/random */
387 			if ((rand_f = fopen("/dev/random", "r")) == NULL) {
388 				/* no readable /dev/random either, and no entropy
389 				   source given. we'll have to improvise */
390 				for (read = 0; read < size; read++) {
391 					gettimeofday(&tv, NULL);
392 					seed[read] = (uint8_t) (tv.tv_usec % 256);
393 				}
394 			} else {
395 				read = fread(seed, 1, size, rand_f);
396 			}
397 		} else {
398 			read = fread(seed, 1, size, rand_f);
399 		}
400 	} else {
401 		rand_f = fd;
402 		read = fread(seed, 1, size, rand_f);
403 	}
404 
405 	if (read < size) {
406 		LDNS_FREE(seed);
407 		if (!fd) fclose(rand_f);
408 		return 1;
409 	} else {
410 #ifdef HAVE_SSL
411 		/* Seed the OpenSSL prng (most systems have it seeded
412 		   automatically, in that case this call just adds entropy */
413 		RAND_seed(seed, (int) size);
414 #else
415 		/* Seed the standard prng, only uses the first
416 		 * unsigned sizeof(unsiged int) bytes found in the entropy pool
417 		 */
418 		memcpy(&seed_i, seed, sizeof(seed_i));
419 		srandom(seed_i);
420 #endif
421 		LDNS_FREE(seed);
422 	}
423 
424 	if (!fd) {
425                 if (rand_f) fclose(rand_f);
426 	}
427 
428 	return 0;
429 }
430 
431 /**
432  * Get random number.
433  *
434  */
435 uint16_t
436 ldns_get_random(void)
437 {
438         uint16_t rid = 0;
439 #ifdef HAVE_SSL
440         if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
441                 rid = (uint16_t) random();
442         }
443 #else
444         rid = (uint16_t) random();
445 #endif
446 	return rid;
447 }
448 
449 /*
450  * BubbleBabble code taken from OpenSSH
451  * Copyright (c) 2001 Carsten Raskgaard.  All rights reserved.
452  */
453 char *
454 ldns_bubblebabble(uint8_t *data, size_t len)
455 {
456 	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
457 	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
458 	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
459 	size_t i, j = 0, rounds, seed = 1;
460 	char *retval;
461 
462 	rounds = (len / 2) + 1;
463 	retval = LDNS_XMALLOC(char, rounds * 6);
464 	if(!retval) return NULL;
465 	retval[j++] = 'x';
466 	for (i = 0; i < rounds; i++) {
467 		size_t idx0, idx1, idx2, idx3, idx4;
468 		if ((i + 1 < rounds) || (len % 2 != 0)) {
469 			idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
470 			    seed) % 6;
471 			idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
472 			idx2 = ((((size_t)(data[2 * i])) & 3) +
473 			    (seed / 6)) % 6;
474 			retval[j++] = vowels[idx0];
475 			retval[j++] = consonants[idx1];
476 			retval[j++] = vowels[idx2];
477 			if ((i + 1) < rounds) {
478 				idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
479 				idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
480 				retval[j++] = consonants[idx3];
481 				retval[j++] = '-';
482 				retval[j++] = consonants[idx4];
483 				seed = ((seed * 5) +
484 				    ((((size_t)(data[2 * i])) * 7) +
485 				    ((size_t)(data[(2 * i) + 1])))) % 36;
486 			}
487 		} else {
488 			idx0 = seed % 6;
489 			idx1 = 16;
490 			idx2 = seed / 6;
491 			retval[j++] = vowels[idx0];
492 			retval[j++] = consonants[idx1];
493 			retval[j++] = vowels[idx2];
494 		}
495 	}
496 	retval[j++] = 'x';
497 	retval[j++] = '\0';
498 	return retval;
499 }
500