xref: /dragonfly/contrib/libpcap/gencode.c (revision 31524921)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25 #endif
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #if HAVE_INTTYPES_H
35 #include <inttypes.h>
36 #elif HAVE_STDINT_H
37 #include <stdint.h>
38 #endif
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
41 #endif
42 #include <sys/types.h>
43 #include <sys/socket.h>
44 #endif /* WIN32 */
45 
46 /*
47  * XXX - why was this included even on UNIX?
48  */
49 #ifdef __MINGW32__
50 #include "ip6_misc.h"
51 #endif
52 
53 #ifndef WIN32
54 
55 #ifdef __NetBSD__
56 #include <sys/param.h>
57 #endif
58 
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
61 
62 #endif /* WIN32 */
63 
64 #include <stdlib.h>
65 #include <string.h>
66 #include <memory.h>
67 #include <setjmp.h>
68 #include <stdarg.h>
69 
70 #ifdef MSDOS
71 #include "pcap-dos.h"
72 #endif
73 
74 #include "pcap-int.h"
75 
76 #include "ethertype.h"
77 #include "nlpid.h"
78 #include "llc.h"
79 #include "gencode.h"
80 #include "ieee80211.h"
81 #include "atmuni31.h"
82 #include "sunatmpos.h"
83 #include "ppp.h"
84 #include "pcap/sll.h"
85 #include "pcap/ipnet.h"
86 #include "arcnet.h"
87 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88 #include <linux/types.h>
89 #include <linux/if_packet.h>
90 #include <linux/filter.h>
91 #endif
92 #ifdef HAVE_NET_PFVAR_H
93 #include <sys/socket.h>
94 #include <net/if.h>
95 #include <net/pf/pfvar.h>
96 #include <net/pf/if_pflog.h>
97 #endif
98 #ifndef offsetof
99 #define offsetof(s, e) ((size_t)&((s *)0)->e)
100 #endif
101 #ifdef INET6
102 #ifndef WIN32
103 #include <netdb.h>	/* for "struct addrinfo" */
104 #endif /* WIN32 */
105 #endif /*INET6*/
106 #include <pcap/namedb.h>
107 
108 #define ETHERMTU	1500
109 
110 #ifndef IPPROTO_HOPOPTS
111 #define IPPROTO_HOPOPTS 0
112 #endif
113 #ifndef IPPROTO_ROUTING
114 #define IPPROTO_ROUTING 43
115 #endif
116 #ifndef IPPROTO_FRAGMENT
117 #define IPPROTO_FRAGMENT 44
118 #endif
119 #ifndef IPPROTO_DSTOPTS
120 #define IPPROTO_DSTOPTS 60
121 #endif
122 #ifndef IPPROTO_SCTP
123 #define IPPROTO_SCTP 132
124 #endif
125 
126 #ifdef HAVE_OS_PROTO_H
127 #include "os-proto.h"
128 #endif
129 
130 #define JMP(c) ((c)|BPF_JMP|BPF_K)
131 
132 /* Locals */
133 static jmp_buf top_ctx;
134 static pcap_t *bpf_pcap;
135 
136 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
137 #ifdef WIN32
138 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
139 #else
140 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
141 #endif
142 
143 /* XXX */
144 #ifdef PCAP_FDDIPAD
145 static int	pcap_fddipad;
146 #endif
147 
148 /* VARARGS */
149 void
150 bpf_error(const char *fmt, ...)
151 {
152 	va_list ap;
153 
154 	va_start(ap, fmt);
155 	if (bpf_pcap != NULL)
156 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
157 		    fmt, ap);
158 	va_end(ap);
159 	longjmp(top_ctx, 1);
160 	/* NOTREACHED */
161 }
162 
163 static void init_linktype(pcap_t *);
164 
165 static void init_regs(void);
166 static int alloc_reg(void);
167 static void free_reg(int);
168 
169 static struct block *root;
170 
171 /*
172  * Value passed to gen_load_a() to indicate what the offset argument
173  * is relative to.
174  */
175 enum e_offrel {
176 	OR_PACKET,	/* relative to the beginning of the packet */
177 	OR_LINK,	/* relative to the beginning of the link-layer header */
178 	OR_MACPL,	/* relative to the end of the MAC-layer header */
179 	OR_NET,		/* relative to the network-layer header */
180 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
181 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
182 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
183 };
184 
185 #ifdef INET6
186 /*
187  * As errors are handled by a longjmp, anything allocated must be freed
188  * in the longjmp handler, so it must be reachable from that handler.
189  * One thing that's allocated is the result of pcap_nametoaddrinfo();
190  * it must be freed with freeaddrinfo().  This variable points to any
191  * addrinfo structure that would need to be freed.
192  */
193 static struct addrinfo *ai;
194 #endif
195 
196 /*
197  * We divy out chunks of memory rather than call malloc each time so
198  * we don't have to worry about leaking memory.  It's probably
199  * not a big deal if all this memory was wasted but if this ever
200  * goes into a library that would probably not be a good idea.
201  *
202  * XXX - this *is* in a library....
203  */
204 #define NCHUNKS 16
205 #define CHUNK0SIZE 1024
206 struct chunk {
207 	u_int n_left;
208 	void *m;
209 };
210 
211 static struct chunk chunks[NCHUNKS];
212 static int cur_chunk;
213 
214 static void *newchunk(u_int);
215 static void freechunks(void);
216 static inline struct block *new_block(int);
217 static inline struct slist *new_stmt(int);
218 static struct block *gen_retblk(int);
219 static inline void syntax(void);
220 
221 static void backpatch(struct block *, struct block *);
222 static void merge(struct block *, struct block *);
223 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
224 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
225 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
226 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
227 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
228 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
229     bpf_u_int32);
230 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
231 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
232     bpf_u_int32, bpf_u_int32, int, bpf_int32);
233 static struct slist *gen_load_llrel(u_int, u_int);
234 static struct slist *gen_load_macplrel(u_int, u_int);
235 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
236 static struct slist *gen_loadx_iphdrlen(void);
237 static struct block *gen_uncond(int);
238 static inline struct block *gen_true(void);
239 static inline struct block *gen_false(void);
240 static struct block *gen_ether_linktype(int);
241 static struct block *gen_ipnet_linktype(int);
242 static struct block *gen_linux_sll_linktype(int);
243 static struct slist *gen_load_prism_llprefixlen(void);
244 static struct slist *gen_load_avs_llprefixlen(void);
245 static struct slist *gen_load_radiotap_llprefixlen(void);
246 static struct slist *gen_load_ppi_llprefixlen(void);
247 static void insert_compute_vloffsets(struct block *);
248 static struct slist *gen_llprefixlen(void);
249 static struct slist *gen_off_macpl(void);
250 static int ethertype_to_ppptype(int);
251 static struct block *gen_linktype(int);
252 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
253 static struct block *gen_llc_linktype(int);
254 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
255 #ifdef INET6
256 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
257 #endif
258 static struct block *gen_ahostop(const u_char *, int);
259 static struct block *gen_ehostop(const u_char *, int);
260 static struct block *gen_fhostop(const u_char *, int);
261 static struct block *gen_thostop(const u_char *, int);
262 static struct block *gen_wlanhostop(const u_char *, int);
263 static struct block *gen_ipfchostop(const u_char *, int);
264 static struct block *gen_dnhostop(bpf_u_int32, int);
265 static struct block *gen_mpls_linktype(int);
266 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
267 #ifdef INET6
268 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
269 #endif
270 #ifndef INET6
271 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
272 #endif
273 static struct block *gen_ipfrag(void);
274 static struct block *gen_portatom(int, bpf_int32);
275 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
276 static struct block *gen_portatom6(int, bpf_int32);
277 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
278 struct block *gen_portop(int, int, int);
279 static struct block *gen_port(int, int, int);
280 struct block *gen_portrangeop(int, int, int, int);
281 static struct block *gen_portrange(int, int, int, int);
282 struct block *gen_portop6(int, int, int);
283 static struct block *gen_port6(int, int, int);
284 struct block *gen_portrangeop6(int, int, int, int);
285 static struct block *gen_portrange6(int, int, int, int);
286 static int lookup_proto(const char *, int);
287 static struct block *gen_protochain(int, int, int);
288 static struct block *gen_proto(int, int, int);
289 static struct slist *xfer_to_x(struct arth *);
290 static struct slist *xfer_to_a(struct arth *);
291 static struct block *gen_mac_multicast(int);
292 static struct block *gen_len(int, int);
293 static struct block *gen_check_802_11_data_frame(void);
294 
295 static struct block *gen_ppi_dlt_check(void);
296 static struct block *gen_msg_abbrev(int type);
297 
298 static void *
299 newchunk(n)
300 	u_int n;
301 {
302 	struct chunk *cp;
303 	int k;
304 	size_t size;
305 
306 #ifndef __NetBSD__
307 	/* XXX Round up to nearest long. */
308 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
309 #else
310 	/* XXX Round up to structure boundary. */
311 	n = ALIGN(n);
312 #endif
313 
314 	cp = &chunks[cur_chunk];
315 	if (n > cp->n_left) {
316 		++cp, k = ++cur_chunk;
317 		if (k >= NCHUNKS)
318 			bpf_error("out of memory");
319 		size = CHUNK0SIZE << k;
320 		cp->m = (void *)malloc(size);
321 		if (cp->m == NULL)
322 			bpf_error("out of memory");
323 		memset((char *)cp->m, 0, size);
324 		cp->n_left = size;
325 		if (n > size)
326 			bpf_error("out of memory");
327 	}
328 	cp->n_left -= n;
329 	return (void *)((char *)cp->m + cp->n_left);
330 }
331 
332 static void
333 freechunks()
334 {
335 	int i;
336 
337 	cur_chunk = 0;
338 	for (i = 0; i < NCHUNKS; ++i)
339 		if (chunks[i].m != NULL) {
340 			free(chunks[i].m);
341 			chunks[i].m = NULL;
342 		}
343 }
344 
345 /*
346  * A strdup whose allocations are freed after code generation is over.
347  */
348 char *
349 sdup(s)
350 	register const char *s;
351 {
352 	int n = strlen(s) + 1;
353 	char *cp = newchunk(n);
354 
355 	strlcpy(cp, s, n);
356 	return (cp);
357 }
358 
359 static inline struct block *
360 new_block(code)
361 	int code;
362 {
363 	struct block *p;
364 
365 	p = (struct block *)newchunk(sizeof(*p));
366 	p->s.code = code;
367 	p->head = p;
368 
369 	return p;
370 }
371 
372 static inline struct slist *
373 new_stmt(code)
374 	int code;
375 {
376 	struct slist *p;
377 
378 	p = (struct slist *)newchunk(sizeof(*p));
379 	p->s.code = code;
380 
381 	return p;
382 }
383 
384 static struct block *
385 gen_retblk(v)
386 	int v;
387 {
388 	struct block *b = new_block(BPF_RET|BPF_K);
389 
390 	b->s.k = v;
391 	return b;
392 }
393 
394 static inline void
395 syntax()
396 {
397 	bpf_error("syntax error in filter expression");
398 }
399 
400 static bpf_u_int32 netmask;
401 static int snaplen;
402 int no_optimize;
403 #ifdef WIN32
404 static int
405 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
406 	     const char *buf, int optimize, bpf_u_int32 mask);
407 
408 int
409 pcap_compile(pcap_t *p, struct bpf_program *program,
410 	     const char *buf, int optimize, bpf_u_int32 mask)
411 {
412 	int result;
413 
414 	EnterCriticalSection(&g_PcapCompileCriticalSection);
415 
416 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
417 
418 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
419 
420 	return result;
421 }
422 
423 static int
424 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
425 	     const char *buf, int optimize, bpf_u_int32 mask)
426 #else /* WIN32 */
427 int
428 pcap_compile(pcap_t *p, struct bpf_program *program,
429 	     const char *buf, int optimize, bpf_u_int32 mask)
430 #endif /* WIN32 */
431 {
432 	extern int n_errors;
433 	const char * volatile xbuf = buf;
434 	u_int len;
435 
436 	/*
437 	 * If this pcap_t hasn't been activated, it doesn't have a
438 	 * link-layer type, so we can't use it.
439 	 */
440 	if (!p->activated) {
441 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
442 		    "not-yet-activated pcap_t passed to pcap_compile");
443 		return (-1);
444 	}
445 	no_optimize = 0;
446 	n_errors = 0;
447 	root = NULL;
448 	bpf_pcap = p;
449 	init_regs();
450 	if (setjmp(top_ctx)) {
451 #ifdef INET6
452 		if (ai != NULL) {
453 			freeaddrinfo(ai);
454 			ai = NULL;
455 		}
456 #endif
457 		lex_cleanup();
458 		freechunks();
459 		return (-1);
460 	}
461 
462 	netmask = mask;
463 
464 	snaplen = pcap_snapshot(p);
465 	if (snaplen == 0) {
466 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
467 			 "snaplen of 0 rejects all packets");
468 		return -1;
469 	}
470 
471 	lex_init(xbuf ? xbuf : "");
472 	init_linktype(p);
473 	(void)pcap_parse();
474 
475 	if (n_errors)
476 		syntax();
477 
478 	if (root == NULL)
479 		root = gen_retblk(snaplen);
480 
481 	if (optimize && !no_optimize) {
482 		bpf_optimize(&root);
483 		if (root == NULL ||
484 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
485 			bpf_error("expression rejects all packets");
486 	}
487 	program->bf_insns = icode_to_fcode(root, &len);
488 	program->bf_len = len;
489 
490 	lex_cleanup();
491 	freechunks();
492 	return (0);
493 }
494 
495 /*
496  * entry point for using the compiler with no pcap open
497  * pass in all the stuff that is needed explicitly instead.
498  */
499 int
500 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
501 		    struct bpf_program *program,
502 	     const char *buf, int optimize, bpf_u_int32 mask)
503 {
504 	pcap_t *p;
505 	int ret;
506 
507 	p = pcap_open_dead(linktype_arg, snaplen_arg);
508 	if (p == NULL)
509 		return (-1);
510 	ret = pcap_compile(p, program, buf, optimize, mask);
511 	pcap_close(p);
512 	return (ret);
513 }
514 
515 /*
516  * Clean up a "struct bpf_program" by freeing all the memory allocated
517  * in it.
518  */
519 void
520 pcap_freecode(struct bpf_program *program)
521 {
522 	program->bf_len = 0;
523 	if (program->bf_insns != NULL) {
524 		free((char *)program->bf_insns);
525 		program->bf_insns = NULL;
526 	}
527 }
528 
529 /*
530  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
531  * which of the jt and jf fields has been resolved and which is a pointer
532  * back to another unresolved block (or nil).  At least one of the fields
533  * in each block is already resolved.
534  */
535 static void
536 backpatch(list, target)
537 	struct block *list, *target;
538 {
539 	struct block *next;
540 
541 	while (list) {
542 		if (!list->sense) {
543 			next = JT(list);
544 			JT(list) = target;
545 		} else {
546 			next = JF(list);
547 			JF(list) = target;
548 		}
549 		list = next;
550 	}
551 }
552 
553 /*
554  * Merge the lists in b0 and b1, using the 'sense' field to indicate
555  * which of jt and jf is the link.
556  */
557 static void
558 merge(b0, b1)
559 	struct block *b0, *b1;
560 {
561 	register struct block **p = &b0;
562 
563 	/* Find end of list. */
564 	while (*p)
565 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
566 
567 	/* Concatenate the lists. */
568 	*p = b1;
569 }
570 
571 void
572 finish_parse(p)
573 	struct block *p;
574 {
575 	struct block *ppi_dlt_check;
576 
577 	/*
578 	 * Insert before the statements of the first (root) block any
579 	 * statements needed to load the lengths of any variable-length
580 	 * headers into registers.
581 	 *
582 	 * XXX - a fancier strategy would be to insert those before the
583 	 * statements of all blocks that use those lengths and that
584 	 * have no predecessors that use them, so that we only compute
585 	 * the lengths if we need them.  There might be even better
586 	 * approaches than that.
587 	 *
588 	 * However, those strategies would be more complicated, and
589 	 * as we don't generate code to compute a length if the
590 	 * program has no tests that use the length, and as most
591 	 * tests will probably use those lengths, we would just
592 	 * postpone computing the lengths so that it's not done
593 	 * for tests that fail early, and it's not clear that's
594 	 * worth the effort.
595 	 */
596 	insert_compute_vloffsets(p->head);
597 
598 	/*
599 	 * For DLT_PPI captures, generate a check of the per-packet
600 	 * DLT value to make sure it's DLT_IEEE802_11.
601 	 */
602 	ppi_dlt_check = gen_ppi_dlt_check();
603 	if (ppi_dlt_check != NULL)
604 		gen_and(ppi_dlt_check, p);
605 
606 	backpatch(p, gen_retblk(snaplen));
607 	p->sense = !p->sense;
608 	backpatch(p, gen_retblk(0));
609 	root = p->head;
610 }
611 
612 void
613 gen_and(b0, b1)
614 	struct block *b0, *b1;
615 {
616 	backpatch(b0, b1->head);
617 	b0->sense = !b0->sense;
618 	b1->sense = !b1->sense;
619 	merge(b1, b0);
620 	b1->sense = !b1->sense;
621 	b1->head = b0->head;
622 }
623 
624 void
625 gen_or(b0, b1)
626 	struct block *b0, *b1;
627 {
628 	b0->sense = !b0->sense;
629 	backpatch(b0, b1->head);
630 	b0->sense = !b0->sense;
631 	merge(b1, b0);
632 	b1->head = b0->head;
633 }
634 
635 void
636 gen_not(b)
637 	struct block *b;
638 {
639 	b->sense = !b->sense;
640 }
641 
642 static struct block *
643 gen_cmp(offrel, offset, size, v)
644 	enum e_offrel offrel;
645 	u_int offset, size;
646 	bpf_int32 v;
647 {
648 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
649 }
650 
651 static struct block *
652 gen_cmp_gt(offrel, offset, size, v)
653 	enum e_offrel offrel;
654 	u_int offset, size;
655 	bpf_int32 v;
656 {
657 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
658 }
659 
660 static struct block *
661 gen_cmp_ge(offrel, offset, size, v)
662 	enum e_offrel offrel;
663 	u_int offset, size;
664 	bpf_int32 v;
665 {
666 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
667 }
668 
669 static struct block *
670 gen_cmp_lt(offrel, offset, size, v)
671 	enum e_offrel offrel;
672 	u_int offset, size;
673 	bpf_int32 v;
674 {
675 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
676 }
677 
678 static struct block *
679 gen_cmp_le(offrel, offset, size, v)
680 	enum e_offrel offrel;
681 	u_int offset, size;
682 	bpf_int32 v;
683 {
684 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
685 }
686 
687 static struct block *
688 gen_mcmp(offrel, offset, size, v, mask)
689 	enum e_offrel offrel;
690 	u_int offset, size;
691 	bpf_int32 v;
692 	bpf_u_int32 mask;
693 {
694 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
695 }
696 
697 static struct block *
698 gen_bcmp(offrel, offset, size, v)
699 	enum e_offrel offrel;
700 	register u_int offset, size;
701 	register const u_char *v;
702 {
703 	register struct block *b, *tmp;
704 
705 	b = NULL;
706 	while (size >= 4) {
707 		register const u_char *p = &v[size - 4];
708 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
709 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
710 
711 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
712 		if (b != NULL)
713 			gen_and(b, tmp);
714 		b = tmp;
715 		size -= 4;
716 	}
717 	while (size >= 2) {
718 		register const u_char *p = &v[size - 2];
719 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
720 
721 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
722 		if (b != NULL)
723 			gen_and(b, tmp);
724 		b = tmp;
725 		size -= 2;
726 	}
727 	if (size > 0) {
728 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
729 		if (b != NULL)
730 			gen_and(b, tmp);
731 		b = tmp;
732 	}
733 	return b;
734 }
735 
736 /*
737  * AND the field of size "size" at offset "offset" relative to the header
738  * specified by "offrel" with "mask", and compare it with the value "v"
739  * with the test specified by "jtype"; if "reverse" is true, the test
740  * should test the opposite of "jtype".
741  */
742 static struct block *
743 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
744 	enum e_offrel offrel;
745 	bpf_int32 v;
746 	bpf_u_int32 offset, size, mask, jtype;
747 	int reverse;
748 {
749 	struct slist *s, *s2;
750 	struct block *b;
751 
752 	s = gen_load_a(offrel, offset, size);
753 
754 	if (mask != 0xffffffff) {
755 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
756 		s2->s.k = mask;
757 		sappend(s, s2);
758 	}
759 
760 	b = new_block(JMP(jtype));
761 	b->stmts = s;
762 	b->s.k = v;
763 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
764 		gen_not(b);
765 	return b;
766 }
767 
768 /*
769  * Various code constructs need to know the layout of the data link
770  * layer.  These variables give the necessary offsets from the beginning
771  * of the packet data.
772  */
773 
774 /*
775  * This is the offset of the beginning of the link-layer header from
776  * the beginning of the raw packet data.
777  *
778  * It's usually 0, except for 802.11 with a fixed-length radio header.
779  * (For 802.11 with a variable-length radio header, we have to generate
780  * code to compute that offset; off_ll is 0 in that case.)
781  */
782 static u_int off_ll;
783 
784 /*
785  * If there's a variable-length header preceding the link-layer header,
786  * "reg_off_ll" is the register number for a register containing the
787  * length of that header, and therefore the offset of the link-layer
788  * header from the beginning of the raw packet data.  Otherwise,
789  * "reg_off_ll" is -1.
790  */
791 static int reg_off_ll;
792 
793 /*
794  * This is the offset of the beginning of the MAC-layer header from
795  * the beginning of the link-layer header.
796  * It's usually 0, except for ATM LANE, where it's the offset, relative
797  * to the beginning of the raw packet data, of the Ethernet header, and
798  * for Ethernet with various additional information.
799  */
800 static u_int off_mac;
801 
802 /*
803  * This is the offset of the beginning of the MAC-layer payload,
804  * from the beginning of the raw packet data.
805  *
806  * I.e., it's the sum of the length of the link-layer header (without,
807  * for example, any 802.2 LLC header, so it's the MAC-layer
808  * portion of that header), plus any prefix preceding the
809  * link-layer header.
810  */
811 static u_int off_macpl;
812 
813 /*
814  * This is 1 if the offset of the beginning of the MAC-layer payload
815  * from the beginning of the link-layer header is variable-length.
816  */
817 static int off_macpl_is_variable;
818 
819 /*
820  * If the link layer has variable_length headers, "reg_off_macpl"
821  * is the register number for a register containing the length of the
822  * link-layer header plus the length of any variable-length header
823  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
824  * is -1.
825  */
826 static int reg_off_macpl;
827 
828 /*
829  * "off_linktype" is the offset to information in the link-layer header
830  * giving the packet type.  This offset is relative to the beginning
831  * of the link-layer header (i.e., it doesn't include off_ll).
832  *
833  * For Ethernet, it's the offset of the Ethernet type field.
834  *
835  * For link-layer types that always use 802.2 headers, it's the
836  * offset of the LLC header.
837  *
838  * For PPP, it's the offset of the PPP type field.
839  *
840  * For Cisco HDLC, it's the offset of the CHDLC type field.
841  *
842  * For BSD loopback, it's the offset of the AF_ value.
843  *
844  * For Linux cooked sockets, it's the offset of the type field.
845  *
846  * It's set to -1 for no encapsulation, in which case, IP is assumed.
847  */
848 static u_int off_linktype;
849 
850 /*
851  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
852  * checks to check the PPP header, assumed to follow a LAN-style link-
853  * layer header and a PPPoE session header.
854  */
855 static int is_pppoes = 0;
856 
857 /*
858  * TRUE if the link layer includes an ATM pseudo-header.
859  */
860 static int is_atm = 0;
861 
862 /*
863  * TRUE if "lane" appeared in the filter; it causes us to generate
864  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
865  */
866 static int is_lane = 0;
867 
868 /*
869  * These are offsets for the ATM pseudo-header.
870  */
871 static u_int off_vpi;
872 static u_int off_vci;
873 static u_int off_proto;
874 
875 /*
876  * These are offsets for the MTP2 fields.
877  */
878 static u_int off_li;
879 
880 /*
881  * These are offsets for the MTP3 fields.
882  */
883 static u_int off_sio;
884 static u_int off_opc;
885 static u_int off_dpc;
886 static u_int off_sls;
887 
888 /*
889  * This is the offset of the first byte after the ATM pseudo_header,
890  * or -1 if there is no ATM pseudo-header.
891  */
892 static u_int off_payload;
893 
894 /*
895  * These are offsets to the beginning of the network-layer header.
896  * They are relative to the beginning of the MAC-layer payload (i.e.,
897  * they don't include off_ll or off_macpl).
898  *
899  * If the link layer never uses 802.2 LLC:
900  *
901  *	"off_nl" and "off_nl_nosnap" are the same.
902  *
903  * If the link layer always uses 802.2 LLC:
904  *
905  *	"off_nl" is the offset if there's a SNAP header following
906  *	the 802.2 header;
907  *
908  *	"off_nl_nosnap" is the offset if there's no SNAP header.
909  *
910  * If the link layer is Ethernet:
911  *
912  *	"off_nl" is the offset if the packet is an Ethernet II packet
913  *	(we assume no 802.3+802.2+SNAP);
914  *
915  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
916  *	with an 802.2 header following it.
917  */
918 static u_int off_nl;
919 static u_int off_nl_nosnap;
920 
921 static int linktype;
922 
923 static void
924 init_linktype(p)
925 	pcap_t *p;
926 {
927 	linktype = pcap_datalink(p);
928 #ifdef PCAP_FDDIPAD
929 	pcap_fddipad = p->fddipad;
930 #endif
931 
932 	/*
933 	 * Assume it's not raw ATM with a pseudo-header, for now.
934 	 */
935 	off_mac = 0;
936 	is_atm = 0;
937 	is_lane = 0;
938 	off_vpi = -1;
939 	off_vci = -1;
940 	off_proto = -1;
941 	off_payload = -1;
942 
943 	/*
944 	 * And that we're not doing PPPoE.
945 	 */
946 	is_pppoes = 0;
947 
948 	/*
949 	 * And assume we're not doing SS7.
950 	 */
951 	off_li = -1;
952 	off_sio = -1;
953 	off_opc = -1;
954 	off_dpc = -1;
955 	off_sls = -1;
956 
957 	/*
958 	 * Also assume it's not 802.11.
959 	 */
960 	off_ll = 0;
961 	off_macpl = 0;
962 	off_macpl_is_variable = 0;
963 
964 	orig_linktype = -1;
965 	orig_nl = -1;
966         label_stack_depth = 0;
967 
968 	reg_off_ll = -1;
969 	reg_off_macpl = -1;
970 
971 	switch (linktype) {
972 
973 	case DLT_ARCNET:
974 		off_linktype = 2;
975 		off_macpl = 6;
976 		off_nl = 0;		/* XXX in reality, variable! */
977 		off_nl_nosnap = 0;	/* no 802.2 LLC */
978 		return;
979 
980 	case DLT_ARCNET_LINUX:
981 		off_linktype = 4;
982 		off_macpl = 8;
983 		off_nl = 0;		/* XXX in reality, variable! */
984 		off_nl_nosnap = 0;	/* no 802.2 LLC */
985 		return;
986 
987 	case DLT_EN10MB:
988 		off_linktype = 12;
989 		off_macpl = 14;		/* Ethernet header length */
990 		off_nl = 0;		/* Ethernet II */
991 		off_nl_nosnap = 3;	/* 802.3+802.2 */
992 		return;
993 
994 	case DLT_SLIP:
995 		/*
996 		 * SLIP doesn't have a link level type.  The 16 byte
997 		 * header is hacked into our SLIP driver.
998 		 */
999 		off_linktype = -1;
1000 		off_macpl = 16;
1001 		off_nl = 0;
1002 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1003 		return;
1004 
1005 	case DLT_SLIP_BSDOS:
1006 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1007 		off_linktype = -1;
1008 		/* XXX end */
1009 		off_macpl = 24;
1010 		off_nl = 0;
1011 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1012 		return;
1013 
1014 	case DLT_NULL:
1015 	case DLT_LOOP:
1016 		off_linktype = 0;
1017 		off_macpl = 4;
1018 		off_nl = 0;
1019 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1020 		return;
1021 
1022 	case DLT_ENC:
1023 		off_linktype = 0;
1024 		off_macpl = 12;
1025 		off_nl = 0;
1026 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1027 		return;
1028 
1029 	case DLT_PPP:
1030 	case DLT_PPP_PPPD:
1031 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1032 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1033 		off_linktype = 2;
1034 		off_macpl = 4;
1035 		off_nl = 0;
1036 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1037 		return;
1038 
1039 	case DLT_PPP_ETHER:
1040 		/*
1041 		 * This does no include the Ethernet header, and
1042 		 * only covers session state.
1043 		 */
1044 		off_linktype = 6;
1045 		off_macpl = 8;
1046 		off_nl = 0;
1047 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1048 		return;
1049 
1050 	case DLT_PPP_BSDOS:
1051 		off_linktype = 5;
1052 		off_macpl = 24;
1053 		off_nl = 0;
1054 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1055 		return;
1056 
1057 	case DLT_FDDI:
1058 		/*
1059 		 * FDDI doesn't really have a link-level type field.
1060 		 * We set "off_linktype" to the offset of the LLC header.
1061 		 *
1062 		 * To check for Ethernet types, we assume that SSAP = SNAP
1063 		 * is being used and pick out the encapsulated Ethernet type.
1064 		 * XXX - should we generate code to check for SNAP?
1065 		 */
1066 		off_linktype = 13;
1067 #ifdef PCAP_FDDIPAD
1068 		off_linktype += pcap_fddipad;
1069 #endif
1070 		off_macpl = 13;		/* FDDI MAC header length */
1071 #ifdef PCAP_FDDIPAD
1072 		off_macpl += pcap_fddipad;
1073 #endif
1074 		off_nl = 8;		/* 802.2+SNAP */
1075 		off_nl_nosnap = 3;	/* 802.2 */
1076 		return;
1077 
1078 	case DLT_IEEE802:
1079 		/*
1080 		 * Token Ring doesn't really have a link-level type field.
1081 		 * We set "off_linktype" to the offset of the LLC header.
1082 		 *
1083 		 * To check for Ethernet types, we assume that SSAP = SNAP
1084 		 * is being used and pick out the encapsulated Ethernet type.
1085 		 * XXX - should we generate code to check for SNAP?
1086 		 *
1087 		 * XXX - the header is actually variable-length.
1088 		 * Some various Linux patched versions gave 38
1089 		 * as "off_linktype" and 40 as "off_nl"; however,
1090 		 * if a token ring packet has *no* routing
1091 		 * information, i.e. is not source-routed, the correct
1092 		 * values are 20 and 22, as they are in the vanilla code.
1093 		 *
1094 		 * A packet is source-routed iff the uppermost bit
1095 		 * of the first byte of the source address, at an
1096 		 * offset of 8, has the uppermost bit set.  If the
1097 		 * packet is source-routed, the total number of bytes
1098 		 * of routing information is 2 plus bits 0x1F00 of
1099 		 * the 16-bit value at an offset of 14 (shifted right
1100 		 * 8 - figure out which byte that is).
1101 		 */
1102 		off_linktype = 14;
1103 		off_macpl = 14;		/* Token Ring MAC header length */
1104 		off_nl = 8;		/* 802.2+SNAP */
1105 		off_nl_nosnap = 3;	/* 802.2 */
1106 		return;
1107 
1108 	case DLT_IEEE802_11:
1109 	case DLT_PRISM_HEADER:
1110 	case DLT_IEEE802_11_RADIO_AVS:
1111 	case DLT_IEEE802_11_RADIO:
1112 		/*
1113 		 * 802.11 doesn't really have a link-level type field.
1114 		 * We set "off_linktype" to the offset of the LLC header.
1115 		 *
1116 		 * To check for Ethernet types, we assume that SSAP = SNAP
1117 		 * is being used and pick out the encapsulated Ethernet type.
1118 		 * XXX - should we generate code to check for SNAP?
1119 		 *
1120 		 * We also handle variable-length radio headers here.
1121 		 * The Prism header is in theory variable-length, but in
1122 		 * practice it's always 144 bytes long.  However, some
1123 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1124 		 * sometimes or always supply an AVS header, so we
1125 		 * have to check whether the radio header is a Prism
1126 		 * header or an AVS header, so, in practice, it's
1127 		 * variable-length.
1128 		 */
1129 		off_linktype = 24;
1130 		off_macpl = 0;		/* link-layer header is variable-length */
1131 		off_macpl_is_variable = 1;
1132 		off_nl = 8;		/* 802.2+SNAP */
1133 		off_nl_nosnap = 3;	/* 802.2 */
1134 		return;
1135 
1136 	case DLT_PPI:
1137 		/*
1138 		 * At the moment we treat PPI the same way that we treat
1139 		 * normal Radiotap encoded packets. The difference is in
1140 		 * the function that generates the code at the beginning
1141 		 * to compute the header length.  Since this code generator
1142 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1143 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1144 		 * generate code to check for this too.
1145 		 */
1146 		off_linktype = 24;
1147 		off_macpl = 0;		/* link-layer header is variable-length */
1148 		off_macpl_is_variable = 1;
1149 		off_nl = 8;		/* 802.2+SNAP */
1150 		off_nl_nosnap = 3;	/* 802.2 */
1151 		return;
1152 
1153 	case DLT_ATM_RFC1483:
1154 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1155 		/*
1156 		 * assume routed, non-ISO PDUs
1157 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1158 		 *
1159 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1160 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1161 		 * latter would presumably be treated the way PPPoE
1162 		 * should be, so you can do "pppoe and udp port 2049"
1163 		 * or "pppoa and tcp port 80" and have it check for
1164 		 * PPPo{A,E} and a PPP protocol of IP and....
1165 		 */
1166 		off_linktype = 0;
1167 		off_macpl = 0;		/* packet begins with LLC header */
1168 		off_nl = 8;		/* 802.2+SNAP */
1169 		off_nl_nosnap = 3;	/* 802.2 */
1170 		return;
1171 
1172 	case DLT_SUNATM:
1173 		/*
1174 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1175 		 * pseudo-header.
1176 		 */
1177 		is_atm = 1;
1178 		off_vpi = SUNATM_VPI_POS;
1179 		off_vci = SUNATM_VCI_POS;
1180 		off_proto = PROTO_POS;
1181 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1182 		off_payload = SUNATM_PKT_BEGIN_POS;
1183 		off_linktype = off_payload;
1184 		off_macpl = off_payload;	/* if LLC-encapsulated */
1185 		off_nl = 8;		/* 802.2+SNAP */
1186 		off_nl_nosnap = 3;	/* 802.2 */
1187 		return;
1188 
1189 	case DLT_RAW:
1190 	case DLT_IPV4:
1191 	case DLT_IPV6:
1192 		off_linktype = -1;
1193 		off_macpl = 0;
1194 		off_nl = 0;
1195 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1196 		return;
1197 
1198 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1199 		off_linktype = 14;
1200 		off_macpl = 16;
1201 		off_nl = 0;
1202 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1203 		return;
1204 
1205 	case DLT_LTALK:
1206 		/*
1207 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1208 		 * but really it just indicates whether there is a "short" or
1209 		 * "long" DDP packet following.
1210 		 */
1211 		off_linktype = -1;
1212 		off_macpl = 0;
1213 		off_nl = 0;
1214 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1215 		return;
1216 
1217 	case DLT_IP_OVER_FC:
1218 		/*
1219 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1220 		 * link-level type field.  We set "off_linktype" to the
1221 		 * offset of the LLC header.
1222 		 *
1223 		 * To check for Ethernet types, we assume that SSAP = SNAP
1224 		 * is being used and pick out the encapsulated Ethernet type.
1225 		 * XXX - should we generate code to check for SNAP? RFC
1226 		 * 2625 says SNAP should be used.
1227 		 */
1228 		off_linktype = 16;
1229 		off_macpl = 16;
1230 		off_nl = 8;		/* 802.2+SNAP */
1231 		off_nl_nosnap = 3;	/* 802.2 */
1232 		return;
1233 
1234 	case DLT_FRELAY:
1235 		/*
1236 		 * XXX - we should set this to handle SNAP-encapsulated
1237 		 * frames (NLPID of 0x80).
1238 		 */
1239 		off_linktype = -1;
1240 		off_macpl = 0;
1241 		off_nl = 0;
1242 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1243 		return;
1244 
1245                 /*
1246                  * the only BPF-interesting FRF.16 frames are non-control frames;
1247                  * Frame Relay has a variable length link-layer
1248                  * so lets start with offset 4 for now and increments later on (FIXME);
1249                  */
1250 	case DLT_MFR:
1251 		off_linktype = -1;
1252 		off_macpl = 0;
1253 		off_nl = 4;
1254 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1255 		return;
1256 
1257 	case DLT_APPLE_IP_OVER_IEEE1394:
1258 		off_linktype = 16;
1259 		off_macpl = 18;
1260 		off_nl = 0;
1261 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1262 		return;
1263 
1264 	case DLT_SYMANTEC_FIREWALL:
1265 		off_linktype = 6;
1266 		off_macpl = 44;
1267 		off_nl = 0;		/* Ethernet II */
1268 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1269 		return;
1270 
1271 #ifdef HAVE_NET_PFVAR_H
1272 	case DLT_PFLOG:
1273 		off_linktype = 0;
1274 		off_macpl = PFLOG_HDRLEN;
1275 		off_nl = 0;
1276 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1277 		return;
1278 #endif
1279 
1280         case DLT_JUNIPER_MFR:
1281         case DLT_JUNIPER_MLFR:
1282         case DLT_JUNIPER_MLPPP:
1283         case DLT_JUNIPER_PPP:
1284         case DLT_JUNIPER_CHDLC:
1285         case DLT_JUNIPER_FRELAY:
1286                 off_linktype = 4;
1287 		off_macpl = 4;
1288 		off_nl = 0;
1289 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1290                 return;
1291 
1292 	case DLT_JUNIPER_ATM1:
1293 		off_linktype = 4;	/* in reality variable between 4-8 */
1294 		off_macpl = 4;	/* in reality variable between 4-8 */
1295 		off_nl = 0;
1296 		off_nl_nosnap = 10;
1297 		return;
1298 
1299 	case DLT_JUNIPER_ATM2:
1300 		off_linktype = 8;	/* in reality variable between 8-12 */
1301 		off_macpl = 8;	/* in reality variable between 8-12 */
1302 		off_nl = 0;
1303 		off_nl_nosnap = 10;
1304 		return;
1305 
1306 		/* frames captured on a Juniper PPPoE service PIC
1307 		 * contain raw ethernet frames */
1308 	case DLT_JUNIPER_PPPOE:
1309         case DLT_JUNIPER_ETHER:
1310         	off_macpl = 14;
1311 		off_linktype = 16;
1312 		off_nl = 18;		/* Ethernet II */
1313 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1314 		return;
1315 
1316 	case DLT_JUNIPER_PPPOE_ATM:
1317 		off_linktype = 4;
1318 		off_macpl = 6;
1319 		off_nl = 0;
1320 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1321 		return;
1322 
1323 	case DLT_JUNIPER_GGSN:
1324 		off_linktype = 6;
1325 		off_macpl = 12;
1326 		off_nl = 0;
1327 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1328 		return;
1329 
1330 	case DLT_JUNIPER_ES:
1331 		off_linktype = 6;
1332 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1333 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1334 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1335 		return;
1336 
1337 	case DLT_JUNIPER_MONITOR:
1338 		off_linktype = 12;
1339 		off_macpl = 12;
1340 		off_nl = 0;		/* raw IP/IP6 header */
1341 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1342 		return;
1343 
1344 	case DLT_JUNIPER_SERVICES:
1345 		off_linktype = 12;
1346 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1347 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1348 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1349 		return;
1350 
1351 	case DLT_JUNIPER_VP:
1352 		off_linktype = 18;
1353 		off_macpl = -1;
1354 		off_nl = -1;
1355 		off_nl_nosnap = -1;
1356 		return;
1357 
1358 	case DLT_JUNIPER_ST:
1359 		off_linktype = 18;
1360 		off_macpl = -1;
1361 		off_nl = -1;
1362 		off_nl_nosnap = -1;
1363 		return;
1364 
1365 	case DLT_JUNIPER_ISM:
1366 		off_linktype = 8;
1367 		off_macpl = -1;
1368 		off_nl = -1;
1369 		off_nl_nosnap = -1;
1370 		return;
1371 
1372 	case DLT_JUNIPER_VS:
1373 	case DLT_JUNIPER_SRX_E2E:
1374 	case DLT_JUNIPER_FIBRECHANNEL:
1375 	case DLT_JUNIPER_ATM_CEMIC:
1376 		off_linktype = 8;
1377 		off_macpl = -1;
1378 		off_nl = -1;
1379 		off_nl_nosnap = -1;
1380 		return;
1381 
1382 	case DLT_MTP2:
1383 		off_li = 2;
1384 		off_sio = 3;
1385 		off_opc = 4;
1386 		off_dpc = 4;
1387 		off_sls = 7;
1388 		off_linktype = -1;
1389 		off_macpl = -1;
1390 		off_nl = -1;
1391 		off_nl_nosnap = -1;
1392 		return;
1393 
1394 	case DLT_MTP2_WITH_PHDR:
1395 		off_li = 6;
1396 		off_sio = 7;
1397 		off_opc = 8;
1398 		off_dpc = 8;
1399 		off_sls = 11;
1400 		off_linktype = -1;
1401 		off_macpl = -1;
1402 		off_nl = -1;
1403 		off_nl_nosnap = -1;
1404 		return;
1405 
1406 	case DLT_ERF:
1407 		off_li = 22;
1408 		off_sio = 23;
1409 		off_opc = 24;
1410 		off_dpc = 24;
1411 		off_sls = 27;
1412 		off_linktype = -1;
1413 		off_macpl = -1;
1414 		off_nl = -1;
1415 		off_nl_nosnap = -1;
1416 		return;
1417 
1418 	case DLT_PFSYNC:
1419 		off_linktype = -1;
1420 		off_macpl = 4;
1421 		off_nl = 0;
1422 		off_nl_nosnap = 0;
1423 		return;
1424 
1425 	case DLT_AX25_KISS:
1426 		/*
1427 		 * Currently, only raw "link[N:M]" filtering is supported.
1428 		 */
1429 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1430 		off_macpl = -1;
1431 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1432 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1433 		off_mac = 1;		/* step over the kiss length byte */
1434 		return;
1435 
1436 	case DLT_IPNET:
1437 		off_linktype = 1;
1438 		off_macpl = 24;		/* ipnet header length */
1439 		off_nl = 0;
1440 		off_nl_nosnap = -1;
1441 		return;
1442 
1443 	case DLT_NETANALYZER:
1444 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1445 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1446 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1447 		off_nl = 0;		/* Ethernet II */
1448 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1449 		return;
1450 
1451 	case DLT_NETANALYZER_TRANSPARENT:
1452 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1453 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1454 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1455 		off_nl = 0;		/* Ethernet II */
1456 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1457 		return;
1458 
1459 	default:
1460 		/*
1461 		 * For values in the range in which we've assigned new
1462 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1463 		 */
1464 		if (linktype >= DLT_MATCHING_MIN &&
1465 		    linktype <= DLT_MATCHING_MAX) {
1466 			off_linktype = -1;
1467 			off_macpl = -1;
1468 			off_nl = -1;
1469 			off_nl_nosnap = -1;
1470 			return;
1471 		}
1472 
1473 	}
1474 	bpf_error("unknown data link type %d", linktype);
1475 	/* NOTREACHED */
1476 }
1477 
1478 /*
1479  * Load a value relative to the beginning of the link-layer header.
1480  * The link-layer header doesn't necessarily begin at the beginning
1481  * of the packet data; there might be a variable-length prefix containing
1482  * radio information.
1483  */
1484 static struct slist *
1485 gen_load_llrel(offset, size)
1486 	u_int offset, size;
1487 {
1488 	struct slist *s, *s2;
1489 
1490 	s = gen_llprefixlen();
1491 
1492 	/*
1493 	 * If "s" is non-null, it has code to arrange that the X register
1494 	 * contains the length of the prefix preceding the link-layer
1495 	 * header.
1496 	 *
1497 	 * Otherwise, the length of the prefix preceding the link-layer
1498 	 * header is "off_ll".
1499 	 */
1500 	if (s != NULL) {
1501 		/*
1502 		 * There's a variable-length prefix preceding the
1503 		 * link-layer header.  "s" points to a list of statements
1504 		 * that put the length of that prefix into the X register.
1505 		 * do an indirect load, to use the X register as an offset.
1506 		 */
1507 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1508 		s2->s.k = offset;
1509 		sappend(s, s2);
1510 	} else {
1511 		/*
1512 		 * There is no variable-length header preceding the
1513 		 * link-layer header; add in off_ll, which, if there's
1514 		 * a fixed-length header preceding the link-layer header,
1515 		 * is the length of that header.
1516 		 */
1517 		s = new_stmt(BPF_LD|BPF_ABS|size);
1518 		s->s.k = offset + off_ll;
1519 	}
1520 	return s;
1521 }
1522 
1523 /*
1524  * Load a value relative to the beginning of the MAC-layer payload.
1525  */
1526 static struct slist *
1527 gen_load_macplrel(offset, size)
1528 	u_int offset, size;
1529 {
1530 	struct slist *s, *s2;
1531 
1532 	s = gen_off_macpl();
1533 
1534 	/*
1535 	 * If s is non-null, the offset of the MAC-layer payload is
1536 	 * variable, and s points to a list of instructions that
1537 	 * arrange that the X register contains that offset.
1538 	 *
1539 	 * Otherwise, the offset of the MAC-layer payload is constant,
1540 	 * and is in off_macpl.
1541 	 */
1542 	if (s != NULL) {
1543 		/*
1544 		 * The offset of the MAC-layer payload is in the X
1545 		 * register.  Do an indirect load, to use the X register
1546 		 * as an offset.
1547 		 */
1548 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1549 		s2->s.k = offset;
1550 		sappend(s, s2);
1551 	} else {
1552 		/*
1553 		 * The offset of the MAC-layer payload is constant,
1554 		 * and is in off_macpl; load the value at that offset
1555 		 * plus the specified offset.
1556 		 */
1557 		s = new_stmt(BPF_LD|BPF_ABS|size);
1558 		s->s.k = off_macpl + offset;
1559 	}
1560 	return s;
1561 }
1562 
1563 /*
1564  * Load a value relative to the beginning of the specified header.
1565  */
1566 static struct slist *
1567 gen_load_a(offrel, offset, size)
1568 	enum e_offrel offrel;
1569 	u_int offset, size;
1570 {
1571 	struct slist *s, *s2;
1572 
1573 	switch (offrel) {
1574 
1575 	case OR_PACKET:
1576                 s = new_stmt(BPF_LD|BPF_ABS|size);
1577                 s->s.k = offset;
1578 		break;
1579 
1580 	case OR_LINK:
1581 		s = gen_load_llrel(offset, size);
1582 		break;
1583 
1584 	case OR_MACPL:
1585 		s = gen_load_macplrel(offset, size);
1586 		break;
1587 
1588 	case OR_NET:
1589 		s = gen_load_macplrel(off_nl + offset, size);
1590 		break;
1591 
1592 	case OR_NET_NOSNAP:
1593 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1594 		break;
1595 
1596 	case OR_TRAN_IPV4:
1597 		/*
1598 		 * Load the X register with the length of the IPv4 header
1599 		 * (plus the offset of the link-layer header, if it's
1600 		 * preceded by a variable-length header such as a radio
1601 		 * header), in bytes.
1602 		 */
1603 		s = gen_loadx_iphdrlen();
1604 
1605 		/*
1606 		 * Load the item at {offset of the MAC-layer payload} +
1607 		 * {offset, relative to the start of the MAC-layer
1608 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1609 		 * {specified offset}.
1610 		 *
1611 		 * (If the offset of the MAC-layer payload is variable,
1612 		 * it's included in the value in the X register, and
1613 		 * off_macpl is 0.)
1614 		 */
1615 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1616 		s2->s.k = off_macpl + off_nl + offset;
1617 		sappend(s, s2);
1618 		break;
1619 
1620 	case OR_TRAN_IPV6:
1621 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1622 		break;
1623 
1624 	default:
1625 		abort();
1626 		return NULL;
1627 	}
1628 	return s;
1629 }
1630 
1631 /*
1632  * Generate code to load into the X register the sum of the length of
1633  * the IPv4 header and any variable-length header preceding the link-layer
1634  * header.
1635  */
1636 static struct slist *
1637 gen_loadx_iphdrlen()
1638 {
1639 	struct slist *s, *s2;
1640 
1641 	s = gen_off_macpl();
1642 	if (s != NULL) {
1643 		/*
1644 		 * There's a variable-length prefix preceding the
1645 		 * link-layer header, or the link-layer header is itself
1646 		 * variable-length.  "s" points to a list of statements
1647 		 * that put the offset of the MAC-layer payload into
1648 		 * the X register.
1649 		 *
1650 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1651 		 * don't have a constant offset, so we have to load the
1652 		 * value in question into the A register and add to it
1653 		 * the value from the X register.
1654 		 */
1655 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1656 		s2->s.k = off_nl;
1657 		sappend(s, s2);
1658 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1659 		s2->s.k = 0xf;
1660 		sappend(s, s2);
1661 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1662 		s2->s.k = 2;
1663 		sappend(s, s2);
1664 
1665 		/*
1666 		 * The A register now contains the length of the
1667 		 * IP header.  We need to add to it the offset of
1668 		 * the MAC-layer payload, which is still in the X
1669 		 * register, and move the result into the X register.
1670 		 */
1671 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1672 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1673 	} else {
1674 		/*
1675 		 * There is no variable-length header preceding the
1676 		 * link-layer header, and the link-layer header is
1677 		 * fixed-length; load the length of the IPv4 header,
1678 		 * which is at an offset of off_nl from the beginning
1679 		 * of the MAC-layer payload, and thus at an offset
1680 		 * of off_mac_pl + off_nl from the beginning of the
1681 		 * raw packet data.
1682 		 */
1683 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1684 		s->s.k = off_macpl + off_nl;
1685 	}
1686 	return s;
1687 }
1688 
1689 static struct block *
1690 gen_uncond(rsense)
1691 	int rsense;
1692 {
1693 	struct block *b;
1694 	struct slist *s;
1695 
1696 	s = new_stmt(BPF_LD|BPF_IMM);
1697 	s->s.k = !rsense;
1698 	b = new_block(JMP(BPF_JEQ));
1699 	b->stmts = s;
1700 
1701 	return b;
1702 }
1703 
1704 static inline struct block *
1705 gen_true()
1706 {
1707 	return gen_uncond(1);
1708 }
1709 
1710 static inline struct block *
1711 gen_false()
1712 {
1713 	return gen_uncond(0);
1714 }
1715 
1716 /*
1717  * Byte-swap a 32-bit number.
1718  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1719  * big-endian platforms.)
1720  */
1721 #define	SWAPLONG(y) \
1722 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1723 
1724 /*
1725  * Generate code to match a particular packet type.
1726  *
1727  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1728  * value, if <= ETHERMTU.  We use that to determine whether to
1729  * match the type/length field or to check the type/length field for
1730  * a value <= ETHERMTU to see whether it's a type field and then do
1731  * the appropriate test.
1732  */
1733 static struct block *
1734 gen_ether_linktype(proto)
1735 	register int proto;
1736 {
1737 	struct block *b0, *b1;
1738 
1739 	switch (proto) {
1740 
1741 	case LLCSAP_ISONS:
1742 	case LLCSAP_IP:
1743 	case LLCSAP_NETBEUI:
1744 		/*
1745 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1746 		 * so we check the DSAP and SSAP.
1747 		 *
1748 		 * LLCSAP_IP checks for IP-over-802.2, rather
1749 		 * than IP-over-Ethernet or IP-over-SNAP.
1750 		 *
1751 		 * XXX - should we check both the DSAP and the
1752 		 * SSAP, like this, or should we check just the
1753 		 * DSAP, as we do for other types <= ETHERMTU
1754 		 * (i.e., other SAP values)?
1755 		 */
1756 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1757 		gen_not(b0);
1758 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1759 			     ((proto << 8) | proto));
1760 		gen_and(b0, b1);
1761 		return b1;
1762 
1763 	case LLCSAP_IPX:
1764 		/*
1765 		 * Check for;
1766 		 *
1767 		 *	Ethernet_II frames, which are Ethernet
1768 		 *	frames with a frame type of ETHERTYPE_IPX;
1769 		 *
1770 		 *	Ethernet_802.3 frames, which are 802.3
1771 		 *	frames (i.e., the type/length field is
1772 		 *	a length field, <= ETHERMTU, rather than
1773 		 *	a type field) with the first two bytes
1774 		 *	after the Ethernet/802.3 header being
1775 		 *	0xFFFF;
1776 		 *
1777 		 *	Ethernet_802.2 frames, which are 802.3
1778 		 *	frames with an 802.2 LLC header and
1779 		 *	with the IPX LSAP as the DSAP in the LLC
1780 		 *	header;
1781 		 *
1782 		 *	Ethernet_SNAP frames, which are 802.3
1783 		 *	frames with an LLC header and a SNAP
1784 		 *	header and with an OUI of 0x000000
1785 		 *	(encapsulated Ethernet) and a protocol
1786 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1787 		 *
1788 		 * XXX - should we generate the same code both
1789 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1790 		 */
1791 
1792 		/*
1793 		 * This generates code to check both for the
1794 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1795 		 */
1796 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1797 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1798 		gen_or(b0, b1);
1799 
1800 		/*
1801 		 * Now we add code to check for SNAP frames with
1802 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1803 		 */
1804 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1805 		gen_or(b0, b1);
1806 
1807 		/*
1808 		 * Now we generate code to check for 802.3
1809 		 * frames in general.
1810 		 */
1811 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1812 		gen_not(b0);
1813 
1814 		/*
1815 		 * Now add the check for 802.3 frames before the
1816 		 * check for Ethernet_802.2 and Ethernet_802.3,
1817 		 * as those checks should only be done on 802.3
1818 		 * frames, not on Ethernet frames.
1819 		 */
1820 		gen_and(b0, b1);
1821 
1822 		/*
1823 		 * Now add the check for Ethernet_II frames, and
1824 		 * do that before checking for the other frame
1825 		 * types.
1826 		 */
1827 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1828 		    (bpf_int32)ETHERTYPE_IPX);
1829 		gen_or(b0, b1);
1830 		return b1;
1831 
1832 	case ETHERTYPE_ATALK:
1833 	case ETHERTYPE_AARP:
1834 		/*
1835 		 * EtherTalk (AppleTalk protocols on Ethernet link
1836 		 * layer) may use 802.2 encapsulation.
1837 		 */
1838 
1839 		/*
1840 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1841 		 * we check for an Ethernet type field less than
1842 		 * 1500, which means it's an 802.3 length field.
1843 		 */
1844 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1845 		gen_not(b0);
1846 
1847 		/*
1848 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1849 		 * SNAP packets with an organization code of
1850 		 * 0x080007 (Apple, for Appletalk) and a protocol
1851 		 * type of ETHERTYPE_ATALK (Appletalk).
1852 		 *
1853 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1854 		 * SNAP packets with an organization code of
1855 		 * 0x000000 (encapsulated Ethernet) and a protocol
1856 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1857 		 */
1858 		if (proto == ETHERTYPE_ATALK)
1859 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1860 		else	/* proto == ETHERTYPE_AARP */
1861 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1862 		gen_and(b0, b1);
1863 
1864 		/*
1865 		 * Check for Ethernet encapsulation (Ethertalk
1866 		 * phase 1?); we just check for the Ethernet
1867 		 * protocol type.
1868 		 */
1869 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1870 
1871 		gen_or(b0, b1);
1872 		return b1;
1873 
1874 	default:
1875 		if (proto <= ETHERMTU) {
1876 			/*
1877 			 * This is an LLC SAP value, so the frames
1878 			 * that match would be 802.2 frames.
1879 			 * Check that the frame is an 802.2 frame
1880 			 * (i.e., that the length/type field is
1881 			 * a length field, <= ETHERMTU) and
1882 			 * then check the DSAP.
1883 			 */
1884 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1885 			gen_not(b0);
1886 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1887 			    (bpf_int32)proto);
1888 			gen_and(b0, b1);
1889 			return b1;
1890 		} else {
1891 			/*
1892 			 * This is an Ethernet type, so compare
1893 			 * the length/type field with it (if
1894 			 * the frame is an 802.2 frame, the length
1895 			 * field will be <= ETHERMTU, and, as
1896 			 * "proto" is > ETHERMTU, this test
1897 			 * will fail and the frame won't match,
1898 			 * which is what we want).
1899 			 */
1900 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1901 			    (bpf_int32)proto);
1902 		}
1903 	}
1904 }
1905 
1906 /*
1907  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1908  * or IPv6 then we have an error.
1909  */
1910 static struct block *
1911 gen_ipnet_linktype(proto)
1912 	register int proto;
1913 {
1914 	switch (proto) {
1915 
1916 	case ETHERTYPE_IP:
1917 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1918 		    (bpf_int32)IPH_AF_INET);
1919 		/* NOTREACHED */
1920 
1921 	case ETHERTYPE_IPV6:
1922 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1923 		    (bpf_int32)IPH_AF_INET6);
1924 		/* NOTREACHED */
1925 
1926 	default:
1927 		break;
1928 	}
1929 
1930 	return gen_false();
1931 }
1932 
1933 /*
1934  * Generate code to match a particular packet type.
1935  *
1936  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1937  * value, if <= ETHERMTU.  We use that to determine whether to
1938  * match the type field or to check the type field for the special
1939  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1940  */
1941 static struct block *
1942 gen_linux_sll_linktype(proto)
1943 	register int proto;
1944 {
1945 	struct block *b0, *b1;
1946 
1947 	switch (proto) {
1948 
1949 	case LLCSAP_ISONS:
1950 	case LLCSAP_IP:
1951 	case LLCSAP_NETBEUI:
1952 		/*
1953 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1954 		 * so we check the DSAP and SSAP.
1955 		 *
1956 		 * LLCSAP_IP checks for IP-over-802.2, rather
1957 		 * than IP-over-Ethernet or IP-over-SNAP.
1958 		 *
1959 		 * XXX - should we check both the DSAP and the
1960 		 * SSAP, like this, or should we check just the
1961 		 * DSAP, as we do for other types <= ETHERMTU
1962 		 * (i.e., other SAP values)?
1963 		 */
1964 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1965 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1966 			     ((proto << 8) | proto));
1967 		gen_and(b0, b1);
1968 		return b1;
1969 
1970 	case LLCSAP_IPX:
1971 		/*
1972 		 *	Ethernet_II frames, which are Ethernet
1973 		 *	frames with a frame type of ETHERTYPE_IPX;
1974 		 *
1975 		 *	Ethernet_802.3 frames, which have a frame
1976 		 *	type of LINUX_SLL_P_802_3;
1977 		 *
1978 		 *	Ethernet_802.2 frames, which are 802.3
1979 		 *	frames with an 802.2 LLC header (i.e, have
1980 		 *	a frame type of LINUX_SLL_P_802_2) and
1981 		 *	with the IPX LSAP as the DSAP in the LLC
1982 		 *	header;
1983 		 *
1984 		 *	Ethernet_SNAP frames, which are 802.3
1985 		 *	frames with an LLC header and a SNAP
1986 		 *	header and with an OUI of 0x000000
1987 		 *	(encapsulated Ethernet) and a protocol
1988 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1989 		 *
1990 		 * First, do the checks on LINUX_SLL_P_802_2
1991 		 * frames; generate the check for either
1992 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1993 		 * then put a check for LINUX_SLL_P_802_2 frames
1994 		 * before it.
1995 		 */
1996 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1997 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1998 		gen_or(b0, b1);
1999 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2000 		gen_and(b0, b1);
2001 
2002 		/*
2003 		 * Now check for 802.3 frames and OR that with
2004 		 * the previous test.
2005 		 */
2006 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2007 		gen_or(b0, b1);
2008 
2009 		/*
2010 		 * Now add the check for Ethernet_II frames, and
2011 		 * do that before checking for the other frame
2012 		 * types.
2013 		 */
2014 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2015 		    (bpf_int32)ETHERTYPE_IPX);
2016 		gen_or(b0, b1);
2017 		return b1;
2018 
2019 	case ETHERTYPE_ATALK:
2020 	case ETHERTYPE_AARP:
2021 		/*
2022 		 * EtherTalk (AppleTalk protocols on Ethernet link
2023 		 * layer) may use 802.2 encapsulation.
2024 		 */
2025 
2026 		/*
2027 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2028 		 * we check for the 802.2 protocol type in the
2029 		 * "Ethernet type" field.
2030 		 */
2031 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2032 
2033 		/*
2034 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2035 		 * SNAP packets with an organization code of
2036 		 * 0x080007 (Apple, for Appletalk) and a protocol
2037 		 * type of ETHERTYPE_ATALK (Appletalk).
2038 		 *
2039 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2040 		 * SNAP packets with an organization code of
2041 		 * 0x000000 (encapsulated Ethernet) and a protocol
2042 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2043 		 */
2044 		if (proto == ETHERTYPE_ATALK)
2045 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2046 		else	/* proto == ETHERTYPE_AARP */
2047 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2048 		gen_and(b0, b1);
2049 
2050 		/*
2051 		 * Check for Ethernet encapsulation (Ethertalk
2052 		 * phase 1?); we just check for the Ethernet
2053 		 * protocol type.
2054 		 */
2055 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2056 
2057 		gen_or(b0, b1);
2058 		return b1;
2059 
2060 	default:
2061 		if (proto <= ETHERMTU) {
2062 			/*
2063 			 * This is an LLC SAP value, so the frames
2064 			 * that match would be 802.2 frames.
2065 			 * Check for the 802.2 protocol type
2066 			 * in the "Ethernet type" field, and
2067 			 * then check the DSAP.
2068 			 */
2069 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2070 			    LINUX_SLL_P_802_2);
2071 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2072 			     (bpf_int32)proto);
2073 			gen_and(b0, b1);
2074 			return b1;
2075 		} else {
2076 			/*
2077 			 * This is an Ethernet type, so compare
2078 			 * the length/type field with it (if
2079 			 * the frame is an 802.2 frame, the length
2080 			 * field will be <= ETHERMTU, and, as
2081 			 * "proto" is > ETHERMTU, this test
2082 			 * will fail and the frame won't match,
2083 			 * which is what we want).
2084 			 */
2085 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2086 			    (bpf_int32)proto);
2087 		}
2088 	}
2089 }
2090 
2091 static struct slist *
2092 gen_load_prism_llprefixlen()
2093 {
2094 	struct slist *s1, *s2;
2095 	struct slist *sjeq_avs_cookie;
2096 	struct slist *sjcommon;
2097 
2098 	/*
2099 	 * This code is not compatible with the optimizer, as
2100 	 * we are generating jmp instructions within a normal
2101 	 * slist of instructions
2102 	 */
2103 	no_optimize = 1;
2104 
2105 	/*
2106 	 * Generate code to load the length of the radio header into
2107 	 * the register assigned to hold that length, if one has been
2108 	 * assigned.  (If one hasn't been assigned, no code we've
2109 	 * generated uses that prefix, so we don't need to generate any
2110 	 * code to load it.)
2111 	 *
2112 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2113 	 * or always use the AVS header rather than the Prism header.
2114 	 * We load a 4-byte big-endian value at the beginning of the
2115 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2116 	 * it's equal to 0x80211000.  If so, that indicates that it's
2117 	 * an AVS header (the masked-out bits are the version number).
2118 	 * Otherwise, it's a Prism header.
2119 	 *
2120 	 * XXX - the Prism header is also, in theory, variable-length,
2121 	 * but no known software generates headers that aren't 144
2122 	 * bytes long.
2123 	 */
2124 	if (reg_off_ll != -1) {
2125 		/*
2126 		 * Load the cookie.
2127 		 */
2128 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2129 		s1->s.k = 0;
2130 
2131 		/*
2132 		 * AND it with 0xFFFFF000.
2133 		 */
2134 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2135 		s2->s.k = 0xFFFFF000;
2136 		sappend(s1, s2);
2137 
2138 		/*
2139 		 * Compare with 0x80211000.
2140 		 */
2141 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2142 		sjeq_avs_cookie->s.k = 0x80211000;
2143 		sappend(s1, sjeq_avs_cookie);
2144 
2145 		/*
2146 		 * If it's AVS:
2147 		 *
2148 		 * The 4 bytes at an offset of 4 from the beginning of
2149 		 * the AVS header are the length of the AVS header.
2150 		 * That field is big-endian.
2151 		 */
2152 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2153 		s2->s.k = 4;
2154 		sappend(s1, s2);
2155 		sjeq_avs_cookie->s.jt = s2;
2156 
2157 		/*
2158 		 * Now jump to the code to allocate a register
2159 		 * into which to save the header length and
2160 		 * store the length there.  (The "jump always"
2161 		 * instruction needs to have the k field set;
2162 		 * it's added to the PC, so, as we're jumping
2163 		 * over a single instruction, it should be 1.)
2164 		 */
2165 		sjcommon = new_stmt(JMP(BPF_JA));
2166 		sjcommon->s.k = 1;
2167 		sappend(s1, sjcommon);
2168 
2169 		/*
2170 		 * Now for the code that handles the Prism header.
2171 		 * Just load the length of the Prism header (144)
2172 		 * into the A register.  Have the test for an AVS
2173 		 * header branch here if we don't have an AVS header.
2174 		 */
2175 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2176 		s2->s.k = 144;
2177 		sappend(s1, s2);
2178 		sjeq_avs_cookie->s.jf = s2;
2179 
2180 		/*
2181 		 * Now allocate a register to hold that value and store
2182 		 * it.  The code for the AVS header will jump here after
2183 		 * loading the length of the AVS header.
2184 		 */
2185 		s2 = new_stmt(BPF_ST);
2186 		s2->s.k = reg_off_ll;
2187 		sappend(s1, s2);
2188 		sjcommon->s.jf = s2;
2189 
2190 		/*
2191 		 * Now move it into the X register.
2192 		 */
2193 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2194 		sappend(s1, s2);
2195 
2196 		return (s1);
2197 	} else
2198 		return (NULL);
2199 }
2200 
2201 static struct slist *
2202 gen_load_avs_llprefixlen()
2203 {
2204 	struct slist *s1, *s2;
2205 
2206 	/*
2207 	 * Generate code to load the length of the AVS header into
2208 	 * the register assigned to hold that length, if one has been
2209 	 * assigned.  (If one hasn't been assigned, no code we've
2210 	 * generated uses that prefix, so we don't need to generate any
2211 	 * code to load it.)
2212 	 */
2213 	if (reg_off_ll != -1) {
2214 		/*
2215 		 * The 4 bytes at an offset of 4 from the beginning of
2216 		 * the AVS header are the length of the AVS header.
2217 		 * That field is big-endian.
2218 		 */
2219 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2220 		s1->s.k = 4;
2221 
2222 		/*
2223 		 * Now allocate a register to hold that value and store
2224 		 * it.
2225 		 */
2226 		s2 = new_stmt(BPF_ST);
2227 		s2->s.k = reg_off_ll;
2228 		sappend(s1, s2);
2229 
2230 		/*
2231 		 * Now move it into the X register.
2232 		 */
2233 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2234 		sappend(s1, s2);
2235 
2236 		return (s1);
2237 	} else
2238 		return (NULL);
2239 }
2240 
2241 static struct slist *
2242 gen_load_radiotap_llprefixlen()
2243 {
2244 	struct slist *s1, *s2;
2245 
2246 	/*
2247 	 * Generate code to load the length of the radiotap header into
2248 	 * the register assigned to hold that length, if one has been
2249 	 * assigned.  (If one hasn't been assigned, no code we've
2250 	 * generated uses that prefix, so we don't need to generate any
2251 	 * code to load it.)
2252 	 */
2253 	if (reg_off_ll != -1) {
2254 		/*
2255 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2256 		 * of the radiotap header are the length of the radiotap
2257 		 * header; unfortunately, it's little-endian, so we have
2258 		 * to load it a byte at a time and construct the value.
2259 		 */
2260 
2261 		/*
2262 		 * Load the high-order byte, at an offset of 3, shift it
2263 		 * left a byte, and put the result in the X register.
2264 		 */
2265 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2266 		s1->s.k = 3;
2267 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2268 		sappend(s1, s2);
2269 		s2->s.k = 8;
2270 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2271 		sappend(s1, s2);
2272 
2273 		/*
2274 		 * Load the next byte, at an offset of 2, and OR the
2275 		 * value from the X register into it.
2276 		 */
2277 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2278 		sappend(s1, s2);
2279 		s2->s.k = 2;
2280 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2281 		sappend(s1, s2);
2282 
2283 		/*
2284 		 * Now allocate a register to hold that value and store
2285 		 * it.
2286 		 */
2287 		s2 = new_stmt(BPF_ST);
2288 		s2->s.k = reg_off_ll;
2289 		sappend(s1, s2);
2290 
2291 		/*
2292 		 * Now move it into the X register.
2293 		 */
2294 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2295 		sappend(s1, s2);
2296 
2297 		return (s1);
2298 	} else
2299 		return (NULL);
2300 }
2301 
2302 /*
2303  * At the moment we treat PPI as normal Radiotap encoded
2304  * packets. The difference is in the function that generates
2305  * the code at the beginning to compute the header length.
2306  * Since this code generator of PPI supports bare 802.11
2307  * encapsulation only (i.e. the encapsulated DLT should be
2308  * DLT_IEEE802_11) we generate code to check for this too;
2309  * that's done in finish_parse().
2310  */
2311 static struct slist *
2312 gen_load_ppi_llprefixlen()
2313 {
2314 	struct slist *s1, *s2;
2315 
2316 	/*
2317 	 * Generate code to load the length of the radiotap header
2318 	 * into the register assigned to hold that length, if one has
2319 	 * been assigned.
2320 	 */
2321 	if (reg_off_ll != -1) {
2322 		/*
2323 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2324 		 * of the radiotap header are the length of the radiotap
2325 		 * header; unfortunately, it's little-endian, so we have
2326 		 * to load it a byte at a time and construct the value.
2327 		 */
2328 
2329 		/*
2330 		 * Load the high-order byte, at an offset of 3, shift it
2331 		 * left a byte, and put the result in the X register.
2332 		 */
2333 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2334 		s1->s.k = 3;
2335 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2336 		sappend(s1, s2);
2337 		s2->s.k = 8;
2338 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2339 		sappend(s1, s2);
2340 
2341 		/*
2342 		 * Load the next byte, at an offset of 2, and OR the
2343 		 * value from the X register into it.
2344 		 */
2345 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2346 		sappend(s1, s2);
2347 		s2->s.k = 2;
2348 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2349 		sappend(s1, s2);
2350 
2351 		/*
2352 		 * Now allocate a register to hold that value and store
2353 		 * it.
2354 		 */
2355 		s2 = new_stmt(BPF_ST);
2356 		s2->s.k = reg_off_ll;
2357 		sappend(s1, s2);
2358 
2359 		/*
2360 		 * Now move it into the X register.
2361 		 */
2362 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2363 		sappend(s1, s2);
2364 
2365 		return (s1);
2366 	} else
2367 		return (NULL);
2368 }
2369 
2370 /*
2371  * Load a value relative to the beginning of the link-layer header after the 802.11
2372  * header, i.e. LLC_SNAP.
2373  * The link-layer header doesn't necessarily begin at the beginning
2374  * of the packet data; there might be a variable-length prefix containing
2375  * radio information.
2376  */
2377 static struct slist *
2378 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2379 {
2380 	struct slist *s2;
2381 	struct slist *sjset_data_frame_1;
2382 	struct slist *sjset_data_frame_2;
2383 	struct slist *sjset_qos;
2384 	struct slist *sjset_radiotap_flags;
2385 	struct slist *sjset_radiotap_tsft;
2386 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2387 	struct slist *s_roundup;
2388 
2389 	if (reg_off_macpl == -1) {
2390 		/*
2391 		 * No register has been assigned to the offset of
2392 		 * the MAC-layer payload, which means nobody needs
2393 		 * it; don't bother computing it - just return
2394 		 * what we already have.
2395 		 */
2396 		return (s);
2397 	}
2398 
2399 	/*
2400 	 * This code is not compatible with the optimizer, as
2401 	 * we are generating jmp instructions within a normal
2402 	 * slist of instructions
2403 	 */
2404 	no_optimize = 1;
2405 
2406 	/*
2407 	 * If "s" is non-null, it has code to arrange that the X register
2408 	 * contains the length of the prefix preceding the link-layer
2409 	 * header.
2410 	 *
2411 	 * Otherwise, the length of the prefix preceding the link-layer
2412 	 * header is "off_ll".
2413 	 */
2414 	if (s == NULL) {
2415 		/*
2416 		 * There is no variable-length header preceding the
2417 		 * link-layer header.
2418 		 *
2419 		 * Load the length of the fixed-length prefix preceding
2420 		 * the link-layer header (if any) into the X register,
2421 		 * and store it in the reg_off_macpl register.
2422 		 * That length is off_ll.
2423 		 */
2424 		s = new_stmt(BPF_LDX|BPF_IMM);
2425 		s->s.k = off_ll;
2426 	}
2427 
2428 	/*
2429 	 * The X register contains the offset of the beginning of the
2430 	 * link-layer header; add 24, which is the minimum length
2431 	 * of the MAC header for a data frame, to that, and store it
2432 	 * in reg_off_macpl, and then load the Frame Control field,
2433 	 * which is at the offset in the X register, with an indexed load.
2434 	 */
2435 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2436 	sappend(s, s2);
2437 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2438 	s2->s.k = 24;
2439 	sappend(s, s2);
2440 	s2 = new_stmt(BPF_ST);
2441 	s2->s.k = reg_off_macpl;
2442 	sappend(s, s2);
2443 
2444 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2445 	s2->s.k = 0;
2446 	sappend(s, s2);
2447 
2448 	/*
2449 	 * Check the Frame Control field to see if this is a data frame;
2450 	 * a data frame has the 0x08 bit (b3) in that field set and the
2451 	 * 0x04 bit (b2) clear.
2452 	 */
2453 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2454 	sjset_data_frame_1->s.k = 0x08;
2455 	sappend(s, sjset_data_frame_1);
2456 
2457 	/*
2458 	 * If b3 is set, test b2, otherwise go to the first statement of
2459 	 * the rest of the program.
2460 	 */
2461 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2462 	sjset_data_frame_2->s.k = 0x04;
2463 	sappend(s, sjset_data_frame_2);
2464 	sjset_data_frame_1->s.jf = snext;
2465 
2466 	/*
2467 	 * If b2 is not set, this is a data frame; test the QoS bit.
2468 	 * Otherwise, go to the first statement of the rest of the
2469 	 * program.
2470 	 */
2471 	sjset_data_frame_2->s.jt = snext;
2472 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2473 	sjset_qos->s.k = 0x80;	/* QoS bit */
2474 	sappend(s, sjset_qos);
2475 
2476 	/*
2477 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2478 	 * field.
2479 	 * Otherwise, go to the first statement of the rest of the
2480 	 * program.
2481 	 */
2482 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2483 	s2->s.k = reg_off_macpl;
2484 	sappend(s, s2);
2485 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2486 	s2->s.k = 2;
2487 	sappend(s, s2);
2488 	s2 = new_stmt(BPF_ST);
2489 	s2->s.k = reg_off_macpl;
2490 	sappend(s, s2);
2491 
2492 	/*
2493 	 * If we have a radiotap header, look at it to see whether
2494 	 * there's Atheros padding between the MAC-layer header
2495 	 * and the payload.
2496 	 *
2497 	 * Note: all of the fields in the radiotap header are
2498 	 * little-endian, so we byte-swap all of the values
2499 	 * we test against, as they will be loaded as big-endian
2500 	 * values.
2501 	 */
2502 	if (linktype == DLT_IEEE802_11_RADIO) {
2503 		/*
2504 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2505 		 * in the presence flag?
2506 		 */
2507 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2508 		s2->s.k = 4;
2509 		sappend(s, s2);
2510 
2511 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2512 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2513 		sappend(s, sjset_radiotap_flags);
2514 
2515 		/*
2516 		 * If not, skip all of this.
2517 		 */
2518 		sjset_radiotap_flags->s.jf = snext;
2519 
2520 		/*
2521 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2522 		 */
2523 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2524 		    new_stmt(JMP(BPF_JSET));
2525 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2526 		sappend(s, sjset_radiotap_tsft);
2527 
2528 		/*
2529 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2530 		 * at an offset of 16 from the beginning of the raw packet
2531 		 * data (8 bytes for the radiotap header and 8 bytes for
2532 		 * the TSFT field).
2533 		 *
2534 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2535 		 * is set.
2536 		 */
2537 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2538 		s2->s.k = 16;
2539 		sappend(s, s2);
2540 
2541 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2542 		sjset_tsft_datapad->s.k = 0x20;
2543 		sappend(s, sjset_tsft_datapad);
2544 
2545 		/*
2546 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2547 		 * at an offset of 8 from the beginning of the raw packet
2548 		 * data (8 bytes for the radiotap header).
2549 		 *
2550 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2551 		 * is set.
2552 		 */
2553 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2554 		s2->s.k = 8;
2555 		sappend(s, s2);
2556 
2557 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2558 		sjset_notsft_datapad->s.k = 0x20;
2559 		sappend(s, sjset_notsft_datapad);
2560 
2561 		/*
2562 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2563 		 * set, round the length of the 802.11 header to
2564 		 * a multiple of 4.  Do that by adding 3 and then
2565 		 * dividing by and multiplying by 4, which we do by
2566 		 * ANDing with ~3.
2567 		 */
2568 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2569 		s_roundup->s.k = reg_off_macpl;
2570 		sappend(s, s_roundup);
2571 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2572 		s2->s.k = 3;
2573 		sappend(s, s2);
2574 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2575 		s2->s.k = ~3;
2576 		sappend(s, s2);
2577 		s2 = new_stmt(BPF_ST);
2578 		s2->s.k = reg_off_macpl;
2579 		sappend(s, s2);
2580 
2581 		sjset_tsft_datapad->s.jt = s_roundup;
2582 		sjset_tsft_datapad->s.jf = snext;
2583 		sjset_notsft_datapad->s.jt = s_roundup;
2584 		sjset_notsft_datapad->s.jf = snext;
2585 	} else
2586 		sjset_qos->s.jf = snext;
2587 
2588 	return s;
2589 }
2590 
2591 static void
2592 insert_compute_vloffsets(b)
2593 	struct block *b;
2594 {
2595 	struct slist *s;
2596 
2597 	/*
2598 	 * For link-layer types that have a variable-length header
2599 	 * preceding the link-layer header, generate code to load
2600 	 * the offset of the link-layer header into the register
2601 	 * assigned to that offset, if any.
2602 	 */
2603 	switch (linktype) {
2604 
2605 	case DLT_PRISM_HEADER:
2606 		s = gen_load_prism_llprefixlen();
2607 		break;
2608 
2609 	case DLT_IEEE802_11_RADIO_AVS:
2610 		s = gen_load_avs_llprefixlen();
2611 		break;
2612 
2613 	case DLT_IEEE802_11_RADIO:
2614 		s = gen_load_radiotap_llprefixlen();
2615 		break;
2616 
2617 	case DLT_PPI:
2618 		s = gen_load_ppi_llprefixlen();
2619 		break;
2620 
2621 	default:
2622 		s = NULL;
2623 		break;
2624 	}
2625 
2626 	/*
2627 	 * For link-layer types that have a variable-length link-layer
2628 	 * header, generate code to load the offset of the MAC-layer
2629 	 * payload into the register assigned to that offset, if any.
2630 	 */
2631 	switch (linktype) {
2632 
2633 	case DLT_IEEE802_11:
2634 	case DLT_PRISM_HEADER:
2635 	case DLT_IEEE802_11_RADIO_AVS:
2636 	case DLT_IEEE802_11_RADIO:
2637 	case DLT_PPI:
2638 		s = gen_load_802_11_header_len(s, b->stmts);
2639 		break;
2640 	}
2641 
2642 	/*
2643 	 * If we have any offset-loading code, append all the
2644 	 * existing statements in the block to those statements,
2645 	 * and make the resulting list the list of statements
2646 	 * for the block.
2647 	 */
2648 	if (s != NULL) {
2649 		sappend(s, b->stmts);
2650 		b->stmts = s;
2651 	}
2652 }
2653 
2654 static struct block *
2655 gen_ppi_dlt_check(void)
2656 {
2657 	struct slist *s_load_dlt;
2658 	struct block *b;
2659 
2660 	if (linktype == DLT_PPI)
2661 	{
2662 		/* Create the statements that check for the DLT
2663 		 */
2664 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2665 		s_load_dlt->s.k = 4;
2666 
2667 		b = new_block(JMP(BPF_JEQ));
2668 
2669 		b->stmts = s_load_dlt;
2670 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2671 	}
2672 	else
2673 	{
2674 		b = NULL;
2675 	}
2676 
2677 	return b;
2678 }
2679 
2680 static struct slist *
2681 gen_prism_llprefixlen(void)
2682 {
2683 	struct slist *s;
2684 
2685 	if (reg_off_ll == -1) {
2686 		/*
2687 		 * We haven't yet assigned a register for the length
2688 		 * of the radio header; allocate one.
2689 		 */
2690 		reg_off_ll = alloc_reg();
2691 	}
2692 
2693 	/*
2694 	 * Load the register containing the radio length
2695 	 * into the X register.
2696 	 */
2697 	s = new_stmt(BPF_LDX|BPF_MEM);
2698 	s->s.k = reg_off_ll;
2699 	return s;
2700 }
2701 
2702 static struct slist *
2703 gen_avs_llprefixlen(void)
2704 {
2705 	struct slist *s;
2706 
2707 	if (reg_off_ll == -1) {
2708 		/*
2709 		 * We haven't yet assigned a register for the length
2710 		 * of the AVS header; allocate one.
2711 		 */
2712 		reg_off_ll = alloc_reg();
2713 	}
2714 
2715 	/*
2716 	 * Load the register containing the AVS length
2717 	 * into the X register.
2718 	 */
2719 	s = new_stmt(BPF_LDX|BPF_MEM);
2720 	s->s.k = reg_off_ll;
2721 	return s;
2722 }
2723 
2724 static struct slist *
2725 gen_radiotap_llprefixlen(void)
2726 {
2727 	struct slist *s;
2728 
2729 	if (reg_off_ll == -1) {
2730 		/*
2731 		 * We haven't yet assigned a register for the length
2732 		 * of the radiotap header; allocate one.
2733 		 */
2734 		reg_off_ll = alloc_reg();
2735 	}
2736 
2737 	/*
2738 	 * Load the register containing the radiotap length
2739 	 * into the X register.
2740 	 */
2741 	s = new_stmt(BPF_LDX|BPF_MEM);
2742 	s->s.k = reg_off_ll;
2743 	return s;
2744 }
2745 
2746 /*
2747  * At the moment we treat PPI as normal Radiotap encoded
2748  * packets. The difference is in the function that generates
2749  * the code at the beginning to compute the header length.
2750  * Since this code generator of PPI supports bare 802.11
2751  * encapsulation only (i.e. the encapsulated DLT should be
2752  * DLT_IEEE802_11) we generate code to check for this too.
2753  */
2754 static struct slist *
2755 gen_ppi_llprefixlen(void)
2756 {
2757 	struct slist *s;
2758 
2759 	if (reg_off_ll == -1) {
2760 		/*
2761 		 * We haven't yet assigned a register for the length
2762 		 * of the radiotap header; allocate one.
2763 		 */
2764 		reg_off_ll = alloc_reg();
2765 	}
2766 
2767 	/*
2768 	 * Load the register containing the PPI length
2769 	 * into the X register.
2770 	 */
2771 	s = new_stmt(BPF_LDX|BPF_MEM);
2772 	s->s.k = reg_off_ll;
2773 	return s;
2774 }
2775 
2776 /*
2777  * Generate code to compute the link-layer header length, if necessary,
2778  * putting it into the X register, and to return either a pointer to a
2779  * "struct slist" for the list of statements in that code, or NULL if
2780  * no code is necessary.
2781  */
2782 static struct slist *
2783 gen_llprefixlen(void)
2784 {
2785 	switch (linktype) {
2786 
2787 	case DLT_PRISM_HEADER:
2788 		return gen_prism_llprefixlen();
2789 
2790 	case DLT_IEEE802_11_RADIO_AVS:
2791 		return gen_avs_llprefixlen();
2792 
2793 	case DLT_IEEE802_11_RADIO:
2794 		return gen_radiotap_llprefixlen();
2795 
2796 	case DLT_PPI:
2797 		return gen_ppi_llprefixlen();
2798 
2799 	default:
2800 		return NULL;
2801 	}
2802 }
2803 
2804 /*
2805  * Generate code to load the register containing the offset of the
2806  * MAC-layer payload into the X register; if no register for that offset
2807  * has been allocated, allocate it first.
2808  */
2809 static struct slist *
2810 gen_off_macpl(void)
2811 {
2812 	struct slist *s;
2813 
2814 	if (off_macpl_is_variable) {
2815 		if (reg_off_macpl == -1) {
2816 			/*
2817 			 * We haven't yet assigned a register for the offset
2818 			 * of the MAC-layer payload; allocate one.
2819 			 */
2820 			reg_off_macpl = alloc_reg();
2821 		}
2822 
2823 		/*
2824 		 * Load the register containing the offset of the MAC-layer
2825 		 * payload into the X register.
2826 		 */
2827 		s = new_stmt(BPF_LDX|BPF_MEM);
2828 		s->s.k = reg_off_macpl;
2829 		return s;
2830 	} else {
2831 		/*
2832 		 * That offset isn't variable, so we don't need to
2833 		 * generate any code.
2834 		 */
2835 		return NULL;
2836 	}
2837 }
2838 
2839 /*
2840  * Map an Ethernet type to the equivalent PPP type.
2841  */
2842 static int
2843 ethertype_to_ppptype(proto)
2844 	int proto;
2845 {
2846 	switch (proto) {
2847 
2848 	case ETHERTYPE_IP:
2849 		proto = PPP_IP;
2850 		break;
2851 
2852 	case ETHERTYPE_IPV6:
2853 		proto = PPP_IPV6;
2854 		break;
2855 
2856 	case ETHERTYPE_DN:
2857 		proto = PPP_DECNET;
2858 		break;
2859 
2860 	case ETHERTYPE_ATALK:
2861 		proto = PPP_APPLE;
2862 		break;
2863 
2864 	case ETHERTYPE_NS:
2865 		proto = PPP_NS;
2866 		break;
2867 
2868 	case LLCSAP_ISONS:
2869 		proto = PPP_OSI;
2870 		break;
2871 
2872 	case LLCSAP_8021D:
2873 		/*
2874 		 * I'm assuming the "Bridging PDU"s that go
2875 		 * over PPP are Spanning Tree Protocol
2876 		 * Bridging PDUs.
2877 		 */
2878 		proto = PPP_BRPDU;
2879 		break;
2880 
2881 	case LLCSAP_IPX:
2882 		proto = PPP_IPX;
2883 		break;
2884 	}
2885 	return (proto);
2886 }
2887 
2888 /*
2889  * Generate code to match a particular packet type by matching the
2890  * link-layer type field or fields in the 802.2 LLC header.
2891  *
2892  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2893  * value, if <= ETHERMTU.
2894  */
2895 static struct block *
2896 gen_linktype(proto)
2897 	register int proto;
2898 {
2899 	struct block *b0, *b1, *b2;
2900 
2901 	/* are we checking MPLS-encapsulated packets? */
2902 	if (label_stack_depth > 0) {
2903 		switch (proto) {
2904 		case ETHERTYPE_IP:
2905 		case PPP_IP:
2906 			/* FIXME add other L3 proto IDs */
2907 			return gen_mpls_linktype(Q_IP);
2908 
2909 		case ETHERTYPE_IPV6:
2910 		case PPP_IPV6:
2911 			/* FIXME add other L3 proto IDs */
2912 			return gen_mpls_linktype(Q_IPV6);
2913 
2914 		default:
2915 			bpf_error("unsupported protocol over mpls");
2916 			/* NOTREACHED */
2917 		}
2918 	}
2919 
2920 	/*
2921 	 * Are we testing PPPoE packets?
2922 	 */
2923 	if (is_pppoes) {
2924 		/*
2925 		 * The PPPoE session header is part of the
2926 		 * MAC-layer payload, so all references
2927 		 * should be relative to the beginning of
2928 		 * that payload.
2929 		 */
2930 
2931 		/*
2932 		 * We use Ethernet protocol types inside libpcap;
2933 		 * map them to the corresponding PPP protocol types.
2934 		 */
2935 		proto = ethertype_to_ppptype(proto);
2936 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2937 	}
2938 
2939 	switch (linktype) {
2940 
2941 	case DLT_EN10MB:
2942 	case DLT_NETANALYZER:
2943 	case DLT_NETANALYZER_TRANSPARENT:
2944 		return gen_ether_linktype(proto);
2945 		/*NOTREACHED*/
2946 		break;
2947 
2948 	case DLT_C_HDLC:
2949 		switch (proto) {
2950 
2951 		case LLCSAP_ISONS:
2952 			proto = (proto << 8 | LLCSAP_ISONS);
2953 			/* fall through */
2954 
2955 		default:
2956 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2957 			    (bpf_int32)proto);
2958 			/*NOTREACHED*/
2959 			break;
2960 		}
2961 		break;
2962 
2963 	case DLT_IEEE802_11:
2964 	case DLT_PRISM_HEADER:
2965 	case DLT_IEEE802_11_RADIO_AVS:
2966 	case DLT_IEEE802_11_RADIO:
2967 	case DLT_PPI:
2968 		/*
2969 		 * Check that we have a data frame.
2970 		 */
2971 		b0 = gen_check_802_11_data_frame();
2972 
2973 		/*
2974 		 * Now check for the specified link-layer type.
2975 		 */
2976 		b1 = gen_llc_linktype(proto);
2977 		gen_and(b0, b1);
2978 		return b1;
2979 		/*NOTREACHED*/
2980 		break;
2981 
2982 	case DLT_FDDI:
2983 		/*
2984 		 * XXX - check for asynchronous frames, as per RFC 1103.
2985 		 */
2986 		return gen_llc_linktype(proto);
2987 		/*NOTREACHED*/
2988 		break;
2989 
2990 	case DLT_IEEE802:
2991 		/*
2992 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2993 		 */
2994 		return gen_llc_linktype(proto);
2995 		/*NOTREACHED*/
2996 		break;
2997 
2998 	case DLT_ATM_RFC1483:
2999 	case DLT_ATM_CLIP:
3000 	case DLT_IP_OVER_FC:
3001 		return gen_llc_linktype(proto);
3002 		/*NOTREACHED*/
3003 		break;
3004 
3005 	case DLT_SUNATM:
3006 		/*
3007 		 * If "is_lane" is set, check for a LANE-encapsulated
3008 		 * version of this protocol, otherwise check for an
3009 		 * LLC-encapsulated version of this protocol.
3010 		 *
3011 		 * We assume LANE means Ethernet, not Token Ring.
3012 		 */
3013 		if (is_lane) {
3014 			/*
3015 			 * Check that the packet doesn't begin with an
3016 			 * LE Control marker.  (We've already generated
3017 			 * a test for LANE.)
3018 			 */
3019 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3020 			    0xFF00);
3021 			gen_not(b0);
3022 
3023 			/*
3024 			 * Now generate an Ethernet test.
3025 			 */
3026 			b1 = gen_ether_linktype(proto);
3027 			gen_and(b0, b1);
3028 			return b1;
3029 		} else {
3030 			/*
3031 			 * Check for LLC encapsulation and then check the
3032 			 * protocol.
3033 			 */
3034 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3035 			b1 = gen_llc_linktype(proto);
3036 			gen_and(b0, b1);
3037 			return b1;
3038 		}
3039 		/*NOTREACHED*/
3040 		break;
3041 
3042 	case DLT_LINUX_SLL:
3043 		return gen_linux_sll_linktype(proto);
3044 		/*NOTREACHED*/
3045 		break;
3046 
3047 	case DLT_SLIP:
3048 	case DLT_SLIP_BSDOS:
3049 	case DLT_RAW:
3050 		/*
3051 		 * These types don't provide any type field; packets
3052 		 * are always IPv4 or IPv6.
3053 		 *
3054 		 * XXX - for IPv4, check for a version number of 4, and,
3055 		 * for IPv6, check for a version number of 6?
3056 		 */
3057 		switch (proto) {
3058 
3059 		case ETHERTYPE_IP:
3060 			/* Check for a version number of 4. */
3061 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3062 
3063 		case ETHERTYPE_IPV6:
3064 			/* Check for a version number of 6. */
3065 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3066 
3067 		default:
3068 			return gen_false();		/* always false */
3069 		}
3070 		/*NOTREACHED*/
3071 		break;
3072 
3073 	case DLT_IPV4:
3074 		/*
3075 		 * Raw IPv4, so no type field.
3076 		 */
3077 		if (proto == ETHERTYPE_IP)
3078 			return gen_true();		/* always true */
3079 
3080 		/* Checking for something other than IPv4; always false */
3081 		return gen_false();
3082 		/*NOTREACHED*/
3083 		break;
3084 
3085 	case DLT_IPV6:
3086 		/*
3087 		 * Raw IPv6, so no type field.
3088 		 */
3089 		if (proto == ETHERTYPE_IPV6)
3090 			return gen_true();		/* always true */
3091 
3092 		/* Checking for something other than IPv6; always false */
3093 		return gen_false();
3094 		/*NOTREACHED*/
3095 		break;
3096 
3097 	case DLT_PPP:
3098 	case DLT_PPP_PPPD:
3099 	case DLT_PPP_SERIAL:
3100 	case DLT_PPP_ETHER:
3101 		/*
3102 		 * We use Ethernet protocol types inside libpcap;
3103 		 * map them to the corresponding PPP protocol types.
3104 		 */
3105 		proto = ethertype_to_ppptype(proto);
3106 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3107 		/*NOTREACHED*/
3108 		break;
3109 
3110 	case DLT_PPP_BSDOS:
3111 		/*
3112 		 * We use Ethernet protocol types inside libpcap;
3113 		 * map them to the corresponding PPP protocol types.
3114 		 */
3115 		switch (proto) {
3116 
3117 		case ETHERTYPE_IP:
3118 			/*
3119 			 * Also check for Van Jacobson-compressed IP.
3120 			 * XXX - do this for other forms of PPP?
3121 			 */
3122 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3123 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3124 			gen_or(b0, b1);
3125 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3126 			gen_or(b1, b0);
3127 			return b0;
3128 
3129 		default:
3130 			proto = ethertype_to_ppptype(proto);
3131 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3132 				(bpf_int32)proto);
3133 		}
3134 		/*NOTREACHED*/
3135 		break;
3136 
3137 	case DLT_NULL:
3138 	case DLT_LOOP:
3139 	case DLT_ENC:
3140 		/*
3141 		 * For DLT_NULL, the link-layer header is a 32-bit
3142 		 * word containing an AF_ value in *host* byte order,
3143 		 * and for DLT_ENC, the link-layer header begins
3144 		 * with a 32-bit work containing an AF_ value in
3145 		 * host byte order.
3146 		 *
3147 		 * In addition, if we're reading a saved capture file,
3148 		 * the host byte order in the capture may not be the
3149 		 * same as the host byte order on this machine.
3150 		 *
3151 		 * For DLT_LOOP, the link-layer header is a 32-bit
3152 		 * word containing an AF_ value in *network* byte order.
3153 		 *
3154 		 * XXX - AF_ values may, unfortunately, be platform-
3155 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3156 		 * whilst NetBSD's and OpenBSD's is 26.
3157 		 *
3158 		 * This means that, when reading a capture file, just
3159 		 * checking for our AF_INET6 value won't work if the
3160 		 * capture file came from another OS.
3161 		 */
3162 		switch (proto) {
3163 
3164 		case ETHERTYPE_IP:
3165 			proto = AF_INET;
3166 			break;
3167 
3168 #ifdef INET6
3169 		case ETHERTYPE_IPV6:
3170 			proto = AF_INET6;
3171 			break;
3172 #endif
3173 
3174 		default:
3175 			/*
3176 			 * Not a type on which we support filtering.
3177 			 * XXX - support those that have AF_ values
3178 			 * #defined on this platform, at least?
3179 			 */
3180 			return gen_false();
3181 		}
3182 
3183 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3184 			/*
3185 			 * The AF_ value is in host byte order, but
3186 			 * the BPF interpreter will convert it to
3187 			 * network byte order.
3188 			 *
3189 			 * If this is a save file, and it's from a
3190 			 * machine with the opposite byte order to
3191 			 * ours, we byte-swap the AF_ value.
3192 			 *
3193 			 * Then we run it through "htonl()", and
3194 			 * generate code to compare against the result.
3195 			 */
3196 			if (bpf_pcap->sf.rfile != NULL &&
3197 			    bpf_pcap->sf.swapped)
3198 				proto = SWAPLONG(proto);
3199 			proto = htonl(proto);
3200 		}
3201 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3202 
3203 #ifdef HAVE_NET_PFVAR_H
3204 	case DLT_PFLOG:
3205 		/*
3206 		 * af field is host byte order in contrast to the rest of
3207 		 * the packet.
3208 		 */
3209 		if (proto == ETHERTYPE_IP)
3210 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3211 			    BPF_B, (bpf_int32)AF_INET));
3212 		else if (proto == ETHERTYPE_IPV6)
3213 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3214 			    BPF_B, (bpf_int32)AF_INET6));
3215 		else
3216 			return gen_false();
3217 		/*NOTREACHED*/
3218 		break;
3219 #endif /* HAVE_NET_PFVAR_H */
3220 
3221 	case DLT_ARCNET:
3222 	case DLT_ARCNET_LINUX:
3223 		/*
3224 		 * XXX should we check for first fragment if the protocol
3225 		 * uses PHDS?
3226 		 */
3227 		switch (proto) {
3228 
3229 		default:
3230 			return gen_false();
3231 
3232 		case ETHERTYPE_IPV6:
3233 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3234 				(bpf_int32)ARCTYPE_INET6));
3235 
3236 		case ETHERTYPE_IP:
3237 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3238 				     (bpf_int32)ARCTYPE_IP);
3239 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240 				     (bpf_int32)ARCTYPE_IP_OLD);
3241 			gen_or(b0, b1);
3242 			return (b1);
3243 
3244 		case ETHERTYPE_ARP:
3245 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3246 				     (bpf_int32)ARCTYPE_ARP);
3247 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3248 				     (bpf_int32)ARCTYPE_ARP_OLD);
3249 			gen_or(b0, b1);
3250 			return (b1);
3251 
3252 		case ETHERTYPE_REVARP:
3253 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3254 					(bpf_int32)ARCTYPE_REVARP));
3255 
3256 		case ETHERTYPE_ATALK:
3257 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3258 					(bpf_int32)ARCTYPE_ATALK));
3259 		}
3260 		/*NOTREACHED*/
3261 		break;
3262 
3263 	case DLT_LTALK:
3264 		switch (proto) {
3265 		case ETHERTYPE_ATALK:
3266 			return gen_true();
3267 		default:
3268 			return gen_false();
3269 		}
3270 		/*NOTREACHED*/
3271 		break;
3272 
3273 	case DLT_FRELAY:
3274 		/*
3275 		 * XXX - assumes a 2-byte Frame Relay header with
3276 		 * DLCI and flags.  What if the address is longer?
3277 		 */
3278 		switch (proto) {
3279 
3280 		case ETHERTYPE_IP:
3281 			/*
3282 			 * Check for the special NLPID for IP.
3283 			 */
3284 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3285 
3286 		case ETHERTYPE_IPV6:
3287 			/*
3288 			 * Check for the special NLPID for IPv6.
3289 			 */
3290 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3291 
3292 		case LLCSAP_ISONS:
3293 			/*
3294 			 * Check for several OSI protocols.
3295 			 *
3296 			 * Frame Relay packets typically have an OSI
3297 			 * NLPID at the beginning; we check for each
3298 			 * of them.
3299 			 *
3300 			 * What we check for is the NLPID and a frame
3301 			 * control field of UI, i.e. 0x03 followed
3302 			 * by the NLPID.
3303 			 */
3304 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3305 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3306 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3307 			gen_or(b1, b2);
3308 			gen_or(b0, b2);
3309 			return b2;
3310 
3311 		default:
3312 			return gen_false();
3313 		}
3314 		/*NOTREACHED*/
3315 		break;
3316 
3317 	case DLT_MFR:
3318 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3319 
3320         case DLT_JUNIPER_MFR:
3321         case DLT_JUNIPER_MLFR:
3322         case DLT_JUNIPER_MLPPP:
3323 	case DLT_JUNIPER_ATM1:
3324 	case DLT_JUNIPER_ATM2:
3325 	case DLT_JUNIPER_PPPOE:
3326 	case DLT_JUNIPER_PPPOE_ATM:
3327         case DLT_JUNIPER_GGSN:
3328         case DLT_JUNIPER_ES:
3329         case DLT_JUNIPER_MONITOR:
3330         case DLT_JUNIPER_SERVICES:
3331         case DLT_JUNIPER_ETHER:
3332         case DLT_JUNIPER_PPP:
3333         case DLT_JUNIPER_FRELAY:
3334         case DLT_JUNIPER_CHDLC:
3335         case DLT_JUNIPER_VP:
3336         case DLT_JUNIPER_ST:
3337         case DLT_JUNIPER_ISM:
3338         case DLT_JUNIPER_VS:
3339         case DLT_JUNIPER_SRX_E2E:
3340         case DLT_JUNIPER_FIBRECHANNEL:
3341 	case DLT_JUNIPER_ATM_CEMIC:
3342 
3343 		/* just lets verify the magic number for now -
3344 		 * on ATM we may have up to 6 different encapsulations on the wire
3345 		 * and need a lot of heuristics to figure out that the payload
3346 		 * might be;
3347 		 *
3348 		 * FIXME encapsulation specific BPF_ filters
3349 		 */
3350 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3351 
3352 	case DLT_IPNET:
3353 		return gen_ipnet_linktype(proto);
3354 
3355 	case DLT_LINUX_IRDA:
3356 		bpf_error("IrDA link-layer type filtering not implemented");
3357 
3358 	case DLT_DOCSIS:
3359 		bpf_error("DOCSIS link-layer type filtering not implemented");
3360 
3361 	case DLT_MTP2:
3362 	case DLT_MTP2_WITH_PHDR:
3363 		bpf_error("MTP2 link-layer type filtering not implemented");
3364 
3365 	case DLT_ERF:
3366 		bpf_error("ERF link-layer type filtering not implemented");
3367 
3368 	case DLT_PFSYNC:
3369 		bpf_error("PFSYNC link-layer type filtering not implemented");
3370 
3371 	case DLT_LINUX_LAPD:
3372 		bpf_error("LAPD link-layer type filtering not implemented");
3373 
3374 	case DLT_USB:
3375 	case DLT_USB_LINUX:
3376 	case DLT_USB_LINUX_MMAPPED:
3377 		bpf_error("USB link-layer type filtering not implemented");
3378 
3379 	case DLT_BLUETOOTH_HCI_H4:
3380 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3381 		bpf_error("Bluetooth link-layer type filtering not implemented");
3382 
3383 	case DLT_CAN20B:
3384 	case DLT_CAN_SOCKETCAN:
3385 		bpf_error("CAN link-layer type filtering not implemented");
3386 
3387 	case DLT_IEEE802_15_4:
3388 	case DLT_IEEE802_15_4_LINUX:
3389 	case DLT_IEEE802_15_4_NONASK_PHY:
3390 	case DLT_IEEE802_15_4_NOFCS:
3391 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3392 
3393 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3394 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3395 
3396 	case DLT_SITA:
3397 		bpf_error("SITA link-layer type filtering not implemented");
3398 
3399 	case DLT_RAIF1:
3400 		bpf_error("RAIF1 link-layer type filtering not implemented");
3401 
3402 	case DLT_IPMB:
3403 		bpf_error("IPMB link-layer type filtering not implemented");
3404 
3405 	case DLT_AX25_KISS:
3406 		bpf_error("AX.25 link-layer type filtering not implemented");
3407 	}
3408 
3409 	/*
3410 	 * All the types that have no encapsulation should either be
3411 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3412 	 * all packets are IP packets, or should be handled in some
3413 	 * special case, if none of them are (if some are and some
3414 	 * aren't, the lack of encapsulation is a problem, as we'd
3415 	 * have to find some other way of determining the packet type).
3416 	 *
3417 	 * Therefore, if "off_linktype" is -1, there's an error.
3418 	 */
3419 	if (off_linktype == (u_int)-1)
3420 		abort();
3421 
3422 	/*
3423 	 * Any type not handled above should always have an Ethernet
3424 	 * type at an offset of "off_linktype".
3425 	 */
3426 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3427 }
3428 
3429 /*
3430  * Check for an LLC SNAP packet with a given organization code and
3431  * protocol type; we check the entire contents of the 802.2 LLC and
3432  * snap headers, checking for DSAP and SSAP of SNAP and a control
3433  * field of 0x03 in the LLC header, and for the specified organization
3434  * code and protocol type in the SNAP header.
3435  */
3436 static struct block *
3437 gen_snap(orgcode, ptype)
3438 	bpf_u_int32 orgcode;
3439 	bpf_u_int32 ptype;
3440 {
3441 	u_char snapblock[8];
3442 
3443 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3444 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3445 	snapblock[2] = 0x03;		/* control = UI */
3446 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3447 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3448 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3449 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3450 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3451 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3452 }
3453 
3454 /*
3455  * Generate code to match a particular packet type, for link-layer types
3456  * using 802.2 LLC headers.
3457  *
3458  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3459  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3460  *
3461  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3462  * value, if <= ETHERMTU.  We use that to determine whether to
3463  * match the DSAP or both DSAP and LSAP or to check the OUI and
3464  * protocol ID in a SNAP header.
3465  */
3466 static struct block *
3467 gen_llc_linktype(proto)
3468 	int proto;
3469 {
3470 	/*
3471 	 * XXX - handle token-ring variable-length header.
3472 	 */
3473 	switch (proto) {
3474 
3475 	case LLCSAP_IP:
3476 	case LLCSAP_ISONS:
3477 	case LLCSAP_NETBEUI:
3478 		/*
3479 		 * XXX - should we check both the DSAP and the
3480 		 * SSAP, like this, or should we check just the
3481 		 * DSAP, as we do for other types <= ETHERMTU
3482 		 * (i.e., other SAP values)?
3483 		 */
3484 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3485 			     ((proto << 8) | proto));
3486 
3487 	case LLCSAP_IPX:
3488 		/*
3489 		 * XXX - are there ever SNAP frames for IPX on
3490 		 * non-Ethernet 802.x networks?
3491 		 */
3492 		return gen_cmp(OR_MACPL, 0, BPF_B,
3493 		    (bpf_int32)LLCSAP_IPX);
3494 
3495 	case ETHERTYPE_ATALK:
3496 		/*
3497 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3498 		 * SNAP packets with an organization code of
3499 		 * 0x080007 (Apple, for Appletalk) and a protocol
3500 		 * type of ETHERTYPE_ATALK (Appletalk).
3501 		 *
3502 		 * XXX - check for an organization code of
3503 		 * encapsulated Ethernet as well?
3504 		 */
3505 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3506 
3507 	default:
3508 		/*
3509 		 * XXX - we don't have to check for IPX 802.3
3510 		 * here, but should we check for the IPX Ethertype?
3511 		 */
3512 		if (proto <= ETHERMTU) {
3513 			/*
3514 			 * This is an LLC SAP value, so check
3515 			 * the DSAP.
3516 			 */
3517 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3518 		} else {
3519 			/*
3520 			 * This is an Ethernet type; we assume that it's
3521 			 * unlikely that it'll appear in the right place
3522 			 * at random, and therefore check only the
3523 			 * location that would hold the Ethernet type
3524 			 * in a SNAP frame with an organization code of
3525 			 * 0x000000 (encapsulated Ethernet).
3526 			 *
3527 			 * XXX - if we were to check for the SNAP DSAP and
3528 			 * LSAP, as per XXX, and were also to check for an
3529 			 * organization code of 0x000000 (encapsulated
3530 			 * Ethernet), we'd do
3531 			 *
3532 			 *	return gen_snap(0x000000, proto);
3533 			 *
3534 			 * here; for now, we don't, as per the above.
3535 			 * I don't know whether it's worth the extra CPU
3536 			 * time to do the right check or not.
3537 			 */
3538 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3539 		}
3540 	}
3541 }
3542 
3543 static struct block *
3544 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3545 	bpf_u_int32 addr;
3546 	bpf_u_int32 mask;
3547 	int dir, proto;
3548 	u_int src_off, dst_off;
3549 {
3550 	struct block *b0, *b1;
3551 	u_int offset;
3552 
3553 	switch (dir) {
3554 
3555 	case Q_SRC:
3556 		offset = src_off;
3557 		break;
3558 
3559 	case Q_DST:
3560 		offset = dst_off;
3561 		break;
3562 
3563 	case Q_AND:
3564 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3565 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3566 		gen_and(b0, b1);
3567 		return b1;
3568 
3569 	case Q_OR:
3570 	case Q_DEFAULT:
3571 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3572 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3573 		gen_or(b0, b1);
3574 		return b1;
3575 
3576 	default:
3577 		abort();
3578 	}
3579 	b0 = gen_linktype(proto);
3580 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3581 	gen_and(b0, b1);
3582 	return b1;
3583 }
3584 
3585 #ifdef INET6
3586 static struct block *
3587 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3588 	struct in6_addr *addr;
3589 	struct in6_addr *mask;
3590 	int dir, proto;
3591 	u_int src_off, dst_off;
3592 {
3593 	struct block *b0, *b1;
3594 	u_int offset;
3595 	u_int32_t *a, *m;
3596 
3597 	switch (dir) {
3598 
3599 	case Q_SRC:
3600 		offset = src_off;
3601 		break;
3602 
3603 	case Q_DST:
3604 		offset = dst_off;
3605 		break;
3606 
3607 	case Q_AND:
3608 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3609 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3610 		gen_and(b0, b1);
3611 		return b1;
3612 
3613 	case Q_OR:
3614 	case Q_DEFAULT:
3615 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3616 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3617 		gen_or(b0, b1);
3618 		return b1;
3619 
3620 	default:
3621 		abort();
3622 	}
3623 	/* this order is important */
3624 	a = (u_int32_t *)addr;
3625 	m = (u_int32_t *)mask;
3626 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3627 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3628 	gen_and(b0, b1);
3629 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3630 	gen_and(b0, b1);
3631 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3632 	gen_and(b0, b1);
3633 	b0 = gen_linktype(proto);
3634 	gen_and(b0, b1);
3635 	return b1;
3636 }
3637 #endif
3638 
3639 static struct block *
3640 gen_ehostop(eaddr, dir)
3641 	register const u_char *eaddr;
3642 	register int dir;
3643 {
3644 	register struct block *b0, *b1;
3645 
3646 	switch (dir) {
3647 	case Q_SRC:
3648 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3649 
3650 	case Q_DST:
3651 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3652 
3653 	case Q_AND:
3654 		b0 = gen_ehostop(eaddr, Q_SRC);
3655 		b1 = gen_ehostop(eaddr, Q_DST);
3656 		gen_and(b0, b1);
3657 		return b1;
3658 
3659 	case Q_DEFAULT:
3660 	case Q_OR:
3661 		b0 = gen_ehostop(eaddr, Q_SRC);
3662 		b1 = gen_ehostop(eaddr, Q_DST);
3663 		gen_or(b0, b1);
3664 		return b1;
3665 
3666 	case Q_ADDR1:
3667 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3668 		break;
3669 
3670 	case Q_ADDR2:
3671 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3672 		break;
3673 
3674 	case Q_ADDR3:
3675 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3676 		break;
3677 
3678 	case Q_ADDR4:
3679 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3680 		break;
3681 
3682 	case Q_RA:
3683 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3684 		break;
3685 
3686 	case Q_TA:
3687 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3688 		break;
3689 	}
3690 	abort();
3691 	/* NOTREACHED */
3692 }
3693 
3694 /*
3695  * Like gen_ehostop, but for DLT_FDDI
3696  */
3697 static struct block *
3698 gen_fhostop(eaddr, dir)
3699 	register const u_char *eaddr;
3700 	register int dir;
3701 {
3702 	struct block *b0, *b1;
3703 
3704 	switch (dir) {
3705 	case Q_SRC:
3706 #ifdef PCAP_FDDIPAD
3707 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3708 #else
3709 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3710 #endif
3711 
3712 	case Q_DST:
3713 #ifdef PCAP_FDDIPAD
3714 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3715 #else
3716 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3717 #endif
3718 
3719 	case Q_AND:
3720 		b0 = gen_fhostop(eaddr, Q_SRC);
3721 		b1 = gen_fhostop(eaddr, Q_DST);
3722 		gen_and(b0, b1);
3723 		return b1;
3724 
3725 	case Q_DEFAULT:
3726 	case Q_OR:
3727 		b0 = gen_fhostop(eaddr, Q_SRC);
3728 		b1 = gen_fhostop(eaddr, Q_DST);
3729 		gen_or(b0, b1);
3730 		return b1;
3731 
3732 	case Q_ADDR1:
3733 		bpf_error("'addr1' is only supported on 802.11");
3734 		break;
3735 
3736 	case Q_ADDR2:
3737 		bpf_error("'addr2' is only supported on 802.11");
3738 		break;
3739 
3740 	case Q_ADDR3:
3741 		bpf_error("'addr3' is only supported on 802.11");
3742 		break;
3743 
3744 	case Q_ADDR4:
3745 		bpf_error("'addr4' is only supported on 802.11");
3746 		break;
3747 
3748 	case Q_RA:
3749 		bpf_error("'ra' is only supported on 802.11");
3750 		break;
3751 
3752 	case Q_TA:
3753 		bpf_error("'ta' is only supported on 802.11");
3754 		break;
3755 	}
3756 	abort();
3757 	/* NOTREACHED */
3758 }
3759 
3760 /*
3761  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3762  */
3763 static struct block *
3764 gen_thostop(eaddr, dir)
3765 	register const u_char *eaddr;
3766 	register int dir;
3767 {
3768 	register struct block *b0, *b1;
3769 
3770 	switch (dir) {
3771 	case Q_SRC:
3772 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3773 
3774 	case Q_DST:
3775 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3776 
3777 	case Q_AND:
3778 		b0 = gen_thostop(eaddr, Q_SRC);
3779 		b1 = gen_thostop(eaddr, Q_DST);
3780 		gen_and(b0, b1);
3781 		return b1;
3782 
3783 	case Q_DEFAULT:
3784 	case Q_OR:
3785 		b0 = gen_thostop(eaddr, Q_SRC);
3786 		b1 = gen_thostop(eaddr, Q_DST);
3787 		gen_or(b0, b1);
3788 		return b1;
3789 
3790 	case Q_ADDR1:
3791 		bpf_error("'addr1' is only supported on 802.11");
3792 		break;
3793 
3794 	case Q_ADDR2:
3795 		bpf_error("'addr2' is only supported on 802.11");
3796 		break;
3797 
3798 	case Q_ADDR3:
3799 		bpf_error("'addr3' is only supported on 802.11");
3800 		break;
3801 
3802 	case Q_ADDR4:
3803 		bpf_error("'addr4' is only supported on 802.11");
3804 		break;
3805 
3806 	case Q_RA:
3807 		bpf_error("'ra' is only supported on 802.11");
3808 		break;
3809 
3810 	case Q_TA:
3811 		bpf_error("'ta' is only supported on 802.11");
3812 		break;
3813 	}
3814 	abort();
3815 	/* NOTREACHED */
3816 }
3817 
3818 /*
3819  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3820  * various 802.11 + radio headers.
3821  */
3822 static struct block *
3823 gen_wlanhostop(eaddr, dir)
3824 	register const u_char *eaddr;
3825 	register int dir;
3826 {
3827 	register struct block *b0, *b1, *b2;
3828 	register struct slist *s;
3829 
3830 #ifdef ENABLE_WLAN_FILTERING_PATCH
3831 	/*
3832 	 * TODO GV 20070613
3833 	 * We need to disable the optimizer because the optimizer is buggy
3834 	 * and wipes out some LD instructions generated by the below
3835 	 * code to validate the Frame Control bits
3836 	 */
3837 	no_optimize = 1;
3838 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3839 
3840 	switch (dir) {
3841 	case Q_SRC:
3842 		/*
3843 		 * Oh, yuk.
3844 		 *
3845 		 *	For control frames, there is no SA.
3846 		 *
3847 		 *	For management frames, SA is at an
3848 		 *	offset of 10 from the beginning of
3849 		 *	the packet.
3850 		 *
3851 		 *	For data frames, SA is at an offset
3852 		 *	of 10 from the beginning of the packet
3853 		 *	if From DS is clear, at an offset of
3854 		 *	16 from the beginning of the packet
3855 		 *	if From DS is set and To DS is clear,
3856 		 *	and an offset of 24 from the beginning
3857 		 *	of the packet if From DS is set and To DS
3858 		 *	is set.
3859 		 */
3860 
3861 		/*
3862 		 * Generate the tests to be done for data frames
3863 		 * with From DS set.
3864 		 *
3865 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3866 		 */
3867 		s = gen_load_a(OR_LINK, 1, BPF_B);
3868 		b1 = new_block(JMP(BPF_JSET));
3869 		b1->s.k = 0x01;	/* To DS */
3870 		b1->stmts = s;
3871 
3872 		/*
3873 		 * If To DS is set, the SA is at 24.
3874 		 */
3875 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3876 		gen_and(b1, b0);
3877 
3878 		/*
3879 		 * Now, check for To DS not set, i.e. check
3880 		 * "!(link[1] & 0x01)".
3881 		 */
3882 		s = gen_load_a(OR_LINK, 1, BPF_B);
3883 		b2 = new_block(JMP(BPF_JSET));
3884 		b2->s.k = 0x01;	/* To DS */
3885 		b2->stmts = s;
3886 		gen_not(b2);
3887 
3888 		/*
3889 		 * If To DS is not set, the SA is at 16.
3890 		 */
3891 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3892 		gen_and(b2, b1);
3893 
3894 		/*
3895 		 * Now OR together the last two checks.  That gives
3896 		 * the complete set of checks for data frames with
3897 		 * From DS set.
3898 		 */
3899 		gen_or(b1, b0);
3900 
3901 		/*
3902 		 * Now check for From DS being set, and AND that with
3903 		 * the ORed-together checks.
3904 		 */
3905 		s = gen_load_a(OR_LINK, 1, BPF_B);
3906 		b1 = new_block(JMP(BPF_JSET));
3907 		b1->s.k = 0x02;	/* From DS */
3908 		b1->stmts = s;
3909 		gen_and(b1, b0);
3910 
3911 		/*
3912 		 * Now check for data frames with From DS not set.
3913 		 */
3914 		s = gen_load_a(OR_LINK, 1, BPF_B);
3915 		b2 = new_block(JMP(BPF_JSET));
3916 		b2->s.k = 0x02;	/* From DS */
3917 		b2->stmts = s;
3918 		gen_not(b2);
3919 
3920 		/*
3921 		 * If From DS isn't set, the SA is at 10.
3922 		 */
3923 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3924 		gen_and(b2, b1);
3925 
3926 		/*
3927 		 * Now OR together the checks for data frames with
3928 		 * From DS not set and for data frames with From DS
3929 		 * set; that gives the checks done for data frames.
3930 		 */
3931 		gen_or(b1, b0);
3932 
3933 		/*
3934 		 * Now check for a data frame.
3935 		 * I.e, check "link[0] & 0x08".
3936 		 */
3937 		s = gen_load_a(OR_LINK, 0, BPF_B);
3938 		b1 = new_block(JMP(BPF_JSET));
3939 		b1->s.k = 0x08;
3940 		b1->stmts = s;
3941 
3942 		/*
3943 		 * AND that with the checks done for data frames.
3944 		 */
3945 		gen_and(b1, b0);
3946 
3947 		/*
3948 		 * If the high-order bit of the type value is 0, this
3949 		 * is a management frame.
3950 		 * I.e, check "!(link[0] & 0x08)".
3951 		 */
3952 		s = gen_load_a(OR_LINK, 0, BPF_B);
3953 		b2 = new_block(JMP(BPF_JSET));
3954 		b2->s.k = 0x08;
3955 		b2->stmts = s;
3956 		gen_not(b2);
3957 
3958 		/*
3959 		 * For management frames, the SA is at 10.
3960 		 */
3961 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3962 		gen_and(b2, b1);
3963 
3964 		/*
3965 		 * OR that with the checks done for data frames.
3966 		 * That gives the checks done for management and
3967 		 * data frames.
3968 		 */
3969 		gen_or(b1, b0);
3970 
3971 		/*
3972 		 * If the low-order bit of the type value is 1,
3973 		 * this is either a control frame or a frame
3974 		 * with a reserved type, and thus not a
3975 		 * frame with an SA.
3976 		 *
3977 		 * I.e., check "!(link[0] & 0x04)".
3978 		 */
3979 		s = gen_load_a(OR_LINK, 0, BPF_B);
3980 		b1 = new_block(JMP(BPF_JSET));
3981 		b1->s.k = 0x04;
3982 		b1->stmts = s;
3983 		gen_not(b1);
3984 
3985 		/*
3986 		 * AND that with the checks for data and management
3987 		 * frames.
3988 		 */
3989 		gen_and(b1, b0);
3990 		return b0;
3991 
3992 	case Q_DST:
3993 		/*
3994 		 * Oh, yuk.
3995 		 *
3996 		 *	For control frames, there is no DA.
3997 		 *
3998 		 *	For management frames, DA is at an
3999 		 *	offset of 4 from the beginning of
4000 		 *	the packet.
4001 		 *
4002 		 *	For data frames, DA is at an offset
4003 		 *	of 4 from the beginning of the packet
4004 		 *	if To DS is clear and at an offset of
4005 		 *	16 from the beginning of the packet
4006 		 *	if To DS is set.
4007 		 */
4008 
4009 		/*
4010 		 * Generate the tests to be done for data frames.
4011 		 *
4012 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4013 		 */
4014 		s = gen_load_a(OR_LINK, 1, BPF_B);
4015 		b1 = new_block(JMP(BPF_JSET));
4016 		b1->s.k = 0x01;	/* To DS */
4017 		b1->stmts = s;
4018 
4019 		/*
4020 		 * If To DS is set, the DA is at 16.
4021 		 */
4022 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4023 		gen_and(b1, b0);
4024 
4025 		/*
4026 		 * Now, check for To DS not set, i.e. check
4027 		 * "!(link[1] & 0x01)".
4028 		 */
4029 		s = gen_load_a(OR_LINK, 1, BPF_B);
4030 		b2 = new_block(JMP(BPF_JSET));
4031 		b2->s.k = 0x01;	/* To DS */
4032 		b2->stmts = s;
4033 		gen_not(b2);
4034 
4035 		/*
4036 		 * If To DS is not set, the DA is at 4.
4037 		 */
4038 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4039 		gen_and(b2, b1);
4040 
4041 		/*
4042 		 * Now OR together the last two checks.  That gives
4043 		 * the complete set of checks for data frames.
4044 		 */
4045 		gen_or(b1, b0);
4046 
4047 		/*
4048 		 * Now check for a data frame.
4049 		 * I.e, check "link[0] & 0x08".
4050 		 */
4051 		s = gen_load_a(OR_LINK, 0, BPF_B);
4052 		b1 = new_block(JMP(BPF_JSET));
4053 		b1->s.k = 0x08;
4054 		b1->stmts = s;
4055 
4056 		/*
4057 		 * AND that with the checks done for data frames.
4058 		 */
4059 		gen_and(b1, b0);
4060 
4061 		/*
4062 		 * If the high-order bit of the type value is 0, this
4063 		 * is a management frame.
4064 		 * I.e, check "!(link[0] & 0x08)".
4065 		 */
4066 		s = gen_load_a(OR_LINK, 0, BPF_B);
4067 		b2 = new_block(JMP(BPF_JSET));
4068 		b2->s.k = 0x08;
4069 		b2->stmts = s;
4070 		gen_not(b2);
4071 
4072 		/*
4073 		 * For management frames, the DA is at 4.
4074 		 */
4075 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4076 		gen_and(b2, b1);
4077 
4078 		/*
4079 		 * OR that with the checks done for data frames.
4080 		 * That gives the checks done for management and
4081 		 * data frames.
4082 		 */
4083 		gen_or(b1, b0);
4084 
4085 		/*
4086 		 * If the low-order bit of the type value is 1,
4087 		 * this is either a control frame or a frame
4088 		 * with a reserved type, and thus not a
4089 		 * frame with an SA.
4090 		 *
4091 		 * I.e., check "!(link[0] & 0x04)".
4092 		 */
4093 		s = gen_load_a(OR_LINK, 0, BPF_B);
4094 		b1 = new_block(JMP(BPF_JSET));
4095 		b1->s.k = 0x04;
4096 		b1->stmts = s;
4097 		gen_not(b1);
4098 
4099 		/*
4100 		 * AND that with the checks for data and management
4101 		 * frames.
4102 		 */
4103 		gen_and(b1, b0);
4104 		return b0;
4105 
4106 	case Q_RA:
4107 		/*
4108 		 * Not present in management frames; addr1 in other
4109 		 * frames.
4110 		 */
4111 
4112 		/*
4113 		 * If the high-order bit of the type value is 0, this
4114 		 * is a management frame.
4115 		 * I.e, check "(link[0] & 0x08)".
4116 		 */
4117 		s = gen_load_a(OR_LINK, 0, BPF_B);
4118 		b1 = new_block(JMP(BPF_JSET));
4119 		b1->s.k = 0x08;
4120 		b1->stmts = s;
4121 
4122 		/*
4123 		 * Check addr1.
4124 		 */
4125 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4126 
4127 		/*
4128 		 * AND that with the check of addr1.
4129 		 */
4130 		gen_and(b1, b0);
4131 		return (b0);
4132 
4133 	case Q_TA:
4134 		/*
4135 		 * Not present in management frames; addr2, if present,
4136 		 * in other frames.
4137 		 */
4138 
4139 		/*
4140 		 * Not present in CTS or ACK control frames.
4141 		 */
4142 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4143 			IEEE80211_FC0_TYPE_MASK);
4144 		gen_not(b0);
4145 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4146 			IEEE80211_FC0_SUBTYPE_MASK);
4147 		gen_not(b1);
4148 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4149 			IEEE80211_FC0_SUBTYPE_MASK);
4150 		gen_not(b2);
4151 		gen_and(b1, b2);
4152 		gen_or(b0, b2);
4153 
4154 		/*
4155 		 * If the high-order bit of the type value is 0, this
4156 		 * is a management frame.
4157 		 * I.e, check "(link[0] & 0x08)".
4158 		 */
4159 		s = gen_load_a(OR_LINK, 0, BPF_B);
4160 		b1 = new_block(JMP(BPF_JSET));
4161 		b1->s.k = 0x08;
4162 		b1->stmts = s;
4163 
4164 		/*
4165 		 * AND that with the check for frames other than
4166 		 * CTS and ACK frames.
4167 		 */
4168 		gen_and(b1, b2);
4169 
4170 		/*
4171 		 * Check addr2.
4172 		 */
4173 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4174 		gen_and(b2, b1);
4175 		return b1;
4176 
4177 	/*
4178 	 * XXX - add BSSID keyword?
4179 	 */
4180 	case Q_ADDR1:
4181 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4182 
4183 	case Q_ADDR2:
4184 		/*
4185 		 * Not present in CTS or ACK control frames.
4186 		 */
4187 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4188 			IEEE80211_FC0_TYPE_MASK);
4189 		gen_not(b0);
4190 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4191 			IEEE80211_FC0_SUBTYPE_MASK);
4192 		gen_not(b1);
4193 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4194 			IEEE80211_FC0_SUBTYPE_MASK);
4195 		gen_not(b2);
4196 		gen_and(b1, b2);
4197 		gen_or(b0, b2);
4198 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4199 		gen_and(b2, b1);
4200 		return b1;
4201 
4202 	case Q_ADDR3:
4203 		/*
4204 		 * Not present in control frames.
4205 		 */
4206 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4207 			IEEE80211_FC0_TYPE_MASK);
4208 		gen_not(b0);
4209 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4210 		gen_and(b0, b1);
4211 		return b1;
4212 
4213 	case Q_ADDR4:
4214 		/*
4215 		 * Present only if the direction mask has both "From DS"
4216 		 * and "To DS" set.  Neither control frames nor management
4217 		 * frames should have both of those set, so we don't
4218 		 * check the frame type.
4219 		 */
4220 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4221 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4222 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4223 		gen_and(b0, b1);
4224 		return b1;
4225 
4226 	case Q_AND:
4227 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4228 		b1 = gen_wlanhostop(eaddr, Q_DST);
4229 		gen_and(b0, b1);
4230 		return b1;
4231 
4232 	case Q_DEFAULT:
4233 	case Q_OR:
4234 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4235 		b1 = gen_wlanhostop(eaddr, Q_DST);
4236 		gen_or(b0, b1);
4237 		return b1;
4238 	}
4239 	abort();
4240 	/* NOTREACHED */
4241 }
4242 
4243 /*
4244  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4245  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4246  * as the RFC states.)
4247  */
4248 static struct block *
4249 gen_ipfchostop(eaddr, dir)
4250 	register const u_char *eaddr;
4251 	register int dir;
4252 {
4253 	register struct block *b0, *b1;
4254 
4255 	switch (dir) {
4256 	case Q_SRC:
4257 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4258 
4259 	case Q_DST:
4260 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4261 
4262 	case Q_AND:
4263 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4264 		b1 = gen_ipfchostop(eaddr, Q_DST);
4265 		gen_and(b0, b1);
4266 		return b1;
4267 
4268 	case Q_DEFAULT:
4269 	case Q_OR:
4270 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4271 		b1 = gen_ipfchostop(eaddr, Q_DST);
4272 		gen_or(b0, b1);
4273 		return b1;
4274 
4275 	case Q_ADDR1:
4276 		bpf_error("'addr1' is only supported on 802.11");
4277 		break;
4278 
4279 	case Q_ADDR2:
4280 		bpf_error("'addr2' is only supported on 802.11");
4281 		break;
4282 
4283 	case Q_ADDR3:
4284 		bpf_error("'addr3' is only supported on 802.11");
4285 		break;
4286 
4287 	case Q_ADDR4:
4288 		bpf_error("'addr4' is only supported on 802.11");
4289 		break;
4290 
4291 	case Q_RA:
4292 		bpf_error("'ra' is only supported on 802.11");
4293 		break;
4294 
4295 	case Q_TA:
4296 		bpf_error("'ta' is only supported on 802.11");
4297 		break;
4298 	}
4299 	abort();
4300 	/* NOTREACHED */
4301 }
4302 
4303 /*
4304  * This is quite tricky because there may be pad bytes in front of the
4305  * DECNET header, and then there are two possible data packet formats that
4306  * carry both src and dst addresses, plus 5 packet types in a format that
4307  * carries only the src node, plus 2 types that use a different format and
4308  * also carry just the src node.
4309  *
4310  * Yuck.
4311  *
4312  * Instead of doing those all right, we just look for data packets with
4313  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4314  * will require a lot more hacking.
4315  *
4316  * To add support for filtering on DECNET "areas" (network numbers)
4317  * one would want to add a "mask" argument to this routine.  That would
4318  * make the filter even more inefficient, although one could be clever
4319  * and not generate masking instructions if the mask is 0xFFFF.
4320  */
4321 static struct block *
4322 gen_dnhostop(addr, dir)
4323 	bpf_u_int32 addr;
4324 	int dir;
4325 {
4326 	struct block *b0, *b1, *b2, *tmp;
4327 	u_int offset_lh;	/* offset if long header is received */
4328 	u_int offset_sh;	/* offset if short header is received */
4329 
4330 	switch (dir) {
4331 
4332 	case Q_DST:
4333 		offset_sh = 1;	/* follows flags */
4334 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4335 		break;
4336 
4337 	case Q_SRC:
4338 		offset_sh = 3;	/* follows flags, dstnode */
4339 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4340 		break;
4341 
4342 	case Q_AND:
4343 		/* Inefficient because we do our Calvinball dance twice */
4344 		b0 = gen_dnhostop(addr, Q_SRC);
4345 		b1 = gen_dnhostop(addr, Q_DST);
4346 		gen_and(b0, b1);
4347 		return b1;
4348 
4349 	case Q_OR:
4350 	case Q_DEFAULT:
4351 		/* Inefficient because we do our Calvinball dance twice */
4352 		b0 = gen_dnhostop(addr, Q_SRC);
4353 		b1 = gen_dnhostop(addr, Q_DST);
4354 		gen_or(b0, b1);
4355 		return b1;
4356 
4357 	case Q_ISO:
4358 		bpf_error("ISO host filtering not implemented");
4359 
4360 	default:
4361 		abort();
4362 	}
4363 	b0 = gen_linktype(ETHERTYPE_DN);
4364 	/* Check for pad = 1, long header case */
4365 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4366 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4367 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4368 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4369 	gen_and(tmp, b1);
4370 	/* Check for pad = 0, long header case */
4371 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4372 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4373 	gen_and(tmp, b2);
4374 	gen_or(b2, b1);
4375 	/* Check for pad = 1, short header case */
4376 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4377 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4378 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4379 	gen_and(tmp, b2);
4380 	gen_or(b2, b1);
4381 	/* Check for pad = 0, short header case */
4382 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4383 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4384 	gen_and(tmp, b2);
4385 	gen_or(b2, b1);
4386 
4387 	/* Combine with test for linktype */
4388 	gen_and(b0, b1);
4389 	return b1;
4390 }
4391 
4392 /*
4393  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4394  * test the bottom-of-stack bit, and then check the version number
4395  * field in the IP header.
4396  */
4397 static struct block *
4398 gen_mpls_linktype(proto)
4399 	int proto;
4400 {
4401 	struct block *b0, *b1;
4402 
4403         switch (proto) {
4404 
4405         case Q_IP:
4406                 /* match the bottom-of-stack bit */
4407                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4408                 /* match the IPv4 version number */
4409                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4410                 gen_and(b0, b1);
4411                 return b1;
4412 
4413        case Q_IPV6:
4414                 /* match the bottom-of-stack bit */
4415                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4416                 /* match the IPv4 version number */
4417                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4418                 gen_and(b0, b1);
4419                 return b1;
4420 
4421        default:
4422                 abort();
4423         }
4424 }
4425 
4426 static struct block *
4427 gen_host(addr, mask, proto, dir, type)
4428 	bpf_u_int32 addr;
4429 	bpf_u_int32 mask;
4430 	int proto;
4431 	int dir;
4432 	int type;
4433 {
4434 	struct block *b0, *b1;
4435 	const char *typestr;
4436 
4437 	if (type == Q_NET)
4438 		typestr = "net";
4439 	else
4440 		typestr = "host";
4441 
4442 	switch (proto) {
4443 
4444 	case Q_DEFAULT:
4445 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4446 		/*
4447 		 * Only check for non-IPv4 addresses if we're not
4448 		 * checking MPLS-encapsulated packets.
4449 		 */
4450 		if (label_stack_depth == 0) {
4451 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4452 			gen_or(b0, b1);
4453 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4454 			gen_or(b1, b0);
4455 		}
4456 		return b0;
4457 
4458 	case Q_IP:
4459 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4460 
4461 	case Q_RARP:
4462 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4463 
4464 	case Q_ARP:
4465 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4466 
4467 	case Q_TCP:
4468 		bpf_error("'tcp' modifier applied to %s", typestr);
4469 
4470 	case Q_SCTP:
4471 		bpf_error("'sctp' modifier applied to %s", typestr);
4472 
4473 	case Q_UDP:
4474 		bpf_error("'udp' modifier applied to %s", typestr);
4475 
4476 	case Q_ICMP:
4477 		bpf_error("'icmp' modifier applied to %s", typestr);
4478 
4479 	case Q_IGMP:
4480 		bpf_error("'igmp' modifier applied to %s", typestr);
4481 
4482 	case Q_IGRP:
4483 		bpf_error("'igrp' modifier applied to %s", typestr);
4484 
4485 	case Q_PIM:
4486 		bpf_error("'pim' modifier applied to %s", typestr);
4487 
4488 	case Q_VRRP:
4489 		bpf_error("'vrrp' modifier applied to %s", typestr);
4490 
4491 	case Q_CARP:
4492 		bpf_error("'carp' modifier applied to %s", typestr);
4493 
4494 	case Q_ATALK:
4495 		bpf_error("ATALK host filtering not implemented");
4496 
4497 	case Q_AARP:
4498 		bpf_error("AARP host filtering not implemented");
4499 
4500 	case Q_DECNET:
4501 		return gen_dnhostop(addr, dir);
4502 
4503 	case Q_SCA:
4504 		bpf_error("SCA host filtering not implemented");
4505 
4506 	case Q_LAT:
4507 		bpf_error("LAT host filtering not implemented");
4508 
4509 	case Q_MOPDL:
4510 		bpf_error("MOPDL host filtering not implemented");
4511 
4512 	case Q_MOPRC:
4513 		bpf_error("MOPRC host filtering not implemented");
4514 
4515 	case Q_IPV6:
4516 		bpf_error("'ip6' modifier applied to ip host");
4517 
4518 	case Q_ICMPV6:
4519 		bpf_error("'icmp6' modifier applied to %s", typestr);
4520 
4521 	case Q_AH:
4522 		bpf_error("'ah' modifier applied to %s", typestr);
4523 
4524 	case Q_ESP:
4525 		bpf_error("'esp' modifier applied to %s", typestr);
4526 
4527 	case Q_ISO:
4528 		bpf_error("ISO host filtering not implemented");
4529 
4530 	case Q_ESIS:
4531 		bpf_error("'esis' modifier applied to %s", typestr);
4532 
4533 	case Q_ISIS:
4534 		bpf_error("'isis' modifier applied to %s", typestr);
4535 
4536 	case Q_CLNP:
4537 		bpf_error("'clnp' modifier applied to %s", typestr);
4538 
4539 	case Q_STP:
4540 		bpf_error("'stp' modifier applied to %s", typestr);
4541 
4542 	case Q_IPX:
4543 		bpf_error("IPX host filtering not implemented");
4544 
4545 	case Q_NETBEUI:
4546 		bpf_error("'netbeui' modifier applied to %s", typestr);
4547 
4548 	case Q_RADIO:
4549 		bpf_error("'radio' modifier applied to %s", typestr);
4550 
4551 	default:
4552 		abort();
4553 	}
4554 	/* NOTREACHED */
4555 }
4556 
4557 #ifdef INET6
4558 static struct block *
4559 gen_host6(addr, mask, proto, dir, type)
4560 	struct in6_addr *addr;
4561 	struct in6_addr *mask;
4562 	int proto;
4563 	int dir;
4564 	int type;
4565 {
4566 	const char *typestr;
4567 
4568 	if (type == Q_NET)
4569 		typestr = "net";
4570 	else
4571 		typestr = "host";
4572 
4573 	switch (proto) {
4574 
4575 	case Q_DEFAULT:
4576 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4577 
4578 	case Q_IP:
4579 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4580 
4581 	case Q_RARP:
4582 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4583 
4584 	case Q_ARP:
4585 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4586 
4587 	case Q_SCTP:
4588 		bpf_error("'sctp' modifier applied to %s", typestr);
4589 
4590 	case Q_TCP:
4591 		bpf_error("'tcp' modifier applied to %s", typestr);
4592 
4593 	case Q_UDP:
4594 		bpf_error("'udp' modifier applied to %s", typestr);
4595 
4596 	case Q_ICMP:
4597 		bpf_error("'icmp' modifier applied to %s", typestr);
4598 
4599 	case Q_IGMP:
4600 		bpf_error("'igmp' modifier applied to %s", typestr);
4601 
4602 	case Q_IGRP:
4603 		bpf_error("'igrp' modifier applied to %s", typestr);
4604 
4605 	case Q_PIM:
4606 		bpf_error("'pim' modifier applied to %s", typestr);
4607 
4608 	case Q_VRRP:
4609 		bpf_error("'vrrp' modifier applied to %s", typestr);
4610 
4611 	case Q_CARP:
4612 		bpf_error("'carp' modifier applied to %s", typestr);
4613 
4614 	case Q_ATALK:
4615 		bpf_error("ATALK host filtering not implemented");
4616 
4617 	case Q_AARP:
4618 		bpf_error("AARP host filtering not implemented");
4619 
4620 	case Q_DECNET:
4621 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4622 
4623 	case Q_SCA:
4624 		bpf_error("SCA host filtering not implemented");
4625 
4626 	case Q_LAT:
4627 		bpf_error("LAT host filtering not implemented");
4628 
4629 	case Q_MOPDL:
4630 		bpf_error("MOPDL host filtering not implemented");
4631 
4632 	case Q_MOPRC:
4633 		bpf_error("MOPRC host filtering not implemented");
4634 
4635 	case Q_IPV6:
4636 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4637 
4638 	case Q_ICMPV6:
4639 		bpf_error("'icmp6' modifier applied to %s", typestr);
4640 
4641 	case Q_AH:
4642 		bpf_error("'ah' modifier applied to %s", typestr);
4643 
4644 	case Q_ESP:
4645 		bpf_error("'esp' modifier applied to %s", typestr);
4646 
4647 	case Q_ISO:
4648 		bpf_error("ISO host filtering not implemented");
4649 
4650 	case Q_ESIS:
4651 		bpf_error("'esis' modifier applied to %s", typestr);
4652 
4653 	case Q_ISIS:
4654 		bpf_error("'isis' modifier applied to %s", typestr);
4655 
4656 	case Q_CLNP:
4657 		bpf_error("'clnp' modifier applied to %s", typestr);
4658 
4659 	case Q_STP:
4660 		bpf_error("'stp' modifier applied to %s", typestr);
4661 
4662 	case Q_IPX:
4663 		bpf_error("IPX host filtering not implemented");
4664 
4665 	case Q_NETBEUI:
4666 		bpf_error("'netbeui' modifier applied to %s", typestr);
4667 
4668 	case Q_RADIO:
4669 		bpf_error("'radio' modifier applied to %s", typestr);
4670 
4671 	default:
4672 		abort();
4673 	}
4674 	/* NOTREACHED */
4675 }
4676 #endif
4677 
4678 #ifndef INET6
4679 static struct block *
4680 gen_gateway(eaddr, alist, proto, dir)
4681 	const u_char *eaddr;
4682 	bpf_u_int32 **alist;
4683 	int proto;
4684 	int dir;
4685 {
4686 	struct block *b0, *b1, *tmp;
4687 
4688 	if (dir != 0)
4689 		bpf_error("direction applied to 'gateway'");
4690 
4691 	switch (proto) {
4692 	case Q_DEFAULT:
4693 	case Q_IP:
4694 	case Q_ARP:
4695 	case Q_RARP:
4696 		switch (linktype) {
4697 		case DLT_EN10MB:
4698 		case DLT_NETANALYZER:
4699 		case DLT_NETANALYZER_TRANSPARENT:
4700 			b0 = gen_ehostop(eaddr, Q_OR);
4701 			break;
4702 		case DLT_FDDI:
4703 			b0 = gen_fhostop(eaddr, Q_OR);
4704 			break;
4705 		case DLT_IEEE802:
4706 			b0 = gen_thostop(eaddr, Q_OR);
4707 			break;
4708 		case DLT_IEEE802_11:
4709 		case DLT_PRISM_HEADER:
4710 		case DLT_IEEE802_11_RADIO_AVS:
4711 		case DLT_IEEE802_11_RADIO:
4712 		case DLT_PPI:
4713 			b0 = gen_wlanhostop(eaddr, Q_OR);
4714 			break;
4715 		case DLT_SUNATM:
4716 			if (!is_lane)
4717 				bpf_error(
4718 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4719 			/*
4720 			 * Check that the packet doesn't begin with an
4721 			 * LE Control marker.  (We've already generated
4722 			 * a test for LANE.)
4723 			 */
4724 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4725 			    BPF_H, 0xFF00);
4726 			gen_not(b1);
4727 
4728 			/*
4729 			 * Now check the MAC address.
4730 			 */
4731 			b0 = gen_ehostop(eaddr, Q_OR);
4732 			gen_and(b1, b0);
4733 			break;
4734 		case DLT_IP_OVER_FC:
4735 			b0 = gen_ipfchostop(eaddr, Q_OR);
4736 			break;
4737 		default:
4738 			bpf_error(
4739 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4740 		}
4741 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4742 		while (*alist) {
4743 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4744 			    Q_HOST);
4745 			gen_or(b1, tmp);
4746 			b1 = tmp;
4747 		}
4748 		gen_not(b1);
4749 		gen_and(b0, b1);
4750 		return b1;
4751 	}
4752 	bpf_error("illegal modifier of 'gateway'");
4753 	/* NOTREACHED */
4754 }
4755 #endif
4756 
4757 struct block *
4758 gen_proto_abbrev(proto)
4759 	int proto;
4760 {
4761 	struct block *b0;
4762 	struct block *b1;
4763 
4764 	switch (proto) {
4765 
4766 	case Q_SCTP:
4767 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4768 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4769 		gen_or(b0, b1);
4770 		break;
4771 
4772 	case Q_TCP:
4773 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4774 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4775 		gen_or(b0, b1);
4776 		break;
4777 
4778 	case Q_UDP:
4779 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4780 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4781 		gen_or(b0, b1);
4782 		break;
4783 
4784 	case Q_ICMP:
4785 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4786 		break;
4787 
4788 #ifndef	IPPROTO_IGMP
4789 #define	IPPROTO_IGMP	2
4790 #endif
4791 
4792 	case Q_IGMP:
4793 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4794 		break;
4795 
4796 #ifndef	IPPROTO_IGRP
4797 #define	IPPROTO_IGRP	9
4798 #endif
4799 	case Q_IGRP:
4800 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4801 		break;
4802 
4803 #ifndef IPPROTO_PIM
4804 #define IPPROTO_PIM	103
4805 #endif
4806 
4807 	case Q_PIM:
4808 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4809 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4810 		gen_or(b0, b1);
4811 		break;
4812 
4813 #ifndef IPPROTO_VRRP
4814 #define IPPROTO_VRRP	112
4815 #endif
4816 
4817 	case Q_VRRP:
4818 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4819 		break;
4820 
4821 #ifndef IPPROTO_CARP
4822 #define IPPROTO_CARP	112
4823 #endif
4824 
4825 	case Q_CARP:
4826 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4827 		break;
4828 
4829 	case Q_IP:
4830 		b1 =  gen_linktype(ETHERTYPE_IP);
4831 		break;
4832 
4833 	case Q_ARP:
4834 		b1 =  gen_linktype(ETHERTYPE_ARP);
4835 		break;
4836 
4837 	case Q_RARP:
4838 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4839 		break;
4840 
4841 	case Q_LINK:
4842 		bpf_error("link layer applied in wrong context");
4843 
4844 	case Q_ATALK:
4845 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4846 		break;
4847 
4848 	case Q_AARP:
4849 		b1 =  gen_linktype(ETHERTYPE_AARP);
4850 		break;
4851 
4852 	case Q_DECNET:
4853 		b1 =  gen_linktype(ETHERTYPE_DN);
4854 		break;
4855 
4856 	case Q_SCA:
4857 		b1 =  gen_linktype(ETHERTYPE_SCA);
4858 		break;
4859 
4860 	case Q_LAT:
4861 		b1 =  gen_linktype(ETHERTYPE_LAT);
4862 		break;
4863 
4864 	case Q_MOPDL:
4865 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4866 		break;
4867 
4868 	case Q_MOPRC:
4869 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4870 		break;
4871 
4872 	case Q_IPV6:
4873 		b1 = gen_linktype(ETHERTYPE_IPV6);
4874 		break;
4875 
4876 #ifndef IPPROTO_ICMPV6
4877 #define IPPROTO_ICMPV6	58
4878 #endif
4879 	case Q_ICMPV6:
4880 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4881 		break;
4882 
4883 #ifndef IPPROTO_AH
4884 #define IPPROTO_AH	51
4885 #endif
4886 	case Q_AH:
4887 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4888 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4889 		gen_or(b0, b1);
4890 		break;
4891 
4892 #ifndef IPPROTO_ESP
4893 #define IPPROTO_ESP	50
4894 #endif
4895 	case Q_ESP:
4896 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4897 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4898 		gen_or(b0, b1);
4899 		break;
4900 
4901 	case Q_ISO:
4902 		b1 = gen_linktype(LLCSAP_ISONS);
4903 		break;
4904 
4905 	case Q_ESIS:
4906 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4907 		break;
4908 
4909 	case Q_ISIS:
4910 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4911 		break;
4912 
4913 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4914 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4915 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4916 		gen_or(b0, b1);
4917 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4918 		gen_or(b0, b1);
4919 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4920 		gen_or(b0, b1);
4921 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4922 		gen_or(b0, b1);
4923 		break;
4924 
4925 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4926 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4927 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4928 		gen_or(b0, b1);
4929 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4930 		gen_or(b0, b1);
4931 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4932 		gen_or(b0, b1);
4933 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4934 		gen_or(b0, b1);
4935 		break;
4936 
4937 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4938 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4939 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4940 		gen_or(b0, b1);
4941 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4942 		gen_or(b0, b1);
4943 		break;
4944 
4945 	case Q_ISIS_LSP:
4946 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4947 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4948 		gen_or(b0, b1);
4949 		break;
4950 
4951 	case Q_ISIS_SNP:
4952 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4953 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4954 		gen_or(b0, b1);
4955 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4956 		gen_or(b0, b1);
4957 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4958 		gen_or(b0, b1);
4959 		break;
4960 
4961 	case Q_ISIS_CSNP:
4962 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4963 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4964 		gen_or(b0, b1);
4965 		break;
4966 
4967 	case Q_ISIS_PSNP:
4968 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4969 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4970 		gen_or(b0, b1);
4971 		break;
4972 
4973 	case Q_CLNP:
4974 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4975 		break;
4976 
4977 	case Q_STP:
4978 		b1 = gen_linktype(LLCSAP_8021D);
4979 		break;
4980 
4981 	case Q_IPX:
4982 		b1 = gen_linktype(LLCSAP_IPX);
4983 		break;
4984 
4985 	case Q_NETBEUI:
4986 		b1 = gen_linktype(LLCSAP_NETBEUI);
4987 		break;
4988 
4989 	case Q_RADIO:
4990 		bpf_error("'radio' is not a valid protocol type");
4991 
4992 	default:
4993 		abort();
4994 	}
4995 	return b1;
4996 }
4997 
4998 static struct block *
4999 gen_ipfrag()
5000 {
5001 	struct slist *s;
5002 	struct block *b;
5003 
5004 	/* not IPv4 frag other than the first frag */
5005 	s = gen_load_a(OR_NET, 6, BPF_H);
5006 	b = new_block(JMP(BPF_JSET));
5007 	b->s.k = 0x1fff;
5008 	b->stmts = s;
5009 	gen_not(b);
5010 
5011 	return b;
5012 }
5013 
5014 /*
5015  * Generate a comparison to a port value in the transport-layer header
5016  * at the specified offset from the beginning of that header.
5017  *
5018  * XXX - this handles a variable-length prefix preceding the link-layer
5019  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5020  * variable-length link-layer headers (such as Token Ring or 802.11
5021  * headers).
5022  */
5023 static struct block *
5024 gen_portatom(off, v)
5025 	int off;
5026 	bpf_int32 v;
5027 {
5028 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5029 }
5030 
5031 static struct block *
5032 gen_portatom6(off, v)
5033 	int off;
5034 	bpf_int32 v;
5035 {
5036 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5037 }
5038 
5039 struct block *
5040 gen_portop(port, proto, dir)
5041 	int port, proto, dir;
5042 {
5043 	struct block *b0, *b1, *tmp;
5044 
5045 	/* ip proto 'proto' and not a fragment other than the first fragment */
5046 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5047 	b0 = gen_ipfrag();
5048 	gen_and(tmp, b0);
5049 
5050 	switch (dir) {
5051 	case Q_SRC:
5052 		b1 = gen_portatom(0, (bpf_int32)port);
5053 		break;
5054 
5055 	case Q_DST:
5056 		b1 = gen_portatom(2, (bpf_int32)port);
5057 		break;
5058 
5059 	case Q_OR:
5060 	case Q_DEFAULT:
5061 		tmp = gen_portatom(0, (bpf_int32)port);
5062 		b1 = gen_portatom(2, (bpf_int32)port);
5063 		gen_or(tmp, b1);
5064 		break;
5065 
5066 	case Q_AND:
5067 		tmp = gen_portatom(0, (bpf_int32)port);
5068 		b1 = gen_portatom(2, (bpf_int32)port);
5069 		gen_and(tmp, b1);
5070 		break;
5071 
5072 	default:
5073 		abort();
5074 	}
5075 	gen_and(b0, b1);
5076 
5077 	return b1;
5078 }
5079 
5080 static struct block *
5081 gen_port(port, ip_proto, dir)
5082 	int port;
5083 	int ip_proto;
5084 	int dir;
5085 {
5086 	struct block *b0, *b1, *tmp;
5087 
5088 	/*
5089 	 * ether proto ip
5090 	 *
5091 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5092 	 * not LLC encapsulation with LLCSAP_IP.
5093 	 *
5094 	 * For IEEE 802 networks - which includes 802.5 token ring
5095 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5096 	 * says that SNAP encapsulation is used, not LLC encapsulation
5097 	 * with LLCSAP_IP.
5098 	 *
5099 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5100 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5101 	 * encapsulation with LLCSAP_IP.
5102 	 *
5103 	 * So we always check for ETHERTYPE_IP.
5104 	 */
5105 	b0 =  gen_linktype(ETHERTYPE_IP);
5106 
5107 	switch (ip_proto) {
5108 	case IPPROTO_UDP:
5109 	case IPPROTO_TCP:
5110 	case IPPROTO_SCTP:
5111 		b1 = gen_portop(port, ip_proto, dir);
5112 		break;
5113 
5114 	case PROTO_UNDEF:
5115 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5116 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5117 		gen_or(tmp, b1);
5118 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5119 		gen_or(tmp, b1);
5120 		break;
5121 
5122 	default:
5123 		abort();
5124 	}
5125 	gen_and(b0, b1);
5126 	return b1;
5127 }
5128 
5129 struct block *
5130 gen_portop6(port, proto, dir)
5131 	int port, proto, dir;
5132 {
5133 	struct block *b0, *b1, *tmp;
5134 
5135 	/* ip6 proto 'proto' */
5136 	/* XXX - catch the first fragment of a fragmented packet? */
5137 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5138 
5139 	switch (dir) {
5140 	case Q_SRC:
5141 		b1 = gen_portatom6(0, (bpf_int32)port);
5142 		break;
5143 
5144 	case Q_DST:
5145 		b1 = gen_portatom6(2, (bpf_int32)port);
5146 		break;
5147 
5148 	case Q_OR:
5149 	case Q_DEFAULT:
5150 		tmp = gen_portatom6(0, (bpf_int32)port);
5151 		b1 = gen_portatom6(2, (bpf_int32)port);
5152 		gen_or(tmp, b1);
5153 		break;
5154 
5155 	case Q_AND:
5156 		tmp = gen_portatom6(0, (bpf_int32)port);
5157 		b1 = gen_portatom6(2, (bpf_int32)port);
5158 		gen_and(tmp, b1);
5159 		break;
5160 
5161 	default:
5162 		abort();
5163 	}
5164 	gen_and(b0, b1);
5165 
5166 	return b1;
5167 }
5168 
5169 static struct block *
5170 gen_port6(port, ip_proto, dir)
5171 	int port;
5172 	int ip_proto;
5173 	int dir;
5174 {
5175 	struct block *b0, *b1, *tmp;
5176 
5177 	/* link proto ip6 */
5178 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5179 
5180 	switch (ip_proto) {
5181 	case IPPROTO_UDP:
5182 	case IPPROTO_TCP:
5183 	case IPPROTO_SCTP:
5184 		b1 = gen_portop6(port, ip_proto, dir);
5185 		break;
5186 
5187 	case PROTO_UNDEF:
5188 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5189 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5190 		gen_or(tmp, b1);
5191 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5192 		gen_or(tmp, b1);
5193 		break;
5194 
5195 	default:
5196 		abort();
5197 	}
5198 	gen_and(b0, b1);
5199 	return b1;
5200 }
5201 
5202 /* gen_portrange code */
5203 static struct block *
5204 gen_portrangeatom(off, v1, v2)
5205 	int off;
5206 	bpf_int32 v1, v2;
5207 {
5208 	struct block *b1, *b2;
5209 
5210 	if (v1 > v2) {
5211 		/*
5212 		 * Reverse the order of the ports, so v1 is the lower one.
5213 		 */
5214 		bpf_int32 vtemp;
5215 
5216 		vtemp = v1;
5217 		v1 = v2;
5218 		v2 = vtemp;
5219 	}
5220 
5221 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5222 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5223 
5224 	gen_and(b1, b2);
5225 
5226 	return b2;
5227 }
5228 
5229 struct block *
5230 gen_portrangeop(port1, port2, proto, dir)
5231 	int port1, port2;
5232 	int proto;
5233 	int dir;
5234 {
5235 	struct block *b0, *b1, *tmp;
5236 
5237 	/* ip proto 'proto' and not a fragment other than the first fragment */
5238 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5239 	b0 = gen_ipfrag();
5240 	gen_and(tmp, b0);
5241 
5242 	switch (dir) {
5243 	case Q_SRC:
5244 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5245 		break;
5246 
5247 	case Q_DST:
5248 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5249 		break;
5250 
5251 	case Q_OR:
5252 	case Q_DEFAULT:
5253 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5254 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5255 		gen_or(tmp, b1);
5256 		break;
5257 
5258 	case Q_AND:
5259 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5260 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5261 		gen_and(tmp, b1);
5262 		break;
5263 
5264 	default:
5265 		abort();
5266 	}
5267 	gen_and(b0, b1);
5268 
5269 	return b1;
5270 }
5271 
5272 static struct block *
5273 gen_portrange(port1, port2, ip_proto, dir)
5274 	int port1, port2;
5275 	int ip_proto;
5276 	int dir;
5277 {
5278 	struct block *b0, *b1, *tmp;
5279 
5280 	/* link proto ip */
5281 	b0 =  gen_linktype(ETHERTYPE_IP);
5282 
5283 	switch (ip_proto) {
5284 	case IPPROTO_UDP:
5285 	case IPPROTO_TCP:
5286 	case IPPROTO_SCTP:
5287 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5288 		break;
5289 
5290 	case PROTO_UNDEF:
5291 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5292 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5293 		gen_or(tmp, b1);
5294 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5295 		gen_or(tmp, b1);
5296 		break;
5297 
5298 	default:
5299 		abort();
5300 	}
5301 	gen_and(b0, b1);
5302 	return b1;
5303 }
5304 
5305 static struct block *
5306 gen_portrangeatom6(off, v1, v2)
5307 	int off;
5308 	bpf_int32 v1, v2;
5309 {
5310 	struct block *b1, *b2;
5311 
5312 	if (v1 > v2) {
5313 		/*
5314 		 * Reverse the order of the ports, so v1 is the lower one.
5315 		 */
5316 		bpf_int32 vtemp;
5317 
5318 		vtemp = v1;
5319 		v1 = v2;
5320 		v2 = vtemp;
5321 	}
5322 
5323 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5324 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5325 
5326 	gen_and(b1, b2);
5327 
5328 	return b2;
5329 }
5330 
5331 struct block *
5332 gen_portrangeop6(port1, port2, proto, dir)
5333 	int port1, port2;
5334 	int proto;
5335 	int dir;
5336 {
5337 	struct block *b0, *b1, *tmp;
5338 
5339 	/* ip6 proto 'proto' */
5340 	/* XXX - catch the first fragment of a fragmented packet? */
5341 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5342 
5343 	switch (dir) {
5344 	case Q_SRC:
5345 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5346 		break;
5347 
5348 	case Q_DST:
5349 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5350 		break;
5351 
5352 	case Q_OR:
5353 	case Q_DEFAULT:
5354 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5355 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5356 		gen_or(tmp, b1);
5357 		break;
5358 
5359 	case Q_AND:
5360 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5361 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5362 		gen_and(tmp, b1);
5363 		break;
5364 
5365 	default:
5366 		abort();
5367 	}
5368 	gen_and(b0, b1);
5369 
5370 	return b1;
5371 }
5372 
5373 static struct block *
5374 gen_portrange6(port1, port2, ip_proto, dir)
5375 	int port1, port2;
5376 	int ip_proto;
5377 	int dir;
5378 {
5379 	struct block *b0, *b1, *tmp;
5380 
5381 	/* link proto ip6 */
5382 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5383 
5384 	switch (ip_proto) {
5385 	case IPPROTO_UDP:
5386 	case IPPROTO_TCP:
5387 	case IPPROTO_SCTP:
5388 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5389 		break;
5390 
5391 	case PROTO_UNDEF:
5392 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5393 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5394 		gen_or(tmp, b1);
5395 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5396 		gen_or(tmp, b1);
5397 		break;
5398 
5399 	default:
5400 		abort();
5401 	}
5402 	gen_and(b0, b1);
5403 	return b1;
5404 }
5405 
5406 static int
5407 lookup_proto(name, proto)
5408 	register const char *name;
5409 	register int proto;
5410 {
5411 	register int v;
5412 
5413 	switch (proto) {
5414 
5415 	case Q_DEFAULT:
5416 	case Q_IP:
5417 	case Q_IPV6:
5418 		v = pcap_nametoproto(name);
5419 		if (v == PROTO_UNDEF)
5420 			bpf_error("unknown ip proto '%s'", name);
5421 		break;
5422 
5423 	case Q_LINK:
5424 		/* XXX should look up h/w protocol type based on linktype */
5425 		v = pcap_nametoeproto(name);
5426 		if (v == PROTO_UNDEF) {
5427 			v = pcap_nametollc(name);
5428 			if (v == PROTO_UNDEF)
5429 				bpf_error("unknown ether proto '%s'", name);
5430 		}
5431 		break;
5432 
5433 	case Q_ISO:
5434 		if (strcmp(name, "esis") == 0)
5435 			v = ISO9542_ESIS;
5436 		else if (strcmp(name, "isis") == 0)
5437 			v = ISO10589_ISIS;
5438 		else if (strcmp(name, "clnp") == 0)
5439 			v = ISO8473_CLNP;
5440 		else
5441 			bpf_error("unknown osi proto '%s'", name);
5442 		break;
5443 
5444 	default:
5445 		v = PROTO_UNDEF;
5446 		break;
5447 	}
5448 	return v;
5449 }
5450 
5451 #if 0
5452 struct stmt *
5453 gen_joinsp(s, n)
5454 	struct stmt **s;
5455 	int n;
5456 {
5457 	return NULL;
5458 }
5459 #endif
5460 
5461 static struct block *
5462 gen_protochain(v, proto, dir)
5463 	int v;
5464 	int proto;
5465 	int dir;
5466 {
5467 #ifdef NO_PROTOCHAIN
5468 	return gen_proto(v, proto, dir);
5469 #else
5470 	struct block *b0, *b;
5471 	struct slist *s[100];
5472 	int fix2, fix3, fix4, fix5;
5473 	int ahcheck, again, end;
5474 	int i, max;
5475 	int reg2 = alloc_reg();
5476 
5477 	memset(s, 0, sizeof(s));
5478 	fix2 = fix3 = fix4 = fix5 = 0;
5479 
5480 	switch (proto) {
5481 	case Q_IP:
5482 	case Q_IPV6:
5483 		break;
5484 	case Q_DEFAULT:
5485 		b0 = gen_protochain(v, Q_IP, dir);
5486 		b = gen_protochain(v, Q_IPV6, dir);
5487 		gen_or(b0, b);
5488 		return b;
5489 	default:
5490 		bpf_error("bad protocol applied for 'protochain'");
5491 		/*NOTREACHED*/
5492 	}
5493 
5494 	/*
5495 	 * We don't handle variable-length prefixes before the link-layer
5496 	 * header, or variable-length link-layer headers, here yet.
5497 	 * We might want to add BPF instructions to do the protochain
5498 	 * work, to simplify that and, on platforms that have a BPF
5499 	 * interpreter with the new instructions, let the filtering
5500 	 * be done in the kernel.  (We already require a modified BPF
5501 	 * engine to do the protochain stuff, to support backward
5502 	 * branches, and backward branch support is unlikely to appear
5503 	 * in kernel BPF engines.)
5504 	 */
5505 	switch (linktype) {
5506 
5507 	case DLT_IEEE802_11:
5508 	case DLT_PRISM_HEADER:
5509 	case DLT_IEEE802_11_RADIO_AVS:
5510 	case DLT_IEEE802_11_RADIO:
5511 	case DLT_PPI:
5512 		bpf_error("'protochain' not supported with 802.11");
5513 	}
5514 
5515 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5516 
5517 	/*
5518 	 * s[0] is a dummy entry to protect other BPF insn from damage
5519 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5520 	 * hard to find interdependency made by jump table fixup.
5521 	 */
5522 	i = 0;
5523 	s[i] = new_stmt(0);	/*dummy*/
5524 	i++;
5525 
5526 	switch (proto) {
5527 	case Q_IP:
5528 		b0 = gen_linktype(ETHERTYPE_IP);
5529 
5530 		/* A = ip->ip_p */
5531 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5532 		s[i]->s.k = off_macpl + off_nl + 9;
5533 		i++;
5534 		/* X = ip->ip_hl << 2 */
5535 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5536 		s[i]->s.k = off_macpl + off_nl;
5537 		i++;
5538 		break;
5539 
5540 	case Q_IPV6:
5541 		b0 = gen_linktype(ETHERTYPE_IPV6);
5542 
5543 		/* A = ip6->ip_nxt */
5544 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5545 		s[i]->s.k = off_macpl + off_nl + 6;
5546 		i++;
5547 		/* X = sizeof(struct ip6_hdr) */
5548 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5549 		s[i]->s.k = 40;
5550 		i++;
5551 		break;
5552 
5553 	default:
5554 		bpf_error("unsupported proto to gen_protochain");
5555 		/*NOTREACHED*/
5556 	}
5557 
5558 	/* again: if (A == v) goto end; else fall through; */
5559 	again = i;
5560 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5561 	s[i]->s.k = v;
5562 	s[i]->s.jt = NULL;		/*later*/
5563 	s[i]->s.jf = NULL;		/*update in next stmt*/
5564 	fix5 = i;
5565 	i++;
5566 
5567 #ifndef IPPROTO_NONE
5568 #define IPPROTO_NONE	59
5569 #endif
5570 	/* if (A == IPPROTO_NONE) goto end */
5571 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5572 	s[i]->s.jt = NULL;	/*later*/
5573 	s[i]->s.jf = NULL;	/*update in next stmt*/
5574 	s[i]->s.k = IPPROTO_NONE;
5575 	s[fix5]->s.jf = s[i];
5576 	fix2 = i;
5577 	i++;
5578 
5579 	if (proto == Q_IPV6) {
5580 		int v6start, v6end, v6advance, j;
5581 
5582 		v6start = i;
5583 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5584 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5585 		s[i]->s.jt = NULL;	/*later*/
5586 		s[i]->s.jf = NULL;	/*update in next stmt*/
5587 		s[i]->s.k = IPPROTO_HOPOPTS;
5588 		s[fix2]->s.jf = s[i];
5589 		i++;
5590 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5591 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5592 		s[i]->s.jt = NULL;	/*later*/
5593 		s[i]->s.jf = NULL;	/*update in next stmt*/
5594 		s[i]->s.k = IPPROTO_DSTOPTS;
5595 		i++;
5596 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5597 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5598 		s[i]->s.jt = NULL;	/*later*/
5599 		s[i]->s.jf = NULL;	/*update in next stmt*/
5600 		s[i]->s.k = IPPROTO_ROUTING;
5601 		i++;
5602 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5603 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5604 		s[i]->s.jt = NULL;	/*later*/
5605 		s[i]->s.jf = NULL;	/*later*/
5606 		s[i]->s.k = IPPROTO_FRAGMENT;
5607 		fix3 = i;
5608 		v6end = i;
5609 		i++;
5610 
5611 		/* v6advance: */
5612 		v6advance = i;
5613 
5614 		/*
5615 		 * in short,
5616 		 * A = P[X + packet head];
5617 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5618 		 */
5619 		/* A = P[X + packet head] */
5620 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5621 		s[i]->s.k = off_macpl + off_nl;
5622 		i++;
5623 		/* MEM[reg2] = A */
5624 		s[i] = new_stmt(BPF_ST);
5625 		s[i]->s.k = reg2;
5626 		i++;
5627 		/* A = P[X + packet head + 1]; */
5628 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5629 		s[i]->s.k = off_macpl + off_nl + 1;
5630 		i++;
5631 		/* A += 1 */
5632 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5633 		s[i]->s.k = 1;
5634 		i++;
5635 		/* A *= 8 */
5636 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5637 		s[i]->s.k = 8;
5638 		i++;
5639 		/* A += X */
5640 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5641 		s[i]->s.k = 0;
5642 		i++;
5643 		/* X = A; */
5644 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5645 		i++;
5646 		/* A = MEM[reg2] */
5647 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5648 		s[i]->s.k = reg2;
5649 		i++;
5650 
5651 		/* goto again; (must use BPF_JA for backward jump) */
5652 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5653 		s[i]->s.k = again - i - 1;
5654 		s[i - 1]->s.jf = s[i];
5655 		i++;
5656 
5657 		/* fixup */
5658 		for (j = v6start; j <= v6end; j++)
5659 			s[j]->s.jt = s[v6advance];
5660 	} else {
5661 		/* nop */
5662 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5663 		s[i]->s.k = 0;
5664 		s[fix2]->s.jf = s[i];
5665 		i++;
5666 	}
5667 
5668 	/* ahcheck: */
5669 	ahcheck = i;
5670 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5671 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5672 	s[i]->s.jt = NULL;	/*later*/
5673 	s[i]->s.jf = NULL;	/*later*/
5674 	s[i]->s.k = IPPROTO_AH;
5675 	if (fix3)
5676 		s[fix3]->s.jf = s[ahcheck];
5677 	fix4 = i;
5678 	i++;
5679 
5680 	/*
5681 	 * in short,
5682 	 * A = P[X];
5683 	 * X = X + (P[X + 1] + 2) * 4;
5684 	 */
5685 	/* A = X */
5686 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5687 	i++;
5688 	/* A = P[X + packet head]; */
5689 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5690 	s[i]->s.k = off_macpl + off_nl;
5691 	i++;
5692 	/* MEM[reg2] = A */
5693 	s[i] = new_stmt(BPF_ST);
5694 	s[i]->s.k = reg2;
5695 	i++;
5696 	/* A = X */
5697 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5698 	i++;
5699 	/* A += 1 */
5700 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5701 	s[i]->s.k = 1;
5702 	i++;
5703 	/* X = A */
5704 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5705 	i++;
5706 	/* A = P[X + packet head] */
5707 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708 	s[i]->s.k = off_macpl + off_nl;
5709 	i++;
5710 	/* A += 2 */
5711 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5712 	s[i]->s.k = 2;
5713 	i++;
5714 	/* A *= 4 */
5715 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5716 	s[i]->s.k = 4;
5717 	i++;
5718 	/* X = A; */
5719 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5720 	i++;
5721 	/* A = MEM[reg2] */
5722 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5723 	s[i]->s.k = reg2;
5724 	i++;
5725 
5726 	/* goto again; (must use BPF_JA for backward jump) */
5727 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5728 	s[i]->s.k = again - i - 1;
5729 	i++;
5730 
5731 	/* end: nop */
5732 	end = i;
5733 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5734 	s[i]->s.k = 0;
5735 	s[fix2]->s.jt = s[end];
5736 	s[fix4]->s.jf = s[end];
5737 	s[fix5]->s.jt = s[end];
5738 	i++;
5739 
5740 	/*
5741 	 * make slist chain
5742 	 */
5743 	max = i;
5744 	for (i = 0; i < max - 1; i++)
5745 		s[i]->next = s[i + 1];
5746 	s[max - 1]->next = NULL;
5747 
5748 	/*
5749 	 * emit final check
5750 	 */
5751 	b = new_block(JMP(BPF_JEQ));
5752 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5753 	b->s.k = v;
5754 
5755 	free_reg(reg2);
5756 
5757 	gen_and(b0, b);
5758 	return b;
5759 #endif
5760 }
5761 
5762 static struct block *
5763 gen_check_802_11_data_frame()
5764 {
5765 	struct slist *s;
5766 	struct block *b0, *b1;
5767 
5768 	/*
5769 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5770 	 * and the 0x04 bit (b2) clear.
5771 	 */
5772 	s = gen_load_a(OR_LINK, 0, BPF_B);
5773 	b0 = new_block(JMP(BPF_JSET));
5774 	b0->s.k = 0x08;
5775 	b0->stmts = s;
5776 
5777 	s = gen_load_a(OR_LINK, 0, BPF_B);
5778 	b1 = new_block(JMP(BPF_JSET));
5779 	b1->s.k = 0x04;
5780 	b1->stmts = s;
5781 	gen_not(b1);
5782 
5783 	gen_and(b1, b0);
5784 
5785 	return b0;
5786 }
5787 
5788 /*
5789  * Generate code that checks whether the packet is a packet for protocol
5790  * <proto> and whether the type field in that protocol's header has
5791  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5792  * IP packet and checks the protocol number in the IP header against <v>.
5793  *
5794  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5795  * against Q_IP and Q_IPV6.
5796  */
5797 static struct block *
5798 gen_proto(v, proto, dir)
5799 	int v;
5800 	int proto;
5801 	int dir;
5802 {
5803 	struct block *b0, *b1;
5804 #ifndef CHASE_CHAIN
5805 	struct block *b2;
5806 #endif
5807 
5808 	if (dir != Q_DEFAULT)
5809 		bpf_error("direction applied to 'proto'");
5810 
5811 	switch (proto) {
5812 	case Q_DEFAULT:
5813 		b0 = gen_proto(v, Q_IP, dir);
5814 		b1 = gen_proto(v, Q_IPV6, dir);
5815 		gen_or(b0, b1);
5816 		return b1;
5817 
5818 	case Q_IP:
5819 		/*
5820 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5821 		 * not LLC encapsulation with LLCSAP_IP.
5822 		 *
5823 		 * For IEEE 802 networks - which includes 802.5 token ring
5824 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5825 		 * says that SNAP encapsulation is used, not LLC encapsulation
5826 		 * with LLCSAP_IP.
5827 		 *
5828 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5829 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5830 		 * encapsulation with LLCSAP_IP.
5831 		 *
5832 		 * So we always check for ETHERTYPE_IP.
5833 		 */
5834 		b0 = gen_linktype(ETHERTYPE_IP);
5835 #ifndef CHASE_CHAIN
5836 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5837 #else
5838 		b1 = gen_protochain(v, Q_IP);
5839 #endif
5840 		gen_and(b0, b1);
5841 		return b1;
5842 
5843 	case Q_ISO:
5844 		switch (linktype) {
5845 
5846 		case DLT_FRELAY:
5847 			/*
5848 			 * Frame Relay packets typically have an OSI
5849 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5850 			 * generates code to check for all the OSI
5851 			 * NLPIDs, so calling it and then adding a check
5852 			 * for the particular NLPID for which we're
5853 			 * looking is bogus, as we can just check for
5854 			 * the NLPID.
5855 			 *
5856 			 * What we check for is the NLPID and a frame
5857 			 * control field value of UI, i.e. 0x03 followed
5858 			 * by the NLPID.
5859 			 *
5860 			 * XXX - assumes a 2-byte Frame Relay header with
5861 			 * DLCI and flags.  What if the address is longer?
5862 			 *
5863 			 * XXX - what about SNAP-encapsulated frames?
5864 			 */
5865 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5866 			/*NOTREACHED*/
5867 			break;
5868 
5869 		case DLT_C_HDLC:
5870 			/*
5871 			 * Cisco uses an Ethertype lookalike - for OSI,
5872 			 * it's 0xfefe.
5873 			 */
5874 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5875 			/* OSI in C-HDLC is stuffed with a fudge byte */
5876 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5877 			gen_and(b0, b1);
5878 			return b1;
5879 
5880 		default:
5881 			b0 = gen_linktype(LLCSAP_ISONS);
5882 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5883 			gen_and(b0, b1);
5884 			return b1;
5885 		}
5886 
5887 	case Q_ISIS:
5888 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5889 		/*
5890 		 * 4 is the offset of the PDU type relative to the IS-IS
5891 		 * header.
5892 		 */
5893 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5894 		gen_and(b0, b1);
5895 		return b1;
5896 
5897 	case Q_ARP:
5898 		bpf_error("arp does not encapsulate another protocol");
5899 		/* NOTREACHED */
5900 
5901 	case Q_RARP:
5902 		bpf_error("rarp does not encapsulate another protocol");
5903 		/* NOTREACHED */
5904 
5905 	case Q_ATALK:
5906 		bpf_error("atalk encapsulation is not specifiable");
5907 		/* NOTREACHED */
5908 
5909 	case Q_DECNET:
5910 		bpf_error("decnet encapsulation is not specifiable");
5911 		/* NOTREACHED */
5912 
5913 	case Q_SCA:
5914 		bpf_error("sca does not encapsulate another protocol");
5915 		/* NOTREACHED */
5916 
5917 	case Q_LAT:
5918 		bpf_error("lat does not encapsulate another protocol");
5919 		/* NOTREACHED */
5920 
5921 	case Q_MOPRC:
5922 		bpf_error("moprc does not encapsulate another protocol");
5923 		/* NOTREACHED */
5924 
5925 	case Q_MOPDL:
5926 		bpf_error("mopdl does not encapsulate another protocol");
5927 		/* NOTREACHED */
5928 
5929 	case Q_LINK:
5930 		return gen_linktype(v);
5931 
5932 	case Q_UDP:
5933 		bpf_error("'udp proto' is bogus");
5934 		/* NOTREACHED */
5935 
5936 	case Q_TCP:
5937 		bpf_error("'tcp proto' is bogus");
5938 		/* NOTREACHED */
5939 
5940 	case Q_SCTP:
5941 		bpf_error("'sctp proto' is bogus");
5942 		/* NOTREACHED */
5943 
5944 	case Q_ICMP:
5945 		bpf_error("'icmp proto' is bogus");
5946 		/* NOTREACHED */
5947 
5948 	case Q_IGMP:
5949 		bpf_error("'igmp proto' is bogus");
5950 		/* NOTREACHED */
5951 
5952 	case Q_IGRP:
5953 		bpf_error("'igrp proto' is bogus");
5954 		/* NOTREACHED */
5955 
5956 	case Q_PIM:
5957 		bpf_error("'pim proto' is bogus");
5958 		/* NOTREACHED */
5959 
5960 	case Q_VRRP:
5961 		bpf_error("'vrrp proto' is bogus");
5962 		/* NOTREACHED */
5963 
5964 	case Q_CARP:
5965 		bpf_error("'carp proto' is bogus");
5966 		/* NOTREACHED */
5967 
5968 	case Q_IPV6:
5969 		b0 = gen_linktype(ETHERTYPE_IPV6);
5970 #ifndef CHASE_CHAIN
5971 		/*
5972 		 * Also check for a fragment header before the final
5973 		 * header.
5974 		 */
5975 		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5976 		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5977 		gen_and(b2, b1);
5978 		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5979 		gen_or(b2, b1);
5980 #else
5981 		b1 = gen_protochain(v, Q_IPV6);
5982 #endif
5983 		gen_and(b0, b1);
5984 		return b1;
5985 
5986 	case Q_ICMPV6:
5987 		bpf_error("'icmp6 proto' is bogus");
5988 
5989 	case Q_AH:
5990 		bpf_error("'ah proto' is bogus");
5991 
5992 	case Q_ESP:
5993 		bpf_error("'ah proto' is bogus");
5994 
5995 	case Q_STP:
5996 		bpf_error("'stp proto' is bogus");
5997 
5998 	case Q_IPX:
5999 		bpf_error("'ipx proto' is bogus");
6000 
6001 	case Q_NETBEUI:
6002 		bpf_error("'netbeui proto' is bogus");
6003 
6004 	case Q_RADIO:
6005 		bpf_error("'radio proto' is bogus");
6006 
6007 	default:
6008 		abort();
6009 		/* NOTREACHED */
6010 	}
6011 	/* NOTREACHED */
6012 }
6013 
6014 struct block *
6015 gen_scode(name, q)
6016 	register const char *name;
6017 	struct qual q;
6018 {
6019 	int proto = q.proto;
6020 	int dir = q.dir;
6021 	int tproto;
6022 	u_char *eaddr;
6023 	bpf_u_int32 mask, addr;
6024 #ifndef INET6
6025 	bpf_u_int32 **alist;
6026 #else
6027 	int tproto6;
6028 	struct sockaddr_in *sin4;
6029 	struct sockaddr_in6 *sin6;
6030 	struct addrinfo *res, *res0;
6031 	struct in6_addr mask128;
6032 #endif /*INET6*/
6033 	struct block *b, *tmp;
6034 	int port, real_proto;
6035 	int port1, port2;
6036 
6037 	switch (q.addr) {
6038 
6039 	case Q_NET:
6040 		addr = pcap_nametonetaddr(name);
6041 		if (addr == 0)
6042 			bpf_error("unknown network '%s'", name);
6043 		/* Left justify network addr and calculate its network mask */
6044 		mask = 0xffffffff;
6045 		while (addr && (addr & 0xff000000) == 0) {
6046 			addr <<= 8;
6047 			mask <<= 8;
6048 		}
6049 		return gen_host(addr, mask, proto, dir, q.addr);
6050 
6051 	case Q_DEFAULT:
6052 	case Q_HOST:
6053 		if (proto == Q_LINK) {
6054 			switch (linktype) {
6055 
6056 			case DLT_EN10MB:
6057 			case DLT_NETANALYZER:
6058 			case DLT_NETANALYZER_TRANSPARENT:
6059 				eaddr = pcap_ether_hostton(name);
6060 				if (eaddr == NULL)
6061 					bpf_error(
6062 					    "unknown ether host '%s'", name);
6063 				b = gen_ehostop(eaddr, dir);
6064 				free(eaddr);
6065 				return b;
6066 
6067 			case DLT_FDDI:
6068 				eaddr = pcap_ether_hostton(name);
6069 				if (eaddr == NULL)
6070 					bpf_error(
6071 					    "unknown FDDI host '%s'", name);
6072 				b = gen_fhostop(eaddr, dir);
6073 				free(eaddr);
6074 				return b;
6075 
6076 			case DLT_IEEE802:
6077 				eaddr = pcap_ether_hostton(name);
6078 				if (eaddr == NULL)
6079 					bpf_error(
6080 					    "unknown token ring host '%s'", name);
6081 				b = gen_thostop(eaddr, dir);
6082 				free(eaddr);
6083 				return b;
6084 
6085 			case DLT_IEEE802_11:
6086 			case DLT_PRISM_HEADER:
6087 			case DLT_IEEE802_11_RADIO_AVS:
6088 			case DLT_IEEE802_11_RADIO:
6089 			case DLT_PPI:
6090 				eaddr = pcap_ether_hostton(name);
6091 				if (eaddr == NULL)
6092 					bpf_error(
6093 					    "unknown 802.11 host '%s'", name);
6094 				b = gen_wlanhostop(eaddr, dir);
6095 				free(eaddr);
6096 				return b;
6097 
6098 			case DLT_IP_OVER_FC:
6099 				eaddr = pcap_ether_hostton(name);
6100 				if (eaddr == NULL)
6101 					bpf_error(
6102 					    "unknown Fibre Channel host '%s'", name);
6103 				b = gen_ipfchostop(eaddr, dir);
6104 				free(eaddr);
6105 				return b;
6106 
6107 			case DLT_SUNATM:
6108 				if (!is_lane)
6109 					break;
6110 
6111 				/*
6112 				 * Check that the packet doesn't begin
6113 				 * with an LE Control marker.  (We've
6114 				 * already generated a test for LANE.)
6115 				 */
6116 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6117 				    BPF_H, 0xFF00);
6118 				gen_not(tmp);
6119 
6120 				eaddr = pcap_ether_hostton(name);
6121 				if (eaddr == NULL)
6122 					bpf_error(
6123 					    "unknown ether host '%s'", name);
6124 				b = gen_ehostop(eaddr, dir);
6125 				gen_and(tmp, b);
6126 				free(eaddr);
6127 				return b;
6128 			}
6129 
6130 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6131 		} else if (proto == Q_DECNET) {
6132 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6133 			/*
6134 			 * I don't think DECNET hosts can be multihomed, so
6135 			 * there is no need to build up a list of addresses
6136 			 */
6137 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6138 		} else {
6139 #ifndef INET6
6140 			alist = pcap_nametoaddr(name);
6141 			if (alist == NULL || *alist == NULL)
6142 				bpf_error("unknown host '%s'", name);
6143 			tproto = proto;
6144 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6145 				tproto = Q_IP;
6146 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6147 			while (*alist) {
6148 				tmp = gen_host(**alist++, 0xffffffff,
6149 					       tproto, dir, q.addr);
6150 				gen_or(b, tmp);
6151 				b = tmp;
6152 			}
6153 			return b;
6154 #else
6155 			memset(&mask128, 0xff, sizeof(mask128));
6156 			res0 = res = pcap_nametoaddrinfo(name);
6157 			if (res == NULL)
6158 				bpf_error("unknown host '%s'", name);
6159 			ai = res;
6160 			b = tmp = NULL;
6161 			tproto = tproto6 = proto;
6162 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6163 				tproto = Q_IP;
6164 				tproto6 = Q_IPV6;
6165 			}
6166 			for (res = res0; res; res = res->ai_next) {
6167 				switch (res->ai_family) {
6168 				case AF_INET:
6169 					if (tproto == Q_IPV6)
6170 						continue;
6171 
6172 					sin4 = (struct sockaddr_in *)
6173 						res->ai_addr;
6174 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6175 						0xffffffff, tproto, dir, q.addr);
6176 					break;
6177 				case AF_INET6:
6178 					if (tproto6 == Q_IP)
6179 						continue;
6180 
6181 					sin6 = (struct sockaddr_in6 *)
6182 						res->ai_addr;
6183 					tmp = gen_host6(&sin6->sin6_addr,
6184 						&mask128, tproto6, dir, q.addr);
6185 					break;
6186 				default:
6187 					continue;
6188 				}
6189 				if (b)
6190 					gen_or(b, tmp);
6191 				b = tmp;
6192 			}
6193 			ai = NULL;
6194 			freeaddrinfo(res0);
6195 			if (b == NULL) {
6196 				bpf_error("unknown host '%s'%s", name,
6197 				    (proto == Q_DEFAULT)
6198 					? ""
6199 					: " for specified address family");
6200 			}
6201 			return b;
6202 #endif /*INET6*/
6203 		}
6204 
6205 	case Q_PORT:
6206 		if (proto != Q_DEFAULT &&
6207 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6208 			bpf_error("illegal qualifier of 'port'");
6209 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6210 			bpf_error("unknown port '%s'", name);
6211 		if (proto == Q_UDP) {
6212 			if (real_proto == IPPROTO_TCP)
6213 				bpf_error("port '%s' is tcp", name);
6214 			else if (real_proto == IPPROTO_SCTP)
6215 				bpf_error("port '%s' is sctp", name);
6216 			else
6217 				/* override PROTO_UNDEF */
6218 				real_proto = IPPROTO_UDP;
6219 		}
6220 		if (proto == Q_TCP) {
6221 			if (real_proto == IPPROTO_UDP)
6222 				bpf_error("port '%s' is udp", name);
6223 
6224 			else if (real_proto == IPPROTO_SCTP)
6225 				bpf_error("port '%s' is sctp", name);
6226 			else
6227 				/* override PROTO_UNDEF */
6228 				real_proto = IPPROTO_TCP;
6229 		}
6230 		if (proto == Q_SCTP) {
6231 			if (real_proto == IPPROTO_UDP)
6232 				bpf_error("port '%s' is udp", name);
6233 
6234 			else if (real_proto == IPPROTO_TCP)
6235 				bpf_error("port '%s' is tcp", name);
6236 			else
6237 				/* override PROTO_UNDEF */
6238 				real_proto = IPPROTO_SCTP;
6239 		}
6240 		if (port < 0)
6241 			bpf_error("illegal port number %d < 0", port);
6242 		if (port > 65535)
6243 			bpf_error("illegal port number %d > 65535", port);
6244 		b = gen_port(port, real_proto, dir);
6245 		gen_or(gen_port6(port, real_proto, dir), b);
6246 		return b;
6247 
6248 	case Q_PORTRANGE:
6249 		if (proto != Q_DEFAULT &&
6250 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6251 			bpf_error("illegal qualifier of 'portrange'");
6252 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6253 			bpf_error("unknown port in range '%s'", name);
6254 		if (proto == Q_UDP) {
6255 			if (real_proto == IPPROTO_TCP)
6256 				bpf_error("port in range '%s' is tcp", name);
6257 			else if (real_proto == IPPROTO_SCTP)
6258 				bpf_error("port in range '%s' is sctp", name);
6259 			else
6260 				/* override PROTO_UNDEF */
6261 				real_proto = IPPROTO_UDP;
6262 		}
6263 		if (proto == Q_TCP) {
6264 			if (real_proto == IPPROTO_UDP)
6265 				bpf_error("port in range '%s' is udp", name);
6266 			else if (real_proto == IPPROTO_SCTP)
6267 				bpf_error("port in range '%s' is sctp", name);
6268 			else
6269 				/* override PROTO_UNDEF */
6270 				real_proto = IPPROTO_TCP;
6271 		}
6272 		if (proto == Q_SCTP) {
6273 			if (real_proto == IPPROTO_UDP)
6274 				bpf_error("port in range '%s' is udp", name);
6275 			else if (real_proto == IPPROTO_TCP)
6276 				bpf_error("port in range '%s' is tcp", name);
6277 			else
6278 				/* override PROTO_UNDEF */
6279 				real_proto = IPPROTO_SCTP;
6280 		}
6281 		if (port1 < 0)
6282 			bpf_error("illegal port number %d < 0", port1);
6283 		if (port1 > 65535)
6284 			bpf_error("illegal port number %d > 65535", port1);
6285 		if (port2 < 0)
6286 			bpf_error("illegal port number %d < 0", port2);
6287 		if (port2 > 65535)
6288 			bpf_error("illegal port number %d > 65535", port2);
6289 
6290 		b = gen_portrange(port1, port2, real_proto, dir);
6291 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6292 		return b;
6293 
6294 	case Q_GATEWAY:
6295 #ifndef INET6
6296 		eaddr = pcap_ether_hostton(name);
6297 		if (eaddr == NULL)
6298 			bpf_error("unknown ether host: %s", name);
6299 
6300 		alist = pcap_nametoaddr(name);
6301 		if (alist == NULL || *alist == NULL)
6302 			bpf_error("unknown host '%s'", name);
6303 		b = gen_gateway(eaddr, alist, proto, dir);
6304 		free(eaddr);
6305 		return b;
6306 #else
6307 		bpf_error("'gateway' not supported in this configuration");
6308 #endif /*INET6*/
6309 
6310 	case Q_PROTO:
6311 		real_proto = lookup_proto(name, proto);
6312 		if (real_proto >= 0)
6313 			return gen_proto(real_proto, proto, dir);
6314 		else
6315 			bpf_error("unknown protocol: %s", name);
6316 
6317 	case Q_PROTOCHAIN:
6318 		real_proto = lookup_proto(name, proto);
6319 		if (real_proto >= 0)
6320 			return gen_protochain(real_proto, proto, dir);
6321 		else
6322 			bpf_error("unknown protocol: %s", name);
6323 
6324 	case Q_UNDEF:
6325 		syntax();
6326 		/* NOTREACHED */
6327 	}
6328 	abort();
6329 	/* NOTREACHED */
6330 }
6331 
6332 struct block *
6333 gen_mcode(s1, s2, masklen, q)
6334 	register const char *s1, *s2;
6335 	register int masklen;
6336 	struct qual q;
6337 {
6338 	register int nlen, mlen;
6339 	bpf_u_int32 n, m;
6340 
6341 	nlen = __pcap_atoin(s1, &n);
6342 	/* Promote short ipaddr */
6343 	n <<= 32 - nlen;
6344 
6345 	if (s2 != NULL) {
6346 		mlen = __pcap_atoin(s2, &m);
6347 		/* Promote short ipaddr */
6348 		m <<= 32 - mlen;
6349 		if ((n & ~m) != 0)
6350 			bpf_error("non-network bits set in \"%s mask %s\"",
6351 			    s1, s2);
6352 	} else {
6353 		/* Convert mask len to mask */
6354 		if (masklen > 32)
6355 			bpf_error("mask length must be <= 32");
6356 		if (masklen == 0) {
6357 			/*
6358 			 * X << 32 is not guaranteed by C to be 0; it's
6359 			 * undefined.
6360 			 */
6361 			m = 0;
6362 		} else
6363 			m = 0xffffffff << (32 - masklen);
6364 		if ((n & ~m) != 0)
6365 			bpf_error("non-network bits set in \"%s/%d\"",
6366 			    s1, masklen);
6367 	}
6368 
6369 	switch (q.addr) {
6370 
6371 	case Q_NET:
6372 		return gen_host(n, m, q.proto, q.dir, q.addr);
6373 
6374 	default:
6375 		bpf_error("Mask syntax for networks only");
6376 		/* NOTREACHED */
6377 	}
6378 	/* NOTREACHED */
6379 	return NULL;
6380 }
6381 
6382 struct block *
6383 gen_ncode(s, v, q)
6384 	register const char *s;
6385 	bpf_u_int32 v;
6386 	struct qual q;
6387 {
6388 	bpf_u_int32 mask;
6389 	int proto = q.proto;
6390 	int dir = q.dir;
6391 	register int vlen;
6392 
6393 	if (s == NULL)
6394 		vlen = 32;
6395 	else if (q.proto == Q_DECNET)
6396 		vlen = __pcap_atodn(s, &v);
6397 	else
6398 		vlen = __pcap_atoin(s, &v);
6399 
6400 	switch (q.addr) {
6401 
6402 	case Q_DEFAULT:
6403 	case Q_HOST:
6404 	case Q_NET:
6405 		if (proto == Q_DECNET)
6406 			return gen_host(v, 0, proto, dir, q.addr);
6407 		else if (proto == Q_LINK) {
6408 			bpf_error("illegal link layer address");
6409 		} else {
6410 			mask = 0xffffffff;
6411 			if (s == NULL && q.addr == Q_NET) {
6412 				/* Promote short net number */
6413 				while (v && (v & 0xff000000) == 0) {
6414 					v <<= 8;
6415 					mask <<= 8;
6416 				}
6417 			} else {
6418 				/* Promote short ipaddr */
6419 				v <<= 32 - vlen;
6420 				mask <<= 32 - vlen;
6421 			}
6422 			return gen_host(v, mask, proto, dir, q.addr);
6423 		}
6424 
6425 	case Q_PORT:
6426 		if (proto == Q_UDP)
6427 			proto = IPPROTO_UDP;
6428 		else if (proto == Q_TCP)
6429 			proto = IPPROTO_TCP;
6430 		else if (proto == Q_SCTP)
6431 			proto = IPPROTO_SCTP;
6432 		else if (proto == Q_DEFAULT)
6433 			proto = PROTO_UNDEF;
6434 		else
6435 			bpf_error("illegal qualifier of 'port'");
6436 
6437 		if (v > 65535)
6438 			bpf_error("illegal port number %u > 65535", v);
6439 
6440 	    {
6441 		struct block *b;
6442 		b = gen_port((int)v, proto, dir);
6443 		gen_or(gen_port6((int)v, proto, dir), b);
6444 		return b;
6445 	    }
6446 
6447 	case Q_PORTRANGE:
6448 		if (proto == Q_UDP)
6449 			proto = IPPROTO_UDP;
6450 		else if (proto == Q_TCP)
6451 			proto = IPPROTO_TCP;
6452 		else if (proto == Q_SCTP)
6453 			proto = IPPROTO_SCTP;
6454 		else if (proto == Q_DEFAULT)
6455 			proto = PROTO_UNDEF;
6456 		else
6457 			bpf_error("illegal qualifier of 'portrange'");
6458 
6459 		if (v > 65535)
6460 			bpf_error("illegal port number %u > 65535", v);
6461 
6462 	    {
6463 		struct block *b;
6464 		b = gen_portrange((int)v, (int)v, proto, dir);
6465 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6466 		return b;
6467 	    }
6468 
6469 	case Q_GATEWAY:
6470 		bpf_error("'gateway' requires a name");
6471 		/* NOTREACHED */
6472 
6473 	case Q_PROTO:
6474 		return gen_proto((int)v, proto, dir);
6475 
6476 	case Q_PROTOCHAIN:
6477 		return gen_protochain((int)v, proto, dir);
6478 
6479 	case Q_UNDEF:
6480 		syntax();
6481 		/* NOTREACHED */
6482 
6483 	default:
6484 		abort();
6485 		/* NOTREACHED */
6486 	}
6487 	/* NOTREACHED */
6488 }
6489 
6490 #ifdef INET6
6491 struct block *
6492 gen_mcode6(s1, s2, masklen, q)
6493 	register const char *s1, *s2;
6494 	register int masklen;
6495 	struct qual q;
6496 {
6497 	struct addrinfo *res;
6498 	struct in6_addr *addr;
6499 	struct in6_addr mask;
6500 	struct block *b;
6501 	u_int32_t *a, *m;
6502 
6503 	if (s2)
6504 		bpf_error("no mask %s supported", s2);
6505 
6506 	res = pcap_nametoaddrinfo(s1);
6507 	if (!res)
6508 		bpf_error("invalid ip6 address %s", s1);
6509 	ai = res;
6510 	if (res->ai_next)
6511 		bpf_error("%s resolved to multiple address", s1);
6512 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6513 
6514 	if (sizeof(mask) * 8 < masklen)
6515 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6516 	memset(&mask, 0, sizeof(mask));
6517 	memset(&mask, 0xff, masklen / 8);
6518 	if (masklen % 8) {
6519 		mask.s6_addr[masklen / 8] =
6520 			(0xff << (8 - masklen % 8)) & 0xff;
6521 	}
6522 
6523 	a = (u_int32_t *)addr;
6524 	m = (u_int32_t *)&mask;
6525 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6526 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6527 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6528 	}
6529 
6530 	switch (q.addr) {
6531 
6532 	case Q_DEFAULT:
6533 	case Q_HOST:
6534 		if (masklen != 128)
6535 			bpf_error("Mask syntax for networks only");
6536 		/* FALLTHROUGH */
6537 
6538 	case Q_NET:
6539 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6540 		ai = NULL;
6541 		freeaddrinfo(res);
6542 		return b;
6543 
6544 	default:
6545 		bpf_error("invalid qualifier against IPv6 address");
6546 		/* NOTREACHED */
6547 	}
6548 	return NULL;
6549 }
6550 #endif /*INET6*/
6551 
6552 struct block *
6553 gen_ecode(eaddr, q)
6554 	register const u_char *eaddr;
6555 	struct qual q;
6556 {
6557 	struct block *b, *tmp;
6558 
6559 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6560 		switch (linktype) {
6561 		case DLT_EN10MB:
6562 		case DLT_NETANALYZER:
6563 		case DLT_NETANALYZER_TRANSPARENT:
6564 			return gen_ehostop(eaddr, (int)q.dir);
6565 		case DLT_FDDI:
6566 			return gen_fhostop(eaddr, (int)q.dir);
6567 		case DLT_IEEE802:
6568 			return gen_thostop(eaddr, (int)q.dir);
6569 		case DLT_IEEE802_11:
6570 		case DLT_PRISM_HEADER:
6571 		case DLT_IEEE802_11_RADIO_AVS:
6572 		case DLT_IEEE802_11_RADIO:
6573 		case DLT_PPI:
6574 			return gen_wlanhostop(eaddr, (int)q.dir);
6575 		case DLT_SUNATM:
6576 			if (is_lane) {
6577 				/*
6578 				 * Check that the packet doesn't begin with an
6579 				 * LE Control marker.  (We've already generated
6580 				 * a test for LANE.)
6581 				 */
6582 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6583 					0xFF00);
6584 				gen_not(tmp);
6585 
6586 				/*
6587 				 * Now check the MAC address.
6588 				 */
6589 				b = gen_ehostop(eaddr, (int)q.dir);
6590 				gen_and(tmp, b);
6591 				return b;
6592 			}
6593 			break;
6594 		case DLT_IP_OVER_FC:
6595 			return gen_ipfchostop(eaddr, (int)q.dir);
6596 		default:
6597 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6598 			break;
6599 		}
6600 	}
6601 	bpf_error("ethernet address used in non-ether expression");
6602 	/* NOTREACHED */
6603 	return NULL;
6604 }
6605 
6606 void
6607 sappend(s0, s1)
6608 	struct slist *s0, *s1;
6609 {
6610 	/*
6611 	 * This is definitely not the best way to do this, but the
6612 	 * lists will rarely get long.
6613 	 */
6614 	while (s0->next)
6615 		s0 = s0->next;
6616 	s0->next = s1;
6617 }
6618 
6619 static struct slist *
6620 xfer_to_x(a)
6621 	struct arth *a;
6622 {
6623 	struct slist *s;
6624 
6625 	s = new_stmt(BPF_LDX|BPF_MEM);
6626 	s->s.k = a->regno;
6627 	return s;
6628 }
6629 
6630 static struct slist *
6631 xfer_to_a(a)
6632 	struct arth *a;
6633 {
6634 	struct slist *s;
6635 
6636 	s = new_stmt(BPF_LD|BPF_MEM);
6637 	s->s.k = a->regno;
6638 	return s;
6639 }
6640 
6641 /*
6642  * Modify "index" to use the value stored into its register as an
6643  * offset relative to the beginning of the header for the protocol
6644  * "proto", and allocate a register and put an item "size" bytes long
6645  * (1, 2, or 4) at that offset into that register, making it the register
6646  * for "index".
6647  */
6648 struct arth *
6649 gen_load(proto, inst, size)
6650 	int proto;
6651 	struct arth *inst;
6652 	int size;
6653 {
6654 	struct slist *s, *tmp;
6655 	struct block *b;
6656 	int regno = alloc_reg();
6657 
6658 	free_reg(inst->regno);
6659 	switch (size) {
6660 
6661 	default:
6662 		bpf_error("data size must be 1, 2, or 4");
6663 
6664 	case 1:
6665 		size = BPF_B;
6666 		break;
6667 
6668 	case 2:
6669 		size = BPF_H;
6670 		break;
6671 
6672 	case 4:
6673 		size = BPF_W;
6674 		break;
6675 	}
6676 	switch (proto) {
6677 	default:
6678 		bpf_error("unsupported index operation");
6679 
6680 	case Q_RADIO:
6681 		/*
6682 		 * The offset is relative to the beginning of the packet
6683 		 * data, if we have a radio header.  (If we don't, this
6684 		 * is an error.)
6685 		 */
6686 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6687 		    linktype != DLT_IEEE802_11_RADIO &&
6688 		    linktype != DLT_PRISM_HEADER)
6689 			bpf_error("radio information not present in capture");
6690 
6691 		/*
6692 		 * Load into the X register the offset computed into the
6693 		 * register specified by "index".
6694 		 */
6695 		s = xfer_to_x(inst);
6696 
6697 		/*
6698 		 * Load the item at that offset.
6699 		 */
6700 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6701 		sappend(s, tmp);
6702 		sappend(inst->s, s);
6703 		break;
6704 
6705 	case Q_LINK:
6706 		/*
6707 		 * The offset is relative to the beginning of
6708 		 * the link-layer header.
6709 		 *
6710 		 * XXX - what about ATM LANE?  Should the index be
6711 		 * relative to the beginning of the AAL5 frame, so
6712 		 * that 0 refers to the beginning of the LE Control
6713 		 * field, or relative to the beginning of the LAN
6714 		 * frame, so that 0 refers, for Ethernet LANE, to
6715 		 * the beginning of the destination address?
6716 		 */
6717 		s = gen_llprefixlen();
6718 
6719 		/*
6720 		 * If "s" is non-null, it has code to arrange that the
6721 		 * X register contains the length of the prefix preceding
6722 		 * the link-layer header.  Add to it the offset computed
6723 		 * into the register specified by "index", and move that
6724 		 * into the X register.  Otherwise, just load into the X
6725 		 * register the offset computed into the register specified
6726 		 * by "index".
6727 		 */
6728 		if (s != NULL) {
6729 			sappend(s, xfer_to_a(inst));
6730 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6731 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6732 		} else
6733 			s = xfer_to_x(inst);
6734 
6735 		/*
6736 		 * Load the item at the sum of the offset we've put in the
6737 		 * X register and the offset of the start of the link
6738 		 * layer header (which is 0 if the radio header is
6739 		 * variable-length; that header length is what we put
6740 		 * into the X register and then added to the index).
6741 		 */
6742 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6743 		tmp->s.k = off_ll;
6744 		sappend(s, tmp);
6745 		sappend(inst->s, s);
6746 		break;
6747 
6748 	case Q_IP:
6749 	case Q_ARP:
6750 	case Q_RARP:
6751 	case Q_ATALK:
6752 	case Q_DECNET:
6753 	case Q_SCA:
6754 	case Q_LAT:
6755 	case Q_MOPRC:
6756 	case Q_MOPDL:
6757 	case Q_IPV6:
6758 		/*
6759 		 * The offset is relative to the beginning of
6760 		 * the network-layer header.
6761 		 * XXX - are there any cases where we want
6762 		 * off_nl_nosnap?
6763 		 */
6764 		s = gen_off_macpl();
6765 
6766 		/*
6767 		 * If "s" is non-null, it has code to arrange that the
6768 		 * X register contains the offset of the MAC-layer
6769 		 * payload.  Add to it the offset computed into the
6770 		 * register specified by "index", and move that into
6771 		 * the X register.  Otherwise, just load into the X
6772 		 * register the offset computed into the register specified
6773 		 * by "index".
6774 		 */
6775 		if (s != NULL) {
6776 			sappend(s, xfer_to_a(inst));
6777 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6778 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6779 		} else
6780 			s = xfer_to_x(inst);
6781 
6782 		/*
6783 		 * Load the item at the sum of the offset we've put in the
6784 		 * X register, the offset of the start of the network
6785 		 * layer header from the beginning of the MAC-layer
6786 		 * payload, and the purported offset of the start of the
6787 		 * MAC-layer payload (which might be 0 if there's a
6788 		 * variable-length prefix before the link-layer header
6789 		 * or the link-layer header itself is variable-length;
6790 		 * the variable-length offset of the start of the
6791 		 * MAC-layer payload is what we put into the X register
6792 		 * and then added to the index).
6793 		 */
6794 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6795 		tmp->s.k = off_macpl + off_nl;
6796 		sappend(s, tmp);
6797 		sappend(inst->s, s);
6798 
6799 		/*
6800 		 * Do the computation only if the packet contains
6801 		 * the protocol in question.
6802 		 */
6803 		b = gen_proto_abbrev(proto);
6804 		if (inst->b)
6805 			gen_and(inst->b, b);
6806 		inst->b = b;
6807 		break;
6808 
6809 	case Q_SCTP:
6810 	case Q_TCP:
6811 	case Q_UDP:
6812 	case Q_ICMP:
6813 	case Q_IGMP:
6814 	case Q_IGRP:
6815 	case Q_PIM:
6816 	case Q_VRRP:
6817 	case Q_CARP:
6818 		/*
6819 		 * The offset is relative to the beginning of
6820 		 * the transport-layer header.
6821 		 *
6822 		 * Load the X register with the length of the IPv4 header
6823 		 * (plus the offset of the link-layer header, if it's
6824 		 * a variable-length header), in bytes.
6825 		 *
6826 		 * XXX - are there any cases where we want
6827 		 * off_nl_nosnap?
6828 		 * XXX - we should, if we're built with
6829 		 * IPv6 support, generate code to load either
6830 		 * IPv4, IPv6, or both, as appropriate.
6831 		 */
6832 		s = gen_loadx_iphdrlen();
6833 
6834 		/*
6835 		 * The X register now contains the sum of the length
6836 		 * of any variable-length header preceding the link-layer
6837 		 * header, any variable-length link-layer header, and the
6838 		 * length of the network-layer header.
6839 		 *
6840 		 * Load into the A register the offset relative to
6841 		 * the beginning of the transport layer header,
6842 		 * add the X register to that, move that to the
6843 		 * X register, and load with an offset from the
6844 		 * X register equal to the offset of the network
6845 		 * layer header relative to the beginning of
6846 		 * the MAC-layer payload plus the fixed-length
6847 		 * portion of the offset of the MAC-layer payload
6848 		 * from the beginning of the raw packet data.
6849 		 */
6850 		sappend(s, xfer_to_a(inst));
6851 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6852 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6853 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6854 		tmp->s.k = off_macpl + off_nl;
6855 		sappend(inst->s, s);
6856 
6857 		/*
6858 		 * Do the computation only if the packet contains
6859 		 * the protocol in question - which is true only
6860 		 * if this is an IP datagram and is the first or
6861 		 * only fragment of that datagram.
6862 		 */
6863 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6864 		if (inst->b)
6865 			gen_and(inst->b, b);
6866 		gen_and(gen_proto_abbrev(Q_IP), b);
6867 		inst->b = b;
6868 		break;
6869 	case Q_ICMPV6:
6870 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6871 		/*NOTREACHED*/
6872 	}
6873 	inst->regno = regno;
6874 	s = new_stmt(BPF_ST);
6875 	s->s.k = regno;
6876 	sappend(inst->s, s);
6877 
6878 	return inst;
6879 }
6880 
6881 struct block *
6882 gen_relation(code, a0, a1, reversed)
6883 	int code;
6884 	struct arth *a0, *a1;
6885 	int reversed;
6886 {
6887 	struct slist *s0, *s1, *s2;
6888 	struct block *b, *tmp;
6889 
6890 	s0 = xfer_to_x(a1);
6891 	s1 = xfer_to_a(a0);
6892 	if (code == BPF_JEQ) {
6893 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6894 		b = new_block(JMP(code));
6895 		sappend(s1, s2);
6896 	}
6897 	else
6898 		b = new_block(BPF_JMP|code|BPF_X);
6899 	if (reversed)
6900 		gen_not(b);
6901 
6902 	sappend(s0, s1);
6903 	sappend(a1->s, s0);
6904 	sappend(a0->s, a1->s);
6905 
6906 	b->stmts = a0->s;
6907 
6908 	free_reg(a0->regno);
6909 	free_reg(a1->regno);
6910 
6911 	/* 'and' together protocol checks */
6912 	if (a0->b) {
6913 		if (a1->b) {
6914 			gen_and(a0->b, tmp = a1->b);
6915 		}
6916 		else
6917 			tmp = a0->b;
6918 	} else
6919 		tmp = a1->b;
6920 
6921 	if (tmp)
6922 		gen_and(tmp, b);
6923 
6924 	return b;
6925 }
6926 
6927 struct arth *
6928 gen_loadlen()
6929 {
6930 	int regno = alloc_reg();
6931 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6932 	struct slist *s;
6933 
6934 	s = new_stmt(BPF_LD|BPF_LEN);
6935 	s->next = new_stmt(BPF_ST);
6936 	s->next->s.k = regno;
6937 	a->s = s;
6938 	a->regno = regno;
6939 
6940 	return a;
6941 }
6942 
6943 struct arth *
6944 gen_loadi(val)
6945 	int val;
6946 {
6947 	struct arth *a;
6948 	struct slist *s;
6949 	int reg;
6950 
6951 	a = (struct arth *)newchunk(sizeof(*a));
6952 
6953 	reg = alloc_reg();
6954 
6955 	s = new_stmt(BPF_LD|BPF_IMM);
6956 	s->s.k = val;
6957 	s->next = new_stmt(BPF_ST);
6958 	s->next->s.k = reg;
6959 	a->s = s;
6960 	a->regno = reg;
6961 
6962 	return a;
6963 }
6964 
6965 struct arth *
6966 gen_neg(a)
6967 	struct arth *a;
6968 {
6969 	struct slist *s;
6970 
6971 	s = xfer_to_a(a);
6972 	sappend(a->s, s);
6973 	s = new_stmt(BPF_ALU|BPF_NEG);
6974 	s->s.k = 0;
6975 	sappend(a->s, s);
6976 	s = new_stmt(BPF_ST);
6977 	s->s.k = a->regno;
6978 	sappend(a->s, s);
6979 
6980 	return a;
6981 }
6982 
6983 struct arth *
6984 gen_arth(code, a0, a1)
6985 	int code;
6986 	struct arth *a0, *a1;
6987 {
6988 	struct slist *s0, *s1, *s2;
6989 
6990 	s0 = xfer_to_x(a1);
6991 	s1 = xfer_to_a(a0);
6992 	s2 = new_stmt(BPF_ALU|BPF_X|code);
6993 
6994 	sappend(s1, s2);
6995 	sappend(s0, s1);
6996 	sappend(a1->s, s0);
6997 	sappend(a0->s, a1->s);
6998 
6999 	free_reg(a0->regno);
7000 	free_reg(a1->regno);
7001 
7002 	s0 = new_stmt(BPF_ST);
7003 	a0->regno = s0->s.k = alloc_reg();
7004 	sappend(a0->s, s0);
7005 
7006 	return a0;
7007 }
7008 
7009 /*
7010  * Here we handle simple allocation of the scratch registers.
7011  * If too many registers are alloc'd, the allocator punts.
7012  */
7013 static int regused[BPF_MEMWORDS];
7014 static int curreg;
7015 
7016 /*
7017  * Initialize the table of used registers and the current register.
7018  */
7019 static void
7020 init_regs()
7021 {
7022 	curreg = 0;
7023 	memset(regused, 0, sizeof regused);
7024 }
7025 
7026 /*
7027  * Return the next free register.
7028  */
7029 static int
7030 alloc_reg()
7031 {
7032 	int n = BPF_MEMWORDS;
7033 
7034 	while (--n >= 0) {
7035 		if (regused[curreg])
7036 			curreg = (curreg + 1) % BPF_MEMWORDS;
7037 		else {
7038 			regused[curreg] = 1;
7039 			return curreg;
7040 		}
7041 	}
7042 	bpf_error("too many registers needed to evaluate expression");
7043 	/* NOTREACHED */
7044 	return 0;
7045 }
7046 
7047 /*
7048  * Return a register to the table so it can
7049  * be used later.
7050  */
7051 static void
7052 free_reg(n)
7053 	int n;
7054 {
7055 	regused[n] = 0;
7056 }
7057 
7058 static struct block *
7059 gen_len(jmp, n)
7060 	int jmp, n;
7061 {
7062 	struct slist *s;
7063 	struct block *b;
7064 
7065 	s = new_stmt(BPF_LD|BPF_LEN);
7066 	b = new_block(JMP(jmp));
7067 	b->stmts = s;
7068 	b->s.k = n;
7069 
7070 	return b;
7071 }
7072 
7073 struct block *
7074 gen_greater(n)
7075 	int n;
7076 {
7077 	return gen_len(BPF_JGE, n);
7078 }
7079 
7080 /*
7081  * Actually, this is less than or equal.
7082  */
7083 struct block *
7084 gen_less(n)
7085 	int n;
7086 {
7087 	struct block *b;
7088 
7089 	b = gen_len(BPF_JGT, n);
7090 	gen_not(b);
7091 
7092 	return b;
7093 }
7094 
7095 /*
7096  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7097  * the beginning of the link-layer header.
7098  * XXX - that means you can't test values in the radiotap header, but
7099  * as that header is difficult if not impossible to parse generally
7100  * without a loop, that might not be a severe problem.  A new keyword
7101  * "radio" could be added for that, although what you'd really want
7102  * would be a way of testing particular radio header values, which
7103  * would generate code appropriate to the radio header in question.
7104  */
7105 struct block *
7106 gen_byteop(op, idx, val)
7107 	int op, idx, val;
7108 {
7109 	struct block *b;
7110 	struct slist *s;
7111 
7112 	switch (op) {
7113 	default:
7114 		abort();
7115 
7116 	case '=':
7117 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7118 
7119 	case '<':
7120 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7121 		return b;
7122 
7123 	case '>':
7124 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7125 		return b;
7126 
7127 	case '|':
7128 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7129 		break;
7130 
7131 	case '&':
7132 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7133 		break;
7134 	}
7135 	s->s.k = val;
7136 	b = new_block(JMP(BPF_JEQ));
7137 	b->stmts = s;
7138 	gen_not(b);
7139 
7140 	return b;
7141 }
7142 
7143 static u_char abroadcast[] = { 0x0 };
7144 
7145 struct block *
7146 gen_broadcast(proto)
7147 	int proto;
7148 {
7149 	bpf_u_int32 hostmask;
7150 	struct block *b0, *b1, *b2;
7151 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7152 
7153 	switch (proto) {
7154 
7155 	case Q_DEFAULT:
7156 	case Q_LINK:
7157 		switch (linktype) {
7158 		case DLT_ARCNET:
7159 		case DLT_ARCNET_LINUX:
7160 			return gen_ahostop(abroadcast, Q_DST);
7161 		case DLT_EN10MB:
7162 		case DLT_NETANALYZER:
7163 		case DLT_NETANALYZER_TRANSPARENT:
7164 			return gen_ehostop(ebroadcast, Q_DST);
7165 		case DLT_FDDI:
7166 			return gen_fhostop(ebroadcast, Q_DST);
7167 		case DLT_IEEE802:
7168 			return gen_thostop(ebroadcast, Q_DST);
7169 		case DLT_IEEE802_11:
7170 		case DLT_PRISM_HEADER:
7171 		case DLT_IEEE802_11_RADIO_AVS:
7172 		case DLT_IEEE802_11_RADIO:
7173 		case DLT_PPI:
7174 			return gen_wlanhostop(ebroadcast, Q_DST);
7175 		case DLT_IP_OVER_FC:
7176 			return gen_ipfchostop(ebroadcast, Q_DST);
7177 		case DLT_SUNATM:
7178 			if (is_lane) {
7179 				/*
7180 				 * Check that the packet doesn't begin with an
7181 				 * LE Control marker.  (We've already generated
7182 				 * a test for LANE.)
7183 				 */
7184 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7185 				    BPF_H, 0xFF00);
7186 				gen_not(b1);
7187 
7188 				/*
7189 				 * Now check the MAC address.
7190 				 */
7191 				b0 = gen_ehostop(ebroadcast, Q_DST);
7192 				gen_and(b1, b0);
7193 				return b0;
7194 			}
7195 			break;
7196 		default:
7197 			bpf_error("not a broadcast link");
7198 		}
7199 		break;
7200 
7201 	case Q_IP:
7202 		/*
7203 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7204 		 * as an indication that we don't know the netmask, and fail
7205 		 * in that case.
7206 		 */
7207 		if (netmask == PCAP_NETMASK_UNKNOWN)
7208 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7209 		b0 = gen_linktype(ETHERTYPE_IP);
7210 		hostmask = ~netmask;
7211 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7212 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7213 			      (bpf_int32)(~0 & hostmask), hostmask);
7214 		gen_or(b1, b2);
7215 		gen_and(b0, b2);
7216 		return b2;
7217 	}
7218 	bpf_error("only link-layer/IP broadcast filters supported");
7219 	/* NOTREACHED */
7220 	return NULL;
7221 }
7222 
7223 /*
7224  * Generate code to test the low-order bit of a MAC address (that's
7225  * the bottom bit of the *first* byte).
7226  */
7227 static struct block *
7228 gen_mac_multicast(offset)
7229 	int offset;
7230 {
7231 	register struct block *b0;
7232 	register struct slist *s;
7233 
7234 	/* link[offset] & 1 != 0 */
7235 	s = gen_load_a(OR_LINK, offset, BPF_B);
7236 	b0 = new_block(JMP(BPF_JSET));
7237 	b0->s.k = 1;
7238 	b0->stmts = s;
7239 	return b0;
7240 }
7241 
7242 struct block *
7243 gen_multicast(proto)
7244 	int proto;
7245 {
7246 	register struct block *b0, *b1, *b2;
7247 	register struct slist *s;
7248 
7249 	switch (proto) {
7250 
7251 	case Q_DEFAULT:
7252 	case Q_LINK:
7253 		switch (linktype) {
7254 		case DLT_ARCNET:
7255 		case DLT_ARCNET_LINUX:
7256 			/* all ARCnet multicasts use the same address */
7257 			return gen_ahostop(abroadcast, Q_DST);
7258 		case DLT_EN10MB:
7259 		case DLT_NETANALYZER:
7260 		case DLT_NETANALYZER_TRANSPARENT:
7261 			/* ether[0] & 1 != 0 */
7262 			return gen_mac_multicast(0);
7263 		case DLT_FDDI:
7264 			/*
7265 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7266 			 *
7267 			 * XXX - was that referring to bit-order issues?
7268 			 */
7269 			/* fddi[1] & 1 != 0 */
7270 			return gen_mac_multicast(1);
7271 		case DLT_IEEE802:
7272 			/* tr[2] & 1 != 0 */
7273 			return gen_mac_multicast(2);
7274 		case DLT_IEEE802_11:
7275 		case DLT_PRISM_HEADER:
7276 		case DLT_IEEE802_11_RADIO_AVS:
7277 		case DLT_IEEE802_11_RADIO:
7278 		case DLT_PPI:
7279 			/*
7280 			 * Oh, yuk.
7281 			 *
7282 			 *	For control frames, there is no DA.
7283 			 *
7284 			 *	For management frames, DA is at an
7285 			 *	offset of 4 from the beginning of
7286 			 *	the packet.
7287 			 *
7288 			 *	For data frames, DA is at an offset
7289 			 *	of 4 from the beginning of the packet
7290 			 *	if To DS is clear and at an offset of
7291 			 *	16 from the beginning of the packet
7292 			 *	if To DS is set.
7293 			 */
7294 
7295 			/*
7296 			 * Generate the tests to be done for data frames.
7297 			 *
7298 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7299 			 */
7300 			s = gen_load_a(OR_LINK, 1, BPF_B);
7301 			b1 = new_block(JMP(BPF_JSET));
7302 			b1->s.k = 0x01;	/* To DS */
7303 			b1->stmts = s;
7304 
7305 			/*
7306 			 * If To DS is set, the DA is at 16.
7307 			 */
7308 			b0 = gen_mac_multicast(16);
7309 			gen_and(b1, b0);
7310 
7311 			/*
7312 			 * Now, check for To DS not set, i.e. check
7313 			 * "!(link[1] & 0x01)".
7314 			 */
7315 			s = gen_load_a(OR_LINK, 1, BPF_B);
7316 			b2 = new_block(JMP(BPF_JSET));
7317 			b2->s.k = 0x01;	/* To DS */
7318 			b2->stmts = s;
7319 			gen_not(b2);
7320 
7321 			/*
7322 			 * If To DS is not set, the DA is at 4.
7323 			 */
7324 			b1 = gen_mac_multicast(4);
7325 			gen_and(b2, b1);
7326 
7327 			/*
7328 			 * Now OR together the last two checks.  That gives
7329 			 * the complete set of checks for data frames.
7330 			 */
7331 			gen_or(b1, b0);
7332 
7333 			/*
7334 			 * Now check for a data frame.
7335 			 * I.e, check "link[0] & 0x08".
7336 			 */
7337 			s = gen_load_a(OR_LINK, 0, BPF_B);
7338 			b1 = new_block(JMP(BPF_JSET));
7339 			b1->s.k = 0x08;
7340 			b1->stmts = s;
7341 
7342 			/*
7343 			 * AND that with the checks done for data frames.
7344 			 */
7345 			gen_and(b1, b0);
7346 
7347 			/*
7348 			 * If the high-order bit of the type value is 0, this
7349 			 * is a management frame.
7350 			 * I.e, check "!(link[0] & 0x08)".
7351 			 */
7352 			s = gen_load_a(OR_LINK, 0, BPF_B);
7353 			b2 = new_block(JMP(BPF_JSET));
7354 			b2->s.k = 0x08;
7355 			b2->stmts = s;
7356 			gen_not(b2);
7357 
7358 			/*
7359 			 * For management frames, the DA is at 4.
7360 			 */
7361 			b1 = gen_mac_multicast(4);
7362 			gen_and(b2, b1);
7363 
7364 			/*
7365 			 * OR that with the checks done for data frames.
7366 			 * That gives the checks done for management and
7367 			 * data frames.
7368 			 */
7369 			gen_or(b1, b0);
7370 
7371 			/*
7372 			 * If the low-order bit of the type value is 1,
7373 			 * this is either a control frame or a frame
7374 			 * with a reserved type, and thus not a
7375 			 * frame with an SA.
7376 			 *
7377 			 * I.e., check "!(link[0] & 0x04)".
7378 			 */
7379 			s = gen_load_a(OR_LINK, 0, BPF_B);
7380 			b1 = new_block(JMP(BPF_JSET));
7381 			b1->s.k = 0x04;
7382 			b1->stmts = s;
7383 			gen_not(b1);
7384 
7385 			/*
7386 			 * AND that with the checks for data and management
7387 			 * frames.
7388 			 */
7389 			gen_and(b1, b0);
7390 			return b0;
7391 		case DLT_IP_OVER_FC:
7392 			b0 = gen_mac_multicast(2);
7393 			return b0;
7394 		case DLT_SUNATM:
7395 			if (is_lane) {
7396 				/*
7397 				 * Check that the packet doesn't begin with an
7398 				 * LE Control marker.  (We've already generated
7399 				 * a test for LANE.)
7400 				 */
7401 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7402 				    BPF_H, 0xFF00);
7403 				gen_not(b1);
7404 
7405 				/* ether[off_mac] & 1 != 0 */
7406 				b0 = gen_mac_multicast(off_mac);
7407 				gen_and(b1, b0);
7408 				return b0;
7409 			}
7410 			break;
7411 		default:
7412 			break;
7413 		}
7414 		/* Link not known to support multicasts */
7415 		break;
7416 
7417 	case Q_IP:
7418 		b0 = gen_linktype(ETHERTYPE_IP);
7419 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7420 		gen_and(b0, b1);
7421 		return b1;
7422 
7423 	case Q_IPV6:
7424 		b0 = gen_linktype(ETHERTYPE_IPV6);
7425 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7426 		gen_and(b0, b1);
7427 		return b1;
7428 	}
7429 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7430 	/* NOTREACHED */
7431 	return NULL;
7432 }
7433 
7434 /*
7435  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7436  * Outbound traffic is sent by this machine, while inbound traffic is
7437  * sent by a remote machine (and may include packets destined for a
7438  * unicast or multicast link-layer address we are not subscribing to).
7439  * These are the same definitions implemented by pcap_setdirection().
7440  * Capturing only unicast traffic destined for this host is probably
7441  * better accomplished using a higher-layer filter.
7442  */
7443 struct block *
7444 gen_inbound(dir)
7445 	int dir;
7446 {
7447 	register struct block *b0;
7448 
7449 	/*
7450 	 * Only some data link types support inbound/outbound qualifiers.
7451 	 */
7452 	switch (linktype) {
7453 	case DLT_SLIP:
7454 		b0 = gen_relation(BPF_JEQ,
7455 			  gen_load(Q_LINK, gen_loadi(0), 1),
7456 			  gen_loadi(0),
7457 			  dir);
7458 		break;
7459 
7460 	case DLT_IPNET:
7461 		if (dir) {
7462 			/* match outgoing packets */
7463 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7464 		} else {
7465 			/* match incoming packets */
7466 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7467 		}
7468 		break;
7469 
7470 	case DLT_LINUX_SLL:
7471 		/* match outgoing packets */
7472 		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7473 		if (!dir) {
7474 			/* to filter on inbound traffic, invert the match */
7475 			gen_not(b0);
7476 		}
7477 		break;
7478 
7479 #ifdef HAVE_NET_PFVAR_H
7480 	case DLT_PFLOG:
7481 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7482 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7483 		break;
7484 #endif
7485 
7486 	case DLT_PPP_PPPD:
7487 		if (dir) {
7488 			/* match outgoing packets */
7489 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7490 		} else {
7491 			/* match incoming packets */
7492 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7493 		}
7494 		break;
7495 
7496         case DLT_JUNIPER_MFR:
7497         case DLT_JUNIPER_MLFR:
7498         case DLT_JUNIPER_MLPPP:
7499 	case DLT_JUNIPER_ATM1:
7500 	case DLT_JUNIPER_ATM2:
7501 	case DLT_JUNIPER_PPPOE:
7502 	case DLT_JUNIPER_PPPOE_ATM:
7503         case DLT_JUNIPER_GGSN:
7504         case DLT_JUNIPER_ES:
7505         case DLT_JUNIPER_MONITOR:
7506         case DLT_JUNIPER_SERVICES:
7507         case DLT_JUNIPER_ETHER:
7508         case DLT_JUNIPER_PPP:
7509         case DLT_JUNIPER_FRELAY:
7510         case DLT_JUNIPER_CHDLC:
7511         case DLT_JUNIPER_VP:
7512         case DLT_JUNIPER_ST:
7513         case DLT_JUNIPER_ISM:
7514         case DLT_JUNIPER_VS:
7515         case DLT_JUNIPER_SRX_E2E:
7516         case DLT_JUNIPER_FIBRECHANNEL:
7517 	case DLT_JUNIPER_ATM_CEMIC:
7518 
7519 		/* juniper flags (including direction) are stored
7520 		 * the byte after the 3-byte magic number */
7521 		if (dir) {
7522 			/* match outgoing packets */
7523 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7524 		} else {
7525 			/* match incoming packets */
7526 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7527 		}
7528 		break;
7529 
7530 	default:
7531 		/*
7532 		 * If we have packet meta-data indicating a direction,
7533 		 * check it, otherwise give up as this link-layer type
7534 		 * has nothing in the packet data.
7535 		 */
7536 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7537 		/*
7538 		 * We infer that this is Linux with PF_PACKET support.
7539 		 * If this is a *live* capture, we can look at
7540 		 * special meta-data in the filter expression;
7541 		 * if it's a savefile, we can't.
7542 		 */
7543 		if (bpf_pcap->sf.rfile != NULL) {
7544 			/* We have a FILE *, so this is a savefile */
7545 			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7546 			    linktype);
7547 			b0 = NULL;
7548 			/* NOTREACHED */
7549 		}
7550 		/* match outgoing packets */
7551 		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7552 		             PACKET_OUTGOING);
7553 		if (!dir) {
7554 			/* to filter on inbound traffic, invert the match */
7555 			gen_not(b0);
7556 		}
7557 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7558 		bpf_error("inbound/outbound not supported on linktype %d",
7559 		    linktype);
7560 		b0 = NULL;
7561 		/* NOTREACHED */
7562 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7563 	}
7564 	return (b0);
7565 }
7566 
7567 #ifdef HAVE_NET_PFVAR_H
7568 /* PF firewall log matched interface */
7569 struct block *
7570 gen_pf_ifname(const char *ifname)
7571 {
7572 	struct block *b0;
7573 	u_int len, off;
7574 
7575 	if (linktype != DLT_PFLOG) {
7576 		bpf_error("ifname supported only on PF linktype");
7577 		/* NOTREACHED */
7578 	}
7579 	len = sizeof(((struct pfloghdr *)0)->ifname);
7580 	off = offsetof(struct pfloghdr, ifname);
7581 	if (strlen(ifname) >= len) {
7582 		bpf_error("ifname interface names can only be %d characters",
7583 		    len-1);
7584 		/* NOTREACHED */
7585 	}
7586 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7587 	return (b0);
7588 }
7589 
7590 /* PF firewall log ruleset name */
7591 struct block *
7592 gen_pf_ruleset(char *ruleset)
7593 {
7594 	struct block *b0;
7595 
7596 	if (linktype != DLT_PFLOG) {
7597 		bpf_error("ruleset supported only on PF linktype");
7598 		/* NOTREACHED */
7599 	}
7600 
7601 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7602 		bpf_error("ruleset names can only be %ld characters",
7603 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7604 		/* NOTREACHED */
7605 	}
7606 
7607 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7608 	    strlen(ruleset), (const u_char *)ruleset);
7609 	return (b0);
7610 }
7611 
7612 /* PF firewall log rule number */
7613 struct block *
7614 gen_pf_rnr(int rnr)
7615 {
7616 	struct block *b0;
7617 
7618 	if (linktype != DLT_PFLOG) {
7619 		bpf_error("rnr supported only on PF linktype");
7620 		/* NOTREACHED */
7621 	}
7622 
7623 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7624 		 (bpf_int32)rnr);
7625 	return (b0);
7626 }
7627 
7628 /* PF firewall log sub-rule number */
7629 struct block *
7630 gen_pf_srnr(int srnr)
7631 {
7632 	struct block *b0;
7633 
7634 	if (linktype != DLT_PFLOG) {
7635 		bpf_error("srnr supported only on PF linktype");
7636 		/* NOTREACHED */
7637 	}
7638 
7639 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7640 	    (bpf_int32)srnr);
7641 	return (b0);
7642 }
7643 
7644 /* PF firewall log reason code */
7645 struct block *
7646 gen_pf_reason(int reason)
7647 {
7648 	struct block *b0;
7649 
7650 	if (linktype != DLT_PFLOG) {
7651 		bpf_error("reason supported only on PF linktype");
7652 		/* NOTREACHED */
7653 	}
7654 
7655 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7656 	    (bpf_int32)reason);
7657 	return (b0);
7658 }
7659 
7660 /* PF firewall log action */
7661 struct block *
7662 gen_pf_action(int action)
7663 {
7664 	struct block *b0;
7665 
7666 	if (linktype != DLT_PFLOG) {
7667 		bpf_error("action supported only on PF linktype");
7668 		/* NOTREACHED */
7669 	}
7670 
7671 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7672 	    (bpf_int32)action);
7673 	return (b0);
7674 }
7675 #else /* !HAVE_NET_PFVAR_H */
7676 struct block *
7677 gen_pf_ifname(const char *ifname)
7678 {
7679 	bpf_error("libpcap was compiled without pf support");
7680 	/* NOTREACHED */
7681 	return (NULL);
7682 }
7683 
7684 struct block *
7685 gen_pf_ruleset(char *ruleset)
7686 {
7687 	bpf_error("libpcap was compiled on a machine without pf support");
7688 	/* NOTREACHED */
7689 	return (NULL);
7690 }
7691 
7692 struct block *
7693 gen_pf_rnr(int rnr)
7694 {
7695 	bpf_error("libpcap was compiled on a machine without pf support");
7696 	/* NOTREACHED */
7697 	return (NULL);
7698 }
7699 
7700 struct block *
7701 gen_pf_srnr(int srnr)
7702 {
7703 	bpf_error("libpcap was compiled on a machine without pf support");
7704 	/* NOTREACHED */
7705 	return (NULL);
7706 }
7707 
7708 struct block *
7709 gen_pf_reason(int reason)
7710 {
7711 	bpf_error("libpcap was compiled on a machine without pf support");
7712 	/* NOTREACHED */
7713 	return (NULL);
7714 }
7715 
7716 struct block *
7717 gen_pf_action(int action)
7718 {
7719 	bpf_error("libpcap was compiled on a machine without pf support");
7720 	/* NOTREACHED */
7721 	return (NULL);
7722 }
7723 #endif /* HAVE_NET_PFVAR_H */
7724 
7725 /* IEEE 802.11 wireless header */
7726 struct block *
7727 gen_p80211_type(int type, int mask)
7728 {
7729 	struct block *b0;
7730 
7731 	switch (linktype) {
7732 
7733 	case DLT_IEEE802_11:
7734 	case DLT_PRISM_HEADER:
7735 	case DLT_IEEE802_11_RADIO_AVS:
7736 	case DLT_IEEE802_11_RADIO:
7737 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7738 		    (bpf_int32)mask);
7739 		break;
7740 
7741 	default:
7742 		bpf_error("802.11 link-layer types supported only on 802.11");
7743 		/* NOTREACHED */
7744 	}
7745 
7746 	return (b0);
7747 }
7748 
7749 struct block *
7750 gen_p80211_fcdir(int fcdir)
7751 {
7752 	struct block *b0;
7753 
7754 	switch (linktype) {
7755 
7756 	case DLT_IEEE802_11:
7757 	case DLT_PRISM_HEADER:
7758 	case DLT_IEEE802_11_RADIO_AVS:
7759 	case DLT_IEEE802_11_RADIO:
7760 		break;
7761 
7762 	default:
7763 		bpf_error("frame direction supported only with 802.11 headers");
7764 		/* NOTREACHED */
7765 	}
7766 
7767 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7768 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7769 
7770 	return (b0);
7771 }
7772 
7773 struct block *
7774 gen_acode(eaddr, q)
7775 	register const u_char *eaddr;
7776 	struct qual q;
7777 {
7778 	switch (linktype) {
7779 
7780 	case DLT_ARCNET:
7781 	case DLT_ARCNET_LINUX:
7782 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7783 		    q.proto == Q_LINK)
7784 			return (gen_ahostop(eaddr, (int)q.dir));
7785 		else {
7786 			bpf_error("ARCnet address used in non-arc expression");
7787 			/* NOTREACHED */
7788 		}
7789 		break;
7790 
7791 	default:
7792 		bpf_error("aid supported only on ARCnet");
7793 		/* NOTREACHED */
7794 	}
7795 	bpf_error("ARCnet address used in non-arc expression");
7796 	/* NOTREACHED */
7797 	return NULL;
7798 }
7799 
7800 static struct block *
7801 gen_ahostop(eaddr, dir)
7802 	register const u_char *eaddr;
7803 	register int dir;
7804 {
7805 	register struct block *b0, *b1;
7806 
7807 	switch (dir) {
7808 	/* src comes first, different from Ethernet */
7809 	case Q_SRC:
7810 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7811 
7812 	case Q_DST:
7813 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7814 
7815 	case Q_AND:
7816 		b0 = gen_ahostop(eaddr, Q_SRC);
7817 		b1 = gen_ahostop(eaddr, Q_DST);
7818 		gen_and(b0, b1);
7819 		return b1;
7820 
7821 	case Q_DEFAULT:
7822 	case Q_OR:
7823 		b0 = gen_ahostop(eaddr, Q_SRC);
7824 		b1 = gen_ahostop(eaddr, Q_DST);
7825 		gen_or(b0, b1);
7826 		return b1;
7827 
7828 	case Q_ADDR1:
7829 		bpf_error("'addr1' is only supported on 802.11");
7830 		break;
7831 
7832 	case Q_ADDR2:
7833 		bpf_error("'addr2' is only supported on 802.11");
7834 		break;
7835 
7836 	case Q_ADDR3:
7837 		bpf_error("'addr3' is only supported on 802.11");
7838 		break;
7839 
7840 	case Q_ADDR4:
7841 		bpf_error("'addr4' is only supported on 802.11");
7842 		break;
7843 
7844 	case Q_RA:
7845 		bpf_error("'ra' is only supported on 802.11");
7846 		break;
7847 
7848 	case Q_TA:
7849 		bpf_error("'ta' is only supported on 802.11");
7850 		break;
7851 	}
7852 	abort();
7853 	/* NOTREACHED */
7854 }
7855 
7856 /*
7857  * support IEEE 802.1Q VLAN trunk over ethernet
7858  */
7859 struct block *
7860 gen_vlan(vlan_num)
7861 	int vlan_num;
7862 {
7863 	struct	block	*b0, *b1;
7864 
7865 	/* can't check for VLAN-encapsulated packets inside MPLS */
7866 	if (label_stack_depth > 0)
7867 		bpf_error("no VLAN match after MPLS");
7868 
7869 	/*
7870 	 * Check for a VLAN packet, and then change the offsets to point
7871 	 * to the type and data fields within the VLAN packet.  Just
7872 	 * increment the offsets, so that we can support a hierarchy, e.g.
7873 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7874 	 * VLAN 100.
7875 	 *
7876 	 * XXX - this is a bit of a kludge.  If we were to split the
7877 	 * compiler into a parser that parses an expression and
7878 	 * generates an expression tree, and a code generator that
7879 	 * takes an expression tree (which could come from our
7880 	 * parser or from some other parser) and generates BPF code,
7881 	 * we could perhaps make the offsets parameters of routines
7882 	 * and, in the handler for an "AND" node, pass to subnodes
7883 	 * other than the VLAN node the adjusted offsets.
7884 	 *
7885 	 * This would mean that "vlan" would, instead of changing the
7886 	 * behavior of *all* tests after it, change only the behavior
7887 	 * of tests ANDed with it.  That would change the documented
7888 	 * semantics of "vlan", which might break some expressions.
7889 	 * However, it would mean that "(vlan and ip) or ip" would check
7890 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7891 	 * checking only for VLAN-encapsulated IP, so that could still
7892 	 * be considered worth doing; it wouldn't break expressions
7893 	 * that are of the form "vlan and ..." or "vlan N and ...",
7894 	 * which I suspect are the most common expressions involving
7895 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7896 	 * would really want, now, as all the "or ..." tests would
7897 	 * be done assuming a VLAN, even though the "or" could be viewed
7898 	 * as meaning "or, if this isn't a VLAN packet...".
7899 	 */
7900 	orig_nl = off_nl;
7901 
7902 	switch (linktype) {
7903 
7904 	case DLT_EN10MB:
7905 	case DLT_NETANALYZER:
7906 	case DLT_NETANALYZER_TRANSPARENT:
7907 		/* check for VLAN, including QinQ */
7908 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7909 		    (bpf_int32)ETHERTYPE_8021Q);
7910 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7911 		    (bpf_int32)ETHERTYPE_8021QINQ);
7912 		gen_or(b0,b1);
7913 		b0 = b1;
7914 
7915 		/* If a specific VLAN is requested, check VLAN id */
7916 		if (vlan_num >= 0) {
7917 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7918 			    (bpf_int32)vlan_num, 0x0fff);
7919 			gen_and(b0, b1);
7920 			b0 = b1;
7921 		}
7922 
7923 		off_macpl += 4;
7924 		off_linktype += 4;
7925 #if 0
7926 		off_nl_nosnap += 4;
7927 		off_nl += 4;
7928 #endif
7929 		break;
7930 
7931 	default:
7932 		bpf_error("no VLAN support for data link type %d",
7933 		      linktype);
7934 		/*NOTREACHED*/
7935 	}
7936 
7937 	return (b0);
7938 }
7939 
7940 /*
7941  * support for MPLS
7942  */
7943 struct block *
7944 gen_mpls(label_num)
7945 	int label_num;
7946 {
7947 	struct	block	*b0,*b1;
7948 
7949 	/*
7950 	 * Change the offsets to point to the type and data fields within
7951 	 * the MPLS packet.  Just increment the offsets, so that we
7952 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7953 	 * capture packets with an outer label of 100000 and an inner
7954 	 * label of 1024.
7955 	 *
7956 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7957 	 */
7958         orig_nl = off_nl;
7959 
7960         if (label_stack_depth > 0) {
7961             /* just match the bottom-of-stack bit clear */
7962             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7963         } else {
7964             /*
7965              * Indicate that we're checking MPLS-encapsulated headers,
7966              * to make sure higher level code generators don't try to
7967              * match against IP-related protocols such as Q_ARP, Q_RARP
7968              * etc.
7969              */
7970             switch (linktype) {
7971 
7972             case DLT_C_HDLC: /* fall through */
7973             case DLT_EN10MB:
7974             case DLT_NETANALYZER:
7975             case DLT_NETANALYZER_TRANSPARENT:
7976                     b0 = gen_linktype(ETHERTYPE_MPLS);
7977                     break;
7978 
7979             case DLT_PPP:
7980                     b0 = gen_linktype(PPP_MPLS_UCAST);
7981                     break;
7982 
7983                     /* FIXME add other DLT_s ...
7984                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
7985                      * leave it for now */
7986 
7987             default:
7988                     bpf_error("no MPLS support for data link type %d",
7989                           linktype);
7990                     b0 = NULL;
7991                     /*NOTREACHED*/
7992                     break;
7993             }
7994         }
7995 
7996 	/* If a specific MPLS label is requested, check it */
7997 	if (label_num >= 0) {
7998 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7999 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8000 		    0xfffff000); /* only compare the first 20 bits */
8001 		gen_and(b0, b1);
8002 		b0 = b1;
8003 	}
8004 
8005         off_nl_nosnap += 4;
8006         off_nl += 4;
8007         label_stack_depth++;
8008 	return (b0);
8009 }
8010 
8011 /*
8012  * Support PPPOE discovery and session.
8013  */
8014 struct block *
8015 gen_pppoed()
8016 {
8017 	/* check for PPPoE discovery */
8018 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8019 }
8020 
8021 struct block *
8022 gen_pppoes()
8023 {
8024 	struct block *b0;
8025 
8026 	/*
8027 	 * Test against the PPPoE session link-layer type.
8028 	 */
8029 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8030 
8031 	/*
8032 	 * Change the offsets to point to the type and data fields within
8033 	 * the PPP packet, and note that this is PPPoE rather than
8034 	 * raw PPP.
8035 	 *
8036 	 * XXX - this is a bit of a kludge.  If we were to split the
8037 	 * compiler into a parser that parses an expression and
8038 	 * generates an expression tree, and a code generator that
8039 	 * takes an expression tree (which could come from our
8040 	 * parser or from some other parser) and generates BPF code,
8041 	 * we could perhaps make the offsets parameters of routines
8042 	 * and, in the handler for an "AND" node, pass to subnodes
8043 	 * other than the PPPoE node the adjusted offsets.
8044 	 *
8045 	 * This would mean that "pppoes" would, instead of changing the
8046 	 * behavior of *all* tests after it, change only the behavior
8047 	 * of tests ANDed with it.  That would change the documented
8048 	 * semantics of "pppoes", which might break some expressions.
8049 	 * However, it would mean that "(pppoes and ip) or ip" would check
8050 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8051 	 * checking only for VLAN-encapsulated IP, so that could still
8052 	 * be considered worth doing; it wouldn't break expressions
8053 	 * that are of the form "pppoes and ..." which I suspect are the
8054 	 * most common expressions involving "pppoes".  "pppoes or ..."
8055 	 * doesn't necessarily do what the user would really want, now,
8056 	 * as all the "or ..." tests would be done assuming PPPoE, even
8057 	 * though the "or" could be viewed as meaning "or, if this isn't
8058 	 * a PPPoE packet...".
8059 	 */
8060 	orig_linktype = off_linktype;	/* save original values */
8061 	orig_nl = off_nl;
8062 	is_pppoes = 1;
8063 
8064 	/*
8065 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8066 	 * PPPoE header, followed by a PPP packet.
8067 	 *
8068 	 * There is no HDLC encapsulation for the PPP packet (it's
8069 	 * encapsulated in PPPoES instead), so the link-layer type
8070 	 * starts at the first byte of the PPP packet.  For PPPoE,
8071 	 * that offset is relative to the beginning of the total
8072 	 * link-layer payload, including any 802.2 LLC header, so
8073 	 * it's 6 bytes past off_nl.
8074 	 */
8075 	off_linktype = off_nl + 6;
8076 
8077 	/*
8078 	 * The network-layer offsets are relative to the beginning
8079 	 * of the MAC-layer payload; that's past the 6-byte
8080 	 * PPPoE header and the 2-byte PPP header.
8081 	 */
8082 	off_nl = 6+2;
8083 	off_nl_nosnap = 6+2;
8084 
8085 	return b0;
8086 }
8087 
8088 struct block *
8089 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8090 	int atmfield;
8091 	bpf_int32 jvalue;
8092 	bpf_u_int32 jtype;
8093 	int reverse;
8094 {
8095 	struct block *b0;
8096 
8097 	switch (atmfield) {
8098 
8099 	case A_VPI:
8100 		if (!is_atm)
8101 			bpf_error("'vpi' supported only on raw ATM");
8102 		if (off_vpi == (u_int)-1)
8103 			abort();
8104 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8105 		    reverse, jvalue);
8106 		break;
8107 
8108 	case A_VCI:
8109 		if (!is_atm)
8110 			bpf_error("'vci' supported only on raw ATM");
8111 		if (off_vci == (u_int)-1)
8112 			abort();
8113 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8114 		    reverse, jvalue);
8115 		break;
8116 
8117 	case A_PROTOTYPE:
8118 		if (off_proto == (u_int)-1)
8119 			abort();	/* XXX - this isn't on FreeBSD */
8120 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8121 		    reverse, jvalue);
8122 		break;
8123 
8124 	case A_MSGTYPE:
8125 		if (off_payload == (u_int)-1)
8126 			abort();
8127 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8128 		    0xffffffff, jtype, reverse, jvalue);
8129 		break;
8130 
8131 	case A_CALLREFTYPE:
8132 		if (!is_atm)
8133 			bpf_error("'callref' supported only on raw ATM");
8134 		if (off_proto == (u_int)-1)
8135 			abort();
8136 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8137 		    jtype, reverse, jvalue);
8138 		break;
8139 
8140 	default:
8141 		abort();
8142 	}
8143 	return b0;
8144 }
8145 
8146 struct block *
8147 gen_atmtype_abbrev(type)
8148 	int type;
8149 {
8150 	struct block *b0, *b1;
8151 
8152 	switch (type) {
8153 
8154 	case A_METAC:
8155 		/* Get all packets in Meta signalling Circuit */
8156 		if (!is_atm)
8157 			bpf_error("'metac' supported only on raw ATM");
8158 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8159 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8160 		gen_and(b0, b1);
8161 		break;
8162 
8163 	case A_BCC:
8164 		/* Get all packets in Broadcast Circuit*/
8165 		if (!is_atm)
8166 			bpf_error("'bcc' supported only on raw ATM");
8167 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8168 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8169 		gen_and(b0, b1);
8170 		break;
8171 
8172 	case A_OAMF4SC:
8173 		/* Get all cells in Segment OAM F4 circuit*/
8174 		if (!is_atm)
8175 			bpf_error("'oam4sc' supported only on raw ATM");
8176 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8177 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8178 		gen_and(b0, b1);
8179 		break;
8180 
8181 	case A_OAMF4EC:
8182 		/* Get all cells in End-to-End OAM F4 Circuit*/
8183 		if (!is_atm)
8184 			bpf_error("'oam4ec' supported only on raw ATM");
8185 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8186 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8187 		gen_and(b0, b1);
8188 		break;
8189 
8190 	case A_SC:
8191 		/*  Get all packets in connection Signalling Circuit */
8192 		if (!is_atm)
8193 			bpf_error("'sc' supported only on raw ATM");
8194 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8195 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8196 		gen_and(b0, b1);
8197 		break;
8198 
8199 	case A_ILMIC:
8200 		/* Get all packets in ILMI Circuit */
8201 		if (!is_atm)
8202 			bpf_error("'ilmic' supported only on raw ATM");
8203 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8204 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8205 		gen_and(b0, b1);
8206 		break;
8207 
8208 	case A_LANE:
8209 		/* Get all LANE packets */
8210 		if (!is_atm)
8211 			bpf_error("'lane' supported only on raw ATM");
8212 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8213 
8214 		/*
8215 		 * Arrange that all subsequent tests assume LANE
8216 		 * rather than LLC-encapsulated packets, and set
8217 		 * the offsets appropriately for LANE-encapsulated
8218 		 * Ethernet.
8219 		 *
8220 		 * "off_mac" is the offset of the Ethernet header,
8221 		 * which is 2 bytes past the ATM pseudo-header
8222 		 * (skipping the pseudo-header and 2-byte LE Client
8223 		 * field).  The other offsets are Ethernet offsets
8224 		 * relative to "off_mac".
8225 		 */
8226 		is_lane = 1;
8227 		off_mac = off_payload + 2;	/* MAC header */
8228 		off_linktype = off_mac + 12;
8229 		off_macpl = off_mac + 14;	/* Ethernet */
8230 		off_nl = 0;			/* Ethernet II */
8231 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8232 		break;
8233 
8234 	case A_LLC:
8235 		/* Get all LLC-encapsulated packets */
8236 		if (!is_atm)
8237 			bpf_error("'llc' supported only on raw ATM");
8238 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8239 		is_lane = 0;
8240 		break;
8241 
8242 	default:
8243 		abort();
8244 	}
8245 	return b1;
8246 }
8247 
8248 /*
8249  * Filtering for MTP2 messages based on li value
8250  * FISU, length is null
8251  * LSSU, length is 1 or 2
8252  * MSU, length is 3 or more
8253  */
8254 struct block *
8255 gen_mtp2type_abbrev(type)
8256 	int type;
8257 {
8258 	struct block *b0, *b1;
8259 
8260 	switch (type) {
8261 
8262 	case M_FISU:
8263 		if ( (linktype != DLT_MTP2) &&
8264 		     (linktype != DLT_ERF) &&
8265 		     (linktype != DLT_MTP2_WITH_PHDR) )
8266 			bpf_error("'fisu' supported only on MTP2");
8267 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8268 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8269 		break;
8270 
8271 	case M_LSSU:
8272 		if ( (linktype != DLT_MTP2) &&
8273 		     (linktype != DLT_ERF) &&
8274 		     (linktype != DLT_MTP2_WITH_PHDR) )
8275 			bpf_error("'lssu' supported only on MTP2");
8276 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8277 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8278 		gen_and(b1, b0);
8279 		break;
8280 
8281 	case M_MSU:
8282 		if ( (linktype != DLT_MTP2) &&
8283 		     (linktype != DLT_ERF) &&
8284 		     (linktype != DLT_MTP2_WITH_PHDR) )
8285 			bpf_error("'msu' supported only on MTP2");
8286 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8287 		break;
8288 
8289 	default:
8290 		abort();
8291 	}
8292 	return b0;
8293 }
8294 
8295 struct block *
8296 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8297 	int mtp3field;
8298 	bpf_u_int32 jvalue;
8299 	bpf_u_int32 jtype;
8300 	int reverse;
8301 {
8302 	struct block *b0;
8303 	bpf_u_int32 val1 , val2 , val3;
8304 
8305 	switch (mtp3field) {
8306 
8307 	case M_SIO:
8308 		if (off_sio == (u_int)-1)
8309 			bpf_error("'sio' supported only on SS7");
8310 		/* sio coded on 1 byte so max value 255 */
8311 		if(jvalue > 255)
8312 		        bpf_error("sio value %u too big; max value = 255",
8313 		            jvalue);
8314 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8315 		    (u_int)jtype, reverse, (u_int)jvalue);
8316 		break;
8317 
8318         case M_OPC:
8319 	        if (off_opc == (u_int)-1)
8320 			bpf_error("'opc' supported only on SS7");
8321 		/* opc coded on 14 bits so max value 16383 */
8322 		if (jvalue > 16383)
8323 		        bpf_error("opc value %u too big; max value = 16383",
8324 		            jvalue);
8325 		/* the following instructions are made to convert jvalue
8326 		 * to the form used to write opc in an ss7 message*/
8327 		val1 = jvalue & 0x00003c00;
8328 		val1 = val1 >>10;
8329 		val2 = jvalue & 0x000003fc;
8330 		val2 = val2 <<6;
8331 		val3 = jvalue & 0x00000003;
8332 		val3 = val3 <<22;
8333 		jvalue = val1 + val2 + val3;
8334 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8335 		    (u_int)jtype, reverse, (u_int)jvalue);
8336 		break;
8337 
8338 	case M_DPC:
8339 	        if (off_dpc == (u_int)-1)
8340 			bpf_error("'dpc' supported only on SS7");
8341 		/* dpc coded on 14 bits so max value 16383 */
8342 		if (jvalue > 16383)
8343 		        bpf_error("dpc value %u too big; max value = 16383",
8344 		            jvalue);
8345 		/* the following instructions are made to convert jvalue
8346 		 * to the forme used to write dpc in an ss7 message*/
8347 		val1 = jvalue & 0x000000ff;
8348 		val1 = val1 << 24;
8349 		val2 = jvalue & 0x00003f00;
8350 		val2 = val2 << 8;
8351 		jvalue = val1 + val2;
8352 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8353 		    (u_int)jtype, reverse, (u_int)jvalue);
8354 		break;
8355 
8356 	case M_SLS:
8357 	        if (off_sls == (u_int)-1)
8358 			bpf_error("'sls' supported only on SS7");
8359 		/* sls coded on 4 bits so max value 15 */
8360 		if (jvalue > 15)
8361 		         bpf_error("sls value %u too big; max value = 15",
8362 		             jvalue);
8363 		/* the following instruction is made to convert jvalue
8364 		 * to the forme used to write sls in an ss7 message*/
8365 		jvalue = jvalue << 4;
8366 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8367 		    (u_int)jtype,reverse, (u_int)jvalue);
8368 		break;
8369 
8370 	default:
8371 		abort();
8372 	}
8373 	return b0;
8374 }
8375 
8376 static struct block *
8377 gen_msg_abbrev(type)
8378 	int type;
8379 {
8380 	struct block *b1;
8381 
8382 	/*
8383 	 * Q.2931 signalling protocol messages for handling virtual circuits
8384 	 * establishment and teardown
8385 	 */
8386 	switch (type) {
8387 
8388 	case A_SETUP:
8389 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8390 		break;
8391 
8392 	case A_CALLPROCEED:
8393 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8394 		break;
8395 
8396 	case A_CONNECT:
8397 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8398 		break;
8399 
8400 	case A_CONNECTACK:
8401 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8402 		break;
8403 
8404 	case A_RELEASE:
8405 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8406 		break;
8407 
8408 	case A_RELEASE_DONE:
8409 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8410 		break;
8411 
8412 	default:
8413 		abort();
8414 	}
8415 	return b1;
8416 }
8417 
8418 struct block *
8419 gen_atmmulti_abbrev(type)
8420 	int type;
8421 {
8422 	struct block *b0, *b1;
8423 
8424 	switch (type) {
8425 
8426 	case A_OAM:
8427 		if (!is_atm)
8428 			bpf_error("'oam' supported only on raw ATM");
8429 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8430 		break;
8431 
8432 	case A_OAMF4:
8433 		if (!is_atm)
8434 			bpf_error("'oamf4' supported only on raw ATM");
8435 		/* OAM F4 type */
8436 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8437 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8438 		gen_or(b0, b1);
8439 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8440 		gen_and(b0, b1);
8441 		break;
8442 
8443 	case A_CONNECTMSG:
8444 		/*
8445 		 * Get Q.2931 signalling messages for switched
8446 		 * virtual connection
8447 		 */
8448 		if (!is_atm)
8449 			bpf_error("'connectmsg' supported only on raw ATM");
8450 		b0 = gen_msg_abbrev(A_SETUP);
8451 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8452 		gen_or(b0, b1);
8453 		b0 = gen_msg_abbrev(A_CONNECT);
8454 		gen_or(b0, b1);
8455 		b0 = gen_msg_abbrev(A_CONNECTACK);
8456 		gen_or(b0, b1);
8457 		b0 = gen_msg_abbrev(A_RELEASE);
8458 		gen_or(b0, b1);
8459 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8460 		gen_or(b0, b1);
8461 		b0 = gen_atmtype_abbrev(A_SC);
8462 		gen_and(b0, b1);
8463 		break;
8464 
8465 	case A_METACONNECT:
8466 		if (!is_atm)
8467 			bpf_error("'metaconnect' supported only on raw ATM");
8468 		b0 = gen_msg_abbrev(A_SETUP);
8469 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8470 		gen_or(b0, b1);
8471 		b0 = gen_msg_abbrev(A_CONNECT);
8472 		gen_or(b0, b1);
8473 		b0 = gen_msg_abbrev(A_RELEASE);
8474 		gen_or(b0, b1);
8475 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8476 		gen_or(b0, b1);
8477 		b0 = gen_atmtype_abbrev(A_METAC);
8478 		gen_and(b0, b1);
8479 		break;
8480 
8481 	default:
8482 		abort();
8483 	}
8484 	return b1;
8485 }
8486