xref: /dragonfly/contrib/libpcap/gencode.c (revision 4353aa4e)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 #ifndef lint
23 static const char rcsid[] _U_ =
24     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25 #endif
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #ifdef WIN32
32 #include <pcap-stdinc.h>
33 #else /* WIN32 */
34 #if HAVE_INTTYPES_H
35 #include <inttypes.h>
36 #elif HAVE_STDINT_H
37 #include <stdint.h>
38 #endif
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
41 #endif
42 #include <sys/types.h>
43 #include <sys/socket.h>
44 #endif /* WIN32 */
45 
46 /*
47  * XXX - why was this included even on UNIX?
48  */
49 #ifdef __MINGW32__
50 #include "ip6_misc.h"
51 #endif
52 
53 #ifndef WIN32
54 
55 #ifdef __NetBSD__
56 #include <sys/param.h>
57 #endif
58 
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
61 
62 #endif /* WIN32 */
63 
64 #include <stdlib.h>
65 #include <string.h>
66 #include <memory.h>
67 #include <setjmp.h>
68 #include <stdarg.h>
69 
70 #ifdef MSDOS
71 #include "pcap-dos.h"
72 #endif
73 
74 #include "pcap-int.h"
75 
76 #include "ethertype.h"
77 #include "nlpid.h"
78 #include "llc.h"
79 #include "gencode.h"
80 #include "ieee80211.h"
81 #include "atmuni31.h"
82 #include "sunatmpos.h"
83 #include "ppp.h"
84 #include "pcap/sll.h"
85 #include "pcap/ipnet.h"
86 #include "arcnet.h"
87 #ifdef HAVE_NET_PFVAR_H
88 #include <sys/socket.h>
89 #include <net/if.h>
90 #include <net/pf/pfvar.h>
91 #include <net/pf/if_pflog.h>
92 #endif
93 #ifndef offsetof
94 #define offsetof(s, e) ((size_t)&((s *)0)->e)
95 #endif
96 #ifdef INET6
97 #ifndef WIN32
98 #include <netdb.h>	/* for "struct addrinfo" */
99 #endif /* WIN32 */
100 #endif /*INET6*/
101 #include <pcap/namedb.h>
102 
103 #define ETHERMTU	1500
104 
105 #ifndef IPPROTO_SCTP
106 #define IPPROTO_SCTP 132
107 #endif
108 
109 #ifdef HAVE_OS_PROTO_H
110 #include "os-proto.h"
111 #endif
112 
113 #define JMP(c) ((c)|BPF_JMP|BPF_K)
114 
115 /* Locals */
116 static jmp_buf top_ctx;
117 static pcap_t *bpf_pcap;
118 
119 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
120 #ifdef WIN32
121 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
122 #else
123 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
124 #endif
125 
126 /* XXX */
127 #ifdef PCAP_FDDIPAD
128 static int	pcap_fddipad;
129 #endif
130 
131 /* VARARGS */
132 void
133 bpf_error(const char *fmt, ...)
134 {
135 	va_list ap;
136 
137 	va_start(ap, fmt);
138 	if (bpf_pcap != NULL)
139 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
140 		    fmt, ap);
141 	va_end(ap);
142 	longjmp(top_ctx, 1);
143 	/* NOTREACHED */
144 }
145 
146 static void init_linktype(pcap_t *);
147 
148 static void init_regs(void);
149 static int alloc_reg(void);
150 static void free_reg(int);
151 
152 static struct block *root;
153 
154 /*
155  * Value passed to gen_load_a() to indicate what the offset argument
156  * is relative to.
157  */
158 enum e_offrel {
159 	OR_PACKET,	/* relative to the beginning of the packet */
160 	OR_LINK,	/* relative to the beginning of the link-layer header */
161 	OR_MACPL,	/* relative to the end of the MAC-layer header */
162 	OR_NET,		/* relative to the network-layer header */
163 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
164 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
165 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
166 };
167 
168 #ifdef INET6
169 /*
170  * As errors are handled by a longjmp, anything allocated must be freed
171  * in the longjmp handler, so it must be reachable from that handler.
172  * One thing that's allocated is the result of pcap_nametoaddrinfo();
173  * it must be freed with freeaddrinfo().  This variable points to any
174  * addrinfo structure that would need to be freed.
175  */
176 static struct addrinfo *ai;
177 #endif
178 
179 /*
180  * We divy out chunks of memory rather than call malloc each time so
181  * we don't have to worry about leaking memory.  It's probably
182  * not a big deal if all this memory was wasted but if this ever
183  * goes into a library that would probably not be a good idea.
184  *
185  * XXX - this *is* in a library....
186  */
187 #define NCHUNKS 16
188 #define CHUNK0SIZE 1024
189 struct chunk {
190 	u_int n_left;
191 	void *m;
192 };
193 
194 static struct chunk chunks[NCHUNKS];
195 static int cur_chunk;
196 
197 static void *newchunk(u_int);
198 static void freechunks(void);
199 static inline struct block *new_block(int);
200 static inline struct slist *new_stmt(int);
201 static struct block *gen_retblk(int);
202 static inline void syntax(void);
203 
204 static void backpatch(struct block *, struct block *);
205 static void merge(struct block *, struct block *);
206 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
207 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
208 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
209 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
210 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
211 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
212     bpf_u_int32);
213 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
214 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
215     bpf_u_int32, bpf_u_int32, int, bpf_int32);
216 static struct slist *gen_load_llrel(u_int, u_int);
217 static struct slist *gen_load_macplrel(u_int, u_int);
218 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
219 static struct slist *gen_loadx_iphdrlen(void);
220 static struct block *gen_uncond(int);
221 static inline struct block *gen_true(void);
222 static inline struct block *gen_false(void);
223 static struct block *gen_ether_linktype(int);
224 static struct block *gen_ipnet_linktype(int);
225 static struct block *gen_linux_sll_linktype(int);
226 static struct slist *gen_load_prism_llprefixlen(void);
227 static struct slist *gen_load_avs_llprefixlen(void);
228 static struct slist *gen_load_radiotap_llprefixlen(void);
229 static struct slist *gen_load_ppi_llprefixlen(void);
230 static void insert_compute_vloffsets(struct block *);
231 static struct slist *gen_llprefixlen(void);
232 static struct slist *gen_off_macpl(void);
233 static int ethertype_to_ppptype(int);
234 static struct block *gen_linktype(int);
235 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
236 static struct block *gen_llc_linktype(int);
237 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
238 #ifdef INET6
239 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
240 #endif
241 static struct block *gen_ahostop(const u_char *, int);
242 static struct block *gen_ehostop(const u_char *, int);
243 static struct block *gen_fhostop(const u_char *, int);
244 static struct block *gen_thostop(const u_char *, int);
245 static struct block *gen_wlanhostop(const u_char *, int);
246 static struct block *gen_ipfchostop(const u_char *, int);
247 static struct block *gen_dnhostop(bpf_u_int32, int);
248 static struct block *gen_mpls_linktype(int);
249 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
250 #ifdef INET6
251 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
252 #endif
253 #ifndef INET6
254 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
255 #endif
256 static struct block *gen_ipfrag(void);
257 static struct block *gen_portatom(int, bpf_int32);
258 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
259 #ifdef INET6
260 static struct block *gen_portatom6(int, bpf_int32);
261 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
262 #endif
263 struct block *gen_portop(int, int, int);
264 static struct block *gen_port(int, int, int);
265 struct block *gen_portrangeop(int, int, int, int);
266 static struct block *gen_portrange(int, int, int, int);
267 #ifdef INET6
268 struct block *gen_portop6(int, int, int);
269 static struct block *gen_port6(int, int, int);
270 struct block *gen_portrangeop6(int, int, int, int);
271 static struct block *gen_portrange6(int, int, int, int);
272 #endif
273 static int lookup_proto(const char *, int);
274 static struct block *gen_protochain(int, int, int);
275 static struct block *gen_proto(int, int, int);
276 static struct slist *xfer_to_x(struct arth *);
277 static struct slist *xfer_to_a(struct arth *);
278 static struct block *gen_mac_multicast(int);
279 static struct block *gen_len(int, int);
280 static struct block *gen_check_802_11_data_frame(void);
281 
282 static struct block *gen_ppi_dlt_check(void);
283 static struct block *gen_msg_abbrev(int type);
284 
285 static void *
286 newchunk(n)
287 	u_int n;
288 {
289 	struct chunk *cp;
290 	int k;
291 	size_t size;
292 
293 #ifndef __NetBSD__
294 	/* XXX Round up to nearest long. */
295 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
296 #else
297 	/* XXX Round up to structure boundary. */
298 	n = ALIGN(n);
299 #endif
300 
301 	cp = &chunks[cur_chunk];
302 	if (n > cp->n_left) {
303 		++cp, k = ++cur_chunk;
304 		if (k >= NCHUNKS)
305 			bpf_error("out of memory");
306 		size = CHUNK0SIZE << k;
307 		cp->m = (void *)malloc(size);
308 		if (cp->m == NULL)
309 			bpf_error("out of memory");
310 		memset((char *)cp->m, 0, size);
311 		cp->n_left = size;
312 		if (n > size)
313 			bpf_error("out of memory");
314 	}
315 	cp->n_left -= n;
316 	return (void *)((char *)cp->m + cp->n_left);
317 }
318 
319 static void
320 freechunks()
321 {
322 	int i;
323 
324 	cur_chunk = 0;
325 	for (i = 0; i < NCHUNKS; ++i)
326 		if (chunks[i].m != NULL) {
327 			free(chunks[i].m);
328 			chunks[i].m = NULL;
329 		}
330 }
331 
332 /*
333  * A strdup whose allocations are freed after code generation is over.
334  */
335 char *
336 sdup(s)
337 	register const char *s;
338 {
339 	int n = strlen(s) + 1;
340 	char *cp = newchunk(n);
341 
342 	strlcpy(cp, s, n);
343 	return (cp);
344 }
345 
346 static inline struct block *
347 new_block(code)
348 	int code;
349 {
350 	struct block *p;
351 
352 	p = (struct block *)newchunk(sizeof(*p));
353 	p->s.code = code;
354 	p->head = p;
355 
356 	return p;
357 }
358 
359 static inline struct slist *
360 new_stmt(code)
361 	int code;
362 {
363 	struct slist *p;
364 
365 	p = (struct slist *)newchunk(sizeof(*p));
366 	p->s.code = code;
367 
368 	return p;
369 }
370 
371 static struct block *
372 gen_retblk(v)
373 	int v;
374 {
375 	struct block *b = new_block(BPF_RET|BPF_K);
376 
377 	b->s.k = v;
378 	return b;
379 }
380 
381 static inline void
382 syntax()
383 {
384 	bpf_error("syntax error in filter expression");
385 }
386 
387 static bpf_u_int32 netmask;
388 static int snaplen;
389 int no_optimize;
390 #ifdef WIN32
391 static int
392 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
393 	     const char *buf, int optimize, bpf_u_int32 mask);
394 
395 int
396 pcap_compile(pcap_t *p, struct bpf_program *program,
397 	     const char *buf, int optimize, bpf_u_int32 mask)
398 {
399 	int result;
400 
401 	EnterCriticalSection(&g_PcapCompileCriticalSection);
402 
403 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
404 
405 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
406 
407 	return result;
408 }
409 
410 static int
411 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
412 	     const char *buf, int optimize, bpf_u_int32 mask)
413 #else /* WIN32 */
414 int
415 pcap_compile(pcap_t *p, struct bpf_program *program,
416 	     const char *buf, int optimize, bpf_u_int32 mask)
417 #endif /* WIN32 */
418 {
419 	extern int n_errors;
420 	const char * volatile xbuf = buf;
421 	int len;
422 
423 	no_optimize = 0;
424 	n_errors = 0;
425 	root = NULL;
426 	bpf_pcap = p;
427 	init_regs();
428 	if (setjmp(top_ctx)) {
429 #ifdef INET6
430 		if (ai != NULL) {
431 			freeaddrinfo(ai);
432 			ai = NULL;
433 		}
434 #endif
435 		lex_cleanup();
436 		freechunks();
437 		return (-1);
438 	}
439 
440 	netmask = mask;
441 
442 	snaplen = pcap_snapshot(p);
443 	if (snaplen == 0) {
444 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
445 			 "snaplen of 0 rejects all packets");
446 		return -1;
447 	}
448 
449 	lex_init(xbuf ? xbuf : "");
450 	init_linktype(p);
451 	(void)pcap_parse();
452 
453 	if (n_errors)
454 		syntax();
455 
456 	if (root == NULL)
457 		root = gen_retblk(snaplen);
458 
459 	if (optimize && !no_optimize) {
460 		bpf_optimize(&root);
461 		if (root == NULL ||
462 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
463 			bpf_error("expression rejects all packets");
464 	}
465 	program->bf_insns = icode_to_fcode(root, &len);
466 	program->bf_len = len;
467 
468 	lex_cleanup();
469 	freechunks();
470 	return (0);
471 }
472 
473 /*
474  * entry point for using the compiler with no pcap open
475  * pass in all the stuff that is needed explicitly instead.
476  */
477 int
478 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
479 		    struct bpf_program *program,
480 	     const char *buf, int optimize, bpf_u_int32 mask)
481 {
482 	pcap_t *p;
483 	int ret;
484 
485 	p = pcap_open_dead(linktype_arg, snaplen_arg);
486 	if (p == NULL)
487 		return (-1);
488 	ret = pcap_compile(p, program, buf, optimize, mask);
489 	pcap_close(p);
490 	return (ret);
491 }
492 
493 /*
494  * Clean up a "struct bpf_program" by freeing all the memory allocated
495  * in it.
496  */
497 void
498 pcap_freecode(struct bpf_program *program)
499 {
500 	program->bf_len = 0;
501 	if (program->bf_insns != NULL) {
502 		free((char *)program->bf_insns);
503 		program->bf_insns = NULL;
504 	}
505 }
506 
507 /*
508  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
509  * which of the jt and jf fields has been resolved and which is a pointer
510  * back to another unresolved block (or nil).  At least one of the fields
511  * in each block is already resolved.
512  */
513 static void
514 backpatch(list, target)
515 	struct block *list, *target;
516 {
517 	struct block *next;
518 
519 	while (list) {
520 		if (!list->sense) {
521 			next = JT(list);
522 			JT(list) = target;
523 		} else {
524 			next = JF(list);
525 			JF(list) = target;
526 		}
527 		list = next;
528 	}
529 }
530 
531 /*
532  * Merge the lists in b0 and b1, using the 'sense' field to indicate
533  * which of jt and jf is the link.
534  */
535 static void
536 merge(b0, b1)
537 	struct block *b0, *b1;
538 {
539 	register struct block **p = &b0;
540 
541 	/* Find end of list. */
542 	while (*p)
543 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
544 
545 	/* Concatenate the lists. */
546 	*p = b1;
547 }
548 
549 void
550 finish_parse(p)
551 	struct block *p;
552 {
553 	struct block *ppi_dlt_check;
554 
555 	/*
556 	 * Insert before the statements of the first (root) block any
557 	 * statements needed to load the lengths of any variable-length
558 	 * headers into registers.
559 	 *
560 	 * XXX - a fancier strategy would be to insert those before the
561 	 * statements of all blocks that use those lengths and that
562 	 * have no predecessors that use them, so that we only compute
563 	 * the lengths if we need them.  There might be even better
564 	 * approaches than that.
565 	 *
566 	 * However, those strategies would be more complicated, and
567 	 * as we don't generate code to compute a length if the
568 	 * program has no tests that use the length, and as most
569 	 * tests will probably use those lengths, we would just
570 	 * postpone computing the lengths so that it's not done
571 	 * for tests that fail early, and it's not clear that's
572 	 * worth the effort.
573 	 */
574 	insert_compute_vloffsets(p->head);
575 
576 	/*
577 	 * For DLT_PPI captures, generate a check of the per-packet
578 	 * DLT value to make sure it's DLT_IEEE802_11.
579 	 */
580 	ppi_dlt_check = gen_ppi_dlt_check();
581 	if (ppi_dlt_check != NULL)
582 		gen_and(ppi_dlt_check, p);
583 
584 	backpatch(p, gen_retblk(snaplen));
585 	p->sense = !p->sense;
586 	backpatch(p, gen_retblk(0));
587 	root = p->head;
588 }
589 
590 void
591 gen_and(b0, b1)
592 	struct block *b0, *b1;
593 {
594 	backpatch(b0, b1->head);
595 	b0->sense = !b0->sense;
596 	b1->sense = !b1->sense;
597 	merge(b1, b0);
598 	b1->sense = !b1->sense;
599 	b1->head = b0->head;
600 }
601 
602 void
603 gen_or(b0, b1)
604 	struct block *b0, *b1;
605 {
606 	b0->sense = !b0->sense;
607 	backpatch(b0, b1->head);
608 	b0->sense = !b0->sense;
609 	merge(b1, b0);
610 	b1->head = b0->head;
611 }
612 
613 void
614 gen_not(b)
615 	struct block *b;
616 {
617 	b->sense = !b->sense;
618 }
619 
620 static struct block *
621 gen_cmp(offrel, offset, size, v)
622 	enum e_offrel offrel;
623 	u_int offset, size;
624 	bpf_int32 v;
625 {
626 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
627 }
628 
629 static struct block *
630 gen_cmp_gt(offrel, offset, size, v)
631 	enum e_offrel offrel;
632 	u_int offset, size;
633 	bpf_int32 v;
634 {
635 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
636 }
637 
638 static struct block *
639 gen_cmp_ge(offrel, offset, size, v)
640 	enum e_offrel offrel;
641 	u_int offset, size;
642 	bpf_int32 v;
643 {
644 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
645 }
646 
647 static struct block *
648 gen_cmp_lt(offrel, offset, size, v)
649 	enum e_offrel offrel;
650 	u_int offset, size;
651 	bpf_int32 v;
652 {
653 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
654 }
655 
656 static struct block *
657 gen_cmp_le(offrel, offset, size, v)
658 	enum e_offrel offrel;
659 	u_int offset, size;
660 	bpf_int32 v;
661 {
662 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
663 }
664 
665 static struct block *
666 gen_mcmp(offrel, offset, size, v, mask)
667 	enum e_offrel offrel;
668 	u_int offset, size;
669 	bpf_int32 v;
670 	bpf_u_int32 mask;
671 {
672 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
673 }
674 
675 static struct block *
676 gen_bcmp(offrel, offset, size, v)
677 	enum e_offrel offrel;
678 	register u_int offset, size;
679 	register const u_char *v;
680 {
681 	register struct block *b, *tmp;
682 
683 	b = NULL;
684 	while (size >= 4) {
685 		register const u_char *p = &v[size - 4];
686 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
687 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
688 
689 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
690 		if (b != NULL)
691 			gen_and(b, tmp);
692 		b = tmp;
693 		size -= 4;
694 	}
695 	while (size >= 2) {
696 		register const u_char *p = &v[size - 2];
697 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
698 
699 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
700 		if (b != NULL)
701 			gen_and(b, tmp);
702 		b = tmp;
703 		size -= 2;
704 	}
705 	if (size > 0) {
706 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
707 		if (b != NULL)
708 			gen_and(b, tmp);
709 		b = tmp;
710 	}
711 	return b;
712 }
713 
714 /*
715  * AND the field of size "size" at offset "offset" relative to the header
716  * specified by "offrel" with "mask", and compare it with the value "v"
717  * with the test specified by "jtype"; if "reverse" is true, the test
718  * should test the opposite of "jtype".
719  */
720 static struct block *
721 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
722 	enum e_offrel offrel;
723 	bpf_int32 v;
724 	bpf_u_int32 offset, size, mask, jtype;
725 	int reverse;
726 {
727 	struct slist *s, *s2;
728 	struct block *b;
729 
730 	s = gen_load_a(offrel, offset, size);
731 
732 	if (mask != 0xffffffff) {
733 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
734 		s2->s.k = mask;
735 		sappend(s, s2);
736 	}
737 
738 	b = new_block(JMP(jtype));
739 	b->stmts = s;
740 	b->s.k = v;
741 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
742 		gen_not(b);
743 	return b;
744 }
745 
746 /*
747  * Various code constructs need to know the layout of the data link
748  * layer.  These variables give the necessary offsets from the beginning
749  * of the packet data.
750  */
751 
752 /*
753  * This is the offset of the beginning of the link-layer header from
754  * the beginning of the raw packet data.
755  *
756  * It's usually 0, except for 802.11 with a fixed-length radio header.
757  * (For 802.11 with a variable-length radio header, we have to generate
758  * code to compute that offset; off_ll is 0 in that case.)
759  */
760 static u_int off_ll;
761 
762 /*
763  * If there's a variable-length header preceding the link-layer header,
764  * "reg_off_ll" is the register number for a register containing the
765  * length of that header, and therefore the offset of the link-layer
766  * header from the beginning of the raw packet data.  Otherwise,
767  * "reg_off_ll" is -1.
768  */
769 static int reg_off_ll;
770 
771 /*
772  * This is the offset of the beginning of the MAC-layer header from
773  * the beginning of the link-layer header.
774  * It's usually 0, except for ATM LANE, where it's the offset, relative
775  * to the beginning of the raw packet data, of the Ethernet header, and
776  * for Ethernet with various additional information.
777  */
778 static u_int off_mac;
779 
780 /*
781  * This is the offset of the beginning of the MAC-layer payload,
782  * from the beginning of the raw packet data.
783  *
784  * I.e., it's the sum of the length of the link-layer header (without,
785  * for example, any 802.2 LLC header, so it's the MAC-layer
786  * portion of that header), plus any prefix preceding the
787  * link-layer header.
788  */
789 static u_int off_macpl;
790 
791 /*
792  * This is 1 if the offset of the beginning of the MAC-layer payload
793  * from the beginning of the link-layer header is variable-length.
794  */
795 static int off_macpl_is_variable;
796 
797 /*
798  * If the link layer has variable_length headers, "reg_off_macpl"
799  * is the register number for a register containing the length of the
800  * link-layer header plus the length of any variable-length header
801  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
802  * is -1.
803  */
804 static int reg_off_macpl;
805 
806 /*
807  * "off_linktype" is the offset to information in the link-layer header
808  * giving the packet type.  This offset is relative to the beginning
809  * of the link-layer header (i.e., it doesn't include off_ll).
810  *
811  * For Ethernet, it's the offset of the Ethernet type field.
812  *
813  * For link-layer types that always use 802.2 headers, it's the
814  * offset of the LLC header.
815  *
816  * For PPP, it's the offset of the PPP type field.
817  *
818  * For Cisco HDLC, it's the offset of the CHDLC type field.
819  *
820  * For BSD loopback, it's the offset of the AF_ value.
821  *
822  * For Linux cooked sockets, it's the offset of the type field.
823  *
824  * It's set to -1 for no encapsulation, in which case, IP is assumed.
825  */
826 static u_int off_linktype;
827 
828 /*
829  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
830  * checks to check the PPP header, assumed to follow a LAN-style link-
831  * layer header and a PPPoE session header.
832  */
833 static int is_pppoes = 0;
834 
835 /*
836  * TRUE if the link layer includes an ATM pseudo-header.
837  */
838 static int is_atm = 0;
839 
840 /*
841  * TRUE if "lane" appeared in the filter; it causes us to generate
842  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
843  */
844 static int is_lane = 0;
845 
846 /*
847  * These are offsets for the ATM pseudo-header.
848  */
849 static u_int off_vpi;
850 static u_int off_vci;
851 static u_int off_proto;
852 
853 /*
854  * These are offsets for the MTP2 fields.
855  */
856 static u_int off_li;
857 
858 /*
859  * These are offsets for the MTP3 fields.
860  */
861 static u_int off_sio;
862 static u_int off_opc;
863 static u_int off_dpc;
864 static u_int off_sls;
865 
866 /*
867  * This is the offset of the first byte after the ATM pseudo_header,
868  * or -1 if there is no ATM pseudo-header.
869  */
870 static u_int off_payload;
871 
872 /*
873  * These are offsets to the beginning of the network-layer header.
874  * They are relative to the beginning of the MAC-layer payload (i.e.,
875  * they don't include off_ll or off_macpl).
876  *
877  * If the link layer never uses 802.2 LLC:
878  *
879  *	"off_nl" and "off_nl_nosnap" are the same.
880  *
881  * If the link layer always uses 802.2 LLC:
882  *
883  *	"off_nl" is the offset if there's a SNAP header following
884  *	the 802.2 header;
885  *
886  *	"off_nl_nosnap" is the offset if there's no SNAP header.
887  *
888  * If the link layer is Ethernet:
889  *
890  *	"off_nl" is the offset if the packet is an Ethernet II packet
891  *	(we assume no 802.3+802.2+SNAP);
892  *
893  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
894  *	with an 802.2 header following it.
895  */
896 static u_int off_nl;
897 static u_int off_nl_nosnap;
898 
899 static int linktype;
900 
901 static void
902 init_linktype(p)
903 	pcap_t *p;
904 {
905 	linktype = pcap_datalink(p);
906 #ifdef PCAP_FDDIPAD
907 	pcap_fddipad = p->fddipad;
908 #endif
909 
910 	/*
911 	 * Assume it's not raw ATM with a pseudo-header, for now.
912 	 */
913 	off_mac = 0;
914 	is_atm = 0;
915 	is_lane = 0;
916 	off_vpi = -1;
917 	off_vci = -1;
918 	off_proto = -1;
919 	off_payload = -1;
920 
921 	/*
922 	 * And that we're not doing PPPoE.
923 	 */
924 	is_pppoes = 0;
925 
926 	/*
927 	 * And assume we're not doing SS7.
928 	 */
929 	off_li = -1;
930 	off_sio = -1;
931 	off_opc = -1;
932 	off_dpc = -1;
933 	off_sls = -1;
934 
935 	/*
936 	 * Also assume it's not 802.11.
937 	 */
938 	off_ll = 0;
939 	off_macpl = 0;
940 	off_macpl_is_variable = 0;
941 
942 	orig_linktype = -1;
943 	orig_nl = -1;
944         label_stack_depth = 0;
945 
946 	reg_off_ll = -1;
947 	reg_off_macpl = -1;
948 
949 	switch (linktype) {
950 
951 	case DLT_ARCNET:
952 		off_linktype = 2;
953 		off_macpl = 6;
954 		off_nl = 0;		/* XXX in reality, variable! */
955 		off_nl_nosnap = 0;	/* no 802.2 LLC */
956 		return;
957 
958 	case DLT_ARCNET_LINUX:
959 		off_linktype = 4;
960 		off_macpl = 8;
961 		off_nl = 0;		/* XXX in reality, variable! */
962 		off_nl_nosnap = 0;	/* no 802.2 LLC */
963 		return;
964 
965 	case DLT_EN10MB:
966 		off_linktype = 12;
967 		off_macpl = 14;		/* Ethernet header length */
968 		off_nl = 0;		/* Ethernet II */
969 		off_nl_nosnap = 3;	/* 802.3+802.2 */
970 		return;
971 
972 	case DLT_SLIP:
973 		/*
974 		 * SLIP doesn't have a link level type.  The 16 byte
975 		 * header is hacked into our SLIP driver.
976 		 */
977 		off_linktype = -1;
978 		off_macpl = 16;
979 		off_nl = 0;
980 		off_nl_nosnap = 0;	/* no 802.2 LLC */
981 		return;
982 
983 	case DLT_SLIP_BSDOS:
984 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
985 		off_linktype = -1;
986 		/* XXX end */
987 		off_macpl = 24;
988 		off_nl = 0;
989 		off_nl_nosnap = 0;	/* no 802.2 LLC */
990 		return;
991 
992 	case DLT_NULL:
993 	case DLT_LOOP:
994 		off_linktype = 0;
995 		off_macpl = 4;
996 		off_nl = 0;
997 		off_nl_nosnap = 0;	/* no 802.2 LLC */
998 		return;
999 
1000 	case DLT_ENC:
1001 		off_linktype = 0;
1002 		off_macpl = 12;
1003 		off_nl = 0;
1004 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1005 		return;
1006 
1007 	case DLT_PPP:
1008 	case DLT_PPP_PPPD:
1009 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1010 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1011 		off_linktype = 2;
1012 		off_macpl = 4;
1013 		off_nl = 0;
1014 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1015 		return;
1016 
1017 	case DLT_PPP_ETHER:
1018 		/*
1019 		 * This does no include the Ethernet header, and
1020 		 * only covers session state.
1021 		 */
1022 		off_linktype = 6;
1023 		off_macpl = 8;
1024 		off_nl = 0;
1025 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1026 		return;
1027 
1028 	case DLT_PPP_BSDOS:
1029 		off_linktype = 5;
1030 		off_macpl = 24;
1031 		off_nl = 0;
1032 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1033 		return;
1034 
1035 	case DLT_FDDI:
1036 		/*
1037 		 * FDDI doesn't really have a link-level type field.
1038 		 * We set "off_linktype" to the offset of the LLC header.
1039 		 *
1040 		 * To check for Ethernet types, we assume that SSAP = SNAP
1041 		 * is being used and pick out the encapsulated Ethernet type.
1042 		 * XXX - should we generate code to check for SNAP?
1043 		 */
1044 		off_linktype = 13;
1045 #ifdef PCAP_FDDIPAD
1046 		off_linktype += pcap_fddipad;
1047 #endif
1048 		off_macpl = 13;		/* FDDI MAC header length */
1049 #ifdef PCAP_FDDIPAD
1050 		off_macpl += pcap_fddipad;
1051 #endif
1052 		off_nl = 8;		/* 802.2+SNAP */
1053 		off_nl_nosnap = 3;	/* 802.2 */
1054 		return;
1055 
1056 	case DLT_IEEE802:
1057 		/*
1058 		 * Token Ring doesn't really have a link-level type field.
1059 		 * We set "off_linktype" to the offset of the LLC header.
1060 		 *
1061 		 * To check for Ethernet types, we assume that SSAP = SNAP
1062 		 * is being used and pick out the encapsulated Ethernet type.
1063 		 * XXX - should we generate code to check for SNAP?
1064 		 *
1065 		 * XXX - the header is actually variable-length.
1066 		 * Some various Linux patched versions gave 38
1067 		 * as "off_linktype" and 40 as "off_nl"; however,
1068 		 * if a token ring packet has *no* routing
1069 		 * information, i.e. is not source-routed, the correct
1070 		 * values are 20 and 22, as they are in the vanilla code.
1071 		 *
1072 		 * A packet is source-routed iff the uppermost bit
1073 		 * of the first byte of the source address, at an
1074 		 * offset of 8, has the uppermost bit set.  If the
1075 		 * packet is source-routed, the total number of bytes
1076 		 * of routing information is 2 plus bits 0x1F00 of
1077 		 * the 16-bit value at an offset of 14 (shifted right
1078 		 * 8 - figure out which byte that is).
1079 		 */
1080 		off_linktype = 14;
1081 		off_macpl = 14;		/* Token Ring MAC header length */
1082 		off_nl = 8;		/* 802.2+SNAP */
1083 		off_nl_nosnap = 3;	/* 802.2 */
1084 		return;
1085 
1086 	case DLT_IEEE802_11:
1087 	case DLT_PRISM_HEADER:
1088 	case DLT_IEEE802_11_RADIO_AVS:
1089 	case DLT_IEEE802_11_RADIO:
1090 		/*
1091 		 * 802.11 doesn't really have a link-level type field.
1092 		 * We set "off_linktype" to the offset of the LLC header.
1093 		 *
1094 		 * To check for Ethernet types, we assume that SSAP = SNAP
1095 		 * is being used and pick out the encapsulated Ethernet type.
1096 		 * XXX - should we generate code to check for SNAP?
1097 		 *
1098 		 * We also handle variable-length radio headers here.
1099 		 * The Prism header is in theory variable-length, but in
1100 		 * practice it's always 144 bytes long.  However, some
1101 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1102 		 * sometimes or always supply an AVS header, so we
1103 		 * have to check whether the radio header is a Prism
1104 		 * header or an AVS header, so, in practice, it's
1105 		 * variable-length.
1106 		 */
1107 		off_linktype = 24;
1108 		off_macpl = 0;		/* link-layer header is variable-length */
1109 		off_macpl_is_variable = 1;
1110 		off_nl = 8;		/* 802.2+SNAP */
1111 		off_nl_nosnap = 3;	/* 802.2 */
1112 		return;
1113 
1114 	case DLT_PPI:
1115 		/*
1116 		 * At the moment we treat PPI the same way that we treat
1117 		 * normal Radiotap encoded packets. The difference is in
1118 		 * the function that generates the code at the beginning
1119 		 * to compute the header length.  Since this code generator
1120 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1121 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1122 		 * generate code to check for this too.
1123 		 */
1124 		off_linktype = 24;
1125 		off_macpl = 0;		/* link-layer header is variable-length */
1126 		off_macpl_is_variable = 1;
1127 		off_nl = 8;		/* 802.2+SNAP */
1128 		off_nl_nosnap = 3;	/* 802.2 */
1129 		return;
1130 
1131 	case DLT_ATM_RFC1483:
1132 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1133 		/*
1134 		 * assume routed, non-ISO PDUs
1135 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1136 		 *
1137 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1138 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1139 		 * latter would presumably be treated the way PPPoE
1140 		 * should be, so you can do "pppoe and udp port 2049"
1141 		 * or "pppoa and tcp port 80" and have it check for
1142 		 * PPPo{A,E} and a PPP protocol of IP and....
1143 		 */
1144 		off_linktype = 0;
1145 		off_macpl = 0;		/* packet begins with LLC header */
1146 		off_nl = 8;		/* 802.2+SNAP */
1147 		off_nl_nosnap = 3;	/* 802.2 */
1148 		return;
1149 
1150 	case DLT_SUNATM:
1151 		/*
1152 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1153 		 * pseudo-header.
1154 		 */
1155 		is_atm = 1;
1156 		off_vpi = SUNATM_VPI_POS;
1157 		off_vci = SUNATM_VCI_POS;
1158 		off_proto = PROTO_POS;
1159 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1160 		off_payload = SUNATM_PKT_BEGIN_POS;
1161 		off_linktype = off_payload;
1162 		off_macpl = off_payload;	/* if LLC-encapsulated */
1163 		off_nl = 8;		/* 802.2+SNAP */
1164 		off_nl_nosnap = 3;	/* 802.2 */
1165 		return;
1166 
1167 	case DLT_RAW:
1168 	case DLT_IPV4:
1169 	case DLT_IPV6:
1170 		off_linktype = -1;
1171 		off_macpl = 0;
1172 		off_nl = 0;
1173 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1174 		return;
1175 
1176 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1177 		off_linktype = 14;
1178 		off_macpl = 16;
1179 		off_nl = 0;
1180 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1181 		return;
1182 
1183 	case DLT_LTALK:
1184 		/*
1185 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1186 		 * but really it just indicates whether there is a "short" or
1187 		 * "long" DDP packet following.
1188 		 */
1189 		off_linktype = -1;
1190 		off_macpl = 0;
1191 		off_nl = 0;
1192 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1193 		return;
1194 
1195 	case DLT_IP_OVER_FC:
1196 		/*
1197 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1198 		 * link-level type field.  We set "off_linktype" to the
1199 		 * offset of the LLC header.
1200 		 *
1201 		 * To check for Ethernet types, we assume that SSAP = SNAP
1202 		 * is being used and pick out the encapsulated Ethernet type.
1203 		 * XXX - should we generate code to check for SNAP? RFC
1204 		 * 2625 says SNAP should be used.
1205 		 */
1206 		off_linktype = 16;
1207 		off_macpl = 16;
1208 		off_nl = 8;		/* 802.2+SNAP */
1209 		off_nl_nosnap = 3;	/* 802.2 */
1210 		return;
1211 
1212 	case DLT_FRELAY:
1213 		/*
1214 		 * XXX - we should set this to handle SNAP-encapsulated
1215 		 * frames (NLPID of 0x80).
1216 		 */
1217 		off_linktype = -1;
1218 		off_macpl = 0;
1219 		off_nl = 0;
1220 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1221 		return;
1222 
1223                 /*
1224                  * the only BPF-interesting FRF.16 frames are non-control frames;
1225                  * Frame Relay has a variable length link-layer
1226                  * so lets start with offset 4 for now and increments later on (FIXME);
1227                  */
1228 	case DLT_MFR:
1229 		off_linktype = -1;
1230 		off_macpl = 0;
1231 		off_nl = 4;
1232 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1233 		return;
1234 
1235 	case DLT_APPLE_IP_OVER_IEEE1394:
1236 		off_linktype = 16;
1237 		off_macpl = 18;
1238 		off_nl = 0;
1239 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1240 		return;
1241 
1242 	case DLT_SYMANTEC_FIREWALL:
1243 		off_linktype = 6;
1244 		off_macpl = 44;
1245 		off_nl = 0;		/* Ethernet II */
1246 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1247 		return;
1248 
1249 #ifdef HAVE_NET_PFVAR_H
1250 	case DLT_PFLOG:
1251 		off_linktype = 0;
1252 		off_macpl = PFLOG_HDRLEN;
1253 		off_nl = 0;
1254 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1255 		return;
1256 #endif
1257 
1258         case DLT_JUNIPER_MFR:
1259         case DLT_JUNIPER_MLFR:
1260         case DLT_JUNIPER_MLPPP:
1261         case DLT_JUNIPER_PPP:
1262         case DLT_JUNIPER_CHDLC:
1263         case DLT_JUNIPER_FRELAY:
1264                 off_linktype = 4;
1265 		off_macpl = 4;
1266 		off_nl = 0;
1267 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1268                 return;
1269 
1270 	case DLT_JUNIPER_ATM1:
1271 		off_linktype = 4;	/* in reality variable between 4-8 */
1272 		off_macpl = 4;	/* in reality variable between 4-8 */
1273 		off_nl = 0;
1274 		off_nl_nosnap = 10;
1275 		return;
1276 
1277 	case DLT_JUNIPER_ATM2:
1278 		off_linktype = 8;	/* in reality variable between 8-12 */
1279 		off_macpl = 8;	/* in reality variable between 8-12 */
1280 		off_nl = 0;
1281 		off_nl_nosnap = 10;
1282 		return;
1283 
1284 		/* frames captured on a Juniper PPPoE service PIC
1285 		 * contain raw ethernet frames */
1286 	case DLT_JUNIPER_PPPOE:
1287         case DLT_JUNIPER_ETHER:
1288         	off_macpl = 14;
1289 		off_linktype = 16;
1290 		off_nl = 18;		/* Ethernet II */
1291 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1292 		return;
1293 
1294 	case DLT_JUNIPER_PPPOE_ATM:
1295 		off_linktype = 4;
1296 		off_macpl = 6;
1297 		off_nl = 0;
1298 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1299 		return;
1300 
1301 	case DLT_JUNIPER_GGSN:
1302 		off_linktype = 6;
1303 		off_macpl = 12;
1304 		off_nl = 0;
1305 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1306 		return;
1307 
1308 	case DLT_JUNIPER_ES:
1309 		off_linktype = 6;
1310 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1311 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1312 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1313 		return;
1314 
1315 	case DLT_JUNIPER_MONITOR:
1316 		off_linktype = 12;
1317 		off_macpl = 12;
1318 		off_nl = 0;		/* raw IP/IP6 header */
1319 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1320 		return;
1321 
1322 	case DLT_JUNIPER_SERVICES:
1323 		off_linktype = 12;
1324 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1325 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1326 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1327 		return;
1328 
1329 	case DLT_JUNIPER_VP:
1330 		off_linktype = 18;
1331 		off_macpl = -1;
1332 		off_nl = -1;
1333 		off_nl_nosnap = -1;
1334 		return;
1335 
1336 	case DLT_JUNIPER_ST:
1337 		off_linktype = 18;
1338 		off_macpl = -1;
1339 		off_nl = -1;
1340 		off_nl_nosnap = -1;
1341 		return;
1342 
1343 	case DLT_JUNIPER_ISM:
1344 		off_linktype = 8;
1345 		off_macpl = -1;
1346 		off_nl = -1;
1347 		off_nl_nosnap = -1;
1348 		return;
1349 
1350 	case DLT_JUNIPER_VS:
1351 	case DLT_JUNIPER_SRX_E2E:
1352 	case DLT_JUNIPER_FIBRECHANNEL:
1353 	case DLT_JUNIPER_ATM_CEMIC:
1354 		off_linktype = 8;
1355 		off_macpl = -1;
1356 		off_nl = -1;
1357 		off_nl_nosnap = -1;
1358 		return;
1359 
1360 	case DLT_MTP2:
1361 		off_li = 2;
1362 		off_sio = 3;
1363 		off_opc = 4;
1364 		off_dpc = 4;
1365 		off_sls = 7;
1366 		off_linktype = -1;
1367 		off_macpl = -1;
1368 		off_nl = -1;
1369 		off_nl_nosnap = -1;
1370 		return;
1371 
1372 	case DLT_MTP2_WITH_PHDR:
1373 		off_li = 6;
1374 		off_sio = 7;
1375 		off_opc = 8;
1376 		off_dpc = 8;
1377 		off_sls = 11;
1378 		off_linktype = -1;
1379 		off_macpl = -1;
1380 		off_nl = -1;
1381 		off_nl_nosnap = -1;
1382 		return;
1383 
1384 	case DLT_ERF:
1385 		off_li = 22;
1386 		off_sio = 23;
1387 		off_opc = 24;
1388 		off_dpc = 24;
1389 		off_sls = 27;
1390 		off_linktype = -1;
1391 		off_macpl = -1;
1392 		off_nl = -1;
1393 		off_nl_nosnap = -1;
1394 		return;
1395 
1396 #ifdef DLT_PFSYNC
1397 	case DLT_PFSYNC:
1398 		off_linktype = -1;
1399 		off_macpl = 4;
1400 		off_nl = 0;
1401 		off_nl_nosnap = 0;
1402 		return;
1403 #endif
1404 
1405 	case DLT_AX25_KISS:
1406 		/*
1407 		 * Currently, only raw "link[N:M]" filtering is supported.
1408 		 */
1409 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1410 		off_macpl = -1;
1411 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1412 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1413 		off_mac = 1;		/* step over the kiss length byte */
1414 		return;
1415 
1416 	case DLT_IPNET:
1417 		off_linktype = 1;
1418 		off_macpl = 24;		/* ipnet header length */
1419 		off_nl = 0;
1420 		off_nl_nosnap = -1;
1421 		return;
1422 
1423 	case DLT_NETANALYZER:
1424 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1425 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1426 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1427 		off_nl = 0;		/* Ethernet II */
1428 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1429 		return;
1430 
1431 	case DLT_NETANALYZER_TRANSPARENT:
1432 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1433 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1434 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1435 		off_nl = 0;		/* Ethernet II */
1436 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1437 		return;
1438 
1439 	default:
1440 		/*
1441 		 * For values in the range in which we've assigned new
1442 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1443 		 */
1444 		if (linktype >= DLT_MATCHING_MIN &&
1445 		    linktype <= DLT_MATCHING_MAX) {
1446 			off_linktype = -1;
1447 			off_macpl = -1;
1448 			off_nl = -1;
1449 			off_nl_nosnap = -1;
1450 			return;
1451 		}
1452 
1453 	}
1454 	bpf_error("unknown data link type %d", linktype);
1455 	/* NOTREACHED */
1456 }
1457 
1458 /*
1459  * Load a value relative to the beginning of the link-layer header.
1460  * The link-layer header doesn't necessarily begin at the beginning
1461  * of the packet data; there might be a variable-length prefix containing
1462  * radio information.
1463  */
1464 static struct slist *
1465 gen_load_llrel(offset, size)
1466 	u_int offset, size;
1467 {
1468 	struct slist *s, *s2;
1469 
1470 	s = gen_llprefixlen();
1471 
1472 	/*
1473 	 * If "s" is non-null, it has code to arrange that the X register
1474 	 * contains the length of the prefix preceding the link-layer
1475 	 * header.
1476 	 *
1477 	 * Otherwise, the length of the prefix preceding the link-layer
1478 	 * header is "off_ll".
1479 	 */
1480 	if (s != NULL) {
1481 		/*
1482 		 * There's a variable-length prefix preceding the
1483 		 * link-layer header.  "s" points to a list of statements
1484 		 * that put the length of that prefix into the X register.
1485 		 * do an indirect load, to use the X register as an offset.
1486 		 */
1487 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1488 		s2->s.k = offset;
1489 		sappend(s, s2);
1490 	} else {
1491 		/*
1492 		 * There is no variable-length header preceding the
1493 		 * link-layer header; add in off_ll, which, if there's
1494 		 * a fixed-length header preceding the link-layer header,
1495 		 * is the length of that header.
1496 		 */
1497 		s = new_stmt(BPF_LD|BPF_ABS|size);
1498 		s->s.k = offset + off_ll;
1499 	}
1500 	return s;
1501 }
1502 
1503 /*
1504  * Load a value relative to the beginning of the MAC-layer payload.
1505  */
1506 static struct slist *
1507 gen_load_macplrel(offset, size)
1508 	u_int offset, size;
1509 {
1510 	struct slist *s, *s2;
1511 
1512 	s = gen_off_macpl();
1513 
1514 	/*
1515 	 * If s is non-null, the offset of the MAC-layer payload is
1516 	 * variable, and s points to a list of instructions that
1517 	 * arrange that the X register contains that offset.
1518 	 *
1519 	 * Otherwise, the offset of the MAC-layer payload is constant,
1520 	 * and is in off_macpl.
1521 	 */
1522 	if (s != NULL) {
1523 		/*
1524 		 * The offset of the MAC-layer payload is in the X
1525 		 * register.  Do an indirect load, to use the X register
1526 		 * as an offset.
1527 		 */
1528 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1529 		s2->s.k = offset;
1530 		sappend(s, s2);
1531 	} else {
1532 		/*
1533 		 * The offset of the MAC-layer payload is constant,
1534 		 * and is in off_macpl; load the value at that offset
1535 		 * plus the specified offset.
1536 		 */
1537 		s = new_stmt(BPF_LD|BPF_ABS|size);
1538 		s->s.k = off_macpl + offset;
1539 	}
1540 	return s;
1541 }
1542 
1543 /*
1544  * Load a value relative to the beginning of the specified header.
1545  */
1546 static struct slist *
1547 gen_load_a(offrel, offset, size)
1548 	enum e_offrel offrel;
1549 	u_int offset, size;
1550 {
1551 	struct slist *s, *s2;
1552 
1553 	switch (offrel) {
1554 
1555 	case OR_PACKET:
1556                 s = new_stmt(BPF_LD|BPF_ABS|size);
1557                 s->s.k = offset;
1558 		break;
1559 
1560 	case OR_LINK:
1561 		s = gen_load_llrel(offset, size);
1562 		break;
1563 
1564 	case OR_MACPL:
1565 		s = gen_load_macplrel(offset, size);
1566 		break;
1567 
1568 	case OR_NET:
1569 		s = gen_load_macplrel(off_nl + offset, size);
1570 		break;
1571 
1572 	case OR_NET_NOSNAP:
1573 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1574 		break;
1575 
1576 	case OR_TRAN_IPV4:
1577 		/*
1578 		 * Load the X register with the length of the IPv4 header
1579 		 * (plus the offset of the link-layer header, if it's
1580 		 * preceded by a variable-length header such as a radio
1581 		 * header), in bytes.
1582 		 */
1583 		s = gen_loadx_iphdrlen();
1584 
1585 		/*
1586 		 * Load the item at {offset of the MAC-layer payload} +
1587 		 * {offset, relative to the start of the MAC-layer
1588 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1589 		 * {specified offset}.
1590 		 *
1591 		 * (If the offset of the MAC-layer payload is variable,
1592 		 * it's included in the value in the X register, and
1593 		 * off_macpl is 0.)
1594 		 */
1595 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1596 		s2->s.k = off_macpl + off_nl + offset;
1597 		sappend(s, s2);
1598 		break;
1599 
1600 	case OR_TRAN_IPV6:
1601 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1602 		break;
1603 
1604 	default:
1605 		abort();
1606 		return NULL;
1607 	}
1608 	return s;
1609 }
1610 
1611 /*
1612  * Generate code to load into the X register the sum of the length of
1613  * the IPv4 header and any variable-length header preceding the link-layer
1614  * header.
1615  */
1616 static struct slist *
1617 gen_loadx_iphdrlen()
1618 {
1619 	struct slist *s, *s2;
1620 
1621 	s = gen_off_macpl();
1622 	if (s != NULL) {
1623 		/*
1624 		 * There's a variable-length prefix preceding the
1625 		 * link-layer header, or the link-layer header is itself
1626 		 * variable-length.  "s" points to a list of statements
1627 		 * that put the offset of the MAC-layer payload into
1628 		 * the X register.
1629 		 *
1630 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1631 		 * don't have a constant offset, so we have to load the
1632 		 * value in question into the A register and add to it
1633 		 * the value from the X register.
1634 		 */
1635 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1636 		s2->s.k = off_nl;
1637 		sappend(s, s2);
1638 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1639 		s2->s.k = 0xf;
1640 		sappend(s, s2);
1641 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1642 		s2->s.k = 2;
1643 		sappend(s, s2);
1644 
1645 		/*
1646 		 * The A register now contains the length of the
1647 		 * IP header.  We need to add to it the offset of
1648 		 * the MAC-layer payload, which is still in the X
1649 		 * register, and move the result into the X register.
1650 		 */
1651 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1652 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1653 	} else {
1654 		/*
1655 		 * There is no variable-length header preceding the
1656 		 * link-layer header, and the link-layer header is
1657 		 * fixed-length; load the length of the IPv4 header,
1658 		 * which is at an offset of off_nl from the beginning
1659 		 * of the MAC-layer payload, and thus at an offset
1660 		 * of off_mac_pl + off_nl from the beginning of the
1661 		 * raw packet data.
1662 		 */
1663 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1664 		s->s.k = off_macpl + off_nl;
1665 	}
1666 	return s;
1667 }
1668 
1669 static struct block *
1670 gen_uncond(rsense)
1671 	int rsense;
1672 {
1673 	struct block *b;
1674 	struct slist *s;
1675 
1676 	s = new_stmt(BPF_LD|BPF_IMM);
1677 	s->s.k = !rsense;
1678 	b = new_block(JMP(BPF_JEQ));
1679 	b->stmts = s;
1680 
1681 	return b;
1682 }
1683 
1684 static inline struct block *
1685 gen_true()
1686 {
1687 	return gen_uncond(1);
1688 }
1689 
1690 static inline struct block *
1691 gen_false()
1692 {
1693 	return gen_uncond(0);
1694 }
1695 
1696 /*
1697  * Byte-swap a 32-bit number.
1698  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1699  * big-endian platforms.)
1700  */
1701 #define	SWAPLONG(y) \
1702 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1703 
1704 /*
1705  * Generate code to match a particular packet type.
1706  *
1707  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1708  * value, if <= ETHERMTU.  We use that to determine whether to
1709  * match the type/length field or to check the type/length field for
1710  * a value <= ETHERMTU to see whether it's a type field and then do
1711  * the appropriate test.
1712  */
1713 static struct block *
1714 gen_ether_linktype(proto)
1715 	register int proto;
1716 {
1717 	struct block *b0, *b1;
1718 
1719 	switch (proto) {
1720 
1721 	case LLCSAP_ISONS:
1722 	case LLCSAP_IP:
1723 	case LLCSAP_NETBEUI:
1724 		/*
1725 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1726 		 * so we check the DSAP and SSAP.
1727 		 *
1728 		 * LLCSAP_IP checks for IP-over-802.2, rather
1729 		 * than IP-over-Ethernet or IP-over-SNAP.
1730 		 *
1731 		 * XXX - should we check both the DSAP and the
1732 		 * SSAP, like this, or should we check just the
1733 		 * DSAP, as we do for other types <= ETHERMTU
1734 		 * (i.e., other SAP values)?
1735 		 */
1736 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1737 		gen_not(b0);
1738 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1739 			     ((proto << 8) | proto));
1740 		gen_and(b0, b1);
1741 		return b1;
1742 
1743 	case LLCSAP_IPX:
1744 		/*
1745 		 * Check for;
1746 		 *
1747 		 *	Ethernet_II frames, which are Ethernet
1748 		 *	frames with a frame type of ETHERTYPE_IPX;
1749 		 *
1750 		 *	Ethernet_802.3 frames, which are 802.3
1751 		 *	frames (i.e., the type/length field is
1752 		 *	a length field, <= ETHERMTU, rather than
1753 		 *	a type field) with the first two bytes
1754 		 *	after the Ethernet/802.3 header being
1755 		 *	0xFFFF;
1756 		 *
1757 		 *	Ethernet_802.2 frames, which are 802.3
1758 		 *	frames with an 802.2 LLC header and
1759 		 *	with the IPX LSAP as the DSAP in the LLC
1760 		 *	header;
1761 		 *
1762 		 *	Ethernet_SNAP frames, which are 802.3
1763 		 *	frames with an LLC header and a SNAP
1764 		 *	header and with an OUI of 0x000000
1765 		 *	(encapsulated Ethernet) and a protocol
1766 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1767 		 *
1768 		 * XXX - should we generate the same code both
1769 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1770 		 */
1771 
1772 		/*
1773 		 * This generates code to check both for the
1774 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1775 		 */
1776 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1777 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1778 		gen_or(b0, b1);
1779 
1780 		/*
1781 		 * Now we add code to check for SNAP frames with
1782 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1783 		 */
1784 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1785 		gen_or(b0, b1);
1786 
1787 		/*
1788 		 * Now we generate code to check for 802.3
1789 		 * frames in general.
1790 		 */
1791 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1792 		gen_not(b0);
1793 
1794 		/*
1795 		 * Now add the check for 802.3 frames before the
1796 		 * check for Ethernet_802.2 and Ethernet_802.3,
1797 		 * as those checks should only be done on 802.3
1798 		 * frames, not on Ethernet frames.
1799 		 */
1800 		gen_and(b0, b1);
1801 
1802 		/*
1803 		 * Now add the check for Ethernet_II frames, and
1804 		 * do that before checking for the other frame
1805 		 * types.
1806 		 */
1807 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1808 		    (bpf_int32)ETHERTYPE_IPX);
1809 		gen_or(b0, b1);
1810 		return b1;
1811 
1812 	case ETHERTYPE_ATALK:
1813 	case ETHERTYPE_AARP:
1814 		/*
1815 		 * EtherTalk (AppleTalk protocols on Ethernet link
1816 		 * layer) may use 802.2 encapsulation.
1817 		 */
1818 
1819 		/*
1820 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1821 		 * we check for an Ethernet type field less than
1822 		 * 1500, which means it's an 802.3 length field.
1823 		 */
1824 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1825 		gen_not(b0);
1826 
1827 		/*
1828 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1829 		 * SNAP packets with an organization code of
1830 		 * 0x080007 (Apple, for Appletalk) and a protocol
1831 		 * type of ETHERTYPE_ATALK (Appletalk).
1832 		 *
1833 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1834 		 * SNAP packets with an organization code of
1835 		 * 0x000000 (encapsulated Ethernet) and a protocol
1836 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1837 		 */
1838 		if (proto == ETHERTYPE_ATALK)
1839 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1840 		else	/* proto == ETHERTYPE_AARP */
1841 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1842 		gen_and(b0, b1);
1843 
1844 		/*
1845 		 * Check for Ethernet encapsulation (Ethertalk
1846 		 * phase 1?); we just check for the Ethernet
1847 		 * protocol type.
1848 		 */
1849 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1850 
1851 		gen_or(b0, b1);
1852 		return b1;
1853 
1854 	default:
1855 		if (proto <= ETHERMTU) {
1856 			/*
1857 			 * This is an LLC SAP value, so the frames
1858 			 * that match would be 802.2 frames.
1859 			 * Check that the frame is an 802.2 frame
1860 			 * (i.e., that the length/type field is
1861 			 * a length field, <= ETHERMTU) and
1862 			 * then check the DSAP.
1863 			 */
1864 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1865 			gen_not(b0);
1866 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1867 			    (bpf_int32)proto);
1868 			gen_and(b0, b1);
1869 			return b1;
1870 		} else {
1871 			/*
1872 			 * This is an Ethernet type, so compare
1873 			 * the length/type field with it (if
1874 			 * the frame is an 802.2 frame, the length
1875 			 * field will be <= ETHERMTU, and, as
1876 			 * "proto" is > ETHERMTU, this test
1877 			 * will fail and the frame won't match,
1878 			 * which is what we want).
1879 			 */
1880 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1881 			    (bpf_int32)proto);
1882 		}
1883 	}
1884 }
1885 
1886 /*
1887  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1888  * or IPv6 then we have an error.
1889  */
1890 static struct block *
1891 gen_ipnet_linktype(proto)
1892 	register int proto;
1893 {
1894 	switch (proto) {
1895 
1896 	case ETHERTYPE_IP:
1897 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1898 		    (bpf_int32)IPH_AF_INET);
1899 		/* NOTREACHED */
1900 
1901 	case ETHERTYPE_IPV6:
1902 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1903 		    (bpf_int32)IPH_AF_INET6);
1904 		/* NOTREACHED */
1905 
1906 	default:
1907 		break;
1908 	}
1909 
1910 	return gen_false();
1911 }
1912 
1913 /*
1914  * Generate code to match a particular packet type.
1915  *
1916  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1917  * value, if <= ETHERMTU.  We use that to determine whether to
1918  * match the type field or to check the type field for the special
1919  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1920  */
1921 static struct block *
1922 gen_linux_sll_linktype(proto)
1923 	register int proto;
1924 {
1925 	struct block *b0, *b1;
1926 
1927 	switch (proto) {
1928 
1929 	case LLCSAP_ISONS:
1930 	case LLCSAP_IP:
1931 	case LLCSAP_NETBEUI:
1932 		/*
1933 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1934 		 * so we check the DSAP and SSAP.
1935 		 *
1936 		 * LLCSAP_IP checks for IP-over-802.2, rather
1937 		 * than IP-over-Ethernet or IP-over-SNAP.
1938 		 *
1939 		 * XXX - should we check both the DSAP and the
1940 		 * SSAP, like this, or should we check just the
1941 		 * DSAP, as we do for other types <= ETHERMTU
1942 		 * (i.e., other SAP values)?
1943 		 */
1944 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1945 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1946 			     ((proto << 8) | proto));
1947 		gen_and(b0, b1);
1948 		return b1;
1949 
1950 	case LLCSAP_IPX:
1951 		/*
1952 		 *	Ethernet_II frames, which are Ethernet
1953 		 *	frames with a frame type of ETHERTYPE_IPX;
1954 		 *
1955 		 *	Ethernet_802.3 frames, which have a frame
1956 		 *	type of LINUX_SLL_P_802_3;
1957 		 *
1958 		 *	Ethernet_802.2 frames, which are 802.3
1959 		 *	frames with an 802.2 LLC header (i.e, have
1960 		 *	a frame type of LINUX_SLL_P_802_2) and
1961 		 *	with the IPX LSAP as the DSAP in the LLC
1962 		 *	header;
1963 		 *
1964 		 *	Ethernet_SNAP frames, which are 802.3
1965 		 *	frames with an LLC header and a SNAP
1966 		 *	header and with an OUI of 0x000000
1967 		 *	(encapsulated Ethernet) and a protocol
1968 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1969 		 *
1970 		 * First, do the checks on LINUX_SLL_P_802_2
1971 		 * frames; generate the check for either
1972 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1973 		 * then put a check for LINUX_SLL_P_802_2 frames
1974 		 * before it.
1975 		 */
1976 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1977 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1978 		gen_or(b0, b1);
1979 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1980 		gen_and(b0, b1);
1981 
1982 		/*
1983 		 * Now check for 802.3 frames and OR that with
1984 		 * the previous test.
1985 		 */
1986 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1987 		gen_or(b0, b1);
1988 
1989 		/*
1990 		 * Now add the check for Ethernet_II frames, and
1991 		 * do that before checking for the other frame
1992 		 * types.
1993 		 */
1994 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1995 		    (bpf_int32)ETHERTYPE_IPX);
1996 		gen_or(b0, b1);
1997 		return b1;
1998 
1999 	case ETHERTYPE_ATALK:
2000 	case ETHERTYPE_AARP:
2001 		/*
2002 		 * EtherTalk (AppleTalk protocols on Ethernet link
2003 		 * layer) may use 802.2 encapsulation.
2004 		 */
2005 
2006 		/*
2007 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2008 		 * we check for the 802.2 protocol type in the
2009 		 * "Ethernet type" field.
2010 		 */
2011 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2012 
2013 		/*
2014 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2015 		 * SNAP packets with an organization code of
2016 		 * 0x080007 (Apple, for Appletalk) and a protocol
2017 		 * type of ETHERTYPE_ATALK (Appletalk).
2018 		 *
2019 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2020 		 * SNAP packets with an organization code of
2021 		 * 0x000000 (encapsulated Ethernet) and a protocol
2022 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2023 		 */
2024 		if (proto == ETHERTYPE_ATALK)
2025 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2026 		else	/* proto == ETHERTYPE_AARP */
2027 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2028 		gen_and(b0, b1);
2029 
2030 		/*
2031 		 * Check for Ethernet encapsulation (Ethertalk
2032 		 * phase 1?); we just check for the Ethernet
2033 		 * protocol type.
2034 		 */
2035 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2036 
2037 		gen_or(b0, b1);
2038 		return b1;
2039 
2040 	default:
2041 		if (proto <= ETHERMTU) {
2042 			/*
2043 			 * This is an LLC SAP value, so the frames
2044 			 * that match would be 802.2 frames.
2045 			 * Check for the 802.2 protocol type
2046 			 * in the "Ethernet type" field, and
2047 			 * then check the DSAP.
2048 			 */
2049 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2050 			    LINUX_SLL_P_802_2);
2051 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2052 			     (bpf_int32)proto);
2053 			gen_and(b0, b1);
2054 			return b1;
2055 		} else {
2056 			/*
2057 			 * This is an Ethernet type, so compare
2058 			 * the length/type field with it (if
2059 			 * the frame is an 802.2 frame, the length
2060 			 * field will be <= ETHERMTU, and, as
2061 			 * "proto" is > ETHERMTU, this test
2062 			 * will fail and the frame won't match,
2063 			 * which is what we want).
2064 			 */
2065 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2066 			    (bpf_int32)proto);
2067 		}
2068 	}
2069 }
2070 
2071 static struct slist *
2072 gen_load_prism_llprefixlen()
2073 {
2074 	struct slist *s1, *s2;
2075 	struct slist *sjeq_avs_cookie;
2076 	struct slist *sjcommon;
2077 
2078 	/*
2079 	 * This code is not compatible with the optimizer, as
2080 	 * we are generating jmp instructions within a normal
2081 	 * slist of instructions
2082 	 */
2083 	no_optimize = 1;
2084 
2085 	/*
2086 	 * Generate code to load the length of the radio header into
2087 	 * the register assigned to hold that length, if one has been
2088 	 * assigned.  (If one hasn't been assigned, no code we've
2089 	 * generated uses that prefix, so we don't need to generate any
2090 	 * code to load it.)
2091 	 *
2092 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2093 	 * or always use the AVS header rather than the Prism header.
2094 	 * We load a 4-byte big-endian value at the beginning of the
2095 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2096 	 * it's equal to 0x80211000.  If so, that indicates that it's
2097 	 * an AVS header (the masked-out bits are the version number).
2098 	 * Otherwise, it's a Prism header.
2099 	 *
2100 	 * XXX - the Prism header is also, in theory, variable-length,
2101 	 * but no known software generates headers that aren't 144
2102 	 * bytes long.
2103 	 */
2104 	if (reg_off_ll != -1) {
2105 		/*
2106 		 * Load the cookie.
2107 		 */
2108 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2109 		s1->s.k = 0;
2110 
2111 		/*
2112 		 * AND it with 0xFFFFF000.
2113 		 */
2114 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2115 		s2->s.k = 0xFFFFF000;
2116 		sappend(s1, s2);
2117 
2118 		/*
2119 		 * Compare with 0x80211000.
2120 		 */
2121 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2122 		sjeq_avs_cookie->s.k = 0x80211000;
2123 		sappend(s1, sjeq_avs_cookie);
2124 
2125 		/*
2126 		 * If it's AVS:
2127 		 *
2128 		 * The 4 bytes at an offset of 4 from the beginning of
2129 		 * the AVS header are the length of the AVS header.
2130 		 * That field is big-endian.
2131 		 */
2132 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2133 		s2->s.k = 4;
2134 		sappend(s1, s2);
2135 		sjeq_avs_cookie->s.jt = s2;
2136 
2137 		/*
2138 		 * Now jump to the code to allocate a register
2139 		 * into which to save the header length and
2140 		 * store the length there.  (The "jump always"
2141 		 * instruction needs to have the k field set;
2142 		 * it's added to the PC, so, as we're jumping
2143 		 * over a single instruction, it should be 1.)
2144 		 */
2145 		sjcommon = new_stmt(JMP(BPF_JA));
2146 		sjcommon->s.k = 1;
2147 		sappend(s1, sjcommon);
2148 
2149 		/*
2150 		 * Now for the code that handles the Prism header.
2151 		 * Just load the length of the Prism header (144)
2152 		 * into the A register.  Have the test for an AVS
2153 		 * header branch here if we don't have an AVS header.
2154 		 */
2155 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2156 		s2->s.k = 144;
2157 		sappend(s1, s2);
2158 		sjeq_avs_cookie->s.jf = s2;
2159 
2160 		/*
2161 		 * Now allocate a register to hold that value and store
2162 		 * it.  The code for the AVS header will jump here after
2163 		 * loading the length of the AVS header.
2164 		 */
2165 		s2 = new_stmt(BPF_ST);
2166 		s2->s.k = reg_off_ll;
2167 		sappend(s1, s2);
2168 		sjcommon->s.jf = s2;
2169 
2170 		/*
2171 		 * Now move it into the X register.
2172 		 */
2173 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2174 		sappend(s1, s2);
2175 
2176 		return (s1);
2177 	} else
2178 		return (NULL);
2179 }
2180 
2181 static struct slist *
2182 gen_load_avs_llprefixlen()
2183 {
2184 	struct slist *s1, *s2;
2185 
2186 	/*
2187 	 * Generate code to load the length of the AVS header into
2188 	 * the register assigned to hold that length, if one has been
2189 	 * assigned.  (If one hasn't been assigned, no code we've
2190 	 * generated uses that prefix, so we don't need to generate any
2191 	 * code to load it.)
2192 	 */
2193 	if (reg_off_ll != -1) {
2194 		/*
2195 		 * The 4 bytes at an offset of 4 from the beginning of
2196 		 * the AVS header are the length of the AVS header.
2197 		 * That field is big-endian.
2198 		 */
2199 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2200 		s1->s.k = 4;
2201 
2202 		/*
2203 		 * Now allocate a register to hold that value and store
2204 		 * it.
2205 		 */
2206 		s2 = new_stmt(BPF_ST);
2207 		s2->s.k = reg_off_ll;
2208 		sappend(s1, s2);
2209 
2210 		/*
2211 		 * Now move it into the X register.
2212 		 */
2213 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2214 		sappend(s1, s2);
2215 
2216 		return (s1);
2217 	} else
2218 		return (NULL);
2219 }
2220 
2221 static struct slist *
2222 gen_load_radiotap_llprefixlen()
2223 {
2224 	struct slist *s1, *s2;
2225 
2226 	/*
2227 	 * Generate code to load the length of the radiotap header into
2228 	 * the register assigned to hold that length, if one has been
2229 	 * assigned.  (If one hasn't been assigned, no code we've
2230 	 * generated uses that prefix, so we don't need to generate any
2231 	 * code to load it.)
2232 	 */
2233 	if (reg_off_ll != -1) {
2234 		/*
2235 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2236 		 * of the radiotap header are the length of the radiotap
2237 		 * header; unfortunately, it's little-endian, so we have
2238 		 * to load it a byte at a time and construct the value.
2239 		 */
2240 
2241 		/*
2242 		 * Load the high-order byte, at an offset of 3, shift it
2243 		 * left a byte, and put the result in the X register.
2244 		 */
2245 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2246 		s1->s.k = 3;
2247 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2248 		sappend(s1, s2);
2249 		s2->s.k = 8;
2250 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2251 		sappend(s1, s2);
2252 
2253 		/*
2254 		 * Load the next byte, at an offset of 2, and OR the
2255 		 * value from the X register into it.
2256 		 */
2257 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2258 		sappend(s1, s2);
2259 		s2->s.k = 2;
2260 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2261 		sappend(s1, s2);
2262 
2263 		/*
2264 		 * Now allocate a register to hold that value and store
2265 		 * it.
2266 		 */
2267 		s2 = new_stmt(BPF_ST);
2268 		s2->s.k = reg_off_ll;
2269 		sappend(s1, s2);
2270 
2271 		/*
2272 		 * Now move it into the X register.
2273 		 */
2274 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2275 		sappend(s1, s2);
2276 
2277 		return (s1);
2278 	} else
2279 		return (NULL);
2280 }
2281 
2282 /*
2283  * At the moment we treat PPI as normal Radiotap encoded
2284  * packets. The difference is in the function that generates
2285  * the code at the beginning to compute the header length.
2286  * Since this code generator of PPI supports bare 802.11
2287  * encapsulation only (i.e. the encapsulated DLT should be
2288  * DLT_IEEE802_11) we generate code to check for this too;
2289  * that's done in finish_parse().
2290  */
2291 static struct slist *
2292 gen_load_ppi_llprefixlen()
2293 {
2294 	struct slist *s1, *s2;
2295 
2296 	/*
2297 	 * Generate code to load the length of the radiotap header
2298 	 * into the register assigned to hold that length, if one has
2299 	 * been assigned.
2300 	 */
2301 	if (reg_off_ll != -1) {
2302 		/*
2303 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2304 		 * of the radiotap header are the length of the radiotap
2305 		 * header; unfortunately, it's little-endian, so we have
2306 		 * to load it a byte at a time and construct the value.
2307 		 */
2308 
2309 		/*
2310 		 * Load the high-order byte, at an offset of 3, shift it
2311 		 * left a byte, and put the result in the X register.
2312 		 */
2313 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2314 		s1->s.k = 3;
2315 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2316 		sappend(s1, s2);
2317 		s2->s.k = 8;
2318 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2319 		sappend(s1, s2);
2320 
2321 		/*
2322 		 * Load the next byte, at an offset of 2, and OR the
2323 		 * value from the X register into it.
2324 		 */
2325 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2326 		sappend(s1, s2);
2327 		s2->s.k = 2;
2328 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2329 		sappend(s1, s2);
2330 
2331 		/*
2332 		 * Now allocate a register to hold that value and store
2333 		 * it.
2334 		 */
2335 		s2 = new_stmt(BPF_ST);
2336 		s2->s.k = reg_off_ll;
2337 		sappend(s1, s2);
2338 
2339 		/*
2340 		 * Now move it into the X register.
2341 		 */
2342 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2343 		sappend(s1, s2);
2344 
2345 		return (s1);
2346 	} else
2347 		return (NULL);
2348 }
2349 
2350 /*
2351  * Load a value relative to the beginning of the link-layer header after the 802.11
2352  * header, i.e. LLC_SNAP.
2353  * The link-layer header doesn't necessarily begin at the beginning
2354  * of the packet data; there might be a variable-length prefix containing
2355  * radio information.
2356  */
2357 static struct slist *
2358 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2359 {
2360 	struct slist *s2;
2361 	struct slist *sjset_data_frame_1;
2362 	struct slist *sjset_data_frame_2;
2363 	struct slist *sjset_qos;
2364 	struct slist *sjset_radiotap_flags;
2365 	struct slist *sjset_radiotap_tsft;
2366 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2367 	struct slist *s_roundup;
2368 
2369 	if (reg_off_macpl == -1) {
2370 		/*
2371 		 * No register has been assigned to the offset of
2372 		 * the MAC-layer payload, which means nobody needs
2373 		 * it; don't bother computing it - just return
2374 		 * what we already have.
2375 		 */
2376 		return (s);
2377 	}
2378 
2379 	/*
2380 	 * This code is not compatible with the optimizer, as
2381 	 * we are generating jmp instructions within a normal
2382 	 * slist of instructions
2383 	 */
2384 	no_optimize = 1;
2385 
2386 	/*
2387 	 * If "s" is non-null, it has code to arrange that the X register
2388 	 * contains the length of the prefix preceding the link-layer
2389 	 * header.
2390 	 *
2391 	 * Otherwise, the length of the prefix preceding the link-layer
2392 	 * header is "off_ll".
2393 	 */
2394 	if (s == NULL) {
2395 		/*
2396 		 * There is no variable-length header preceding the
2397 		 * link-layer header.
2398 		 *
2399 		 * Load the length of the fixed-length prefix preceding
2400 		 * the link-layer header (if any) into the X register,
2401 		 * and store it in the reg_off_macpl register.
2402 		 * That length is off_ll.
2403 		 */
2404 		s = new_stmt(BPF_LDX|BPF_IMM);
2405 		s->s.k = off_ll;
2406 	}
2407 
2408 	/*
2409 	 * The X register contains the offset of the beginning of the
2410 	 * link-layer header; add 24, which is the minimum length
2411 	 * of the MAC header for a data frame, to that, and store it
2412 	 * in reg_off_macpl, and then load the Frame Control field,
2413 	 * which is at the offset in the X register, with an indexed load.
2414 	 */
2415 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2416 	sappend(s, s2);
2417 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2418 	s2->s.k = 24;
2419 	sappend(s, s2);
2420 	s2 = new_stmt(BPF_ST);
2421 	s2->s.k = reg_off_macpl;
2422 	sappend(s, s2);
2423 
2424 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2425 	s2->s.k = 0;
2426 	sappend(s, s2);
2427 
2428 	/*
2429 	 * Check the Frame Control field to see if this is a data frame;
2430 	 * a data frame has the 0x08 bit (b3) in that field set and the
2431 	 * 0x04 bit (b2) clear.
2432 	 */
2433 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2434 	sjset_data_frame_1->s.k = 0x08;
2435 	sappend(s, sjset_data_frame_1);
2436 
2437 	/*
2438 	 * If b3 is set, test b2, otherwise go to the first statement of
2439 	 * the rest of the program.
2440 	 */
2441 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2442 	sjset_data_frame_2->s.k = 0x04;
2443 	sappend(s, sjset_data_frame_2);
2444 	sjset_data_frame_1->s.jf = snext;
2445 
2446 	/*
2447 	 * If b2 is not set, this is a data frame; test the QoS bit.
2448 	 * Otherwise, go to the first statement of the rest of the
2449 	 * program.
2450 	 */
2451 	sjset_data_frame_2->s.jt = snext;
2452 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2453 	sjset_qos->s.k = 0x80;	/* QoS bit */
2454 	sappend(s, sjset_qos);
2455 
2456 	/*
2457 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2458 	 * field.
2459 	 * Otherwise, go to the first statement of the rest of the
2460 	 * program.
2461 	 */
2462 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2463 	s2->s.k = reg_off_macpl;
2464 	sappend(s, s2);
2465 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2466 	s2->s.k = 2;
2467 	sappend(s, s2);
2468 	s2 = new_stmt(BPF_ST);
2469 	s2->s.k = reg_off_macpl;
2470 	sappend(s, s2);
2471 
2472 	/*
2473 	 * If we have a radiotap header, look at it to see whether
2474 	 * there's Atheros padding between the MAC-layer header
2475 	 * and the payload.
2476 	 *
2477 	 * Note: all of the fields in the radiotap header are
2478 	 * little-endian, so we byte-swap all of the values
2479 	 * we test against, as they will be loaded as big-endian
2480 	 * values.
2481 	 */
2482 	if (linktype == DLT_IEEE802_11_RADIO) {
2483 		/*
2484 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2485 		 * in the presence flag?
2486 		 */
2487 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2488 		s2->s.k = 4;
2489 		sappend(s, s2);
2490 
2491 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2492 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2493 		sappend(s, sjset_radiotap_flags);
2494 
2495 		/*
2496 		 * If not, skip all of this.
2497 		 */
2498 		sjset_radiotap_flags->s.jf = snext;
2499 
2500 		/*
2501 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2502 		 */
2503 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2504 		    new_stmt(JMP(BPF_JSET));
2505 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2506 		sappend(s, sjset_radiotap_tsft);
2507 
2508 		/*
2509 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2510 		 * at an offset of 16 from the beginning of the raw packet
2511 		 * data (8 bytes for the radiotap header and 8 bytes for
2512 		 * the TSFT field).
2513 		 *
2514 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2515 		 * is set.
2516 		 */
2517 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2518 		s2->s.k = 16;
2519 		sappend(s, s2);
2520 
2521 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2522 		sjset_tsft_datapad->s.k = 0x20;
2523 		sappend(s, sjset_tsft_datapad);
2524 
2525 		/*
2526 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2527 		 * at an offset of 8 from the beginning of the raw packet
2528 		 * data (8 bytes for the radiotap header).
2529 		 *
2530 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2531 		 * is set.
2532 		 */
2533 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2534 		s2->s.k = 8;
2535 		sappend(s, s2);
2536 
2537 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2538 		sjset_notsft_datapad->s.k = 0x20;
2539 		sappend(s, sjset_notsft_datapad);
2540 
2541 		/*
2542 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2543 		 * set, round the length of the 802.11 header to
2544 		 * a multiple of 4.  Do that by adding 3 and then
2545 		 * dividing by and multiplying by 4, which we do by
2546 		 * ANDing with ~3.
2547 		 */
2548 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2549 		s_roundup->s.k = reg_off_macpl;
2550 		sappend(s, s_roundup);
2551 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2552 		s2->s.k = 3;
2553 		sappend(s, s2);
2554 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2555 		s2->s.k = ~3;
2556 		sappend(s, s2);
2557 		s2 = new_stmt(BPF_ST);
2558 		s2->s.k = reg_off_macpl;
2559 		sappend(s, s2);
2560 
2561 		sjset_tsft_datapad->s.jt = s_roundup;
2562 		sjset_tsft_datapad->s.jf = snext;
2563 		sjset_notsft_datapad->s.jt = s_roundup;
2564 		sjset_notsft_datapad->s.jf = snext;
2565 	} else
2566 		sjset_qos->s.jf = snext;
2567 
2568 	return s;
2569 }
2570 
2571 static void
2572 insert_compute_vloffsets(b)
2573 	struct block *b;
2574 {
2575 	struct slist *s;
2576 
2577 	/*
2578 	 * For link-layer types that have a variable-length header
2579 	 * preceding the link-layer header, generate code to load
2580 	 * the offset of the link-layer header into the register
2581 	 * assigned to that offset, if any.
2582 	 */
2583 	switch (linktype) {
2584 
2585 	case DLT_PRISM_HEADER:
2586 		s = gen_load_prism_llprefixlen();
2587 		break;
2588 
2589 	case DLT_IEEE802_11_RADIO_AVS:
2590 		s = gen_load_avs_llprefixlen();
2591 		break;
2592 
2593 	case DLT_IEEE802_11_RADIO:
2594 		s = gen_load_radiotap_llprefixlen();
2595 		break;
2596 
2597 	case DLT_PPI:
2598 		s = gen_load_ppi_llprefixlen();
2599 		break;
2600 
2601 	default:
2602 		s = NULL;
2603 		break;
2604 	}
2605 
2606 	/*
2607 	 * For link-layer types that have a variable-length link-layer
2608 	 * header, generate code to load the offset of the MAC-layer
2609 	 * payload into the register assigned to that offset, if any.
2610 	 */
2611 	switch (linktype) {
2612 
2613 	case DLT_IEEE802_11:
2614 	case DLT_PRISM_HEADER:
2615 	case DLT_IEEE802_11_RADIO_AVS:
2616 	case DLT_IEEE802_11_RADIO:
2617 	case DLT_PPI:
2618 		s = gen_load_802_11_header_len(s, b->stmts);
2619 		break;
2620 	}
2621 
2622 	/*
2623 	 * If we have any offset-loading code, append all the
2624 	 * existing statements in the block to those statements,
2625 	 * and make the resulting list the list of statements
2626 	 * for the block.
2627 	 */
2628 	if (s != NULL) {
2629 		sappend(s, b->stmts);
2630 		b->stmts = s;
2631 	}
2632 }
2633 
2634 static struct block *
2635 gen_ppi_dlt_check(void)
2636 {
2637 	struct slist *s_load_dlt;
2638 	struct block *b;
2639 
2640 	if (linktype == DLT_PPI)
2641 	{
2642 		/* Create the statements that check for the DLT
2643 		 */
2644 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2645 		s_load_dlt->s.k = 4;
2646 
2647 		b = new_block(JMP(BPF_JEQ));
2648 
2649 		b->stmts = s_load_dlt;
2650 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2651 	}
2652 	else
2653 	{
2654 		b = NULL;
2655 	}
2656 
2657 	return b;
2658 }
2659 
2660 static struct slist *
2661 gen_prism_llprefixlen(void)
2662 {
2663 	struct slist *s;
2664 
2665 	if (reg_off_ll == -1) {
2666 		/*
2667 		 * We haven't yet assigned a register for the length
2668 		 * of the radio header; allocate one.
2669 		 */
2670 		reg_off_ll = alloc_reg();
2671 	}
2672 
2673 	/*
2674 	 * Load the register containing the radio length
2675 	 * into the X register.
2676 	 */
2677 	s = new_stmt(BPF_LDX|BPF_MEM);
2678 	s->s.k = reg_off_ll;
2679 	return s;
2680 }
2681 
2682 static struct slist *
2683 gen_avs_llprefixlen(void)
2684 {
2685 	struct slist *s;
2686 
2687 	if (reg_off_ll == -1) {
2688 		/*
2689 		 * We haven't yet assigned a register for the length
2690 		 * of the AVS header; allocate one.
2691 		 */
2692 		reg_off_ll = alloc_reg();
2693 	}
2694 
2695 	/*
2696 	 * Load the register containing the AVS length
2697 	 * into the X register.
2698 	 */
2699 	s = new_stmt(BPF_LDX|BPF_MEM);
2700 	s->s.k = reg_off_ll;
2701 	return s;
2702 }
2703 
2704 static struct slist *
2705 gen_radiotap_llprefixlen(void)
2706 {
2707 	struct slist *s;
2708 
2709 	if (reg_off_ll == -1) {
2710 		/*
2711 		 * We haven't yet assigned a register for the length
2712 		 * of the radiotap header; allocate one.
2713 		 */
2714 		reg_off_ll = alloc_reg();
2715 	}
2716 
2717 	/*
2718 	 * Load the register containing the radiotap length
2719 	 * into the X register.
2720 	 */
2721 	s = new_stmt(BPF_LDX|BPF_MEM);
2722 	s->s.k = reg_off_ll;
2723 	return s;
2724 }
2725 
2726 /*
2727  * At the moment we treat PPI as normal Radiotap encoded
2728  * packets. The difference is in the function that generates
2729  * the code at the beginning to compute the header length.
2730  * Since this code generator of PPI supports bare 802.11
2731  * encapsulation only (i.e. the encapsulated DLT should be
2732  * DLT_IEEE802_11) we generate code to check for this too.
2733  */
2734 static struct slist *
2735 gen_ppi_llprefixlen(void)
2736 {
2737 	struct slist *s;
2738 
2739 	if (reg_off_ll == -1) {
2740 		/*
2741 		 * We haven't yet assigned a register for the length
2742 		 * of the radiotap header; allocate one.
2743 		 */
2744 		reg_off_ll = alloc_reg();
2745 	}
2746 
2747 	/*
2748 	 * Load the register containing the PPI length
2749 	 * into the X register.
2750 	 */
2751 	s = new_stmt(BPF_LDX|BPF_MEM);
2752 	s->s.k = reg_off_ll;
2753 	return s;
2754 }
2755 
2756 /*
2757  * Generate code to compute the link-layer header length, if necessary,
2758  * putting it into the X register, and to return either a pointer to a
2759  * "struct slist" for the list of statements in that code, or NULL if
2760  * no code is necessary.
2761  */
2762 static struct slist *
2763 gen_llprefixlen(void)
2764 {
2765 	switch (linktype) {
2766 
2767 	case DLT_PRISM_HEADER:
2768 		return gen_prism_llprefixlen();
2769 
2770 	case DLT_IEEE802_11_RADIO_AVS:
2771 		return gen_avs_llprefixlen();
2772 
2773 	case DLT_IEEE802_11_RADIO:
2774 		return gen_radiotap_llprefixlen();
2775 
2776 	case DLT_PPI:
2777 		return gen_ppi_llprefixlen();
2778 
2779 	default:
2780 		return NULL;
2781 	}
2782 }
2783 
2784 /*
2785  * Generate code to load the register containing the offset of the
2786  * MAC-layer payload into the X register; if no register for that offset
2787  * has been allocated, allocate it first.
2788  */
2789 static struct slist *
2790 gen_off_macpl(void)
2791 {
2792 	struct slist *s;
2793 
2794 	if (off_macpl_is_variable) {
2795 		if (reg_off_macpl == -1) {
2796 			/*
2797 			 * We haven't yet assigned a register for the offset
2798 			 * of the MAC-layer payload; allocate one.
2799 			 */
2800 			reg_off_macpl = alloc_reg();
2801 		}
2802 
2803 		/*
2804 		 * Load the register containing the offset of the MAC-layer
2805 		 * payload into the X register.
2806 		 */
2807 		s = new_stmt(BPF_LDX|BPF_MEM);
2808 		s->s.k = reg_off_macpl;
2809 		return s;
2810 	} else {
2811 		/*
2812 		 * That offset isn't variable, so we don't need to
2813 		 * generate any code.
2814 		 */
2815 		return NULL;
2816 	}
2817 }
2818 
2819 /*
2820  * Map an Ethernet type to the equivalent PPP type.
2821  */
2822 static int
2823 ethertype_to_ppptype(proto)
2824 	int proto;
2825 {
2826 	switch (proto) {
2827 
2828 	case ETHERTYPE_IP:
2829 		proto = PPP_IP;
2830 		break;
2831 
2832 #ifdef INET6
2833 	case ETHERTYPE_IPV6:
2834 		proto = PPP_IPV6;
2835 		break;
2836 #endif
2837 
2838 	case ETHERTYPE_DN:
2839 		proto = PPP_DECNET;
2840 		break;
2841 
2842 	case ETHERTYPE_ATALK:
2843 		proto = PPP_APPLE;
2844 		break;
2845 
2846 	case ETHERTYPE_NS:
2847 		proto = PPP_NS;
2848 		break;
2849 
2850 	case LLCSAP_ISONS:
2851 		proto = PPP_OSI;
2852 		break;
2853 
2854 	case LLCSAP_8021D:
2855 		/*
2856 		 * I'm assuming the "Bridging PDU"s that go
2857 		 * over PPP are Spanning Tree Protocol
2858 		 * Bridging PDUs.
2859 		 */
2860 		proto = PPP_BRPDU;
2861 		break;
2862 
2863 	case LLCSAP_IPX:
2864 		proto = PPP_IPX;
2865 		break;
2866 	}
2867 	return (proto);
2868 }
2869 
2870 /*
2871  * Generate code to match a particular packet type by matching the
2872  * link-layer type field or fields in the 802.2 LLC header.
2873  *
2874  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2875  * value, if <= ETHERMTU.
2876  */
2877 static struct block *
2878 gen_linktype(proto)
2879 	register int proto;
2880 {
2881 	struct block *b0, *b1, *b2;
2882 
2883 	/* are we checking MPLS-encapsulated packets? */
2884 	if (label_stack_depth > 0) {
2885 		switch (proto) {
2886 		case ETHERTYPE_IP:
2887 		case PPP_IP:
2888 			/* FIXME add other L3 proto IDs */
2889 			return gen_mpls_linktype(Q_IP);
2890 
2891 		case ETHERTYPE_IPV6:
2892 		case PPP_IPV6:
2893 			/* FIXME add other L3 proto IDs */
2894 			return gen_mpls_linktype(Q_IPV6);
2895 
2896 		default:
2897 			bpf_error("unsupported protocol over mpls");
2898 			/* NOTREACHED */
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * Are we testing PPPoE packets?
2904 	 */
2905 	if (is_pppoes) {
2906 		/*
2907 		 * The PPPoE session header is part of the
2908 		 * MAC-layer payload, so all references
2909 		 * should be relative to the beginning of
2910 		 * that payload.
2911 		 */
2912 
2913 		/*
2914 		 * We use Ethernet protocol types inside libpcap;
2915 		 * map them to the corresponding PPP protocol types.
2916 		 */
2917 		proto = ethertype_to_ppptype(proto);
2918 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2919 	}
2920 
2921 	switch (linktype) {
2922 
2923 	case DLT_EN10MB:
2924 	case DLT_NETANALYZER:
2925 	case DLT_NETANALYZER_TRANSPARENT:
2926 		return gen_ether_linktype(proto);
2927 		/*NOTREACHED*/
2928 		break;
2929 
2930 	case DLT_C_HDLC:
2931 		switch (proto) {
2932 
2933 		case LLCSAP_ISONS:
2934 			proto = (proto << 8 | LLCSAP_ISONS);
2935 			/* fall through */
2936 
2937 		default:
2938 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2939 			    (bpf_int32)proto);
2940 			/*NOTREACHED*/
2941 			break;
2942 		}
2943 		break;
2944 
2945 	case DLT_IEEE802_11:
2946 	case DLT_PRISM_HEADER:
2947 	case DLT_IEEE802_11_RADIO_AVS:
2948 	case DLT_IEEE802_11_RADIO:
2949 	case DLT_PPI:
2950 		/*
2951 		 * Check that we have a data frame.
2952 		 */
2953 		b0 = gen_check_802_11_data_frame();
2954 
2955 		/*
2956 		 * Now check for the specified link-layer type.
2957 		 */
2958 		b1 = gen_llc_linktype(proto);
2959 		gen_and(b0, b1);
2960 		return b1;
2961 		/*NOTREACHED*/
2962 		break;
2963 
2964 	case DLT_FDDI:
2965 		/*
2966 		 * XXX - check for asynchronous frames, as per RFC 1103.
2967 		 */
2968 		return gen_llc_linktype(proto);
2969 		/*NOTREACHED*/
2970 		break;
2971 
2972 	case DLT_IEEE802:
2973 		/*
2974 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2975 		 */
2976 		return gen_llc_linktype(proto);
2977 		/*NOTREACHED*/
2978 		break;
2979 
2980 	case DLT_ATM_RFC1483:
2981 	case DLT_ATM_CLIP:
2982 	case DLT_IP_OVER_FC:
2983 		return gen_llc_linktype(proto);
2984 		/*NOTREACHED*/
2985 		break;
2986 
2987 	case DLT_SUNATM:
2988 		/*
2989 		 * If "is_lane" is set, check for a LANE-encapsulated
2990 		 * version of this protocol, otherwise check for an
2991 		 * LLC-encapsulated version of this protocol.
2992 		 *
2993 		 * We assume LANE means Ethernet, not Token Ring.
2994 		 */
2995 		if (is_lane) {
2996 			/*
2997 			 * Check that the packet doesn't begin with an
2998 			 * LE Control marker.  (We've already generated
2999 			 * a test for LANE.)
3000 			 */
3001 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3002 			    0xFF00);
3003 			gen_not(b0);
3004 
3005 			/*
3006 			 * Now generate an Ethernet test.
3007 			 */
3008 			b1 = gen_ether_linktype(proto);
3009 			gen_and(b0, b1);
3010 			return b1;
3011 		} else {
3012 			/*
3013 			 * Check for LLC encapsulation and then check the
3014 			 * protocol.
3015 			 */
3016 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3017 			b1 = gen_llc_linktype(proto);
3018 			gen_and(b0, b1);
3019 			return b1;
3020 		}
3021 		/*NOTREACHED*/
3022 		break;
3023 
3024 	case DLT_LINUX_SLL:
3025 		return gen_linux_sll_linktype(proto);
3026 		/*NOTREACHED*/
3027 		break;
3028 
3029 	case DLT_SLIP:
3030 	case DLT_SLIP_BSDOS:
3031 	case DLT_RAW:
3032 		/*
3033 		 * These types don't provide any type field; packets
3034 		 * are always IPv4 or IPv6.
3035 		 *
3036 		 * XXX - for IPv4, check for a version number of 4, and,
3037 		 * for IPv6, check for a version number of 6?
3038 		 */
3039 		switch (proto) {
3040 
3041 		case ETHERTYPE_IP:
3042 			/* Check for a version number of 4. */
3043 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3044 #ifdef INET6
3045 		case ETHERTYPE_IPV6:
3046 			/* Check for a version number of 6. */
3047 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3048 #endif
3049 
3050 		default:
3051 			return gen_false();		/* always false */
3052 		}
3053 		/*NOTREACHED*/
3054 		break;
3055 
3056 	case DLT_IPV4:
3057 		/*
3058 		 * Raw IPv4, so no type field.
3059 		 */
3060 		if (proto == ETHERTYPE_IP)
3061 			return gen_true();		/* always true */
3062 
3063 		/* Checking for something other than IPv4; always false */
3064 		return gen_false();
3065 		/*NOTREACHED*/
3066 		break;
3067 
3068 	case DLT_IPV6:
3069 		/*
3070 		 * Raw IPv6, so no type field.
3071 		 */
3072 #ifdef INET6
3073 		if (proto == ETHERTYPE_IPV6)
3074 			return gen_true();		/* always true */
3075 #endif
3076 
3077 		/* Checking for something other than IPv6; always false */
3078 		return gen_false();
3079 		/*NOTREACHED*/
3080 		break;
3081 
3082 	case DLT_PPP:
3083 	case DLT_PPP_PPPD:
3084 	case DLT_PPP_SERIAL:
3085 	case DLT_PPP_ETHER:
3086 		/*
3087 		 * We use Ethernet protocol types inside libpcap;
3088 		 * map them to the corresponding PPP protocol types.
3089 		 */
3090 		proto = ethertype_to_ppptype(proto);
3091 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3092 		/*NOTREACHED*/
3093 		break;
3094 
3095 	case DLT_PPP_BSDOS:
3096 		/*
3097 		 * We use Ethernet protocol types inside libpcap;
3098 		 * map them to the corresponding PPP protocol types.
3099 		 */
3100 		switch (proto) {
3101 
3102 		case ETHERTYPE_IP:
3103 			/*
3104 			 * Also check for Van Jacobson-compressed IP.
3105 			 * XXX - do this for other forms of PPP?
3106 			 */
3107 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3108 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3109 			gen_or(b0, b1);
3110 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3111 			gen_or(b1, b0);
3112 			return b0;
3113 
3114 		default:
3115 			proto = ethertype_to_ppptype(proto);
3116 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3117 				(bpf_int32)proto);
3118 		}
3119 		/*NOTREACHED*/
3120 		break;
3121 
3122 	case DLT_NULL:
3123 	case DLT_LOOP:
3124 	case DLT_ENC:
3125 		/*
3126 		 * For DLT_NULL, the link-layer header is a 32-bit
3127 		 * word containing an AF_ value in *host* byte order,
3128 		 * and for DLT_ENC, the link-layer header begins
3129 		 * with a 32-bit work containing an AF_ value in
3130 		 * host byte order.
3131 		 *
3132 		 * In addition, if we're reading a saved capture file,
3133 		 * the host byte order in the capture may not be the
3134 		 * same as the host byte order on this machine.
3135 		 *
3136 		 * For DLT_LOOP, the link-layer header is a 32-bit
3137 		 * word containing an AF_ value in *network* byte order.
3138 		 *
3139 		 * XXX - AF_ values may, unfortunately, be platform-
3140 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3141 		 * whilst NetBSD's and OpenBSD's is 26.
3142 		 *
3143 		 * This means that, when reading a capture file, just
3144 		 * checking for our AF_INET6 value won't work if the
3145 		 * capture file came from another OS.
3146 		 */
3147 		switch (proto) {
3148 
3149 		case ETHERTYPE_IP:
3150 			proto = AF_INET;
3151 			break;
3152 
3153 #ifdef INET6
3154 		case ETHERTYPE_IPV6:
3155 			proto = AF_INET6;
3156 			break;
3157 #endif
3158 
3159 		default:
3160 			/*
3161 			 * Not a type on which we support filtering.
3162 			 * XXX - support those that have AF_ values
3163 			 * #defined on this platform, at least?
3164 			 */
3165 			return gen_false();
3166 		}
3167 
3168 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3169 			/*
3170 			 * The AF_ value is in host byte order, but
3171 			 * the BPF interpreter will convert it to
3172 			 * network byte order.
3173 			 *
3174 			 * If this is a save file, and it's from a
3175 			 * machine with the opposite byte order to
3176 			 * ours, we byte-swap the AF_ value.
3177 			 *
3178 			 * Then we run it through "htonl()", and
3179 			 * generate code to compare against the result.
3180 			 */
3181 			if (bpf_pcap->sf.rfile != NULL &&
3182 			    bpf_pcap->sf.swapped)
3183 				proto = SWAPLONG(proto);
3184 			proto = htonl(proto);
3185 		}
3186 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3187 
3188 #ifdef HAVE_NET_PFVAR_H
3189 	case DLT_PFLOG:
3190 		/*
3191 		 * af field is host byte order in contrast to the rest of
3192 		 * the packet.
3193 		 */
3194 		if (proto == ETHERTYPE_IP)
3195 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3196 			    BPF_B, (bpf_int32)AF_INET));
3197 #ifdef INET6
3198 		else if (proto == ETHERTYPE_IPV6)
3199 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3200 			    BPF_B, (bpf_int32)AF_INET6));
3201 #endif /* INET6 */
3202 		else
3203 			return gen_false();
3204 		/*NOTREACHED*/
3205 		break;
3206 #endif /* HAVE_NET_PFVAR_H */
3207 
3208 	case DLT_ARCNET:
3209 	case DLT_ARCNET_LINUX:
3210 		/*
3211 		 * XXX should we check for first fragment if the protocol
3212 		 * uses PHDS?
3213 		 */
3214 		switch (proto) {
3215 
3216 		default:
3217 			return gen_false();
3218 
3219 #ifdef INET6
3220 		case ETHERTYPE_IPV6:
3221 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3222 				(bpf_int32)ARCTYPE_INET6));
3223 #endif /* INET6 */
3224 
3225 		case ETHERTYPE_IP:
3226 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3227 				     (bpf_int32)ARCTYPE_IP);
3228 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3229 				     (bpf_int32)ARCTYPE_IP_OLD);
3230 			gen_or(b0, b1);
3231 			return (b1);
3232 
3233 		case ETHERTYPE_ARP:
3234 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3235 				     (bpf_int32)ARCTYPE_ARP);
3236 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3237 				     (bpf_int32)ARCTYPE_ARP_OLD);
3238 			gen_or(b0, b1);
3239 			return (b1);
3240 
3241 		case ETHERTYPE_REVARP:
3242 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3243 					(bpf_int32)ARCTYPE_REVARP));
3244 
3245 		case ETHERTYPE_ATALK:
3246 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3247 					(bpf_int32)ARCTYPE_ATALK));
3248 		}
3249 		/*NOTREACHED*/
3250 		break;
3251 
3252 	case DLT_LTALK:
3253 		switch (proto) {
3254 		case ETHERTYPE_ATALK:
3255 			return gen_true();
3256 		default:
3257 			return gen_false();
3258 		}
3259 		/*NOTREACHED*/
3260 		break;
3261 
3262 	case DLT_FRELAY:
3263 		/*
3264 		 * XXX - assumes a 2-byte Frame Relay header with
3265 		 * DLCI and flags.  What if the address is longer?
3266 		 */
3267 		switch (proto) {
3268 
3269 		case ETHERTYPE_IP:
3270 			/*
3271 			 * Check for the special NLPID for IP.
3272 			 */
3273 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3274 
3275 #ifdef INET6
3276 		case ETHERTYPE_IPV6:
3277 			/*
3278 			 * Check for the special NLPID for IPv6.
3279 			 */
3280 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3281 #endif
3282 
3283 		case LLCSAP_ISONS:
3284 			/*
3285 			 * Check for several OSI protocols.
3286 			 *
3287 			 * Frame Relay packets typically have an OSI
3288 			 * NLPID at the beginning; we check for each
3289 			 * of them.
3290 			 *
3291 			 * What we check for is the NLPID and a frame
3292 			 * control field of UI, i.e. 0x03 followed
3293 			 * by the NLPID.
3294 			 */
3295 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3296 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3297 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3298 			gen_or(b1, b2);
3299 			gen_or(b0, b2);
3300 			return b2;
3301 
3302 		default:
3303 			return gen_false();
3304 		}
3305 		/*NOTREACHED*/
3306 		break;
3307 
3308 	case DLT_MFR:
3309 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3310 
3311         case DLT_JUNIPER_MFR:
3312         case DLT_JUNIPER_MLFR:
3313         case DLT_JUNIPER_MLPPP:
3314 	case DLT_JUNIPER_ATM1:
3315 	case DLT_JUNIPER_ATM2:
3316 	case DLT_JUNIPER_PPPOE:
3317 	case DLT_JUNIPER_PPPOE_ATM:
3318         case DLT_JUNIPER_GGSN:
3319         case DLT_JUNIPER_ES:
3320         case DLT_JUNIPER_MONITOR:
3321         case DLT_JUNIPER_SERVICES:
3322         case DLT_JUNIPER_ETHER:
3323         case DLT_JUNIPER_PPP:
3324         case DLT_JUNIPER_FRELAY:
3325         case DLT_JUNIPER_CHDLC:
3326         case DLT_JUNIPER_VP:
3327         case DLT_JUNIPER_ST:
3328         case DLT_JUNIPER_ISM:
3329         case DLT_JUNIPER_VS:
3330         case DLT_JUNIPER_SRX_E2E:
3331         case DLT_JUNIPER_FIBRECHANNEL:
3332 	case DLT_JUNIPER_ATM_CEMIC:
3333 
3334 		/* just lets verify the magic number for now -
3335 		 * on ATM we may have up to 6 different encapsulations on the wire
3336 		 * and need a lot of heuristics to figure out that the payload
3337 		 * might be;
3338 		 *
3339 		 * FIXME encapsulation specific BPF_ filters
3340 		 */
3341 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3342 
3343 	case DLT_IPNET:
3344 		return gen_ipnet_linktype(proto);
3345 
3346 	case DLT_LINUX_IRDA:
3347 		bpf_error("IrDA link-layer type filtering not implemented");
3348 
3349 	case DLT_DOCSIS:
3350 		bpf_error("DOCSIS link-layer type filtering not implemented");
3351 
3352 	case DLT_MTP2:
3353 	case DLT_MTP2_WITH_PHDR:
3354 		bpf_error("MTP2 link-layer type filtering not implemented");
3355 
3356 	case DLT_ERF:
3357 		bpf_error("ERF link-layer type filtering not implemented");
3358 
3359 #ifdef DLT_PFSYNC
3360 	case DLT_PFSYNC:
3361 		bpf_error("PFSYNC link-layer type filtering not implemented");
3362 #endif
3363 
3364 	case DLT_LINUX_LAPD:
3365 		bpf_error("LAPD link-layer type filtering not implemented");
3366 
3367 	case DLT_USB:
3368 	case DLT_USB_LINUX:
3369 	case DLT_USB_LINUX_MMAPPED:
3370 		bpf_error("USB link-layer type filtering not implemented");
3371 
3372 	case DLT_BLUETOOTH_HCI_H4:
3373 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3374 		bpf_error("Bluetooth link-layer type filtering not implemented");
3375 
3376 	case DLT_CAN20B:
3377 	case DLT_CAN_SOCKETCAN:
3378 		bpf_error("CAN link-layer type filtering not implemented");
3379 
3380 	case DLT_IEEE802_15_4:
3381 	case DLT_IEEE802_15_4_LINUX:
3382 	case DLT_IEEE802_15_4_NONASK_PHY:
3383 	case DLT_IEEE802_15_4_NOFCS:
3384 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3385 
3386 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3387 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3388 
3389 	case DLT_SITA:
3390 		bpf_error("SITA link-layer type filtering not implemented");
3391 
3392 	case DLT_RAIF1:
3393 		bpf_error("RAIF1 link-layer type filtering not implemented");
3394 
3395 	case DLT_IPMB:
3396 		bpf_error("IPMB link-layer type filtering not implemented");
3397 
3398 	case DLT_AX25_KISS:
3399 		bpf_error("AX.25 link-layer type filtering not implemented");
3400 	}
3401 
3402 	/*
3403 	 * All the types that have no encapsulation should either be
3404 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3405 	 * all packets are IP packets, or should be handled in some
3406 	 * special case, if none of them are (if some are and some
3407 	 * aren't, the lack of encapsulation is a problem, as we'd
3408 	 * have to find some other way of determining the packet type).
3409 	 *
3410 	 * Therefore, if "off_linktype" is -1, there's an error.
3411 	 */
3412 	if (off_linktype == (u_int)-1)
3413 		abort();
3414 
3415 	/*
3416 	 * Any type not handled above should always have an Ethernet
3417 	 * type at an offset of "off_linktype".
3418 	 */
3419 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3420 }
3421 
3422 /*
3423  * Check for an LLC SNAP packet with a given organization code and
3424  * protocol type; we check the entire contents of the 802.2 LLC and
3425  * snap headers, checking for DSAP and SSAP of SNAP and a control
3426  * field of 0x03 in the LLC header, and for the specified organization
3427  * code and protocol type in the SNAP header.
3428  */
3429 static struct block *
3430 gen_snap(orgcode, ptype)
3431 	bpf_u_int32 orgcode;
3432 	bpf_u_int32 ptype;
3433 {
3434 	u_char snapblock[8];
3435 
3436 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3437 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3438 	snapblock[2] = 0x03;		/* control = UI */
3439 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3440 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3441 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3442 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3443 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3444 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3445 }
3446 
3447 /*
3448  * Generate code to match a particular packet type, for link-layer types
3449  * using 802.2 LLC headers.
3450  *
3451  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3452  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3453  *
3454  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3455  * value, if <= ETHERMTU.  We use that to determine whether to
3456  * match the DSAP or both DSAP and LSAP or to check the OUI and
3457  * protocol ID in a SNAP header.
3458  */
3459 static struct block *
3460 gen_llc_linktype(proto)
3461 	int proto;
3462 {
3463 	/*
3464 	 * XXX - handle token-ring variable-length header.
3465 	 */
3466 	switch (proto) {
3467 
3468 	case LLCSAP_IP:
3469 	case LLCSAP_ISONS:
3470 	case LLCSAP_NETBEUI:
3471 		/*
3472 		 * XXX - should we check both the DSAP and the
3473 		 * SSAP, like this, or should we check just the
3474 		 * DSAP, as we do for other types <= ETHERMTU
3475 		 * (i.e., other SAP values)?
3476 		 */
3477 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3478 			     ((proto << 8) | proto));
3479 
3480 	case LLCSAP_IPX:
3481 		/*
3482 		 * XXX - are there ever SNAP frames for IPX on
3483 		 * non-Ethernet 802.x networks?
3484 		 */
3485 		return gen_cmp(OR_MACPL, 0, BPF_B,
3486 		    (bpf_int32)LLCSAP_IPX);
3487 
3488 	case ETHERTYPE_ATALK:
3489 		/*
3490 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3491 		 * SNAP packets with an organization code of
3492 		 * 0x080007 (Apple, for Appletalk) and a protocol
3493 		 * type of ETHERTYPE_ATALK (Appletalk).
3494 		 *
3495 		 * XXX - check for an organization code of
3496 		 * encapsulated Ethernet as well?
3497 		 */
3498 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3499 
3500 	default:
3501 		/*
3502 		 * XXX - we don't have to check for IPX 802.3
3503 		 * here, but should we check for the IPX Ethertype?
3504 		 */
3505 		if (proto <= ETHERMTU) {
3506 			/*
3507 			 * This is an LLC SAP value, so check
3508 			 * the DSAP.
3509 			 */
3510 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3511 		} else {
3512 			/*
3513 			 * This is an Ethernet type; we assume that it's
3514 			 * unlikely that it'll appear in the right place
3515 			 * at random, and therefore check only the
3516 			 * location that would hold the Ethernet type
3517 			 * in a SNAP frame with an organization code of
3518 			 * 0x000000 (encapsulated Ethernet).
3519 			 *
3520 			 * XXX - if we were to check for the SNAP DSAP and
3521 			 * LSAP, as per XXX, and were also to check for an
3522 			 * organization code of 0x000000 (encapsulated
3523 			 * Ethernet), we'd do
3524 			 *
3525 			 *	return gen_snap(0x000000, proto);
3526 			 *
3527 			 * here; for now, we don't, as per the above.
3528 			 * I don't know whether it's worth the extra CPU
3529 			 * time to do the right check or not.
3530 			 */
3531 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3532 		}
3533 	}
3534 }
3535 
3536 static struct block *
3537 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3538 	bpf_u_int32 addr;
3539 	bpf_u_int32 mask;
3540 	int dir, proto;
3541 	u_int src_off, dst_off;
3542 {
3543 	struct block *b0, *b1;
3544 	u_int offset;
3545 
3546 	switch (dir) {
3547 
3548 	case Q_SRC:
3549 		offset = src_off;
3550 		break;
3551 
3552 	case Q_DST:
3553 		offset = dst_off;
3554 		break;
3555 
3556 	case Q_AND:
3557 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3558 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3559 		gen_and(b0, b1);
3560 		return b1;
3561 
3562 	case Q_OR:
3563 	case Q_DEFAULT:
3564 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3565 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3566 		gen_or(b0, b1);
3567 		return b1;
3568 
3569 	default:
3570 		abort();
3571 	}
3572 	b0 = gen_linktype(proto);
3573 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3574 	gen_and(b0, b1);
3575 	return b1;
3576 }
3577 
3578 #ifdef INET6
3579 static struct block *
3580 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3581 	struct in6_addr *addr;
3582 	struct in6_addr *mask;
3583 	int dir, proto;
3584 	u_int src_off, dst_off;
3585 {
3586 	struct block *b0, *b1;
3587 	u_int offset;
3588 	u_int32_t *a, *m;
3589 
3590 	switch (dir) {
3591 
3592 	case Q_SRC:
3593 		offset = src_off;
3594 		break;
3595 
3596 	case Q_DST:
3597 		offset = dst_off;
3598 		break;
3599 
3600 	case Q_AND:
3601 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3602 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3603 		gen_and(b0, b1);
3604 		return b1;
3605 
3606 	case Q_OR:
3607 	case Q_DEFAULT:
3608 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3609 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3610 		gen_or(b0, b1);
3611 		return b1;
3612 
3613 	default:
3614 		abort();
3615 	}
3616 	/* this order is important */
3617 	a = (u_int32_t *)addr;
3618 	m = (u_int32_t *)mask;
3619 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3620 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3621 	gen_and(b0, b1);
3622 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3623 	gen_and(b0, b1);
3624 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3625 	gen_and(b0, b1);
3626 	b0 = gen_linktype(proto);
3627 	gen_and(b0, b1);
3628 	return b1;
3629 }
3630 #endif /*INET6*/
3631 
3632 static struct block *
3633 gen_ehostop(eaddr, dir)
3634 	register const u_char *eaddr;
3635 	register int dir;
3636 {
3637 	register struct block *b0, *b1;
3638 
3639 	switch (dir) {
3640 	case Q_SRC:
3641 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3642 
3643 	case Q_DST:
3644 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3645 
3646 	case Q_AND:
3647 		b0 = gen_ehostop(eaddr, Q_SRC);
3648 		b1 = gen_ehostop(eaddr, Q_DST);
3649 		gen_and(b0, b1);
3650 		return b1;
3651 
3652 	case Q_DEFAULT:
3653 	case Q_OR:
3654 		b0 = gen_ehostop(eaddr, Q_SRC);
3655 		b1 = gen_ehostop(eaddr, Q_DST);
3656 		gen_or(b0, b1);
3657 		return b1;
3658 
3659 	case Q_ADDR1:
3660 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3661 		break;
3662 
3663 	case Q_ADDR2:
3664 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3665 		break;
3666 
3667 	case Q_ADDR3:
3668 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3669 		break;
3670 
3671 	case Q_ADDR4:
3672 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3673 		break;
3674 
3675 	case Q_RA:
3676 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3677 		break;
3678 
3679 	case Q_TA:
3680 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3681 		break;
3682 	}
3683 	abort();
3684 	/* NOTREACHED */
3685 }
3686 
3687 /*
3688  * Like gen_ehostop, but for DLT_FDDI
3689  */
3690 static struct block *
3691 gen_fhostop(eaddr, dir)
3692 	register const u_char *eaddr;
3693 	register int dir;
3694 {
3695 	struct block *b0, *b1;
3696 
3697 	switch (dir) {
3698 	case Q_SRC:
3699 #ifdef PCAP_FDDIPAD
3700 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3701 #else
3702 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3703 #endif
3704 
3705 	case Q_DST:
3706 #ifdef PCAP_FDDIPAD
3707 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3708 #else
3709 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3710 #endif
3711 
3712 	case Q_AND:
3713 		b0 = gen_fhostop(eaddr, Q_SRC);
3714 		b1 = gen_fhostop(eaddr, Q_DST);
3715 		gen_and(b0, b1);
3716 		return b1;
3717 
3718 	case Q_DEFAULT:
3719 	case Q_OR:
3720 		b0 = gen_fhostop(eaddr, Q_SRC);
3721 		b1 = gen_fhostop(eaddr, Q_DST);
3722 		gen_or(b0, b1);
3723 		return b1;
3724 
3725 	case Q_ADDR1:
3726 		bpf_error("'addr1' is only supported on 802.11");
3727 		break;
3728 
3729 	case Q_ADDR2:
3730 		bpf_error("'addr2' is only supported on 802.11");
3731 		break;
3732 
3733 	case Q_ADDR3:
3734 		bpf_error("'addr3' is only supported on 802.11");
3735 		break;
3736 
3737 	case Q_ADDR4:
3738 		bpf_error("'addr4' is only supported on 802.11");
3739 		break;
3740 
3741 	case Q_RA:
3742 		bpf_error("'ra' is only supported on 802.11");
3743 		break;
3744 
3745 	case Q_TA:
3746 		bpf_error("'ta' is only supported on 802.11");
3747 		break;
3748 	}
3749 	abort();
3750 	/* NOTREACHED */
3751 }
3752 
3753 /*
3754  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3755  */
3756 static struct block *
3757 gen_thostop(eaddr, dir)
3758 	register const u_char *eaddr;
3759 	register int dir;
3760 {
3761 	register struct block *b0, *b1;
3762 
3763 	switch (dir) {
3764 	case Q_SRC:
3765 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3766 
3767 	case Q_DST:
3768 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3769 
3770 	case Q_AND:
3771 		b0 = gen_thostop(eaddr, Q_SRC);
3772 		b1 = gen_thostop(eaddr, Q_DST);
3773 		gen_and(b0, b1);
3774 		return b1;
3775 
3776 	case Q_DEFAULT:
3777 	case Q_OR:
3778 		b0 = gen_thostop(eaddr, Q_SRC);
3779 		b1 = gen_thostop(eaddr, Q_DST);
3780 		gen_or(b0, b1);
3781 		return b1;
3782 
3783 	case Q_ADDR1:
3784 		bpf_error("'addr1' is only supported on 802.11");
3785 		break;
3786 
3787 	case Q_ADDR2:
3788 		bpf_error("'addr2' is only supported on 802.11");
3789 		break;
3790 
3791 	case Q_ADDR3:
3792 		bpf_error("'addr3' is only supported on 802.11");
3793 		break;
3794 
3795 	case Q_ADDR4:
3796 		bpf_error("'addr4' is only supported on 802.11");
3797 		break;
3798 
3799 	case Q_RA:
3800 		bpf_error("'ra' is only supported on 802.11");
3801 		break;
3802 
3803 	case Q_TA:
3804 		bpf_error("'ta' is only supported on 802.11");
3805 		break;
3806 	}
3807 	abort();
3808 	/* NOTREACHED */
3809 }
3810 
3811 /*
3812  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3813  * various 802.11 + radio headers.
3814  */
3815 static struct block *
3816 gen_wlanhostop(eaddr, dir)
3817 	register const u_char *eaddr;
3818 	register int dir;
3819 {
3820 	register struct block *b0, *b1, *b2;
3821 	register struct slist *s;
3822 
3823 #ifdef ENABLE_WLAN_FILTERING_PATCH
3824 	/*
3825 	 * TODO GV 20070613
3826 	 * We need to disable the optimizer because the optimizer is buggy
3827 	 * and wipes out some LD instructions generated by the below
3828 	 * code to validate the Frame Control bits
3829 	 */
3830 	no_optimize = 1;
3831 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3832 
3833 	switch (dir) {
3834 	case Q_SRC:
3835 		/*
3836 		 * Oh, yuk.
3837 		 *
3838 		 *	For control frames, there is no SA.
3839 		 *
3840 		 *	For management frames, SA is at an
3841 		 *	offset of 10 from the beginning of
3842 		 *	the packet.
3843 		 *
3844 		 *	For data frames, SA is at an offset
3845 		 *	of 10 from the beginning of the packet
3846 		 *	if From DS is clear, at an offset of
3847 		 *	16 from the beginning of the packet
3848 		 *	if From DS is set and To DS is clear,
3849 		 *	and an offset of 24 from the beginning
3850 		 *	of the packet if From DS is set and To DS
3851 		 *	is set.
3852 		 */
3853 
3854 		/*
3855 		 * Generate the tests to be done for data frames
3856 		 * with From DS set.
3857 		 *
3858 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3859 		 */
3860 		s = gen_load_a(OR_LINK, 1, BPF_B);
3861 		b1 = new_block(JMP(BPF_JSET));
3862 		b1->s.k = 0x01;	/* To DS */
3863 		b1->stmts = s;
3864 
3865 		/*
3866 		 * If To DS is set, the SA is at 24.
3867 		 */
3868 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3869 		gen_and(b1, b0);
3870 
3871 		/*
3872 		 * Now, check for To DS not set, i.e. check
3873 		 * "!(link[1] & 0x01)".
3874 		 */
3875 		s = gen_load_a(OR_LINK, 1, BPF_B);
3876 		b2 = new_block(JMP(BPF_JSET));
3877 		b2->s.k = 0x01;	/* To DS */
3878 		b2->stmts = s;
3879 		gen_not(b2);
3880 
3881 		/*
3882 		 * If To DS is not set, the SA is at 16.
3883 		 */
3884 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3885 		gen_and(b2, b1);
3886 
3887 		/*
3888 		 * Now OR together the last two checks.  That gives
3889 		 * the complete set of checks for data frames with
3890 		 * From DS set.
3891 		 */
3892 		gen_or(b1, b0);
3893 
3894 		/*
3895 		 * Now check for From DS being set, and AND that with
3896 		 * the ORed-together checks.
3897 		 */
3898 		s = gen_load_a(OR_LINK, 1, BPF_B);
3899 		b1 = new_block(JMP(BPF_JSET));
3900 		b1->s.k = 0x02;	/* From DS */
3901 		b1->stmts = s;
3902 		gen_and(b1, b0);
3903 
3904 		/*
3905 		 * Now check for data frames with From DS not set.
3906 		 */
3907 		s = gen_load_a(OR_LINK, 1, BPF_B);
3908 		b2 = new_block(JMP(BPF_JSET));
3909 		b2->s.k = 0x02;	/* From DS */
3910 		b2->stmts = s;
3911 		gen_not(b2);
3912 
3913 		/*
3914 		 * If From DS isn't set, the SA is at 10.
3915 		 */
3916 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3917 		gen_and(b2, b1);
3918 
3919 		/*
3920 		 * Now OR together the checks for data frames with
3921 		 * From DS not set and for data frames with From DS
3922 		 * set; that gives the checks done for data frames.
3923 		 */
3924 		gen_or(b1, b0);
3925 
3926 		/*
3927 		 * Now check for a data frame.
3928 		 * I.e, check "link[0] & 0x08".
3929 		 */
3930 		s = gen_load_a(OR_LINK, 0, BPF_B);
3931 		b1 = new_block(JMP(BPF_JSET));
3932 		b1->s.k = 0x08;
3933 		b1->stmts = s;
3934 
3935 		/*
3936 		 * AND that with the checks done for data frames.
3937 		 */
3938 		gen_and(b1, b0);
3939 
3940 		/*
3941 		 * If the high-order bit of the type value is 0, this
3942 		 * is a management frame.
3943 		 * I.e, check "!(link[0] & 0x08)".
3944 		 */
3945 		s = gen_load_a(OR_LINK, 0, BPF_B);
3946 		b2 = new_block(JMP(BPF_JSET));
3947 		b2->s.k = 0x08;
3948 		b2->stmts = s;
3949 		gen_not(b2);
3950 
3951 		/*
3952 		 * For management frames, the SA is at 10.
3953 		 */
3954 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3955 		gen_and(b2, b1);
3956 
3957 		/*
3958 		 * OR that with the checks done for data frames.
3959 		 * That gives the checks done for management and
3960 		 * data frames.
3961 		 */
3962 		gen_or(b1, b0);
3963 
3964 		/*
3965 		 * If the low-order bit of the type value is 1,
3966 		 * this is either a control frame or a frame
3967 		 * with a reserved type, and thus not a
3968 		 * frame with an SA.
3969 		 *
3970 		 * I.e., check "!(link[0] & 0x04)".
3971 		 */
3972 		s = gen_load_a(OR_LINK, 0, BPF_B);
3973 		b1 = new_block(JMP(BPF_JSET));
3974 		b1->s.k = 0x04;
3975 		b1->stmts = s;
3976 		gen_not(b1);
3977 
3978 		/*
3979 		 * AND that with the checks for data and management
3980 		 * frames.
3981 		 */
3982 		gen_and(b1, b0);
3983 		return b0;
3984 
3985 	case Q_DST:
3986 		/*
3987 		 * Oh, yuk.
3988 		 *
3989 		 *	For control frames, there is no DA.
3990 		 *
3991 		 *	For management frames, DA is at an
3992 		 *	offset of 4 from the beginning of
3993 		 *	the packet.
3994 		 *
3995 		 *	For data frames, DA is at an offset
3996 		 *	of 4 from the beginning of the packet
3997 		 *	if To DS is clear and at an offset of
3998 		 *	16 from the beginning of the packet
3999 		 *	if To DS is set.
4000 		 */
4001 
4002 		/*
4003 		 * Generate the tests to be done for data frames.
4004 		 *
4005 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4006 		 */
4007 		s = gen_load_a(OR_LINK, 1, BPF_B);
4008 		b1 = new_block(JMP(BPF_JSET));
4009 		b1->s.k = 0x01;	/* To DS */
4010 		b1->stmts = s;
4011 
4012 		/*
4013 		 * If To DS is set, the DA is at 16.
4014 		 */
4015 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4016 		gen_and(b1, b0);
4017 
4018 		/*
4019 		 * Now, check for To DS not set, i.e. check
4020 		 * "!(link[1] & 0x01)".
4021 		 */
4022 		s = gen_load_a(OR_LINK, 1, BPF_B);
4023 		b2 = new_block(JMP(BPF_JSET));
4024 		b2->s.k = 0x01;	/* To DS */
4025 		b2->stmts = s;
4026 		gen_not(b2);
4027 
4028 		/*
4029 		 * If To DS is not set, the DA is at 4.
4030 		 */
4031 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4032 		gen_and(b2, b1);
4033 
4034 		/*
4035 		 * Now OR together the last two checks.  That gives
4036 		 * the complete set of checks for data frames.
4037 		 */
4038 		gen_or(b1, b0);
4039 
4040 		/*
4041 		 * Now check for a data frame.
4042 		 * I.e, check "link[0] & 0x08".
4043 		 */
4044 		s = gen_load_a(OR_LINK, 0, BPF_B);
4045 		b1 = new_block(JMP(BPF_JSET));
4046 		b1->s.k = 0x08;
4047 		b1->stmts = s;
4048 
4049 		/*
4050 		 * AND that with the checks done for data frames.
4051 		 */
4052 		gen_and(b1, b0);
4053 
4054 		/*
4055 		 * If the high-order bit of the type value is 0, this
4056 		 * is a management frame.
4057 		 * I.e, check "!(link[0] & 0x08)".
4058 		 */
4059 		s = gen_load_a(OR_LINK, 0, BPF_B);
4060 		b2 = new_block(JMP(BPF_JSET));
4061 		b2->s.k = 0x08;
4062 		b2->stmts = s;
4063 		gen_not(b2);
4064 
4065 		/*
4066 		 * For management frames, the DA is at 4.
4067 		 */
4068 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4069 		gen_and(b2, b1);
4070 
4071 		/*
4072 		 * OR that with the checks done for data frames.
4073 		 * That gives the checks done for management and
4074 		 * data frames.
4075 		 */
4076 		gen_or(b1, b0);
4077 
4078 		/*
4079 		 * If the low-order bit of the type value is 1,
4080 		 * this is either a control frame or a frame
4081 		 * with a reserved type, and thus not a
4082 		 * frame with an SA.
4083 		 *
4084 		 * I.e., check "!(link[0] & 0x04)".
4085 		 */
4086 		s = gen_load_a(OR_LINK, 0, BPF_B);
4087 		b1 = new_block(JMP(BPF_JSET));
4088 		b1->s.k = 0x04;
4089 		b1->stmts = s;
4090 		gen_not(b1);
4091 
4092 		/*
4093 		 * AND that with the checks for data and management
4094 		 * frames.
4095 		 */
4096 		gen_and(b1, b0);
4097 		return b0;
4098 
4099 	case Q_RA:
4100 		/*
4101 		 * Not present in management frames; addr1 in other
4102 		 * frames.
4103 		 */
4104 
4105 		/*
4106 		 * If the high-order bit of the type value is 0, this
4107 		 * is a management frame.
4108 		 * I.e, check "(link[0] & 0x08)".
4109 		 */
4110 		s = gen_load_a(OR_LINK, 0, BPF_B);
4111 		b1 = new_block(JMP(BPF_JSET));
4112 		b1->s.k = 0x08;
4113 		b1->stmts = s;
4114 
4115 		/*
4116 		 * Check addr1.
4117 		 */
4118 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4119 
4120 		/*
4121 		 * AND that with the check of addr1.
4122 		 */
4123 		gen_and(b1, b0);
4124 		return (b0);
4125 
4126 	case Q_TA:
4127 		/*
4128 		 * Not present in management frames; addr2, if present,
4129 		 * in other frames.
4130 		 */
4131 
4132 		/*
4133 		 * Not present in CTS or ACK control frames.
4134 		 */
4135 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4136 			IEEE80211_FC0_TYPE_MASK);
4137 		gen_not(b0);
4138 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4139 			IEEE80211_FC0_SUBTYPE_MASK);
4140 		gen_not(b1);
4141 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4142 			IEEE80211_FC0_SUBTYPE_MASK);
4143 		gen_not(b2);
4144 		gen_and(b1, b2);
4145 		gen_or(b0, b2);
4146 
4147 		/*
4148 		 * If the high-order bit of the type value is 0, this
4149 		 * is a management frame.
4150 		 * I.e, check "(link[0] & 0x08)".
4151 		 */
4152 		s = gen_load_a(OR_LINK, 0, BPF_B);
4153 		b1 = new_block(JMP(BPF_JSET));
4154 		b1->s.k = 0x08;
4155 		b1->stmts = s;
4156 
4157 		/*
4158 		 * AND that with the check for frames other than
4159 		 * CTS and ACK frames.
4160 		 */
4161 		gen_and(b1, b2);
4162 
4163 		/*
4164 		 * Check addr2.
4165 		 */
4166 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4167 		gen_and(b2, b1);
4168 		return b1;
4169 
4170 	/*
4171 	 * XXX - add BSSID keyword?
4172 	 */
4173 	case Q_ADDR1:
4174 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4175 
4176 	case Q_ADDR2:
4177 		/*
4178 		 * Not present in CTS or ACK control frames.
4179 		 */
4180 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4181 			IEEE80211_FC0_TYPE_MASK);
4182 		gen_not(b0);
4183 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4184 			IEEE80211_FC0_SUBTYPE_MASK);
4185 		gen_not(b1);
4186 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4187 			IEEE80211_FC0_SUBTYPE_MASK);
4188 		gen_not(b2);
4189 		gen_and(b1, b2);
4190 		gen_or(b0, b2);
4191 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4192 		gen_and(b2, b1);
4193 		return b1;
4194 
4195 	case Q_ADDR3:
4196 		/*
4197 		 * Not present in control frames.
4198 		 */
4199 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4200 			IEEE80211_FC0_TYPE_MASK);
4201 		gen_not(b0);
4202 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4203 		gen_and(b0, b1);
4204 		return b1;
4205 
4206 	case Q_ADDR4:
4207 		/*
4208 		 * Present only if the direction mask has both "From DS"
4209 		 * and "To DS" set.  Neither control frames nor management
4210 		 * frames should have both of those set, so we don't
4211 		 * check the frame type.
4212 		 */
4213 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4214 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4215 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4216 		gen_and(b0, b1);
4217 		return b1;
4218 
4219 	case Q_AND:
4220 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4221 		b1 = gen_wlanhostop(eaddr, Q_DST);
4222 		gen_and(b0, b1);
4223 		return b1;
4224 
4225 	case Q_DEFAULT:
4226 	case Q_OR:
4227 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4228 		b1 = gen_wlanhostop(eaddr, Q_DST);
4229 		gen_or(b0, b1);
4230 		return b1;
4231 	}
4232 	abort();
4233 	/* NOTREACHED */
4234 }
4235 
4236 /*
4237  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4238  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4239  * as the RFC states.)
4240  */
4241 static struct block *
4242 gen_ipfchostop(eaddr, dir)
4243 	register const u_char *eaddr;
4244 	register int dir;
4245 {
4246 	register struct block *b0, *b1;
4247 
4248 	switch (dir) {
4249 	case Q_SRC:
4250 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4251 
4252 	case Q_DST:
4253 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4254 
4255 	case Q_AND:
4256 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4257 		b1 = gen_ipfchostop(eaddr, Q_DST);
4258 		gen_and(b0, b1);
4259 		return b1;
4260 
4261 	case Q_DEFAULT:
4262 	case Q_OR:
4263 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4264 		b1 = gen_ipfchostop(eaddr, Q_DST);
4265 		gen_or(b0, b1);
4266 		return b1;
4267 
4268 	case Q_ADDR1:
4269 		bpf_error("'addr1' is only supported on 802.11");
4270 		break;
4271 
4272 	case Q_ADDR2:
4273 		bpf_error("'addr2' is only supported on 802.11");
4274 		break;
4275 
4276 	case Q_ADDR3:
4277 		bpf_error("'addr3' is only supported on 802.11");
4278 		break;
4279 
4280 	case Q_ADDR4:
4281 		bpf_error("'addr4' is only supported on 802.11");
4282 		break;
4283 
4284 	case Q_RA:
4285 		bpf_error("'ra' is only supported on 802.11");
4286 		break;
4287 
4288 	case Q_TA:
4289 		bpf_error("'ta' is only supported on 802.11");
4290 		break;
4291 	}
4292 	abort();
4293 	/* NOTREACHED */
4294 }
4295 
4296 /*
4297  * This is quite tricky because there may be pad bytes in front of the
4298  * DECNET header, and then there are two possible data packet formats that
4299  * carry both src and dst addresses, plus 5 packet types in a format that
4300  * carries only the src node, plus 2 types that use a different format and
4301  * also carry just the src node.
4302  *
4303  * Yuck.
4304  *
4305  * Instead of doing those all right, we just look for data packets with
4306  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4307  * will require a lot more hacking.
4308  *
4309  * To add support for filtering on DECNET "areas" (network numbers)
4310  * one would want to add a "mask" argument to this routine.  That would
4311  * make the filter even more inefficient, although one could be clever
4312  * and not generate masking instructions if the mask is 0xFFFF.
4313  */
4314 static struct block *
4315 gen_dnhostop(addr, dir)
4316 	bpf_u_int32 addr;
4317 	int dir;
4318 {
4319 	struct block *b0, *b1, *b2, *tmp;
4320 	u_int offset_lh;	/* offset if long header is received */
4321 	u_int offset_sh;	/* offset if short header is received */
4322 
4323 	switch (dir) {
4324 
4325 	case Q_DST:
4326 		offset_sh = 1;	/* follows flags */
4327 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4328 		break;
4329 
4330 	case Q_SRC:
4331 		offset_sh = 3;	/* follows flags, dstnode */
4332 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4333 		break;
4334 
4335 	case Q_AND:
4336 		/* Inefficient because we do our Calvinball dance twice */
4337 		b0 = gen_dnhostop(addr, Q_SRC);
4338 		b1 = gen_dnhostop(addr, Q_DST);
4339 		gen_and(b0, b1);
4340 		return b1;
4341 
4342 	case Q_OR:
4343 	case Q_DEFAULT:
4344 		/* Inefficient because we do our Calvinball dance twice */
4345 		b0 = gen_dnhostop(addr, Q_SRC);
4346 		b1 = gen_dnhostop(addr, Q_DST);
4347 		gen_or(b0, b1);
4348 		return b1;
4349 
4350 	case Q_ISO:
4351 		bpf_error("ISO host filtering not implemented");
4352 
4353 	default:
4354 		abort();
4355 	}
4356 	b0 = gen_linktype(ETHERTYPE_DN);
4357 	/* Check for pad = 1, long header case */
4358 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4359 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4360 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4361 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4362 	gen_and(tmp, b1);
4363 	/* Check for pad = 0, long header case */
4364 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4365 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4366 	gen_and(tmp, b2);
4367 	gen_or(b2, b1);
4368 	/* Check for pad = 1, short header case */
4369 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4370 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4371 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4372 	gen_and(tmp, b2);
4373 	gen_or(b2, b1);
4374 	/* Check for pad = 0, short header case */
4375 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4376 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4377 	gen_and(tmp, b2);
4378 	gen_or(b2, b1);
4379 
4380 	/* Combine with test for linktype */
4381 	gen_and(b0, b1);
4382 	return b1;
4383 }
4384 
4385 /*
4386  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4387  * test the bottom-of-stack bit, and then check the version number
4388  * field in the IP header.
4389  */
4390 static struct block *
4391 gen_mpls_linktype(proto)
4392 	int proto;
4393 {
4394 	struct block *b0, *b1;
4395 
4396         switch (proto) {
4397 
4398         case Q_IP:
4399                 /* match the bottom-of-stack bit */
4400                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4401                 /* match the IPv4 version number */
4402                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4403                 gen_and(b0, b1);
4404                 return b1;
4405 
4406        case Q_IPV6:
4407                 /* match the bottom-of-stack bit */
4408                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4409                 /* match the IPv4 version number */
4410                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4411                 gen_and(b0, b1);
4412                 return b1;
4413 
4414        default:
4415                 abort();
4416         }
4417 }
4418 
4419 static struct block *
4420 gen_host(addr, mask, proto, dir, type)
4421 	bpf_u_int32 addr;
4422 	bpf_u_int32 mask;
4423 	int proto;
4424 	int dir;
4425 	int type;
4426 {
4427 	struct block *b0, *b1;
4428 	const char *typestr;
4429 
4430 	if (type == Q_NET)
4431 		typestr = "net";
4432 	else
4433 		typestr = "host";
4434 
4435 	switch (proto) {
4436 
4437 	case Q_DEFAULT:
4438 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4439 		/*
4440 		 * Only check for non-IPv4 addresses if we're not
4441 		 * checking MPLS-encapsulated packets.
4442 		 */
4443 		if (label_stack_depth == 0) {
4444 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4445 			gen_or(b0, b1);
4446 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4447 			gen_or(b1, b0);
4448 		}
4449 		return b0;
4450 
4451 	case Q_IP:
4452 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4453 
4454 	case Q_RARP:
4455 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4456 
4457 	case Q_ARP:
4458 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4459 
4460 	case Q_TCP:
4461 		bpf_error("'tcp' modifier applied to %s", typestr);
4462 
4463 	case Q_SCTP:
4464 		bpf_error("'sctp' modifier applied to %s", typestr);
4465 
4466 	case Q_UDP:
4467 		bpf_error("'udp' modifier applied to %s", typestr);
4468 
4469 	case Q_ICMP:
4470 		bpf_error("'icmp' modifier applied to %s", typestr);
4471 
4472 	case Q_IGMP:
4473 		bpf_error("'igmp' modifier applied to %s", typestr);
4474 
4475 	case Q_IGRP:
4476 		bpf_error("'igrp' modifier applied to %s", typestr);
4477 
4478 	case Q_PIM:
4479 		bpf_error("'pim' modifier applied to %s", typestr);
4480 
4481 	case Q_VRRP:
4482 		bpf_error("'vrrp' modifier applied to %s", typestr);
4483 
4484 	case Q_CARP:
4485 		bpf_error("'carp' modifier applied to %s", typestr);
4486 
4487 	case Q_ATALK:
4488 		bpf_error("ATALK host filtering not implemented");
4489 
4490 	case Q_AARP:
4491 		bpf_error("AARP host filtering not implemented");
4492 
4493 	case Q_DECNET:
4494 		return gen_dnhostop(addr, dir);
4495 
4496 	case Q_SCA:
4497 		bpf_error("SCA host filtering not implemented");
4498 
4499 	case Q_LAT:
4500 		bpf_error("LAT host filtering not implemented");
4501 
4502 	case Q_MOPDL:
4503 		bpf_error("MOPDL host filtering not implemented");
4504 
4505 	case Q_MOPRC:
4506 		bpf_error("MOPRC host filtering not implemented");
4507 
4508 #ifdef INET6
4509 	case Q_IPV6:
4510 		bpf_error("'ip6' modifier applied to ip host");
4511 
4512 	case Q_ICMPV6:
4513 		bpf_error("'icmp6' modifier applied to %s", typestr);
4514 #endif /* INET6 */
4515 
4516 	case Q_AH:
4517 		bpf_error("'ah' modifier applied to %s", typestr);
4518 
4519 	case Q_ESP:
4520 		bpf_error("'esp' modifier applied to %s", typestr);
4521 
4522 	case Q_ISO:
4523 		bpf_error("ISO host filtering not implemented");
4524 
4525 	case Q_ESIS:
4526 		bpf_error("'esis' modifier applied to %s", typestr);
4527 
4528 	case Q_ISIS:
4529 		bpf_error("'isis' modifier applied to %s", typestr);
4530 
4531 	case Q_CLNP:
4532 		bpf_error("'clnp' modifier applied to %s", typestr);
4533 
4534 	case Q_STP:
4535 		bpf_error("'stp' modifier applied to %s", typestr);
4536 
4537 	case Q_IPX:
4538 		bpf_error("IPX host filtering not implemented");
4539 
4540 	case Q_NETBEUI:
4541 		bpf_error("'netbeui' modifier applied to %s", typestr);
4542 
4543 	case Q_RADIO:
4544 		bpf_error("'radio' modifier applied to %s", typestr);
4545 
4546 	default:
4547 		abort();
4548 	}
4549 	/* NOTREACHED */
4550 }
4551 
4552 #ifdef INET6
4553 static struct block *
4554 gen_host6(addr, mask, proto, dir, type)
4555 	struct in6_addr *addr;
4556 	struct in6_addr *mask;
4557 	int proto;
4558 	int dir;
4559 	int type;
4560 {
4561 	const char *typestr;
4562 
4563 	if (type == Q_NET)
4564 		typestr = "net";
4565 	else
4566 		typestr = "host";
4567 
4568 	switch (proto) {
4569 
4570 	case Q_DEFAULT:
4571 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4572 
4573 	case Q_IP:
4574 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4575 
4576 	case Q_RARP:
4577 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4578 
4579 	case Q_ARP:
4580 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4581 
4582 	case Q_SCTP:
4583 		bpf_error("'sctp' modifier applied to %s", typestr);
4584 
4585 	case Q_TCP:
4586 		bpf_error("'tcp' modifier applied to %s", typestr);
4587 
4588 	case Q_UDP:
4589 		bpf_error("'udp' modifier applied to %s", typestr);
4590 
4591 	case Q_ICMP:
4592 		bpf_error("'icmp' modifier applied to %s", typestr);
4593 
4594 	case Q_IGMP:
4595 		bpf_error("'igmp' modifier applied to %s", typestr);
4596 
4597 	case Q_IGRP:
4598 		bpf_error("'igrp' modifier applied to %s", typestr);
4599 
4600 	case Q_PIM:
4601 		bpf_error("'pim' modifier applied to %s", typestr);
4602 
4603 	case Q_VRRP:
4604 		bpf_error("'vrrp' modifier applied to %s", typestr);
4605 
4606 	case Q_CARP:
4607 		bpf_error("'carp' modifier applied to %s", typestr);
4608 
4609 	case Q_ATALK:
4610 		bpf_error("ATALK host filtering not implemented");
4611 
4612 	case Q_AARP:
4613 		bpf_error("AARP host filtering not implemented");
4614 
4615 	case Q_DECNET:
4616 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4617 
4618 	case Q_SCA:
4619 		bpf_error("SCA host filtering not implemented");
4620 
4621 	case Q_LAT:
4622 		bpf_error("LAT host filtering not implemented");
4623 
4624 	case Q_MOPDL:
4625 		bpf_error("MOPDL host filtering not implemented");
4626 
4627 	case Q_MOPRC:
4628 		bpf_error("MOPRC host filtering not implemented");
4629 
4630 	case Q_IPV6:
4631 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4632 
4633 	case Q_ICMPV6:
4634 		bpf_error("'icmp6' modifier applied to %s", typestr);
4635 
4636 	case Q_AH:
4637 		bpf_error("'ah' modifier applied to %s", typestr);
4638 
4639 	case Q_ESP:
4640 		bpf_error("'esp' modifier applied to %s", typestr);
4641 
4642 	case Q_ISO:
4643 		bpf_error("ISO host filtering not implemented");
4644 
4645 	case Q_ESIS:
4646 		bpf_error("'esis' modifier applied to %s", typestr);
4647 
4648 	case Q_ISIS:
4649 		bpf_error("'isis' modifier applied to %s", typestr);
4650 
4651 	case Q_CLNP:
4652 		bpf_error("'clnp' modifier applied to %s", typestr);
4653 
4654 	case Q_STP:
4655 		bpf_error("'stp' modifier applied to %s", typestr);
4656 
4657 	case Q_IPX:
4658 		bpf_error("IPX host filtering not implemented");
4659 
4660 	case Q_NETBEUI:
4661 		bpf_error("'netbeui' modifier applied to %s", typestr);
4662 
4663 	case Q_RADIO:
4664 		bpf_error("'radio' modifier applied to %s", typestr);
4665 
4666 	default:
4667 		abort();
4668 	}
4669 	/* NOTREACHED */
4670 }
4671 #endif /*INET6*/
4672 
4673 #ifndef INET6
4674 static struct block *
4675 gen_gateway(eaddr, alist, proto, dir)
4676 	const u_char *eaddr;
4677 	bpf_u_int32 **alist;
4678 	int proto;
4679 	int dir;
4680 {
4681 	struct block *b0, *b1, *tmp;
4682 
4683 	if (dir != 0)
4684 		bpf_error("direction applied to 'gateway'");
4685 
4686 	switch (proto) {
4687 	case Q_DEFAULT:
4688 	case Q_IP:
4689 	case Q_ARP:
4690 	case Q_RARP:
4691 		switch (linktype) {
4692 		case DLT_EN10MB:
4693 		case DLT_NETANALYZER:
4694 		case DLT_NETANALYZER_TRANSPARENT:
4695 			b0 = gen_ehostop(eaddr, Q_OR);
4696 			break;
4697 		case DLT_FDDI:
4698 			b0 = gen_fhostop(eaddr, Q_OR);
4699 			break;
4700 		case DLT_IEEE802:
4701 			b0 = gen_thostop(eaddr, Q_OR);
4702 			break;
4703 		case DLT_IEEE802_11:
4704 		case DLT_PRISM_HEADER:
4705 		case DLT_IEEE802_11_RADIO_AVS:
4706 		case DLT_IEEE802_11_RADIO:
4707 		case DLT_PPI:
4708 			b0 = gen_wlanhostop(eaddr, Q_OR);
4709 			break;
4710 		case DLT_SUNATM:
4711 			if (!is_lane)
4712 				bpf_error(
4713 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4714 			/*
4715 			 * Check that the packet doesn't begin with an
4716 			 * LE Control marker.  (We've already generated
4717 			 * a test for LANE.)
4718 			 */
4719 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4720 			    BPF_H, 0xFF00);
4721 			gen_not(b1);
4722 
4723 			/*
4724 			 * Now check the MAC address.
4725 			 */
4726 			b0 = gen_ehostop(eaddr, Q_OR);
4727 			gen_and(b1, b0);
4728 			break;
4729 		case DLT_IP_OVER_FC:
4730 			b0 = gen_ipfchostop(eaddr, Q_OR);
4731 			break;
4732 		default:
4733 			bpf_error(
4734 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4735 		}
4736 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4737 		while (*alist) {
4738 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4739 			    Q_HOST);
4740 			gen_or(b1, tmp);
4741 			b1 = tmp;
4742 		}
4743 		gen_not(b1);
4744 		gen_and(b0, b1);
4745 		return b1;
4746 	}
4747 	bpf_error("illegal modifier of 'gateway'");
4748 	/* NOTREACHED */
4749 }
4750 #endif
4751 
4752 struct block *
4753 gen_proto_abbrev(proto)
4754 	int proto;
4755 {
4756 	struct block *b0;
4757 	struct block *b1;
4758 
4759 	switch (proto) {
4760 
4761 	case Q_SCTP:
4762 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4763 #ifdef INET6
4764 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4765 		gen_or(b0, b1);
4766 #endif
4767 		break;
4768 
4769 	case Q_TCP:
4770 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4771 #ifdef INET6
4772 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4773 		gen_or(b0, b1);
4774 #endif
4775 		break;
4776 
4777 	case Q_UDP:
4778 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4779 #ifdef INET6
4780 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4781 		gen_or(b0, b1);
4782 #endif
4783 		break;
4784 
4785 	case Q_ICMP:
4786 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4787 		break;
4788 
4789 #ifndef	IPPROTO_IGMP
4790 #define	IPPROTO_IGMP	2
4791 #endif
4792 
4793 	case Q_IGMP:
4794 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4795 		break;
4796 
4797 #ifndef	IPPROTO_IGRP
4798 #define	IPPROTO_IGRP	9
4799 #endif
4800 	case Q_IGRP:
4801 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4802 		break;
4803 
4804 #ifndef IPPROTO_PIM
4805 #define IPPROTO_PIM	103
4806 #endif
4807 
4808 	case Q_PIM:
4809 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4810 #ifdef INET6
4811 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4812 		gen_or(b0, b1);
4813 #endif
4814 		break;
4815 
4816 #ifndef IPPROTO_VRRP
4817 #define IPPROTO_VRRP	112
4818 #endif
4819 
4820 	case Q_VRRP:
4821 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4822 		break;
4823 
4824 #ifndef IPPROTO_CARP
4825 #define IPPROTO_CARP	112
4826 #endif
4827 
4828 	case Q_CARP:
4829 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4830 		break;
4831 
4832 	case Q_IP:
4833 		b1 =  gen_linktype(ETHERTYPE_IP);
4834 		break;
4835 
4836 	case Q_ARP:
4837 		b1 =  gen_linktype(ETHERTYPE_ARP);
4838 		break;
4839 
4840 	case Q_RARP:
4841 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4842 		break;
4843 
4844 	case Q_LINK:
4845 		bpf_error("link layer applied in wrong context");
4846 
4847 	case Q_ATALK:
4848 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4849 		break;
4850 
4851 	case Q_AARP:
4852 		b1 =  gen_linktype(ETHERTYPE_AARP);
4853 		break;
4854 
4855 	case Q_DECNET:
4856 		b1 =  gen_linktype(ETHERTYPE_DN);
4857 		break;
4858 
4859 	case Q_SCA:
4860 		b1 =  gen_linktype(ETHERTYPE_SCA);
4861 		break;
4862 
4863 	case Q_LAT:
4864 		b1 =  gen_linktype(ETHERTYPE_LAT);
4865 		break;
4866 
4867 	case Q_MOPDL:
4868 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4869 		break;
4870 
4871 	case Q_MOPRC:
4872 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4873 		break;
4874 
4875 #ifdef INET6
4876 	case Q_IPV6:
4877 		b1 = gen_linktype(ETHERTYPE_IPV6);
4878 		break;
4879 
4880 #ifndef IPPROTO_ICMPV6
4881 #define IPPROTO_ICMPV6	58
4882 #endif
4883 	case Q_ICMPV6:
4884 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4885 		break;
4886 #endif /* INET6 */
4887 
4888 #ifndef IPPROTO_AH
4889 #define IPPROTO_AH	51
4890 #endif
4891 	case Q_AH:
4892 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4893 #ifdef INET6
4894 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4895 		gen_or(b0, b1);
4896 #endif
4897 		break;
4898 
4899 #ifndef IPPROTO_ESP
4900 #define IPPROTO_ESP	50
4901 #endif
4902 	case Q_ESP:
4903 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4904 #ifdef INET6
4905 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4906 		gen_or(b0, b1);
4907 #endif
4908 		break;
4909 
4910 	case Q_ISO:
4911 		b1 = gen_linktype(LLCSAP_ISONS);
4912 		break;
4913 
4914 	case Q_ESIS:
4915 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4916 		break;
4917 
4918 	case Q_ISIS:
4919 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4920 		break;
4921 
4922 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4923 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4924 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4925 		gen_or(b0, b1);
4926 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4927 		gen_or(b0, b1);
4928 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4929 		gen_or(b0, b1);
4930 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4931 		gen_or(b0, b1);
4932 		break;
4933 
4934 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4935 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4936 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4937 		gen_or(b0, b1);
4938 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4939 		gen_or(b0, b1);
4940 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4941 		gen_or(b0, b1);
4942 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4943 		gen_or(b0, b1);
4944 		break;
4945 
4946 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4947 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4948 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4949 		gen_or(b0, b1);
4950 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4951 		gen_or(b0, b1);
4952 		break;
4953 
4954 	case Q_ISIS_LSP:
4955 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4956 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4957 		gen_or(b0, b1);
4958 		break;
4959 
4960 	case Q_ISIS_SNP:
4961 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4962 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4963 		gen_or(b0, b1);
4964 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4965 		gen_or(b0, b1);
4966 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4967 		gen_or(b0, b1);
4968 		break;
4969 
4970 	case Q_ISIS_CSNP:
4971 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4972 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4973 		gen_or(b0, b1);
4974 		break;
4975 
4976 	case Q_ISIS_PSNP:
4977 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4978 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4979 		gen_or(b0, b1);
4980 		break;
4981 
4982 	case Q_CLNP:
4983 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4984 		break;
4985 
4986 	case Q_STP:
4987 		b1 = gen_linktype(LLCSAP_8021D);
4988 		break;
4989 
4990 	case Q_IPX:
4991 		b1 = gen_linktype(LLCSAP_IPX);
4992 		break;
4993 
4994 	case Q_NETBEUI:
4995 		b1 = gen_linktype(LLCSAP_NETBEUI);
4996 		break;
4997 
4998 	case Q_RADIO:
4999 		bpf_error("'radio' is not a valid protocol type");
5000 
5001 	default:
5002 		abort();
5003 	}
5004 	return b1;
5005 }
5006 
5007 static struct block *
5008 gen_ipfrag()
5009 {
5010 	struct slist *s;
5011 	struct block *b;
5012 
5013 	/* not IPv4 frag other than the first frag */
5014 	s = gen_load_a(OR_NET, 6, BPF_H);
5015 	b = new_block(JMP(BPF_JSET));
5016 	b->s.k = 0x1fff;
5017 	b->stmts = s;
5018 	gen_not(b);
5019 
5020 	return b;
5021 }
5022 
5023 /*
5024  * Generate a comparison to a port value in the transport-layer header
5025  * at the specified offset from the beginning of that header.
5026  *
5027  * XXX - this handles a variable-length prefix preceding the link-layer
5028  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5029  * variable-length link-layer headers (such as Token Ring or 802.11
5030  * headers).
5031  */
5032 static struct block *
5033 gen_portatom(off, v)
5034 	int off;
5035 	bpf_int32 v;
5036 {
5037 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5038 }
5039 
5040 #ifdef INET6
5041 static struct block *
5042 gen_portatom6(off, v)
5043 	int off;
5044 	bpf_int32 v;
5045 {
5046 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5047 }
5048 #endif/*INET6*/
5049 
5050 struct block *
5051 gen_portop(port, proto, dir)
5052 	int port, proto, dir;
5053 {
5054 	struct block *b0, *b1, *tmp;
5055 
5056 	/* ip proto 'proto' and not a fragment other than the first fragment */
5057 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5058 	b0 = gen_ipfrag();
5059 	gen_and(tmp, b0);
5060 
5061 	switch (dir) {
5062 	case Q_SRC:
5063 		b1 = gen_portatom(0, (bpf_int32)port);
5064 		break;
5065 
5066 	case Q_DST:
5067 		b1 = gen_portatom(2, (bpf_int32)port);
5068 		break;
5069 
5070 	case Q_OR:
5071 	case Q_DEFAULT:
5072 		tmp = gen_portatom(0, (bpf_int32)port);
5073 		b1 = gen_portatom(2, (bpf_int32)port);
5074 		gen_or(tmp, b1);
5075 		break;
5076 
5077 	case Q_AND:
5078 		tmp = gen_portatom(0, (bpf_int32)port);
5079 		b1 = gen_portatom(2, (bpf_int32)port);
5080 		gen_and(tmp, b1);
5081 		break;
5082 
5083 	default:
5084 		abort();
5085 	}
5086 	gen_and(b0, b1);
5087 
5088 	return b1;
5089 }
5090 
5091 static struct block *
5092 gen_port(port, ip_proto, dir)
5093 	int port;
5094 	int ip_proto;
5095 	int dir;
5096 {
5097 	struct block *b0, *b1, *tmp;
5098 
5099 	/*
5100 	 * ether proto ip
5101 	 *
5102 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5103 	 * not LLC encapsulation with LLCSAP_IP.
5104 	 *
5105 	 * For IEEE 802 networks - which includes 802.5 token ring
5106 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5107 	 * says that SNAP encapsulation is used, not LLC encapsulation
5108 	 * with LLCSAP_IP.
5109 	 *
5110 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5111 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5112 	 * encapsulation with LLCSAP_IP.
5113 	 *
5114 	 * So we always check for ETHERTYPE_IP.
5115 	 */
5116 	b0 =  gen_linktype(ETHERTYPE_IP);
5117 
5118 	switch (ip_proto) {
5119 	case IPPROTO_UDP:
5120 	case IPPROTO_TCP:
5121 	case IPPROTO_SCTP:
5122 		b1 = gen_portop(port, ip_proto, dir);
5123 		break;
5124 
5125 	case PROTO_UNDEF:
5126 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5127 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5128 		gen_or(tmp, b1);
5129 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5130 		gen_or(tmp, b1);
5131 		break;
5132 
5133 	default:
5134 		abort();
5135 	}
5136 	gen_and(b0, b1);
5137 	return b1;
5138 }
5139 
5140 #ifdef INET6
5141 struct block *
5142 gen_portop6(port, proto, dir)
5143 	int port, proto, dir;
5144 {
5145 	struct block *b0, *b1, *tmp;
5146 
5147 	/* ip6 proto 'proto' */
5148 	/* XXX - catch the first fragment of a fragmented packet? */
5149 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5150 
5151 	switch (dir) {
5152 	case Q_SRC:
5153 		b1 = gen_portatom6(0, (bpf_int32)port);
5154 		break;
5155 
5156 	case Q_DST:
5157 		b1 = gen_portatom6(2, (bpf_int32)port);
5158 		break;
5159 
5160 	case Q_OR:
5161 	case Q_DEFAULT:
5162 		tmp = gen_portatom6(0, (bpf_int32)port);
5163 		b1 = gen_portatom6(2, (bpf_int32)port);
5164 		gen_or(tmp, b1);
5165 		break;
5166 
5167 	case Q_AND:
5168 		tmp = gen_portatom6(0, (bpf_int32)port);
5169 		b1 = gen_portatom6(2, (bpf_int32)port);
5170 		gen_and(tmp, b1);
5171 		break;
5172 
5173 	default:
5174 		abort();
5175 	}
5176 	gen_and(b0, b1);
5177 
5178 	return b1;
5179 }
5180 
5181 static struct block *
5182 gen_port6(port, ip_proto, dir)
5183 	int port;
5184 	int ip_proto;
5185 	int dir;
5186 {
5187 	struct block *b0, *b1, *tmp;
5188 
5189 	/* link proto ip6 */
5190 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5191 
5192 	switch (ip_proto) {
5193 	case IPPROTO_UDP:
5194 	case IPPROTO_TCP:
5195 	case IPPROTO_SCTP:
5196 		b1 = gen_portop6(port, ip_proto, dir);
5197 		break;
5198 
5199 	case PROTO_UNDEF:
5200 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5201 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5202 		gen_or(tmp, b1);
5203 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5204 		gen_or(tmp, b1);
5205 		break;
5206 
5207 	default:
5208 		abort();
5209 	}
5210 	gen_and(b0, b1);
5211 	return b1;
5212 }
5213 #endif /* INET6 */
5214 
5215 /* gen_portrange code */
5216 static struct block *
5217 gen_portrangeatom(off, v1, v2)
5218 	int off;
5219 	bpf_int32 v1, v2;
5220 {
5221 	struct block *b1, *b2;
5222 
5223 	if (v1 > v2) {
5224 		/*
5225 		 * Reverse the order of the ports, so v1 is the lower one.
5226 		 */
5227 		bpf_int32 vtemp;
5228 
5229 		vtemp = v1;
5230 		v1 = v2;
5231 		v2 = vtemp;
5232 	}
5233 
5234 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5235 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5236 
5237 	gen_and(b1, b2);
5238 
5239 	return b2;
5240 }
5241 
5242 struct block *
5243 gen_portrangeop(port1, port2, proto, dir)
5244 	int port1, port2;
5245 	int proto;
5246 	int dir;
5247 {
5248 	struct block *b0, *b1, *tmp;
5249 
5250 	/* ip proto 'proto' and not a fragment other than the first fragment */
5251 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5252 	b0 = gen_ipfrag();
5253 	gen_and(tmp, b0);
5254 
5255 	switch (dir) {
5256 	case Q_SRC:
5257 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5258 		break;
5259 
5260 	case Q_DST:
5261 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5262 		break;
5263 
5264 	case Q_OR:
5265 	case Q_DEFAULT:
5266 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5267 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5268 		gen_or(tmp, b1);
5269 		break;
5270 
5271 	case Q_AND:
5272 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5273 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5274 		gen_and(tmp, b1);
5275 		break;
5276 
5277 	default:
5278 		abort();
5279 	}
5280 	gen_and(b0, b1);
5281 
5282 	return b1;
5283 }
5284 
5285 static struct block *
5286 gen_portrange(port1, port2, ip_proto, dir)
5287 	int port1, port2;
5288 	int ip_proto;
5289 	int dir;
5290 {
5291 	struct block *b0, *b1, *tmp;
5292 
5293 	/* link proto ip */
5294 	b0 =  gen_linktype(ETHERTYPE_IP);
5295 
5296 	switch (ip_proto) {
5297 	case IPPROTO_UDP:
5298 	case IPPROTO_TCP:
5299 	case IPPROTO_SCTP:
5300 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5301 		break;
5302 
5303 	case PROTO_UNDEF:
5304 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5305 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5306 		gen_or(tmp, b1);
5307 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5308 		gen_or(tmp, b1);
5309 		break;
5310 
5311 	default:
5312 		abort();
5313 	}
5314 	gen_and(b0, b1);
5315 	return b1;
5316 }
5317 
5318 #ifdef INET6
5319 static struct block *
5320 gen_portrangeatom6(off, v1, v2)
5321 	int off;
5322 	bpf_int32 v1, v2;
5323 {
5324 	struct block *b1, *b2;
5325 
5326 	if (v1 > v2) {
5327 		/*
5328 		 * Reverse the order of the ports, so v1 is the lower one.
5329 		 */
5330 		bpf_int32 vtemp;
5331 
5332 		vtemp = v1;
5333 		v1 = v2;
5334 		v2 = vtemp;
5335 	}
5336 
5337 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5338 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5339 
5340 	gen_and(b1, b2);
5341 
5342 	return b2;
5343 }
5344 
5345 struct block *
5346 gen_portrangeop6(port1, port2, proto, dir)
5347 	int port1, port2;
5348 	int proto;
5349 	int dir;
5350 {
5351 	struct block *b0, *b1, *tmp;
5352 
5353 	/* ip6 proto 'proto' */
5354 	/* XXX - catch the first fragment of a fragmented packet? */
5355 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5356 
5357 	switch (dir) {
5358 	case Q_SRC:
5359 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5360 		break;
5361 
5362 	case Q_DST:
5363 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5364 		break;
5365 
5366 	case Q_OR:
5367 	case Q_DEFAULT:
5368 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5369 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5370 		gen_or(tmp, b1);
5371 		break;
5372 
5373 	case Q_AND:
5374 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5375 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5376 		gen_and(tmp, b1);
5377 		break;
5378 
5379 	default:
5380 		abort();
5381 	}
5382 	gen_and(b0, b1);
5383 
5384 	return b1;
5385 }
5386 
5387 static struct block *
5388 gen_portrange6(port1, port2, ip_proto, dir)
5389 	int port1, port2;
5390 	int ip_proto;
5391 	int dir;
5392 {
5393 	struct block *b0, *b1, *tmp;
5394 
5395 	/* link proto ip6 */
5396 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5397 
5398 	switch (ip_proto) {
5399 	case IPPROTO_UDP:
5400 	case IPPROTO_TCP:
5401 	case IPPROTO_SCTP:
5402 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5403 		break;
5404 
5405 	case PROTO_UNDEF:
5406 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5407 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5408 		gen_or(tmp, b1);
5409 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5410 		gen_or(tmp, b1);
5411 		break;
5412 
5413 	default:
5414 		abort();
5415 	}
5416 	gen_and(b0, b1);
5417 	return b1;
5418 }
5419 #endif /* INET6 */
5420 
5421 static int
5422 lookup_proto(name, proto)
5423 	register const char *name;
5424 	register int proto;
5425 {
5426 	register int v;
5427 
5428 	switch (proto) {
5429 
5430 	case Q_DEFAULT:
5431 	case Q_IP:
5432 	case Q_IPV6:
5433 		v = pcap_nametoproto(name);
5434 		if (v == PROTO_UNDEF)
5435 			bpf_error("unknown ip proto '%s'", name);
5436 		break;
5437 
5438 	case Q_LINK:
5439 		/* XXX should look up h/w protocol type based on linktype */
5440 		v = pcap_nametoeproto(name);
5441 		if (v == PROTO_UNDEF) {
5442 			v = pcap_nametollc(name);
5443 			if (v == PROTO_UNDEF)
5444 				bpf_error("unknown ether proto '%s'", name);
5445 		}
5446 		break;
5447 
5448 	case Q_ISO:
5449 		if (strcmp(name, "esis") == 0)
5450 			v = ISO9542_ESIS;
5451 		else if (strcmp(name, "isis") == 0)
5452 			v = ISO10589_ISIS;
5453 		else if (strcmp(name, "clnp") == 0)
5454 			v = ISO8473_CLNP;
5455 		else
5456 			bpf_error("unknown osi proto '%s'", name);
5457 		break;
5458 
5459 	default:
5460 		v = PROTO_UNDEF;
5461 		break;
5462 	}
5463 	return v;
5464 }
5465 
5466 #if 0
5467 struct stmt *
5468 gen_joinsp(s, n)
5469 	struct stmt **s;
5470 	int n;
5471 {
5472 	return NULL;
5473 }
5474 #endif
5475 
5476 static struct block *
5477 gen_protochain(v, proto, dir)
5478 	int v;
5479 	int proto;
5480 	int dir;
5481 {
5482 #ifdef NO_PROTOCHAIN
5483 	return gen_proto(v, proto, dir);
5484 #else
5485 	struct block *b0, *b;
5486 	struct slist *s[100];
5487 	int fix2, fix3, fix4, fix5;
5488 	int ahcheck, again, end;
5489 	int i, max;
5490 	int reg2 = alloc_reg();
5491 
5492 	memset(s, 0, sizeof(s));
5493 	fix2 = fix3 = fix4 = fix5 = 0;
5494 
5495 	switch (proto) {
5496 	case Q_IP:
5497 	case Q_IPV6:
5498 		break;
5499 	case Q_DEFAULT:
5500 		b0 = gen_protochain(v, Q_IP, dir);
5501 		b = gen_protochain(v, Q_IPV6, dir);
5502 		gen_or(b0, b);
5503 		return b;
5504 	default:
5505 		bpf_error("bad protocol applied for 'protochain'");
5506 		/*NOTREACHED*/
5507 	}
5508 
5509 	/*
5510 	 * We don't handle variable-length prefixes before the link-layer
5511 	 * header, or variable-length link-layer headers, here yet.
5512 	 * We might want to add BPF instructions to do the protochain
5513 	 * work, to simplify that and, on platforms that have a BPF
5514 	 * interpreter with the new instructions, let the filtering
5515 	 * be done in the kernel.  (We already require a modified BPF
5516 	 * engine to do the protochain stuff, to support backward
5517 	 * branches, and backward branch support is unlikely to appear
5518 	 * in kernel BPF engines.)
5519 	 */
5520 	switch (linktype) {
5521 
5522 	case DLT_IEEE802_11:
5523 	case DLT_PRISM_HEADER:
5524 	case DLT_IEEE802_11_RADIO_AVS:
5525 	case DLT_IEEE802_11_RADIO:
5526 	case DLT_PPI:
5527 		bpf_error("'protochain' not supported with 802.11");
5528 	}
5529 
5530 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5531 
5532 	/*
5533 	 * s[0] is a dummy entry to protect other BPF insn from damage
5534 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5535 	 * hard to find interdependency made by jump table fixup.
5536 	 */
5537 	i = 0;
5538 	s[i] = new_stmt(0);	/*dummy*/
5539 	i++;
5540 
5541 	switch (proto) {
5542 	case Q_IP:
5543 		b0 = gen_linktype(ETHERTYPE_IP);
5544 
5545 		/* A = ip->ip_p */
5546 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5547 		s[i]->s.k = off_macpl + off_nl + 9;
5548 		i++;
5549 		/* X = ip->ip_hl << 2 */
5550 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5551 		s[i]->s.k = off_macpl + off_nl;
5552 		i++;
5553 		break;
5554 #ifdef INET6
5555 	case Q_IPV6:
5556 		b0 = gen_linktype(ETHERTYPE_IPV6);
5557 
5558 		/* A = ip6->ip_nxt */
5559 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5560 		s[i]->s.k = off_macpl + off_nl + 6;
5561 		i++;
5562 		/* X = sizeof(struct ip6_hdr) */
5563 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5564 		s[i]->s.k = 40;
5565 		i++;
5566 		break;
5567 #endif
5568 	default:
5569 		bpf_error("unsupported proto to gen_protochain");
5570 		/*NOTREACHED*/
5571 	}
5572 
5573 	/* again: if (A == v) goto end; else fall through; */
5574 	again = i;
5575 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5576 	s[i]->s.k = v;
5577 	s[i]->s.jt = NULL;		/*later*/
5578 	s[i]->s.jf = NULL;		/*update in next stmt*/
5579 	fix5 = i;
5580 	i++;
5581 
5582 #ifndef IPPROTO_NONE
5583 #define IPPROTO_NONE	59
5584 #endif
5585 	/* if (A == IPPROTO_NONE) goto end */
5586 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5587 	s[i]->s.jt = NULL;	/*later*/
5588 	s[i]->s.jf = NULL;	/*update in next stmt*/
5589 	s[i]->s.k = IPPROTO_NONE;
5590 	s[fix5]->s.jf = s[i];
5591 	fix2 = i;
5592 	i++;
5593 
5594 #ifdef INET6
5595 	if (proto == Q_IPV6) {
5596 		int v6start, v6end, v6advance, j;
5597 
5598 		v6start = i;
5599 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5600 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5601 		s[i]->s.jt = NULL;	/*later*/
5602 		s[i]->s.jf = NULL;	/*update in next stmt*/
5603 		s[i]->s.k = IPPROTO_HOPOPTS;
5604 		s[fix2]->s.jf = s[i];
5605 		i++;
5606 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5607 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5608 		s[i]->s.jt = NULL;	/*later*/
5609 		s[i]->s.jf = NULL;	/*update in next stmt*/
5610 		s[i]->s.k = IPPROTO_DSTOPTS;
5611 		i++;
5612 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5613 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5614 		s[i]->s.jt = NULL;	/*later*/
5615 		s[i]->s.jf = NULL;	/*update in next stmt*/
5616 		s[i]->s.k = IPPROTO_ROUTING;
5617 		i++;
5618 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5619 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5620 		s[i]->s.jt = NULL;	/*later*/
5621 		s[i]->s.jf = NULL;	/*later*/
5622 		s[i]->s.k = IPPROTO_FRAGMENT;
5623 		fix3 = i;
5624 		v6end = i;
5625 		i++;
5626 
5627 		/* v6advance: */
5628 		v6advance = i;
5629 
5630 		/*
5631 		 * in short,
5632 		 * A = P[X + packet head];
5633 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5634 		 */
5635 		/* A = P[X + packet head] */
5636 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5637 		s[i]->s.k = off_macpl + off_nl;
5638 		i++;
5639 		/* MEM[reg2] = A */
5640 		s[i] = new_stmt(BPF_ST);
5641 		s[i]->s.k = reg2;
5642 		i++;
5643 		/* A = P[X + packet head + 1]; */
5644 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5645 		s[i]->s.k = off_macpl + off_nl + 1;
5646 		i++;
5647 		/* A += 1 */
5648 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5649 		s[i]->s.k = 1;
5650 		i++;
5651 		/* A *= 8 */
5652 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5653 		s[i]->s.k = 8;
5654 		i++;
5655 		/* A += X */
5656 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5657 		s[i]->s.k = 0;
5658 		i++;
5659 		/* X = A; */
5660 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5661 		i++;
5662 		/* A = MEM[reg2] */
5663 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5664 		s[i]->s.k = reg2;
5665 		i++;
5666 
5667 		/* goto again; (must use BPF_JA for backward jump) */
5668 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5669 		s[i]->s.k = again - i - 1;
5670 		s[i - 1]->s.jf = s[i];
5671 		i++;
5672 
5673 		/* fixup */
5674 		for (j = v6start; j <= v6end; j++)
5675 			s[j]->s.jt = s[v6advance];
5676 	} else
5677 #endif
5678 	{
5679 		/* nop */
5680 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5681 		s[i]->s.k = 0;
5682 		s[fix2]->s.jf = s[i];
5683 		i++;
5684 	}
5685 
5686 	/* ahcheck: */
5687 	ahcheck = i;
5688 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5689 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5690 	s[i]->s.jt = NULL;	/*later*/
5691 	s[i]->s.jf = NULL;	/*later*/
5692 	s[i]->s.k = IPPROTO_AH;
5693 	if (fix3)
5694 		s[fix3]->s.jf = s[ahcheck];
5695 	fix4 = i;
5696 	i++;
5697 
5698 	/*
5699 	 * in short,
5700 	 * A = P[X];
5701 	 * X = X + (P[X + 1] + 2) * 4;
5702 	 */
5703 	/* A = X */
5704 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5705 	i++;
5706 	/* A = P[X + packet head]; */
5707 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708 	s[i]->s.k = off_macpl + off_nl;
5709 	i++;
5710 	/* MEM[reg2] = A */
5711 	s[i] = new_stmt(BPF_ST);
5712 	s[i]->s.k = reg2;
5713 	i++;
5714 	/* A = X */
5715 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5716 	i++;
5717 	/* A += 1 */
5718 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5719 	s[i]->s.k = 1;
5720 	i++;
5721 	/* X = A */
5722 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5723 	i++;
5724 	/* A = P[X + packet head] */
5725 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5726 	s[i]->s.k = off_macpl + off_nl;
5727 	i++;
5728 	/* A += 2 */
5729 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5730 	s[i]->s.k = 2;
5731 	i++;
5732 	/* A *= 4 */
5733 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5734 	s[i]->s.k = 4;
5735 	i++;
5736 	/* X = A; */
5737 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5738 	i++;
5739 	/* A = MEM[reg2] */
5740 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5741 	s[i]->s.k = reg2;
5742 	i++;
5743 
5744 	/* goto again; (must use BPF_JA for backward jump) */
5745 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5746 	s[i]->s.k = again - i - 1;
5747 	i++;
5748 
5749 	/* end: nop */
5750 	end = i;
5751 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5752 	s[i]->s.k = 0;
5753 	s[fix2]->s.jt = s[end];
5754 	s[fix4]->s.jf = s[end];
5755 	s[fix5]->s.jt = s[end];
5756 	i++;
5757 
5758 	/*
5759 	 * make slist chain
5760 	 */
5761 	max = i;
5762 	for (i = 0; i < max - 1; i++)
5763 		s[i]->next = s[i + 1];
5764 	s[max - 1]->next = NULL;
5765 
5766 	/*
5767 	 * emit final check
5768 	 */
5769 	b = new_block(JMP(BPF_JEQ));
5770 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5771 	b->s.k = v;
5772 
5773 	free_reg(reg2);
5774 
5775 	gen_and(b0, b);
5776 	return b;
5777 #endif
5778 }
5779 
5780 static struct block *
5781 gen_check_802_11_data_frame()
5782 {
5783 	struct slist *s;
5784 	struct block *b0, *b1;
5785 
5786 	/*
5787 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5788 	 * and the 0x04 bit (b2) clear.
5789 	 */
5790 	s = gen_load_a(OR_LINK, 0, BPF_B);
5791 	b0 = new_block(JMP(BPF_JSET));
5792 	b0->s.k = 0x08;
5793 	b0->stmts = s;
5794 
5795 	s = gen_load_a(OR_LINK, 0, BPF_B);
5796 	b1 = new_block(JMP(BPF_JSET));
5797 	b1->s.k = 0x04;
5798 	b1->stmts = s;
5799 	gen_not(b1);
5800 
5801 	gen_and(b1, b0);
5802 
5803 	return b0;
5804 }
5805 
5806 /*
5807  * Generate code that checks whether the packet is a packet for protocol
5808  * <proto> and whether the type field in that protocol's header has
5809  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5810  * IP packet and checks the protocol number in the IP header against <v>.
5811  *
5812  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5813  * against Q_IP and Q_IPV6.
5814  */
5815 static struct block *
5816 gen_proto(v, proto, dir)
5817 	int v;
5818 	int proto;
5819 	int dir;
5820 {
5821 	struct block *b0, *b1;
5822 
5823 	if (dir != Q_DEFAULT)
5824 		bpf_error("direction applied to 'proto'");
5825 
5826 	switch (proto) {
5827 	case Q_DEFAULT:
5828 #ifdef INET6
5829 		b0 = gen_proto(v, Q_IP, dir);
5830 		b1 = gen_proto(v, Q_IPV6, dir);
5831 		gen_or(b0, b1);
5832 		return b1;
5833 #else
5834 		/*FALLTHROUGH*/
5835 #endif
5836 	case Q_IP:
5837 		/*
5838 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5839 		 * not LLC encapsulation with LLCSAP_IP.
5840 		 *
5841 		 * For IEEE 802 networks - which includes 802.5 token ring
5842 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5843 		 * says that SNAP encapsulation is used, not LLC encapsulation
5844 		 * with LLCSAP_IP.
5845 		 *
5846 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5847 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5848 		 * encapsulation with LLCSAP_IP.
5849 		 *
5850 		 * So we always check for ETHERTYPE_IP.
5851 		 */
5852 		b0 = gen_linktype(ETHERTYPE_IP);
5853 #ifndef CHASE_CHAIN
5854 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5855 #else
5856 		b1 = gen_protochain(v, Q_IP);
5857 #endif
5858 		gen_and(b0, b1);
5859 		return b1;
5860 
5861 	case Q_ISO:
5862 		switch (linktype) {
5863 
5864 		case DLT_FRELAY:
5865 			/*
5866 			 * Frame Relay packets typically have an OSI
5867 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5868 			 * generates code to check for all the OSI
5869 			 * NLPIDs, so calling it and then adding a check
5870 			 * for the particular NLPID for which we're
5871 			 * looking is bogus, as we can just check for
5872 			 * the NLPID.
5873 			 *
5874 			 * What we check for is the NLPID and a frame
5875 			 * control field value of UI, i.e. 0x03 followed
5876 			 * by the NLPID.
5877 			 *
5878 			 * XXX - assumes a 2-byte Frame Relay header with
5879 			 * DLCI and flags.  What if the address is longer?
5880 			 *
5881 			 * XXX - what about SNAP-encapsulated frames?
5882 			 */
5883 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5884 			/*NOTREACHED*/
5885 			break;
5886 
5887 		case DLT_C_HDLC:
5888 			/*
5889 			 * Cisco uses an Ethertype lookalike - for OSI,
5890 			 * it's 0xfefe.
5891 			 */
5892 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5893 			/* OSI in C-HDLC is stuffed with a fudge byte */
5894 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5895 			gen_and(b0, b1);
5896 			return b1;
5897 
5898 		default:
5899 			b0 = gen_linktype(LLCSAP_ISONS);
5900 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5901 			gen_and(b0, b1);
5902 			return b1;
5903 		}
5904 
5905 	case Q_ISIS:
5906 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5907 		/*
5908 		 * 4 is the offset of the PDU type relative to the IS-IS
5909 		 * header.
5910 		 */
5911 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5912 		gen_and(b0, b1);
5913 		return b1;
5914 
5915 	case Q_ARP:
5916 		bpf_error("arp does not encapsulate another protocol");
5917 		/* NOTREACHED */
5918 
5919 	case Q_RARP:
5920 		bpf_error("rarp does not encapsulate another protocol");
5921 		/* NOTREACHED */
5922 
5923 	case Q_ATALK:
5924 		bpf_error("atalk encapsulation is not specifiable");
5925 		/* NOTREACHED */
5926 
5927 	case Q_DECNET:
5928 		bpf_error("decnet encapsulation is not specifiable");
5929 		/* NOTREACHED */
5930 
5931 	case Q_SCA:
5932 		bpf_error("sca does not encapsulate another protocol");
5933 		/* NOTREACHED */
5934 
5935 	case Q_LAT:
5936 		bpf_error("lat does not encapsulate another protocol");
5937 		/* NOTREACHED */
5938 
5939 	case Q_MOPRC:
5940 		bpf_error("moprc does not encapsulate another protocol");
5941 		/* NOTREACHED */
5942 
5943 	case Q_MOPDL:
5944 		bpf_error("mopdl does not encapsulate another protocol");
5945 		/* NOTREACHED */
5946 
5947 	case Q_LINK:
5948 		return gen_linktype(v);
5949 
5950 	case Q_UDP:
5951 		bpf_error("'udp proto' is bogus");
5952 		/* NOTREACHED */
5953 
5954 	case Q_TCP:
5955 		bpf_error("'tcp proto' is bogus");
5956 		/* NOTREACHED */
5957 
5958 	case Q_SCTP:
5959 		bpf_error("'sctp proto' is bogus");
5960 		/* NOTREACHED */
5961 
5962 	case Q_ICMP:
5963 		bpf_error("'icmp proto' is bogus");
5964 		/* NOTREACHED */
5965 
5966 	case Q_IGMP:
5967 		bpf_error("'igmp proto' is bogus");
5968 		/* NOTREACHED */
5969 
5970 	case Q_IGRP:
5971 		bpf_error("'igrp proto' is bogus");
5972 		/* NOTREACHED */
5973 
5974 	case Q_PIM:
5975 		bpf_error("'pim proto' is bogus");
5976 		/* NOTREACHED */
5977 
5978 	case Q_VRRP:
5979 		bpf_error("'vrrp proto' is bogus");
5980 		/* NOTREACHED */
5981 
5982 	case Q_CARP:
5983 		bpf_error("'carp proto' is bogus");
5984 		/* NOTREACHED */
5985 
5986 #ifdef INET6
5987 	case Q_IPV6:
5988 		b0 = gen_linktype(ETHERTYPE_IPV6);
5989 #ifndef CHASE_CHAIN
5990 		b1 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5991 #else
5992 		b1 = gen_protochain(v, Q_IPV6);
5993 #endif
5994 		gen_and(b0, b1);
5995 		return b1;
5996 
5997 	case Q_ICMPV6:
5998 		bpf_error("'icmp6 proto' is bogus");
5999 #endif /* INET6 */
6000 
6001 	case Q_AH:
6002 		bpf_error("'ah proto' is bogus");
6003 
6004 	case Q_ESP:
6005 		bpf_error("'ah proto' is bogus");
6006 
6007 	case Q_STP:
6008 		bpf_error("'stp proto' is bogus");
6009 
6010 	case Q_IPX:
6011 		bpf_error("'ipx proto' is bogus");
6012 
6013 	case Q_NETBEUI:
6014 		bpf_error("'netbeui proto' is bogus");
6015 
6016 	case Q_RADIO:
6017 		bpf_error("'radio proto' is bogus");
6018 
6019 	default:
6020 		abort();
6021 		/* NOTREACHED */
6022 	}
6023 	/* NOTREACHED */
6024 }
6025 
6026 struct block *
6027 gen_scode(name, q)
6028 	register const char *name;
6029 	struct qual q;
6030 {
6031 	int proto = q.proto;
6032 	int dir = q.dir;
6033 	int tproto;
6034 	u_char *eaddr;
6035 	bpf_u_int32 mask, addr;
6036 #ifndef INET6
6037 	bpf_u_int32 **alist;
6038 #else
6039 	int tproto6;
6040 	struct sockaddr_in *sin4;
6041 	struct sockaddr_in6 *sin6;
6042 	struct addrinfo *res, *res0;
6043 	struct in6_addr mask128;
6044 #endif /*INET6*/
6045 	struct block *b, *tmp;
6046 	int port, real_proto;
6047 	int port1, port2;
6048 
6049 	switch (q.addr) {
6050 
6051 	case Q_NET:
6052 		addr = pcap_nametonetaddr(name);
6053 		if (addr == 0)
6054 			bpf_error("unknown network '%s'", name);
6055 		/* Left justify network addr and calculate its network mask */
6056 		mask = 0xffffffff;
6057 		while (addr && (addr & 0xff000000) == 0) {
6058 			addr <<= 8;
6059 			mask <<= 8;
6060 		}
6061 		return gen_host(addr, mask, proto, dir, q.addr);
6062 
6063 	case Q_DEFAULT:
6064 	case Q_HOST:
6065 		if (proto == Q_LINK) {
6066 			switch (linktype) {
6067 
6068 			case DLT_EN10MB:
6069 			case DLT_NETANALYZER:
6070 			case DLT_NETANALYZER_TRANSPARENT:
6071 				eaddr = pcap_ether_hostton(name);
6072 				if (eaddr == NULL)
6073 					bpf_error(
6074 					    "unknown ether host '%s'", name);
6075 				b = gen_ehostop(eaddr, dir);
6076 				free(eaddr);
6077 				return b;
6078 
6079 			case DLT_FDDI:
6080 				eaddr = pcap_ether_hostton(name);
6081 				if (eaddr == NULL)
6082 					bpf_error(
6083 					    "unknown FDDI host '%s'", name);
6084 				b = gen_fhostop(eaddr, dir);
6085 				free(eaddr);
6086 				return b;
6087 
6088 			case DLT_IEEE802:
6089 				eaddr = pcap_ether_hostton(name);
6090 				if (eaddr == NULL)
6091 					bpf_error(
6092 					    "unknown token ring host '%s'", name);
6093 				b = gen_thostop(eaddr, dir);
6094 				free(eaddr);
6095 				return b;
6096 
6097 			case DLT_IEEE802_11:
6098 			case DLT_PRISM_HEADER:
6099 			case DLT_IEEE802_11_RADIO_AVS:
6100 			case DLT_IEEE802_11_RADIO:
6101 			case DLT_PPI:
6102 				eaddr = pcap_ether_hostton(name);
6103 				if (eaddr == NULL)
6104 					bpf_error(
6105 					    "unknown 802.11 host '%s'", name);
6106 				b = gen_wlanhostop(eaddr, dir);
6107 				free(eaddr);
6108 				return b;
6109 
6110 			case DLT_IP_OVER_FC:
6111 				eaddr = pcap_ether_hostton(name);
6112 				if (eaddr == NULL)
6113 					bpf_error(
6114 					    "unknown Fibre Channel host '%s'", name);
6115 				b = gen_ipfchostop(eaddr, dir);
6116 				free(eaddr);
6117 				return b;
6118 
6119 			case DLT_SUNATM:
6120 				if (!is_lane)
6121 					break;
6122 
6123 				/*
6124 				 * Check that the packet doesn't begin
6125 				 * with an LE Control marker.  (We've
6126 				 * already generated a test for LANE.)
6127 				 */
6128 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6129 				    BPF_H, 0xFF00);
6130 				gen_not(tmp);
6131 
6132 				eaddr = pcap_ether_hostton(name);
6133 				if (eaddr == NULL)
6134 					bpf_error(
6135 					    "unknown ether host '%s'", name);
6136 				b = gen_ehostop(eaddr, dir);
6137 				gen_and(tmp, b);
6138 				free(eaddr);
6139 				return b;
6140 			}
6141 
6142 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6143 		} else if (proto == Q_DECNET) {
6144 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6145 			/*
6146 			 * I don't think DECNET hosts can be multihomed, so
6147 			 * there is no need to build up a list of addresses
6148 			 */
6149 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6150 		} else {
6151 #ifndef INET6
6152 			alist = pcap_nametoaddr(name);
6153 			if (alist == NULL || *alist == NULL)
6154 				bpf_error("unknown host '%s'", name);
6155 			tproto = proto;
6156 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6157 				tproto = Q_IP;
6158 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6159 			while (*alist) {
6160 				tmp = gen_host(**alist++, 0xffffffff,
6161 					       tproto, dir, q.addr);
6162 				gen_or(b, tmp);
6163 				b = tmp;
6164 			}
6165 			return b;
6166 #else
6167 			memset(&mask128, 0xff, sizeof(mask128));
6168 			res0 = res = pcap_nametoaddrinfo(name);
6169 			if (res == NULL)
6170 				bpf_error("unknown host '%s'", name);
6171 			ai = res;
6172 			b = tmp = NULL;
6173 			tproto = tproto6 = proto;
6174 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6175 				tproto = Q_IP;
6176 				tproto6 = Q_IPV6;
6177 			}
6178 			for (res = res0; res; res = res->ai_next) {
6179 				switch (res->ai_family) {
6180 				case AF_INET:
6181 					if (tproto == Q_IPV6)
6182 						continue;
6183 
6184 					sin4 = (struct sockaddr_in *)
6185 						res->ai_addr;
6186 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6187 						0xffffffff, tproto, dir, q.addr);
6188 					break;
6189 				case AF_INET6:
6190 					if (tproto6 == Q_IP)
6191 						continue;
6192 
6193 					sin6 = (struct sockaddr_in6 *)
6194 						res->ai_addr;
6195 					tmp = gen_host6(&sin6->sin6_addr,
6196 						&mask128, tproto6, dir, q.addr);
6197 					break;
6198 				default:
6199 					continue;
6200 				}
6201 				if (b)
6202 					gen_or(b, tmp);
6203 				b = tmp;
6204 			}
6205 			ai = NULL;
6206 			freeaddrinfo(res0);
6207 			if (b == NULL) {
6208 				bpf_error("unknown host '%s'%s", name,
6209 				    (proto == Q_DEFAULT)
6210 					? ""
6211 					: " for specified address family");
6212 			}
6213 			return b;
6214 #endif /*INET6*/
6215 		}
6216 
6217 	case Q_PORT:
6218 		if (proto != Q_DEFAULT &&
6219 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6220 			bpf_error("illegal qualifier of 'port'");
6221 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6222 			bpf_error("unknown port '%s'", name);
6223 		if (proto == Q_UDP) {
6224 			if (real_proto == IPPROTO_TCP)
6225 				bpf_error("port '%s' is tcp", name);
6226 			else if (real_proto == IPPROTO_SCTP)
6227 				bpf_error("port '%s' is sctp", name);
6228 			else
6229 				/* override PROTO_UNDEF */
6230 				real_proto = IPPROTO_UDP;
6231 		}
6232 		if (proto == Q_TCP) {
6233 			if (real_proto == IPPROTO_UDP)
6234 				bpf_error("port '%s' is udp", name);
6235 
6236 			else if (real_proto == IPPROTO_SCTP)
6237 				bpf_error("port '%s' is sctp", name);
6238 			else
6239 				/* override PROTO_UNDEF */
6240 				real_proto = IPPROTO_TCP;
6241 		}
6242 		if (proto == Q_SCTP) {
6243 			if (real_proto == IPPROTO_UDP)
6244 				bpf_error("port '%s' is udp", name);
6245 
6246 			else if (real_proto == IPPROTO_TCP)
6247 				bpf_error("port '%s' is tcp", name);
6248 			else
6249 				/* override PROTO_UNDEF */
6250 				real_proto = IPPROTO_SCTP;
6251 		}
6252 		if (port < 0)
6253 			bpf_error("illegal port number %d < 0", port);
6254 		if (port > 65535)
6255 			bpf_error("illegal port number %d > 65535", port);
6256 #ifndef INET6
6257 		return gen_port(port, real_proto, dir);
6258 #else
6259 		b = gen_port(port, real_proto, dir);
6260 		gen_or(gen_port6(port, real_proto, dir), b);
6261 		return b;
6262 #endif /* INET6 */
6263 
6264 	case Q_PORTRANGE:
6265 		if (proto != Q_DEFAULT &&
6266 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6267 			bpf_error("illegal qualifier of 'portrange'");
6268 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6269 			bpf_error("unknown port in range '%s'", name);
6270 		if (proto == Q_UDP) {
6271 			if (real_proto == IPPROTO_TCP)
6272 				bpf_error("port in range '%s' is tcp", name);
6273 			else if (real_proto == IPPROTO_SCTP)
6274 				bpf_error("port in range '%s' is sctp", name);
6275 			else
6276 				/* override PROTO_UNDEF */
6277 				real_proto = IPPROTO_UDP;
6278 		}
6279 		if (proto == Q_TCP) {
6280 			if (real_proto == IPPROTO_UDP)
6281 				bpf_error("port in range '%s' is udp", name);
6282 			else if (real_proto == IPPROTO_SCTP)
6283 				bpf_error("port in range '%s' is sctp", name);
6284 			else
6285 				/* override PROTO_UNDEF */
6286 				real_proto = IPPROTO_TCP;
6287 		}
6288 		if (proto == Q_SCTP) {
6289 			if (real_proto == IPPROTO_UDP)
6290 				bpf_error("port in range '%s' is udp", name);
6291 			else if (real_proto == IPPROTO_TCP)
6292 				bpf_error("port in range '%s' is tcp", name);
6293 			else
6294 				/* override PROTO_UNDEF */
6295 				real_proto = IPPROTO_SCTP;
6296 		}
6297 		if (port1 < 0)
6298 			bpf_error("illegal port number %d < 0", port1);
6299 		if (port1 > 65535)
6300 			bpf_error("illegal port number %d > 65535", port1);
6301 		if (port2 < 0)
6302 			bpf_error("illegal port number %d < 0", port2);
6303 		if (port2 > 65535)
6304 			bpf_error("illegal port number %d > 65535", port2);
6305 
6306 #ifndef INET6
6307 		return gen_portrange(port1, port2, real_proto, dir);
6308 #else
6309 		b = gen_portrange(port1, port2, real_proto, dir);
6310 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6311 		return b;
6312 #endif /* INET6 */
6313 
6314 	case Q_GATEWAY:
6315 #ifndef INET6
6316 		eaddr = pcap_ether_hostton(name);
6317 		if (eaddr == NULL)
6318 			bpf_error("unknown ether host: %s", name);
6319 
6320 		alist = pcap_nametoaddr(name);
6321 		if (alist == NULL || *alist == NULL)
6322 			bpf_error("unknown host '%s'", name);
6323 		b = gen_gateway(eaddr, alist, proto, dir);
6324 		free(eaddr);
6325 		return b;
6326 #else
6327 		bpf_error("'gateway' not supported in this configuration");
6328 #endif /*INET6*/
6329 
6330 	case Q_PROTO:
6331 		real_proto = lookup_proto(name, proto);
6332 		if (real_proto >= 0)
6333 			return gen_proto(real_proto, proto, dir);
6334 		else
6335 			bpf_error("unknown protocol: %s", name);
6336 
6337 	case Q_PROTOCHAIN:
6338 		real_proto = lookup_proto(name, proto);
6339 		if (real_proto >= 0)
6340 			return gen_protochain(real_proto, proto, dir);
6341 		else
6342 			bpf_error("unknown protocol: %s", name);
6343 
6344 	case Q_UNDEF:
6345 		syntax();
6346 		/* NOTREACHED */
6347 	}
6348 	abort();
6349 	/* NOTREACHED */
6350 }
6351 
6352 struct block *
6353 gen_mcode(s1, s2, masklen, q)
6354 	register const char *s1, *s2;
6355 	register int masklen;
6356 	struct qual q;
6357 {
6358 	register int nlen, mlen;
6359 	bpf_u_int32 n, m;
6360 
6361 	nlen = __pcap_atoin(s1, &n);
6362 	/* Promote short ipaddr */
6363 	n <<= 32 - nlen;
6364 
6365 	if (s2 != NULL) {
6366 		mlen = __pcap_atoin(s2, &m);
6367 		/* Promote short ipaddr */
6368 		m <<= 32 - mlen;
6369 		if ((n & ~m) != 0)
6370 			bpf_error("non-network bits set in \"%s mask %s\"",
6371 			    s1, s2);
6372 	} else {
6373 		/* Convert mask len to mask */
6374 		if (masklen > 32)
6375 			bpf_error("mask length must be <= 32");
6376 		if (masklen == 0) {
6377 			/*
6378 			 * X << 32 is not guaranteed by C to be 0; it's
6379 			 * undefined.
6380 			 */
6381 			m = 0;
6382 		} else
6383 			m = 0xffffffff << (32 - masklen);
6384 		if ((n & ~m) != 0)
6385 			bpf_error("non-network bits set in \"%s/%d\"",
6386 			    s1, masklen);
6387 	}
6388 
6389 	switch (q.addr) {
6390 
6391 	case Q_NET:
6392 		return gen_host(n, m, q.proto, q.dir, q.addr);
6393 
6394 	default:
6395 		bpf_error("Mask syntax for networks only");
6396 		/* NOTREACHED */
6397 	}
6398 	/* NOTREACHED */
6399 	return NULL;
6400 }
6401 
6402 struct block *
6403 gen_ncode(s, v, q)
6404 	register const char *s;
6405 	bpf_u_int32 v;
6406 	struct qual q;
6407 {
6408 	bpf_u_int32 mask;
6409 	int proto = q.proto;
6410 	int dir = q.dir;
6411 	register int vlen;
6412 
6413 	if (s == NULL)
6414 		vlen = 32;
6415 	else if (q.proto == Q_DECNET)
6416 		vlen = __pcap_atodn(s, &v);
6417 	else
6418 		vlen = __pcap_atoin(s, &v);
6419 
6420 	switch (q.addr) {
6421 
6422 	case Q_DEFAULT:
6423 	case Q_HOST:
6424 	case Q_NET:
6425 		if (proto == Q_DECNET)
6426 			return gen_host(v, 0, proto, dir, q.addr);
6427 		else if (proto == Q_LINK) {
6428 			bpf_error("illegal link layer address");
6429 		} else {
6430 			mask = 0xffffffff;
6431 			if (s == NULL && q.addr == Q_NET) {
6432 				/* Promote short net number */
6433 				while (v && (v & 0xff000000) == 0) {
6434 					v <<= 8;
6435 					mask <<= 8;
6436 				}
6437 			} else {
6438 				/* Promote short ipaddr */
6439 				v <<= 32 - vlen;
6440 				mask <<= 32 - vlen;
6441 			}
6442 			return gen_host(v, mask, proto, dir, q.addr);
6443 		}
6444 
6445 	case Q_PORT:
6446 		if (proto == Q_UDP)
6447 			proto = IPPROTO_UDP;
6448 		else if (proto == Q_TCP)
6449 			proto = IPPROTO_TCP;
6450 		else if (proto == Q_SCTP)
6451 			proto = IPPROTO_SCTP;
6452 		else if (proto == Q_DEFAULT)
6453 			proto = PROTO_UNDEF;
6454 		else
6455 			bpf_error("illegal qualifier of 'port'");
6456 
6457 		if (v > 65535)
6458 			bpf_error("illegal port number %u > 65535", v);
6459 
6460 #ifndef INET6
6461 		return gen_port((int)v, proto, dir);
6462 #else
6463 	    {
6464 		struct block *b;
6465 		b = gen_port((int)v, proto, dir);
6466 		gen_or(gen_port6((int)v, proto, dir), b);
6467 		return b;
6468 	    }
6469 #endif /* INET6 */
6470 
6471 	case Q_PORTRANGE:
6472 		if (proto == Q_UDP)
6473 			proto = IPPROTO_UDP;
6474 		else if (proto == Q_TCP)
6475 			proto = IPPROTO_TCP;
6476 		else if (proto == Q_SCTP)
6477 			proto = IPPROTO_SCTP;
6478 		else if (proto == Q_DEFAULT)
6479 			proto = PROTO_UNDEF;
6480 		else
6481 			bpf_error("illegal qualifier of 'portrange'");
6482 
6483 		if (v > 65535)
6484 			bpf_error("illegal port number %u > 65535", v);
6485 
6486 #ifndef INET6
6487 		return gen_portrange((int)v, (int)v, proto, dir);
6488 #else
6489 	    {
6490 		struct block *b;
6491 		b = gen_portrange((int)v, (int)v, proto, dir);
6492 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6493 		return b;
6494 	    }
6495 #endif /* INET6 */
6496 
6497 	case Q_GATEWAY:
6498 		bpf_error("'gateway' requires a name");
6499 		/* NOTREACHED */
6500 
6501 	case Q_PROTO:
6502 		return gen_proto((int)v, proto, dir);
6503 
6504 	case Q_PROTOCHAIN:
6505 		return gen_protochain((int)v, proto, dir);
6506 
6507 	case Q_UNDEF:
6508 		syntax();
6509 		/* NOTREACHED */
6510 
6511 	default:
6512 		abort();
6513 		/* NOTREACHED */
6514 	}
6515 	/* NOTREACHED */
6516 }
6517 
6518 #ifdef INET6
6519 struct block *
6520 gen_mcode6(s1, s2, masklen, q)
6521 	register const char *s1, *s2;
6522 	register int masklen;
6523 	struct qual q;
6524 {
6525 	struct addrinfo *res;
6526 	struct in6_addr *addr;
6527 	struct in6_addr mask;
6528 	struct block *b;
6529 	u_int32_t *a, *m;
6530 
6531 	if (s2)
6532 		bpf_error("no mask %s supported", s2);
6533 
6534 	res = pcap_nametoaddrinfo(s1);
6535 	if (!res)
6536 		bpf_error("invalid ip6 address %s", s1);
6537 	ai = res;
6538 	if (res->ai_next)
6539 		bpf_error("%s resolved to multiple address", s1);
6540 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6541 
6542 	if (sizeof(mask) * 8 < masklen)
6543 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6544 	memset(&mask, 0, sizeof(mask));
6545 	memset(&mask, 0xff, masklen / 8);
6546 	if (masklen % 8) {
6547 		mask.s6_addr[masklen / 8] =
6548 			(0xff << (8 - masklen % 8)) & 0xff;
6549 	}
6550 
6551 	a = (u_int32_t *)addr;
6552 	m = (u_int32_t *)&mask;
6553 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6554 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6555 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6556 	}
6557 
6558 	switch (q.addr) {
6559 
6560 	case Q_DEFAULT:
6561 	case Q_HOST:
6562 		if (masklen != 128)
6563 			bpf_error("Mask syntax for networks only");
6564 		/* FALLTHROUGH */
6565 
6566 	case Q_NET:
6567 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6568 		ai = NULL;
6569 		freeaddrinfo(res);
6570 		return b;
6571 
6572 	default:
6573 		bpf_error("invalid qualifier against IPv6 address");
6574 		/* NOTREACHED */
6575 	}
6576 	return NULL;
6577 }
6578 #endif /*INET6*/
6579 
6580 struct block *
6581 gen_ecode(eaddr, q)
6582 	register const u_char *eaddr;
6583 	struct qual q;
6584 {
6585 	struct block *b, *tmp;
6586 
6587 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6588 		switch (linktype) {
6589 		case DLT_EN10MB:
6590 		case DLT_NETANALYZER:
6591 		case DLT_NETANALYZER_TRANSPARENT:
6592 			return gen_ehostop(eaddr, (int)q.dir);
6593 		case DLT_FDDI:
6594 			return gen_fhostop(eaddr, (int)q.dir);
6595 		case DLT_IEEE802:
6596 			return gen_thostop(eaddr, (int)q.dir);
6597 		case DLT_IEEE802_11:
6598 		case DLT_PRISM_HEADER:
6599 		case DLT_IEEE802_11_RADIO_AVS:
6600 		case DLT_IEEE802_11_RADIO:
6601 		case DLT_PPI:
6602 			return gen_wlanhostop(eaddr, (int)q.dir);
6603 		case DLT_SUNATM:
6604 			if (is_lane) {
6605 				/*
6606 				 * Check that the packet doesn't begin with an
6607 				 * LE Control marker.  (We've already generated
6608 				 * a test for LANE.)
6609 				 */
6610 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6611 					0xFF00);
6612 				gen_not(tmp);
6613 
6614 				/*
6615 				 * Now check the MAC address.
6616 				 */
6617 				b = gen_ehostop(eaddr, (int)q.dir);
6618 				gen_and(tmp, b);
6619 				return b;
6620 			}
6621 			break;
6622 		case DLT_IP_OVER_FC:
6623 			return gen_ipfchostop(eaddr, (int)q.dir);
6624 		default:
6625 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6626 			break;
6627 		}
6628 	}
6629 	bpf_error("ethernet address used in non-ether expression");
6630 	/* NOTREACHED */
6631 	return NULL;
6632 }
6633 
6634 void
6635 sappend(s0, s1)
6636 	struct slist *s0, *s1;
6637 {
6638 	/*
6639 	 * This is definitely not the best way to do this, but the
6640 	 * lists will rarely get long.
6641 	 */
6642 	while (s0->next)
6643 		s0 = s0->next;
6644 	s0->next = s1;
6645 }
6646 
6647 static struct slist *
6648 xfer_to_x(a)
6649 	struct arth *a;
6650 {
6651 	struct slist *s;
6652 
6653 	s = new_stmt(BPF_LDX|BPF_MEM);
6654 	s->s.k = a->regno;
6655 	return s;
6656 }
6657 
6658 static struct slist *
6659 xfer_to_a(a)
6660 	struct arth *a;
6661 {
6662 	struct slist *s;
6663 
6664 	s = new_stmt(BPF_LD|BPF_MEM);
6665 	s->s.k = a->regno;
6666 	return s;
6667 }
6668 
6669 /*
6670  * Modify "index" to use the value stored into its register as an
6671  * offset relative to the beginning of the header for the protocol
6672  * "proto", and allocate a register and put an item "size" bytes long
6673  * (1, 2, or 4) at that offset into that register, making it the register
6674  * for "index".
6675  */
6676 struct arth *
6677 gen_load(proto, inst, size)
6678 	int proto;
6679 	struct arth *inst;
6680 	int size;
6681 {
6682 	struct slist *s, *tmp;
6683 	struct block *b;
6684 	int regno = alloc_reg();
6685 
6686 	free_reg(inst->regno);
6687 	switch (size) {
6688 
6689 	default:
6690 		bpf_error("data size must be 1, 2, or 4");
6691 
6692 	case 1:
6693 		size = BPF_B;
6694 		break;
6695 
6696 	case 2:
6697 		size = BPF_H;
6698 		break;
6699 
6700 	case 4:
6701 		size = BPF_W;
6702 		break;
6703 	}
6704 	switch (proto) {
6705 	default:
6706 		bpf_error("unsupported index operation");
6707 
6708 	case Q_RADIO:
6709 		/*
6710 		 * The offset is relative to the beginning of the packet
6711 		 * data, if we have a radio header.  (If we don't, this
6712 		 * is an error.)
6713 		 */
6714 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6715 		    linktype != DLT_IEEE802_11_RADIO &&
6716 		    linktype != DLT_PRISM_HEADER)
6717 			bpf_error("radio information not present in capture");
6718 
6719 		/*
6720 		 * Load into the X register the offset computed into the
6721 		 * register specified by "index".
6722 		 */
6723 		s = xfer_to_x(inst);
6724 
6725 		/*
6726 		 * Load the item at that offset.
6727 		 */
6728 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6729 		sappend(s, tmp);
6730 		sappend(inst->s, s);
6731 		break;
6732 
6733 	case Q_LINK:
6734 		/*
6735 		 * The offset is relative to the beginning of
6736 		 * the link-layer header.
6737 		 *
6738 		 * XXX - what about ATM LANE?  Should the index be
6739 		 * relative to the beginning of the AAL5 frame, so
6740 		 * that 0 refers to the beginning of the LE Control
6741 		 * field, or relative to the beginning of the LAN
6742 		 * frame, so that 0 refers, for Ethernet LANE, to
6743 		 * the beginning of the destination address?
6744 		 */
6745 		s = gen_llprefixlen();
6746 
6747 		/*
6748 		 * If "s" is non-null, it has code to arrange that the
6749 		 * X register contains the length of the prefix preceding
6750 		 * the link-layer header.  Add to it the offset computed
6751 		 * into the register specified by "index", and move that
6752 		 * into the X register.  Otherwise, just load into the X
6753 		 * register the offset computed into the register specified
6754 		 * by "index".
6755 		 */
6756 		if (s != NULL) {
6757 			sappend(s, xfer_to_a(inst));
6758 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6759 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6760 		} else
6761 			s = xfer_to_x(inst);
6762 
6763 		/*
6764 		 * Load the item at the sum of the offset we've put in the
6765 		 * X register and the offset of the start of the link
6766 		 * layer header (which is 0 if the radio header is
6767 		 * variable-length; that header length is what we put
6768 		 * into the X register and then added to the index).
6769 		 */
6770 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6771 		tmp->s.k = off_ll;
6772 		sappend(s, tmp);
6773 		sappend(inst->s, s);
6774 		break;
6775 
6776 	case Q_IP:
6777 	case Q_ARP:
6778 	case Q_RARP:
6779 	case Q_ATALK:
6780 	case Q_DECNET:
6781 	case Q_SCA:
6782 	case Q_LAT:
6783 	case Q_MOPRC:
6784 	case Q_MOPDL:
6785 #ifdef INET6
6786 	case Q_IPV6:
6787 #endif
6788 		/*
6789 		 * The offset is relative to the beginning of
6790 		 * the network-layer header.
6791 		 * XXX - are there any cases where we want
6792 		 * off_nl_nosnap?
6793 		 */
6794 		s = gen_off_macpl();
6795 
6796 		/*
6797 		 * If "s" is non-null, it has code to arrange that the
6798 		 * X register contains the offset of the MAC-layer
6799 		 * payload.  Add to it the offset computed into the
6800 		 * register specified by "index", and move that into
6801 		 * the X register.  Otherwise, just load into the X
6802 		 * register the offset computed into the register specified
6803 		 * by "index".
6804 		 */
6805 		if (s != NULL) {
6806 			sappend(s, xfer_to_a(inst));
6807 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6808 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6809 		} else
6810 			s = xfer_to_x(inst);
6811 
6812 		/*
6813 		 * Load the item at the sum of the offset we've put in the
6814 		 * X register, the offset of the start of the network
6815 		 * layer header from the beginning of the MAC-layer
6816 		 * payload, and the purported offset of the start of the
6817 		 * MAC-layer payload (which might be 0 if there's a
6818 		 * variable-length prefix before the link-layer header
6819 		 * or the link-layer header itself is variable-length;
6820 		 * the variable-length offset of the start of the
6821 		 * MAC-layer payload is what we put into the X register
6822 		 * and then added to the index).
6823 		 */
6824 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6825 		tmp->s.k = off_macpl + off_nl;
6826 		sappend(s, tmp);
6827 		sappend(inst->s, s);
6828 
6829 		/*
6830 		 * Do the computation only if the packet contains
6831 		 * the protocol in question.
6832 		 */
6833 		b = gen_proto_abbrev(proto);
6834 		if (inst->b)
6835 			gen_and(inst->b, b);
6836 		inst->b = b;
6837 		break;
6838 
6839 	case Q_SCTP:
6840 	case Q_TCP:
6841 	case Q_UDP:
6842 	case Q_ICMP:
6843 	case Q_IGMP:
6844 	case Q_IGRP:
6845 	case Q_PIM:
6846 	case Q_VRRP:
6847 	case Q_CARP:
6848 		/*
6849 		 * The offset is relative to the beginning of
6850 		 * the transport-layer header.
6851 		 *
6852 		 * Load the X register with the length of the IPv4 header
6853 		 * (plus the offset of the link-layer header, if it's
6854 		 * a variable-length header), in bytes.
6855 		 *
6856 		 * XXX - are there any cases where we want
6857 		 * off_nl_nosnap?
6858 		 * XXX - we should, if we're built with
6859 		 * IPv6 support, generate code to load either
6860 		 * IPv4, IPv6, or both, as appropriate.
6861 		 */
6862 		s = gen_loadx_iphdrlen();
6863 
6864 		/*
6865 		 * The X register now contains the sum of the length
6866 		 * of any variable-length header preceding the link-layer
6867 		 * header, any variable-length link-layer header, and the
6868 		 * length of the network-layer header.
6869 		 *
6870 		 * Load into the A register the offset relative to
6871 		 * the beginning of the transport layer header,
6872 		 * add the X register to that, move that to the
6873 		 * X register, and load with an offset from the
6874 		 * X register equal to the offset of the network
6875 		 * layer header relative to the beginning of
6876 		 * the MAC-layer payload plus the fixed-length
6877 		 * portion of the offset of the MAC-layer payload
6878 		 * from the beginning of the raw packet data.
6879 		 */
6880 		sappend(s, xfer_to_a(inst));
6881 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6882 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6883 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6884 		tmp->s.k = off_macpl + off_nl;
6885 		sappend(inst->s, s);
6886 
6887 		/*
6888 		 * Do the computation only if the packet contains
6889 		 * the protocol in question - which is true only
6890 		 * if this is an IP datagram and is the first or
6891 		 * only fragment of that datagram.
6892 		 */
6893 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6894 		if (inst->b)
6895 			gen_and(inst->b, b);
6896 #ifdef INET6
6897 		gen_and(gen_proto_abbrev(Q_IP), b);
6898 #endif
6899 		inst->b = b;
6900 		break;
6901 #ifdef INET6
6902 	case Q_ICMPV6:
6903 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6904 		/*NOTREACHED*/
6905 #endif
6906 	}
6907 	inst->regno = regno;
6908 	s = new_stmt(BPF_ST);
6909 	s->s.k = regno;
6910 	sappend(inst->s, s);
6911 
6912 	return inst;
6913 }
6914 
6915 struct block *
6916 gen_relation(code, a0, a1, reversed)
6917 	int code;
6918 	struct arth *a0, *a1;
6919 	int reversed;
6920 {
6921 	struct slist *s0, *s1, *s2;
6922 	struct block *b, *tmp;
6923 
6924 	s0 = xfer_to_x(a1);
6925 	s1 = xfer_to_a(a0);
6926 	if (code == BPF_JEQ) {
6927 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6928 		b = new_block(JMP(code));
6929 		sappend(s1, s2);
6930 	}
6931 	else
6932 		b = new_block(BPF_JMP|code|BPF_X);
6933 	if (reversed)
6934 		gen_not(b);
6935 
6936 	sappend(s0, s1);
6937 	sappend(a1->s, s0);
6938 	sappend(a0->s, a1->s);
6939 
6940 	b->stmts = a0->s;
6941 
6942 	free_reg(a0->regno);
6943 	free_reg(a1->regno);
6944 
6945 	/* 'and' together protocol checks */
6946 	if (a0->b) {
6947 		if (a1->b) {
6948 			gen_and(a0->b, tmp = a1->b);
6949 		}
6950 		else
6951 			tmp = a0->b;
6952 	} else
6953 		tmp = a1->b;
6954 
6955 	if (tmp)
6956 		gen_and(tmp, b);
6957 
6958 	return b;
6959 }
6960 
6961 struct arth *
6962 gen_loadlen()
6963 {
6964 	int regno = alloc_reg();
6965 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6966 	struct slist *s;
6967 
6968 	s = new_stmt(BPF_LD|BPF_LEN);
6969 	s->next = new_stmt(BPF_ST);
6970 	s->next->s.k = regno;
6971 	a->s = s;
6972 	a->regno = regno;
6973 
6974 	return a;
6975 }
6976 
6977 struct arth *
6978 gen_loadi(val)
6979 	int val;
6980 {
6981 	struct arth *a;
6982 	struct slist *s;
6983 	int reg;
6984 
6985 	a = (struct arth *)newchunk(sizeof(*a));
6986 
6987 	reg = alloc_reg();
6988 
6989 	s = new_stmt(BPF_LD|BPF_IMM);
6990 	s->s.k = val;
6991 	s->next = new_stmt(BPF_ST);
6992 	s->next->s.k = reg;
6993 	a->s = s;
6994 	a->regno = reg;
6995 
6996 	return a;
6997 }
6998 
6999 struct arth *
7000 gen_neg(a)
7001 	struct arth *a;
7002 {
7003 	struct slist *s;
7004 
7005 	s = xfer_to_a(a);
7006 	sappend(a->s, s);
7007 	s = new_stmt(BPF_ALU|BPF_NEG);
7008 	s->s.k = 0;
7009 	sappend(a->s, s);
7010 	s = new_stmt(BPF_ST);
7011 	s->s.k = a->regno;
7012 	sappend(a->s, s);
7013 
7014 	return a;
7015 }
7016 
7017 struct arth *
7018 gen_arth(code, a0, a1)
7019 	int code;
7020 	struct arth *a0, *a1;
7021 {
7022 	struct slist *s0, *s1, *s2;
7023 
7024 	s0 = xfer_to_x(a1);
7025 	s1 = xfer_to_a(a0);
7026 	s2 = new_stmt(BPF_ALU|BPF_X|code);
7027 
7028 	sappend(s1, s2);
7029 	sappend(s0, s1);
7030 	sappend(a1->s, s0);
7031 	sappend(a0->s, a1->s);
7032 
7033 	free_reg(a0->regno);
7034 	free_reg(a1->regno);
7035 
7036 	s0 = new_stmt(BPF_ST);
7037 	a0->regno = s0->s.k = alloc_reg();
7038 	sappend(a0->s, s0);
7039 
7040 	return a0;
7041 }
7042 
7043 /*
7044  * Here we handle simple allocation of the scratch registers.
7045  * If too many registers are alloc'd, the allocator punts.
7046  */
7047 static int regused[BPF_MEMWORDS];
7048 static int curreg;
7049 
7050 /*
7051  * Initialize the table of used registers and the current register.
7052  */
7053 static void
7054 init_regs()
7055 {
7056 	curreg = 0;
7057 	memset(regused, 0, sizeof regused);
7058 }
7059 
7060 /*
7061  * Return the next free register.
7062  */
7063 static int
7064 alloc_reg()
7065 {
7066 	int n = BPF_MEMWORDS;
7067 
7068 	while (--n >= 0) {
7069 		if (regused[curreg])
7070 			curreg = (curreg + 1) % BPF_MEMWORDS;
7071 		else {
7072 			regused[curreg] = 1;
7073 			return curreg;
7074 		}
7075 	}
7076 	bpf_error("too many registers needed to evaluate expression");
7077 	/* NOTREACHED */
7078 	return 0;
7079 }
7080 
7081 /*
7082  * Return a register to the table so it can
7083  * be used later.
7084  */
7085 static void
7086 free_reg(n)
7087 	int n;
7088 {
7089 	regused[n] = 0;
7090 }
7091 
7092 static struct block *
7093 gen_len(jmp, n)
7094 	int jmp, n;
7095 {
7096 	struct slist *s;
7097 	struct block *b;
7098 
7099 	s = new_stmt(BPF_LD|BPF_LEN);
7100 	b = new_block(JMP(jmp));
7101 	b->stmts = s;
7102 	b->s.k = n;
7103 
7104 	return b;
7105 }
7106 
7107 struct block *
7108 gen_greater(n)
7109 	int n;
7110 {
7111 	return gen_len(BPF_JGE, n);
7112 }
7113 
7114 /*
7115  * Actually, this is less than or equal.
7116  */
7117 struct block *
7118 gen_less(n)
7119 	int n;
7120 {
7121 	struct block *b;
7122 
7123 	b = gen_len(BPF_JGT, n);
7124 	gen_not(b);
7125 
7126 	return b;
7127 }
7128 
7129 /*
7130  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7131  * the beginning of the link-layer header.
7132  * XXX - that means you can't test values in the radiotap header, but
7133  * as that header is difficult if not impossible to parse generally
7134  * without a loop, that might not be a severe problem.  A new keyword
7135  * "radio" could be added for that, although what you'd really want
7136  * would be a way of testing particular radio header values, which
7137  * would generate code appropriate to the radio header in question.
7138  */
7139 struct block *
7140 gen_byteop(op, idx, val)
7141 	int op, idx, val;
7142 {
7143 	struct block *b;
7144 	struct slist *s;
7145 
7146 	switch (op) {
7147 	default:
7148 		abort();
7149 
7150 	case '=':
7151 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7152 
7153 	case '<':
7154 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7155 		return b;
7156 
7157 	case '>':
7158 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7159 		return b;
7160 
7161 	case '|':
7162 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7163 		break;
7164 
7165 	case '&':
7166 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7167 		break;
7168 	}
7169 	s->s.k = val;
7170 	b = new_block(JMP(BPF_JEQ));
7171 	b->stmts = s;
7172 	gen_not(b);
7173 
7174 	return b;
7175 }
7176 
7177 static u_char abroadcast[] = { 0x0 };
7178 
7179 struct block *
7180 gen_broadcast(proto)
7181 	int proto;
7182 {
7183 	bpf_u_int32 hostmask;
7184 	struct block *b0, *b1, *b2;
7185 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7186 
7187 	switch (proto) {
7188 
7189 	case Q_DEFAULT:
7190 	case Q_LINK:
7191 		switch (linktype) {
7192 		case DLT_ARCNET:
7193 		case DLT_ARCNET_LINUX:
7194 			return gen_ahostop(abroadcast, Q_DST);
7195 		case DLT_EN10MB:
7196 		case DLT_NETANALYZER:
7197 		case DLT_NETANALYZER_TRANSPARENT:
7198 			return gen_ehostop(ebroadcast, Q_DST);
7199 		case DLT_FDDI:
7200 			return gen_fhostop(ebroadcast, Q_DST);
7201 		case DLT_IEEE802:
7202 			return gen_thostop(ebroadcast, Q_DST);
7203 		case DLT_IEEE802_11:
7204 		case DLT_PRISM_HEADER:
7205 		case DLT_IEEE802_11_RADIO_AVS:
7206 		case DLT_IEEE802_11_RADIO:
7207 		case DLT_PPI:
7208 			return gen_wlanhostop(ebroadcast, Q_DST);
7209 		case DLT_IP_OVER_FC:
7210 			return gen_ipfchostop(ebroadcast, Q_DST);
7211 		case DLT_SUNATM:
7212 			if (is_lane) {
7213 				/*
7214 				 * Check that the packet doesn't begin with an
7215 				 * LE Control marker.  (We've already generated
7216 				 * a test for LANE.)
7217 				 */
7218 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7219 				    BPF_H, 0xFF00);
7220 				gen_not(b1);
7221 
7222 				/*
7223 				 * Now check the MAC address.
7224 				 */
7225 				b0 = gen_ehostop(ebroadcast, Q_DST);
7226 				gen_and(b1, b0);
7227 				return b0;
7228 			}
7229 			break;
7230 		default:
7231 			bpf_error("not a broadcast link");
7232 		}
7233 		break;
7234 
7235 	case Q_IP:
7236 		/*
7237 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7238 		 * as an indication that we don't know the netmask, and fail
7239 		 * in that case.
7240 		 */
7241 		if (netmask == PCAP_NETMASK_UNKNOWN)
7242 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7243 		b0 = gen_linktype(ETHERTYPE_IP);
7244 		hostmask = ~netmask;
7245 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7246 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7247 			      (bpf_int32)(~0 & hostmask), hostmask);
7248 		gen_or(b1, b2);
7249 		gen_and(b0, b2);
7250 		return b2;
7251 	}
7252 	bpf_error("only link-layer/IP broadcast filters supported");
7253 	/* NOTREACHED */
7254 	return NULL;
7255 }
7256 
7257 /*
7258  * Generate code to test the low-order bit of a MAC address (that's
7259  * the bottom bit of the *first* byte).
7260  */
7261 static struct block *
7262 gen_mac_multicast(offset)
7263 	int offset;
7264 {
7265 	register struct block *b0;
7266 	register struct slist *s;
7267 
7268 	/* link[offset] & 1 != 0 */
7269 	s = gen_load_a(OR_LINK, offset, BPF_B);
7270 	b0 = new_block(JMP(BPF_JSET));
7271 	b0->s.k = 1;
7272 	b0->stmts = s;
7273 	return b0;
7274 }
7275 
7276 struct block *
7277 gen_multicast(proto)
7278 	int proto;
7279 {
7280 	register struct block *b0, *b1, *b2;
7281 	register struct slist *s;
7282 
7283 	switch (proto) {
7284 
7285 	case Q_DEFAULT:
7286 	case Q_LINK:
7287 		switch (linktype) {
7288 		case DLT_ARCNET:
7289 		case DLT_ARCNET_LINUX:
7290 			/* all ARCnet multicasts use the same address */
7291 			return gen_ahostop(abroadcast, Q_DST);
7292 		case DLT_EN10MB:
7293 		case DLT_NETANALYZER:
7294 		case DLT_NETANALYZER_TRANSPARENT:
7295 			/* ether[0] & 1 != 0 */
7296 			return gen_mac_multicast(0);
7297 		case DLT_FDDI:
7298 			/*
7299 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7300 			 *
7301 			 * XXX - was that referring to bit-order issues?
7302 			 */
7303 			/* fddi[1] & 1 != 0 */
7304 			return gen_mac_multicast(1);
7305 		case DLT_IEEE802:
7306 			/* tr[2] & 1 != 0 */
7307 			return gen_mac_multicast(2);
7308 		case DLT_IEEE802_11:
7309 		case DLT_PRISM_HEADER:
7310 		case DLT_IEEE802_11_RADIO_AVS:
7311 		case DLT_IEEE802_11_RADIO:
7312 		case DLT_PPI:
7313 			/*
7314 			 * Oh, yuk.
7315 			 *
7316 			 *	For control frames, there is no DA.
7317 			 *
7318 			 *	For management frames, DA is at an
7319 			 *	offset of 4 from the beginning of
7320 			 *	the packet.
7321 			 *
7322 			 *	For data frames, DA is at an offset
7323 			 *	of 4 from the beginning of the packet
7324 			 *	if To DS is clear and at an offset of
7325 			 *	16 from the beginning of the packet
7326 			 *	if To DS is set.
7327 			 */
7328 
7329 			/*
7330 			 * Generate the tests to be done for data frames.
7331 			 *
7332 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7333 			 */
7334 			s = gen_load_a(OR_LINK, 1, BPF_B);
7335 			b1 = new_block(JMP(BPF_JSET));
7336 			b1->s.k = 0x01;	/* To DS */
7337 			b1->stmts = s;
7338 
7339 			/*
7340 			 * If To DS is set, the DA is at 16.
7341 			 */
7342 			b0 = gen_mac_multicast(16);
7343 			gen_and(b1, b0);
7344 
7345 			/*
7346 			 * Now, check for To DS not set, i.e. check
7347 			 * "!(link[1] & 0x01)".
7348 			 */
7349 			s = gen_load_a(OR_LINK, 1, BPF_B);
7350 			b2 = new_block(JMP(BPF_JSET));
7351 			b2->s.k = 0x01;	/* To DS */
7352 			b2->stmts = s;
7353 			gen_not(b2);
7354 
7355 			/*
7356 			 * If To DS is not set, the DA is at 4.
7357 			 */
7358 			b1 = gen_mac_multicast(4);
7359 			gen_and(b2, b1);
7360 
7361 			/*
7362 			 * Now OR together the last two checks.  That gives
7363 			 * the complete set of checks for data frames.
7364 			 */
7365 			gen_or(b1, b0);
7366 
7367 			/*
7368 			 * Now check for a data frame.
7369 			 * I.e, check "link[0] & 0x08".
7370 			 */
7371 			s = gen_load_a(OR_LINK, 0, BPF_B);
7372 			b1 = new_block(JMP(BPF_JSET));
7373 			b1->s.k = 0x08;
7374 			b1->stmts = s;
7375 
7376 			/*
7377 			 * AND that with the checks done for data frames.
7378 			 */
7379 			gen_and(b1, b0);
7380 
7381 			/*
7382 			 * If the high-order bit of the type value is 0, this
7383 			 * is a management frame.
7384 			 * I.e, check "!(link[0] & 0x08)".
7385 			 */
7386 			s = gen_load_a(OR_LINK, 0, BPF_B);
7387 			b2 = new_block(JMP(BPF_JSET));
7388 			b2->s.k = 0x08;
7389 			b2->stmts = s;
7390 			gen_not(b2);
7391 
7392 			/*
7393 			 * For management frames, the DA is at 4.
7394 			 */
7395 			b1 = gen_mac_multicast(4);
7396 			gen_and(b2, b1);
7397 
7398 			/*
7399 			 * OR that with the checks done for data frames.
7400 			 * That gives the checks done for management and
7401 			 * data frames.
7402 			 */
7403 			gen_or(b1, b0);
7404 
7405 			/*
7406 			 * If the low-order bit of the type value is 1,
7407 			 * this is either a control frame or a frame
7408 			 * with a reserved type, and thus not a
7409 			 * frame with an SA.
7410 			 *
7411 			 * I.e., check "!(link[0] & 0x04)".
7412 			 */
7413 			s = gen_load_a(OR_LINK, 0, BPF_B);
7414 			b1 = new_block(JMP(BPF_JSET));
7415 			b1->s.k = 0x04;
7416 			b1->stmts = s;
7417 			gen_not(b1);
7418 
7419 			/*
7420 			 * AND that with the checks for data and management
7421 			 * frames.
7422 			 */
7423 			gen_and(b1, b0);
7424 			return b0;
7425 		case DLT_IP_OVER_FC:
7426 			b0 = gen_mac_multicast(2);
7427 			return b0;
7428 		case DLT_SUNATM:
7429 			if (is_lane) {
7430 				/*
7431 				 * Check that the packet doesn't begin with an
7432 				 * LE Control marker.  (We've already generated
7433 				 * a test for LANE.)
7434 				 */
7435 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7436 				    BPF_H, 0xFF00);
7437 				gen_not(b1);
7438 
7439 				/* ether[off_mac] & 1 != 0 */
7440 				b0 = gen_mac_multicast(off_mac);
7441 				gen_and(b1, b0);
7442 				return b0;
7443 			}
7444 			break;
7445 		default:
7446 			break;
7447 		}
7448 		/* Link not known to support multicasts */
7449 		break;
7450 
7451 	case Q_IP:
7452 		b0 = gen_linktype(ETHERTYPE_IP);
7453 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7454 		gen_and(b0, b1);
7455 		return b1;
7456 
7457 #ifdef INET6
7458 	case Q_IPV6:
7459 		b0 = gen_linktype(ETHERTYPE_IPV6);
7460 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7461 		gen_and(b0, b1);
7462 		return b1;
7463 #endif /* INET6 */
7464 	}
7465 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7466 	/* NOTREACHED */
7467 	return NULL;
7468 }
7469 
7470 /*
7471  * generate command for inbound/outbound.  It's here so we can
7472  * make it link-type specific.  'dir' = 0 implies "inbound",
7473  * = 1 implies "outbound".
7474  */
7475 struct block *
7476 gen_inbound(dir)
7477 	int dir;
7478 {
7479 	register struct block *b0;
7480 
7481 	/*
7482 	 * Only some data link types support inbound/outbound qualifiers.
7483 	 */
7484 	switch (linktype) {
7485 	case DLT_SLIP:
7486 		b0 = gen_relation(BPF_JEQ,
7487 			  gen_load(Q_LINK, gen_loadi(0), 1),
7488 			  gen_loadi(0),
7489 			  dir);
7490 		break;
7491 
7492 	case DLT_IPNET:
7493 		if (dir) {
7494 			/* match outgoing packets */
7495 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7496 		} else {
7497 			/* match incoming packets */
7498 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7499 		}
7500 		break;
7501 
7502 	case DLT_LINUX_SLL:
7503 		if (dir) {
7504 			/*
7505 			 * Match packets sent by this machine.
7506 			 */
7507 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7508 		} else {
7509 			/*
7510 			 * Match packets sent to this machine.
7511 			 * (No broadcast or multicast packets, or
7512 			 * packets sent to some other machine and
7513 			 * received promiscuously.)
7514 			 *
7515 			 * XXX - packets sent to other machines probably
7516 			 * shouldn't be matched, but what about broadcast
7517 			 * or multicast packets we received?
7518 			 */
7519 			b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_HOST);
7520 		}
7521 		break;
7522 
7523 #ifdef HAVE_NET_PFVAR_H
7524 	case DLT_PFLOG:
7525 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7526 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7527 		break;
7528 #endif
7529 
7530 	case DLT_PPP_PPPD:
7531 		if (dir) {
7532 			/* match outgoing packets */
7533 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7534 		} else {
7535 			/* match incoming packets */
7536 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7537 		}
7538 		break;
7539 
7540         case DLT_JUNIPER_MFR:
7541         case DLT_JUNIPER_MLFR:
7542         case DLT_JUNIPER_MLPPP:
7543 	case DLT_JUNIPER_ATM1:
7544 	case DLT_JUNIPER_ATM2:
7545 	case DLT_JUNIPER_PPPOE:
7546 	case DLT_JUNIPER_PPPOE_ATM:
7547         case DLT_JUNIPER_GGSN:
7548         case DLT_JUNIPER_ES:
7549         case DLT_JUNIPER_MONITOR:
7550         case DLT_JUNIPER_SERVICES:
7551         case DLT_JUNIPER_ETHER:
7552         case DLT_JUNIPER_PPP:
7553         case DLT_JUNIPER_FRELAY:
7554         case DLT_JUNIPER_CHDLC:
7555         case DLT_JUNIPER_VP:
7556         case DLT_JUNIPER_ST:
7557         case DLT_JUNIPER_ISM:
7558         case DLT_JUNIPER_VS:
7559         case DLT_JUNIPER_SRX_E2E:
7560         case DLT_JUNIPER_FIBRECHANNEL:
7561 	case DLT_JUNIPER_ATM_CEMIC:
7562 
7563 		/* juniper flags (including direction) are stored
7564 		 * the byte after the 3-byte magic number */
7565 		if (dir) {
7566 			/* match outgoing packets */
7567 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7568 		} else {
7569 			/* match incoming packets */
7570 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7571 		}
7572 		break;
7573 
7574 	default:
7575 		bpf_error("inbound/outbound not supported on linktype %d",
7576 		    linktype);
7577 		b0 = NULL;
7578 		/* NOTREACHED */
7579 	}
7580 	return (b0);
7581 }
7582 
7583 #ifdef HAVE_NET_PFVAR_H
7584 /* PF firewall log matched interface */
7585 struct block *
7586 gen_pf_ifname(const char *ifname)
7587 {
7588 	struct block *b0;
7589 	u_int len, off;
7590 
7591 	if (linktype != DLT_PFLOG) {
7592 		bpf_error("ifname supported only on PF linktype");
7593 		/* NOTREACHED */
7594 	}
7595 	len = sizeof(((struct pfloghdr *)0)->ifname);
7596 	off = offsetof(struct pfloghdr, ifname);
7597 	if (strlen(ifname) >= len) {
7598 		bpf_error("ifname interface names can only be %d characters",
7599 		    len-1);
7600 		/* NOTREACHED */
7601 	}
7602 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7603 	return (b0);
7604 }
7605 
7606 /* PF firewall log ruleset name */
7607 struct block *
7608 gen_pf_ruleset(char *ruleset)
7609 {
7610 	struct block *b0;
7611 
7612 	if (linktype != DLT_PFLOG) {
7613 		bpf_error("ruleset supported only on PF linktype");
7614 		/* NOTREACHED */
7615 	}
7616 
7617 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7618 		bpf_error("ruleset names can only be %ld characters",
7619 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7620 		/* NOTREACHED */
7621 	}
7622 
7623 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7624 	    strlen(ruleset), (const u_char *)ruleset);
7625 	return (b0);
7626 }
7627 
7628 /* PF firewall log rule number */
7629 struct block *
7630 gen_pf_rnr(int rnr)
7631 {
7632 	struct block *b0;
7633 
7634 	if (linktype != DLT_PFLOG) {
7635 		bpf_error("rnr supported only on PF linktype");
7636 		/* NOTREACHED */
7637 	}
7638 
7639 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7640 		 (bpf_int32)rnr);
7641 	return (b0);
7642 }
7643 
7644 /* PF firewall log sub-rule number */
7645 struct block *
7646 gen_pf_srnr(int srnr)
7647 {
7648 	struct block *b0;
7649 
7650 	if (linktype != DLT_PFLOG) {
7651 		bpf_error("srnr supported only on PF linktype");
7652 		/* NOTREACHED */
7653 	}
7654 
7655 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7656 	    (bpf_int32)srnr);
7657 	return (b0);
7658 }
7659 
7660 /* PF firewall log reason code */
7661 struct block *
7662 gen_pf_reason(int reason)
7663 {
7664 	struct block *b0;
7665 
7666 	if (linktype != DLT_PFLOG) {
7667 		bpf_error("reason supported only on PF linktype");
7668 		/* NOTREACHED */
7669 	}
7670 
7671 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7672 	    (bpf_int32)reason);
7673 	return (b0);
7674 }
7675 
7676 /* PF firewall log action */
7677 struct block *
7678 gen_pf_action(int action)
7679 {
7680 	struct block *b0;
7681 
7682 	if (linktype != DLT_PFLOG) {
7683 		bpf_error("action supported only on PF linktype");
7684 		/* NOTREACHED */
7685 	}
7686 
7687 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7688 	    (bpf_int32)action);
7689 	return (b0);
7690 }
7691 #else /* !HAVE_NET_PFVAR_H */
7692 struct block *
7693 gen_pf_ifname(const char *ifname)
7694 {
7695 	bpf_error("libpcap was compiled without pf support");
7696 	/* NOTREACHED */
7697 	return (NULL);
7698 }
7699 
7700 struct block *
7701 gen_pf_ruleset(char *ruleset)
7702 {
7703 	bpf_error("libpcap was compiled on a machine without pf support");
7704 	/* NOTREACHED */
7705 	return (NULL);
7706 }
7707 
7708 struct block *
7709 gen_pf_rnr(int rnr)
7710 {
7711 	bpf_error("libpcap was compiled on a machine without pf support");
7712 	/* NOTREACHED */
7713 	return (NULL);
7714 }
7715 
7716 struct block *
7717 gen_pf_srnr(int srnr)
7718 {
7719 	bpf_error("libpcap was compiled on a machine without pf support");
7720 	/* NOTREACHED */
7721 	return (NULL);
7722 }
7723 
7724 struct block *
7725 gen_pf_reason(int reason)
7726 {
7727 	bpf_error("libpcap was compiled on a machine without pf support");
7728 	/* NOTREACHED */
7729 	return (NULL);
7730 }
7731 
7732 struct block *
7733 gen_pf_action(int action)
7734 {
7735 	bpf_error("libpcap was compiled on a machine without pf support");
7736 	/* NOTREACHED */
7737 	return (NULL);
7738 }
7739 #endif /* HAVE_NET_PFVAR_H */
7740 
7741 /* IEEE 802.11 wireless header */
7742 struct block *
7743 gen_p80211_type(int type, int mask)
7744 {
7745 	struct block *b0;
7746 
7747 	switch (linktype) {
7748 
7749 	case DLT_IEEE802_11:
7750 	case DLT_PRISM_HEADER:
7751 	case DLT_IEEE802_11_RADIO_AVS:
7752 	case DLT_IEEE802_11_RADIO:
7753 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7754 		    (bpf_int32)mask);
7755 		break;
7756 
7757 	default:
7758 		bpf_error("802.11 link-layer types supported only on 802.11");
7759 		/* NOTREACHED */
7760 	}
7761 
7762 	return (b0);
7763 }
7764 
7765 struct block *
7766 gen_p80211_fcdir(int fcdir)
7767 {
7768 	struct block *b0;
7769 
7770 	switch (linktype) {
7771 
7772 	case DLT_IEEE802_11:
7773 	case DLT_PRISM_HEADER:
7774 	case DLT_IEEE802_11_RADIO_AVS:
7775 	case DLT_IEEE802_11_RADIO:
7776 		break;
7777 
7778 	default:
7779 		bpf_error("frame direction supported only with 802.11 headers");
7780 		/* NOTREACHED */
7781 	}
7782 
7783 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7784 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7785 
7786 	return (b0);
7787 }
7788 
7789 struct block *
7790 gen_acode(eaddr, q)
7791 	register const u_char *eaddr;
7792 	struct qual q;
7793 {
7794 	switch (linktype) {
7795 
7796 	case DLT_ARCNET:
7797 	case DLT_ARCNET_LINUX:
7798 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7799 		    q.proto == Q_LINK)
7800 			return (gen_ahostop(eaddr, (int)q.dir));
7801 		else {
7802 			bpf_error("ARCnet address used in non-arc expression");
7803 			/* NOTREACHED */
7804 		}
7805 		break;
7806 
7807 	default:
7808 		bpf_error("aid supported only on ARCnet");
7809 		/* NOTREACHED */
7810 	}
7811 	bpf_error("ARCnet address used in non-arc expression");
7812 	/* NOTREACHED */
7813 	return NULL;
7814 }
7815 
7816 static struct block *
7817 gen_ahostop(eaddr, dir)
7818 	register const u_char *eaddr;
7819 	register int dir;
7820 {
7821 	register struct block *b0, *b1;
7822 
7823 	switch (dir) {
7824 	/* src comes first, different from Ethernet */
7825 	case Q_SRC:
7826 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7827 
7828 	case Q_DST:
7829 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7830 
7831 	case Q_AND:
7832 		b0 = gen_ahostop(eaddr, Q_SRC);
7833 		b1 = gen_ahostop(eaddr, Q_DST);
7834 		gen_and(b0, b1);
7835 		return b1;
7836 
7837 	case Q_DEFAULT:
7838 	case Q_OR:
7839 		b0 = gen_ahostop(eaddr, Q_SRC);
7840 		b1 = gen_ahostop(eaddr, Q_DST);
7841 		gen_or(b0, b1);
7842 		return b1;
7843 
7844 	case Q_ADDR1:
7845 		bpf_error("'addr1' is only supported on 802.11");
7846 		break;
7847 
7848 	case Q_ADDR2:
7849 		bpf_error("'addr2' is only supported on 802.11");
7850 		break;
7851 
7852 	case Q_ADDR3:
7853 		bpf_error("'addr3' is only supported on 802.11");
7854 		break;
7855 
7856 	case Q_ADDR4:
7857 		bpf_error("'addr4' is only supported on 802.11");
7858 		break;
7859 
7860 	case Q_RA:
7861 		bpf_error("'ra' is only supported on 802.11");
7862 		break;
7863 
7864 	case Q_TA:
7865 		bpf_error("'ta' is only supported on 802.11");
7866 		break;
7867 	}
7868 	abort();
7869 	/* NOTREACHED */
7870 }
7871 
7872 /*
7873  * support IEEE 802.1Q VLAN trunk over ethernet
7874  */
7875 struct block *
7876 gen_vlan(vlan_num)
7877 	int vlan_num;
7878 {
7879 	struct	block	*b0, *b1;
7880 
7881 	/* can't check for VLAN-encapsulated packets inside MPLS */
7882 	if (label_stack_depth > 0)
7883 		bpf_error("no VLAN match after MPLS");
7884 
7885 	/*
7886 	 * Check for a VLAN packet, and then change the offsets to point
7887 	 * to the type and data fields within the VLAN packet.  Just
7888 	 * increment the offsets, so that we can support a hierarchy, e.g.
7889 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7890 	 * VLAN 100.
7891 	 *
7892 	 * XXX - this is a bit of a kludge.  If we were to split the
7893 	 * compiler into a parser that parses an expression and
7894 	 * generates an expression tree, and a code generator that
7895 	 * takes an expression tree (which could come from our
7896 	 * parser or from some other parser) and generates BPF code,
7897 	 * we could perhaps make the offsets parameters of routines
7898 	 * and, in the handler for an "AND" node, pass to subnodes
7899 	 * other than the VLAN node the adjusted offsets.
7900 	 *
7901 	 * This would mean that "vlan" would, instead of changing the
7902 	 * behavior of *all* tests after it, change only the behavior
7903 	 * of tests ANDed with it.  That would change the documented
7904 	 * semantics of "vlan", which might break some expressions.
7905 	 * However, it would mean that "(vlan and ip) or ip" would check
7906 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7907 	 * checking only for VLAN-encapsulated IP, so that could still
7908 	 * be considered worth doing; it wouldn't break expressions
7909 	 * that are of the form "vlan and ..." or "vlan N and ...",
7910 	 * which I suspect are the most common expressions involving
7911 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7912 	 * would really want, now, as all the "or ..." tests would
7913 	 * be done assuming a VLAN, even though the "or" could be viewed
7914 	 * as meaning "or, if this isn't a VLAN packet...".
7915 	 */
7916 	orig_nl = off_nl;
7917 
7918 	switch (linktype) {
7919 
7920 	case DLT_EN10MB:
7921 	case DLT_NETANALYZER:
7922 	case DLT_NETANALYZER_TRANSPARENT:
7923 		/* check for VLAN, including QinQ */
7924 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7925 		    (bpf_int32)ETHERTYPE_8021Q);
7926 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7927 		    (bpf_int32)ETHERTYPE_8021QINQ);
7928 		gen_or(b0,b1);
7929 		b0 = b1;
7930 
7931 		/* If a specific VLAN is requested, check VLAN id */
7932 		if (vlan_num >= 0) {
7933 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7934 			    (bpf_int32)vlan_num, 0x0fff);
7935 			gen_and(b0, b1);
7936 			b0 = b1;
7937 		}
7938 
7939 		off_macpl += 4;
7940 		off_linktype += 4;
7941 #if 0
7942 		off_nl_nosnap += 4;
7943 		off_nl += 4;
7944 #endif
7945 		break;
7946 
7947 	default:
7948 		bpf_error("no VLAN support for data link type %d",
7949 		      linktype);
7950 		/*NOTREACHED*/
7951 	}
7952 
7953 	return (b0);
7954 }
7955 
7956 /*
7957  * support for MPLS
7958  */
7959 struct block *
7960 gen_mpls(label_num)
7961 	int label_num;
7962 {
7963 	struct	block	*b0,*b1;
7964 
7965 	/*
7966 	 * Change the offsets to point to the type and data fields within
7967 	 * the MPLS packet.  Just increment the offsets, so that we
7968 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7969 	 * capture packets with an outer label of 100000 and an inner
7970 	 * label of 1024.
7971 	 *
7972 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7973 	 */
7974         orig_nl = off_nl;
7975 
7976         if (label_stack_depth > 0) {
7977             /* just match the bottom-of-stack bit clear */
7978             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7979         } else {
7980             /*
7981              * Indicate that we're checking MPLS-encapsulated headers,
7982              * to make sure higher level code generators don't try to
7983              * match against IP-related protocols such as Q_ARP, Q_RARP
7984              * etc.
7985              */
7986             switch (linktype) {
7987 
7988             case DLT_C_HDLC: /* fall through */
7989             case DLT_EN10MB:
7990             case DLT_NETANALYZER:
7991             case DLT_NETANALYZER_TRANSPARENT:
7992                     b0 = gen_linktype(ETHERTYPE_MPLS);
7993                     break;
7994 
7995             case DLT_PPP:
7996                     b0 = gen_linktype(PPP_MPLS_UCAST);
7997                     break;
7998 
7999                     /* FIXME add other DLT_s ...
8000                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8001                      * leave it for now */
8002 
8003             default:
8004                     bpf_error("no MPLS support for data link type %d",
8005                           linktype);
8006                     b0 = NULL;
8007                     /*NOTREACHED*/
8008                     break;
8009             }
8010         }
8011 
8012 	/* If a specific MPLS label is requested, check it */
8013 	if (label_num >= 0) {
8014 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8015 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8016 		    0xfffff000); /* only compare the first 20 bits */
8017 		gen_and(b0, b1);
8018 		b0 = b1;
8019 	}
8020 
8021         off_nl_nosnap += 4;
8022         off_nl += 4;
8023         label_stack_depth++;
8024 	return (b0);
8025 }
8026 
8027 /*
8028  * Support PPPOE discovery and session.
8029  */
8030 struct block *
8031 gen_pppoed()
8032 {
8033 	/* check for PPPoE discovery */
8034 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8035 }
8036 
8037 struct block *
8038 gen_pppoes()
8039 {
8040 	struct block *b0;
8041 
8042 	/*
8043 	 * Test against the PPPoE session link-layer type.
8044 	 */
8045 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8046 
8047 	/*
8048 	 * Change the offsets to point to the type and data fields within
8049 	 * the PPP packet, and note that this is PPPoE rather than
8050 	 * raw PPP.
8051 	 *
8052 	 * XXX - this is a bit of a kludge.  If we were to split the
8053 	 * compiler into a parser that parses an expression and
8054 	 * generates an expression tree, and a code generator that
8055 	 * takes an expression tree (which could come from our
8056 	 * parser or from some other parser) and generates BPF code,
8057 	 * we could perhaps make the offsets parameters of routines
8058 	 * and, in the handler for an "AND" node, pass to subnodes
8059 	 * other than the PPPoE node the adjusted offsets.
8060 	 *
8061 	 * This would mean that "pppoes" would, instead of changing the
8062 	 * behavior of *all* tests after it, change only the behavior
8063 	 * of tests ANDed with it.  That would change the documented
8064 	 * semantics of "pppoes", which might break some expressions.
8065 	 * However, it would mean that "(pppoes and ip) or ip" would check
8066 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8067 	 * checking only for VLAN-encapsulated IP, so that could still
8068 	 * be considered worth doing; it wouldn't break expressions
8069 	 * that are of the form "pppoes and ..." which I suspect are the
8070 	 * most common expressions involving "pppoes".  "pppoes or ..."
8071 	 * doesn't necessarily do what the user would really want, now,
8072 	 * as all the "or ..." tests would be done assuming PPPoE, even
8073 	 * though the "or" could be viewed as meaning "or, if this isn't
8074 	 * a PPPoE packet...".
8075 	 */
8076 	orig_linktype = off_linktype;	/* save original values */
8077 	orig_nl = off_nl;
8078 	is_pppoes = 1;
8079 
8080 	/*
8081 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8082 	 * PPPoE header, followed by a PPP packet.
8083 	 *
8084 	 * There is no HDLC encapsulation for the PPP packet (it's
8085 	 * encapsulated in PPPoES instead), so the link-layer type
8086 	 * starts at the first byte of the PPP packet.  For PPPoE,
8087 	 * that offset is relative to the beginning of the total
8088 	 * link-layer payload, including any 802.2 LLC header, so
8089 	 * it's 6 bytes past off_nl.
8090 	 */
8091 	off_linktype = off_nl + 6;
8092 
8093 	/*
8094 	 * The network-layer offsets are relative to the beginning
8095 	 * of the MAC-layer payload; that's past the 6-byte
8096 	 * PPPoE header and the 2-byte PPP header.
8097 	 */
8098 	off_nl = 6+2;
8099 	off_nl_nosnap = 6+2;
8100 
8101 	return b0;
8102 }
8103 
8104 struct block *
8105 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8106 	int atmfield;
8107 	bpf_int32 jvalue;
8108 	bpf_u_int32 jtype;
8109 	int reverse;
8110 {
8111 	struct block *b0;
8112 
8113 	switch (atmfield) {
8114 
8115 	case A_VPI:
8116 		if (!is_atm)
8117 			bpf_error("'vpi' supported only on raw ATM");
8118 		if (off_vpi == (u_int)-1)
8119 			abort();
8120 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8121 		    reverse, jvalue);
8122 		break;
8123 
8124 	case A_VCI:
8125 		if (!is_atm)
8126 			bpf_error("'vci' supported only on raw ATM");
8127 		if (off_vci == (u_int)-1)
8128 			abort();
8129 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8130 		    reverse, jvalue);
8131 		break;
8132 
8133 	case A_PROTOTYPE:
8134 		if (off_proto == (u_int)-1)
8135 			abort();	/* XXX - this isn't on FreeBSD */
8136 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8137 		    reverse, jvalue);
8138 		break;
8139 
8140 	case A_MSGTYPE:
8141 		if (off_payload == (u_int)-1)
8142 			abort();
8143 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8144 		    0xffffffff, jtype, reverse, jvalue);
8145 		break;
8146 
8147 	case A_CALLREFTYPE:
8148 		if (!is_atm)
8149 			bpf_error("'callref' supported only on raw ATM");
8150 		if (off_proto == (u_int)-1)
8151 			abort();
8152 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8153 		    jtype, reverse, jvalue);
8154 		break;
8155 
8156 	default:
8157 		abort();
8158 	}
8159 	return b0;
8160 }
8161 
8162 struct block *
8163 gen_atmtype_abbrev(type)
8164 	int type;
8165 {
8166 	struct block *b0, *b1;
8167 
8168 	switch (type) {
8169 
8170 	case A_METAC:
8171 		/* Get all packets in Meta signalling Circuit */
8172 		if (!is_atm)
8173 			bpf_error("'metac' supported only on raw ATM");
8174 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8175 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8176 		gen_and(b0, b1);
8177 		break;
8178 
8179 	case A_BCC:
8180 		/* Get all packets in Broadcast Circuit*/
8181 		if (!is_atm)
8182 			bpf_error("'bcc' supported only on raw ATM");
8183 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8184 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8185 		gen_and(b0, b1);
8186 		break;
8187 
8188 	case A_OAMF4SC:
8189 		/* Get all cells in Segment OAM F4 circuit*/
8190 		if (!is_atm)
8191 			bpf_error("'oam4sc' supported only on raw ATM");
8192 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8193 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8194 		gen_and(b0, b1);
8195 		break;
8196 
8197 	case A_OAMF4EC:
8198 		/* Get all cells in End-to-End OAM F4 Circuit*/
8199 		if (!is_atm)
8200 			bpf_error("'oam4ec' supported only on raw ATM");
8201 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8202 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8203 		gen_and(b0, b1);
8204 		break;
8205 
8206 	case A_SC:
8207 		/*  Get all packets in connection Signalling Circuit */
8208 		if (!is_atm)
8209 			bpf_error("'sc' supported only on raw ATM");
8210 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8211 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8212 		gen_and(b0, b1);
8213 		break;
8214 
8215 	case A_ILMIC:
8216 		/* Get all packets in ILMI Circuit */
8217 		if (!is_atm)
8218 			bpf_error("'ilmic' supported only on raw ATM");
8219 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8220 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8221 		gen_and(b0, b1);
8222 		break;
8223 
8224 	case A_LANE:
8225 		/* Get all LANE packets */
8226 		if (!is_atm)
8227 			bpf_error("'lane' supported only on raw ATM");
8228 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8229 
8230 		/*
8231 		 * Arrange that all subsequent tests assume LANE
8232 		 * rather than LLC-encapsulated packets, and set
8233 		 * the offsets appropriately for LANE-encapsulated
8234 		 * Ethernet.
8235 		 *
8236 		 * "off_mac" is the offset of the Ethernet header,
8237 		 * which is 2 bytes past the ATM pseudo-header
8238 		 * (skipping the pseudo-header and 2-byte LE Client
8239 		 * field).  The other offsets are Ethernet offsets
8240 		 * relative to "off_mac".
8241 		 */
8242 		is_lane = 1;
8243 		off_mac = off_payload + 2;	/* MAC header */
8244 		off_linktype = off_mac + 12;
8245 		off_macpl = off_mac + 14;	/* Ethernet */
8246 		off_nl = 0;			/* Ethernet II */
8247 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8248 		break;
8249 
8250 	case A_LLC:
8251 		/* Get all LLC-encapsulated packets */
8252 		if (!is_atm)
8253 			bpf_error("'llc' supported only on raw ATM");
8254 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8255 		is_lane = 0;
8256 		break;
8257 
8258 	default:
8259 		abort();
8260 	}
8261 	return b1;
8262 }
8263 
8264 /*
8265  * Filtering for MTP2 messages based on li value
8266  * FISU, length is null
8267  * LSSU, length is 1 or 2
8268  * MSU, length is 3 or more
8269  */
8270 struct block *
8271 gen_mtp2type_abbrev(type)
8272 	int type;
8273 {
8274 	struct block *b0, *b1;
8275 
8276 	switch (type) {
8277 
8278 	case M_FISU:
8279 		if ( (linktype != DLT_MTP2) &&
8280 		     (linktype != DLT_ERF) &&
8281 		     (linktype != DLT_MTP2_WITH_PHDR) )
8282 			bpf_error("'fisu' supported only on MTP2");
8283 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8284 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8285 		break;
8286 
8287 	case M_LSSU:
8288 		if ( (linktype != DLT_MTP2) &&
8289 		     (linktype != DLT_ERF) &&
8290 		     (linktype != DLT_MTP2_WITH_PHDR) )
8291 			bpf_error("'lssu' supported only on MTP2");
8292 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8293 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8294 		gen_and(b1, b0);
8295 		break;
8296 
8297 	case M_MSU:
8298 		if ( (linktype != DLT_MTP2) &&
8299 		     (linktype != DLT_ERF) &&
8300 		     (linktype != DLT_MTP2_WITH_PHDR) )
8301 			bpf_error("'msu' supported only on MTP2");
8302 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8303 		break;
8304 
8305 	default:
8306 		abort();
8307 	}
8308 	return b0;
8309 }
8310 
8311 struct block *
8312 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8313 	int mtp3field;
8314 	bpf_u_int32 jvalue;
8315 	bpf_u_int32 jtype;
8316 	int reverse;
8317 {
8318 	struct block *b0;
8319 	bpf_u_int32 val1 , val2 , val3;
8320 
8321 	switch (mtp3field) {
8322 
8323 	case M_SIO:
8324 		if (off_sio == (u_int)-1)
8325 			bpf_error("'sio' supported only on SS7");
8326 		/* sio coded on 1 byte so max value 255 */
8327 		if(jvalue > 255)
8328 		        bpf_error("sio value %u too big; max value = 255",
8329 		            jvalue);
8330 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8331 		    (u_int)jtype, reverse, (u_int)jvalue);
8332 		break;
8333 
8334         case M_OPC:
8335 	        if (off_opc == (u_int)-1)
8336 			bpf_error("'opc' supported only on SS7");
8337 		/* opc coded on 14 bits so max value 16383 */
8338 		if (jvalue > 16383)
8339 		        bpf_error("opc value %u too big; max value = 16383",
8340 		            jvalue);
8341 		/* the following instructions are made to convert jvalue
8342 		 * to the form used to write opc in an ss7 message*/
8343 		val1 = jvalue & 0x00003c00;
8344 		val1 = val1 >>10;
8345 		val2 = jvalue & 0x000003fc;
8346 		val2 = val2 <<6;
8347 		val3 = jvalue & 0x00000003;
8348 		val3 = val3 <<22;
8349 		jvalue = val1 + val2 + val3;
8350 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8351 		    (u_int)jtype, reverse, (u_int)jvalue);
8352 		break;
8353 
8354 	case M_DPC:
8355 	        if (off_dpc == (u_int)-1)
8356 			bpf_error("'dpc' supported only on SS7");
8357 		/* dpc coded on 14 bits so max value 16383 */
8358 		if (jvalue > 16383)
8359 		        bpf_error("dpc value %u too big; max value = 16383",
8360 		            jvalue);
8361 		/* the following instructions are made to convert jvalue
8362 		 * to the forme used to write dpc in an ss7 message*/
8363 		val1 = jvalue & 0x000000ff;
8364 		val1 = val1 << 24;
8365 		val2 = jvalue & 0x00003f00;
8366 		val2 = val2 << 8;
8367 		jvalue = val1 + val2;
8368 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8369 		    (u_int)jtype, reverse, (u_int)jvalue);
8370 		break;
8371 
8372 	case M_SLS:
8373 	        if (off_sls == (u_int)-1)
8374 			bpf_error("'sls' supported only on SS7");
8375 		/* sls coded on 4 bits so max value 15 */
8376 		if (jvalue > 15)
8377 		         bpf_error("sls value %u too big; max value = 15",
8378 		             jvalue);
8379 		/* the following instruction is made to convert jvalue
8380 		 * to the forme used to write sls in an ss7 message*/
8381 		jvalue = jvalue << 4;
8382 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8383 		    (u_int)jtype,reverse, (u_int)jvalue);
8384 		break;
8385 
8386 	default:
8387 		abort();
8388 	}
8389 	return b0;
8390 }
8391 
8392 static struct block *
8393 gen_msg_abbrev(type)
8394 	int type;
8395 {
8396 	struct block *b1;
8397 
8398 	/*
8399 	 * Q.2931 signalling protocol messages for handling virtual circuits
8400 	 * establishment and teardown
8401 	 */
8402 	switch (type) {
8403 
8404 	case A_SETUP:
8405 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8406 		break;
8407 
8408 	case A_CALLPROCEED:
8409 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8410 		break;
8411 
8412 	case A_CONNECT:
8413 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8414 		break;
8415 
8416 	case A_CONNECTACK:
8417 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8418 		break;
8419 
8420 	case A_RELEASE:
8421 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8422 		break;
8423 
8424 	case A_RELEASE_DONE:
8425 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8426 		break;
8427 
8428 	default:
8429 		abort();
8430 	}
8431 	return b1;
8432 }
8433 
8434 struct block *
8435 gen_atmmulti_abbrev(type)
8436 	int type;
8437 {
8438 	struct block *b0, *b1;
8439 
8440 	switch (type) {
8441 
8442 	case A_OAM:
8443 		if (!is_atm)
8444 			bpf_error("'oam' supported only on raw ATM");
8445 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8446 		break;
8447 
8448 	case A_OAMF4:
8449 		if (!is_atm)
8450 			bpf_error("'oamf4' supported only on raw ATM");
8451 		/* OAM F4 type */
8452 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8453 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8454 		gen_or(b0, b1);
8455 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8456 		gen_and(b0, b1);
8457 		break;
8458 
8459 	case A_CONNECTMSG:
8460 		/*
8461 		 * Get Q.2931 signalling messages for switched
8462 		 * virtual connection
8463 		 */
8464 		if (!is_atm)
8465 			bpf_error("'connectmsg' supported only on raw ATM");
8466 		b0 = gen_msg_abbrev(A_SETUP);
8467 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8468 		gen_or(b0, b1);
8469 		b0 = gen_msg_abbrev(A_CONNECT);
8470 		gen_or(b0, b1);
8471 		b0 = gen_msg_abbrev(A_CONNECTACK);
8472 		gen_or(b0, b1);
8473 		b0 = gen_msg_abbrev(A_RELEASE);
8474 		gen_or(b0, b1);
8475 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8476 		gen_or(b0, b1);
8477 		b0 = gen_atmtype_abbrev(A_SC);
8478 		gen_and(b0, b1);
8479 		break;
8480 
8481 	case A_METACONNECT:
8482 		if (!is_atm)
8483 			bpf_error("'metaconnect' supported only on raw ATM");
8484 		b0 = gen_msg_abbrev(A_SETUP);
8485 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8486 		gen_or(b0, b1);
8487 		b0 = gen_msg_abbrev(A_CONNECT);
8488 		gen_or(b0, b1);
8489 		b0 = gen_msg_abbrev(A_RELEASE);
8490 		gen_or(b0, b1);
8491 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8492 		gen_or(b0, b1);
8493 		b0 = gen_atmtype_abbrev(A_METAC);
8494 		gen_and(b0, b1);
8495 		break;
8496 
8497 	default:
8498 		abort();
8499 	}
8500 	return b1;
8501 }
8502