xref: /dragonfly/contrib/libpcap/optimize.c (revision c090269b)
1 /*
2  * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that: (1) source code distributions
7  * retain the above copyright notice and this paragraph in its entirety, (2)
8  * distributions including binary code include the above copyright notice and
9  * this paragraph in its entirety in the documentation or other materials
10  * provided with the distribution, and (3) all advertising materials mentioning
11  * features or use of this software display the following acknowledgement:
12  * ``This product includes software developed by the University of California,
13  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14  * the University nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior
16  * written permission.
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20  *
21  *  Optimization module for BPF code intermediate representation.
22  */
23 
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27 
28 #include <pcap-types.h>
29 
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <string.h>
35 
36 #include <errno.h>
37 
38 #include "pcap-int.h"
39 
40 #include "gencode.h"
41 #include "optimize.h"
42 
43 #ifdef HAVE_OS_PROTO_H
44 #include "os-proto.h"
45 #endif
46 
47 #ifdef BDEBUG
48 /*
49  * The internal "debug printout" flag for the filter expression optimizer.
50  * The code to print that stuff is present only if BDEBUG is defined, so
51  * the flag, and the routine to set it, are defined only if BDEBUG is
52  * defined.
53  */
54 static int pcap_optimizer_debug;
55 
56 /*
57  * Routine to set that flag.
58  *
59  * This is intended for libpcap developers, not for general use.
60  * If you want to set these in a program, you'll have to declare this
61  * routine yourself, with the appropriate DLL import attribute on Windows;
62  * it's not declared in any header file, and won't be declared in any
63  * header file provided by libpcap.
64  */
65 PCAP_API void pcap_set_optimizer_debug(int value);
66 
67 PCAP_API_DEF void
68 pcap_set_optimizer_debug(int value)
69 {
70 	pcap_optimizer_debug = value;
71 }
72 
73 /*
74  * The internal "print dot graph" flag for the filter expression optimizer.
75  * The code to print that stuff is present only if BDEBUG is defined, so
76  * the flag, and the routine to set it, are defined only if BDEBUG is
77  * defined.
78  */
79 static int pcap_print_dot_graph;
80 
81 /*
82  * Routine to set that flag.
83  *
84  * This is intended for libpcap developers, not for general use.
85  * If you want to set these in a program, you'll have to declare this
86  * routine yourself, with the appropriate DLL import attribute on Windows;
87  * it's not declared in any header file, and won't be declared in any
88  * header file provided by libpcap.
89  */
90 PCAP_API void pcap_set_print_dot_graph(int value);
91 
92 PCAP_API_DEF void
93 pcap_set_print_dot_graph(int value)
94 {
95 	pcap_print_dot_graph = value;
96 }
97 
98 #endif
99 
100 /*
101  * lowest_set_bit().
102  *
103  * Takes a 32-bit integer as an argument.
104  *
105  * If handed a non-zero value, returns the index of the lowest set bit,
106  * counting upwards from zero.
107  *
108  * If handed zero, the results are platform- and compiler-dependent.
109  * Keep it out of the light, don't give it any water, don't feed it
110  * after midnight, and don't pass zero to it.
111  *
112  * This is the same as the count of trailing zeroes in the word.
113  */
114 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115   /*
116    * GCC 3.4 and later; we have __builtin_ctz().
117    */
118   #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
119 #elif defined(_MSC_VER)
120   /*
121    * Visual Studio; we support only 2005 and later, so use
122    * _BitScanForward().
123    */
124 #include <intrin.h>
125 
126 #ifndef __clang__
127 #pragma intrinsic(_BitScanForward)
128 #endif
129 
130 static __forceinline u_int
131 lowest_set_bit(int mask)
132 {
133 	unsigned long bit;
134 
135 	/*
136 	 * Don't sign-extend mask if long is longer than int.
137 	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 	 */
139 	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
140 		abort();	/* mask is zero */
141 	return (u_int)bit;
142 }
143 #elif defined(MSDOS) && defined(__DJGPP__)
144   /*
145    * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146    * we've already included.
147    */
148   #define lowest_set_bit(mask)	((u_int)(ffs((mask)) - 1))
149 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150   /*
151    * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152    * or some other platform (UN*X conforming to a sufficient recent version
153    * of the Single UNIX Specification).
154    */
155   #include <strings.h>
156   #define lowest_set_bit(mask)	(u_int)((ffs((mask)) - 1))
157 #else
158 /*
159  * None of the above.
160  * Use a perfect-hash-function-based function.
161  */
162 static u_int
163 lowest_set_bit(int mask)
164 {
165 	unsigned int v = (unsigned int)mask;
166 
167 	static const u_int MultiplyDeBruijnBitPosition[32] = {
168 		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169 		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
170 	};
171 
172 	/*
173 	 * We strip off all but the lowermost set bit (v & ~v),
174 	 * and perform a minimal perfect hash on it to look up the
175 	 * number of low-order zero bits in a table.
176 	 *
177 	 * See:
178 	 *
179 	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 	 *
181 	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
182 	 */
183 	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
184 }
185 #endif
186 
187 /*
188  * Represents a deleted instruction.
189  */
190 #define NOP -1
191 
192 /*
193  * Register numbers for use-def values.
194  * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195  * location.  A_ATOM is the accumulator and X_ATOM is the index
196  * register.
197  */
198 #define A_ATOM BPF_MEMWORDS
199 #define X_ATOM (BPF_MEMWORDS+1)
200 
201 /*
202  * This define is used to represent *both* the accumulator and
203  * x register in use-def computations.
204  * Currently, the use-def code assumes only one definition per instruction.
205  */
206 #define AX_ATOM N_ATOMS
207 
208 /*
209  * These data structures are used in a Cocke and Shwarz style
210  * value numbering scheme.  Since the flowgraph is acyclic,
211  * exit values can be propagated from a node's predecessors
212  * provided it is uniquely defined.
213  */
214 struct valnode {
215 	int code;
216 	bpf_u_int32 v0, v1;
217 	int val;		/* the value number */
218 	struct valnode *next;
219 };
220 
221 /* Integer constants mapped with the load immediate opcode. */
222 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
223 
224 struct vmapinfo {
225 	int is_const;
226 	bpf_u_int32 const_val;
227 };
228 
229 typedef struct {
230 	/*
231 	 * Place to longjmp to on an error.
232 	 */
233 	jmp_buf top_ctx;
234 
235 	/*
236 	 * The buffer into which to put error message.
237 	 */
238 	char *errbuf;
239 
240 	/*
241 	 * A flag to indicate that further optimization is needed.
242 	 * Iterative passes are continued until a given pass yields no
243 	 * code simplification or branch movement.
244 	 */
245 	int done;
246 
247 	/*
248 	 * XXX - detect loops that do nothing but repeated AND/OR pullups
249 	 * and edge moves.
250 	 * If 100 passes in a row do nothing but that, treat that as a
251 	 * sign that we're in a loop that just shuffles in a cycle in
252 	 * which each pass just shuffles the code and we eventually
253 	 * get back to the original configuration.
254 	 *
255 	 * XXX - we need a non-heuristic way of detecting, or preventing,
256 	 * such a cycle.
257 	 */
258 	int non_branch_movement_performed;
259 
260 	u_int n_blocks;		/* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
261 	struct block **blocks;
262 	u_int n_edges;		/* twice n_blocks, so guaranteed to be > 0 */
263 	struct edge **edges;
264 
265 	/*
266 	 * A bit vector set representation of the dominators.
267 	 * We round up the set size to the next power of two.
268 	 */
269 	u_int nodewords;	/* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
270 	u_int edgewords;	/* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
271 	struct block **levels;
272 	bpf_u_int32 *space;
273 
274 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
275 /*
276  * True if a is in uset {p}
277  */
278 #define SET_MEMBER(p, a) \
279 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
280 
281 /*
282  * Add 'a' to uset p.
283  */
284 #define SET_INSERT(p, a) \
285 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
286 
287 /*
288  * Delete 'a' from uset p.
289  */
290 #define SET_DELETE(p, a) \
291 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
292 
293 /*
294  * a := a intersect b
295  * n must be guaranteed to be > 0
296  */
297 #define SET_INTERSECT(a, b, n)\
298 {\
299 	register bpf_u_int32 *_x = a, *_y = b;\
300 	register u_int _n = n;\
301 	do *_x++ &= *_y++; while (--_n != 0);\
302 }
303 
304 /*
305  * a := a - b
306  * n must be guaranteed to be > 0
307  */
308 #define SET_SUBTRACT(a, b, n)\
309 {\
310 	register bpf_u_int32 *_x = a, *_y = b;\
311 	register u_int _n = n;\
312 	do *_x++ &=~ *_y++; while (--_n != 0);\
313 }
314 
315 /*
316  * a := a union b
317  * n must be guaranteed to be > 0
318  */
319 #define SET_UNION(a, b, n)\
320 {\
321 	register bpf_u_int32 *_x = a, *_y = b;\
322 	register u_int _n = n;\
323 	do *_x++ |= *_y++; while (--_n != 0);\
324 }
325 
326 	uset all_dom_sets;
327 	uset all_closure_sets;
328 	uset all_edge_sets;
329 
330 #define MODULUS 213
331 	struct valnode *hashtbl[MODULUS];
332 	bpf_u_int32 curval;
333 	bpf_u_int32 maxval;
334 
335 	struct vmapinfo *vmap;
336 	struct valnode *vnode_base;
337 	struct valnode *next_vnode;
338 } opt_state_t;
339 
340 typedef struct {
341 	/*
342 	 * Place to longjmp to on an error.
343 	 */
344 	jmp_buf top_ctx;
345 
346 	/*
347 	 * The buffer into which to put error message.
348 	 */
349 	char *errbuf;
350 
351 	/*
352 	 * Some pointers used to convert the basic block form of the code,
353 	 * into the array form that BPF requires.  'fstart' will point to
354 	 * the malloc'd array while 'ftail' is used during the recursive
355 	 * traversal.
356 	 */
357 	struct bpf_insn *fstart;
358 	struct bpf_insn *ftail;
359 } conv_state_t;
360 
361 static void opt_init(opt_state_t *, struct icode *);
362 static void opt_cleanup(opt_state_t *);
363 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
364     PCAP_PRINTFLIKE(2, 3);
365 
366 static void intern_blocks(opt_state_t *, struct icode *);
367 
368 static void find_inedges(opt_state_t *, struct block *);
369 #ifdef BDEBUG
370 static void opt_dump(opt_state_t *, struct icode *);
371 #endif
372 
373 #ifndef MAX
374 #define MAX(a,b) ((a)>(b)?(a):(b))
375 #endif
376 
377 static void
378 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
379 {
380 	int level;
381 
382 	if (isMarked(ic, b))
383 		return;
384 
385 	Mark(ic, b);
386 	b->link = 0;
387 
388 	if (JT(b)) {
389 		find_levels_r(opt_state, ic, JT(b));
390 		find_levels_r(opt_state, ic, JF(b));
391 		level = MAX(JT(b)->level, JF(b)->level) + 1;
392 	} else
393 		level = 0;
394 	b->level = level;
395 	b->link = opt_state->levels[level];
396 	opt_state->levels[level] = b;
397 }
398 
399 /*
400  * Level graph.  The levels go from 0 at the leaves to
401  * N_LEVELS at the root.  The opt_state->levels[] array points to the
402  * first node of the level list, whose elements are linked
403  * with the 'link' field of the struct block.
404  */
405 static void
406 find_levels(opt_state_t *opt_state, struct icode *ic)
407 {
408 	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
409 	unMarkAll(ic);
410 	find_levels_r(opt_state, ic, ic->root);
411 }
412 
413 /*
414  * Find dominator relationships.
415  * Assumes graph has been leveled.
416  */
417 static void
418 find_dom(opt_state_t *opt_state, struct block *root)
419 {
420 	u_int i;
421 	int level;
422 	struct block *b;
423 	bpf_u_int32 *x;
424 
425 	/*
426 	 * Initialize sets to contain all nodes.
427 	 */
428 	x = opt_state->all_dom_sets;
429 	/*
430 	 * In opt_init(), we've made sure the product doesn't overflow.
431 	 */
432 	i = opt_state->n_blocks * opt_state->nodewords;
433 	while (i != 0) {
434 		--i;
435 		*x++ = 0xFFFFFFFFU;
436 	}
437 	/* Root starts off empty. */
438 	for (i = opt_state->nodewords; i != 0;) {
439 		--i;
440 		root->dom[i] = 0;
441 	}
442 
443 	/* root->level is the highest level no found. */
444 	for (level = root->level; level >= 0; --level) {
445 		for (b = opt_state->levels[level]; b; b = b->link) {
446 			SET_INSERT(b->dom, b->id);
447 			if (JT(b) == 0)
448 				continue;
449 			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
450 			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
451 		}
452 	}
453 }
454 
455 static void
456 propedom(opt_state_t *opt_state, struct edge *ep)
457 {
458 	SET_INSERT(ep->edom, ep->id);
459 	if (ep->succ) {
460 		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
461 		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
462 	}
463 }
464 
465 /*
466  * Compute edge dominators.
467  * Assumes graph has been leveled and predecessors established.
468  */
469 static void
470 find_edom(opt_state_t *opt_state, struct block *root)
471 {
472 	u_int i;
473 	uset x;
474 	int level;
475 	struct block *b;
476 
477 	x = opt_state->all_edge_sets;
478 	/*
479 	 * In opt_init(), we've made sure the product doesn't overflow.
480 	 */
481 	for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
482 		--i;
483 		x[i] = 0xFFFFFFFFU;
484 	}
485 
486 	/* root->level is the highest level no found. */
487 	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
488 	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489 	for (level = root->level; level >= 0; --level) {
490 		for (b = opt_state->levels[level]; b != 0; b = b->link) {
491 			propedom(opt_state, &b->et);
492 			propedom(opt_state, &b->ef);
493 		}
494 	}
495 }
496 
497 /*
498  * Find the backwards transitive closure of the flow graph.  These sets
499  * are backwards in the sense that we find the set of nodes that reach
500  * a given node, not the set of nodes that can be reached by a node.
501  *
502  * Assumes graph has been leveled.
503  */
504 static void
505 find_closure(opt_state_t *opt_state, struct block *root)
506 {
507 	int level;
508 	struct block *b;
509 
510 	/*
511 	 * Initialize sets to contain no nodes.
512 	 */
513 	memset((char *)opt_state->all_closure_sets, 0,
514 	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
515 
516 	/* root->level is the highest level no found. */
517 	for (level = root->level; level >= 0; --level) {
518 		for (b = opt_state->levels[level]; b; b = b->link) {
519 			SET_INSERT(b->closure, b->id);
520 			if (JT(b) == 0)
521 				continue;
522 			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
523 			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
524 		}
525 	}
526 }
527 
528 /*
529  * Return the register number that is used by s.
530  *
531  * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
532  * are used, the scratch memory location's number if a scratch memory
533  * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
534  *
535  * The implementation should probably change to an array access.
536  */
537 static int
538 atomuse(struct stmt *s)
539 {
540 	register int c = s->code;
541 
542 	if (c == NOP)
543 		return -1;
544 
545 	switch (BPF_CLASS(c)) {
546 
547 	case BPF_RET:
548 		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
549 			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
550 
551 	case BPF_LD:
552 	case BPF_LDX:
553 		/*
554 		 * As there are fewer than 2^31 memory locations,
555 		 * s->k should be convertible to int without problems.
556 		 */
557 		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
558 			(BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
559 
560 	case BPF_ST:
561 		return A_ATOM;
562 
563 	case BPF_STX:
564 		return X_ATOM;
565 
566 	case BPF_JMP:
567 	case BPF_ALU:
568 		if (BPF_SRC(c) == BPF_X)
569 			return AX_ATOM;
570 		return A_ATOM;
571 
572 	case BPF_MISC:
573 		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
574 	}
575 	abort();
576 	/* NOTREACHED */
577 }
578 
579 /*
580  * Return the register number that is defined by 's'.  We assume that
581  * a single stmt cannot define more than one register.  If no register
582  * is defined, return -1.
583  *
584  * The implementation should probably change to an array access.
585  */
586 static int
587 atomdef(struct stmt *s)
588 {
589 	if (s->code == NOP)
590 		return -1;
591 
592 	switch (BPF_CLASS(s->code)) {
593 
594 	case BPF_LD:
595 	case BPF_ALU:
596 		return A_ATOM;
597 
598 	case BPF_LDX:
599 		return X_ATOM;
600 
601 	case BPF_ST:
602 	case BPF_STX:
603 		return s->k;
604 
605 	case BPF_MISC:
606 		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
607 	}
608 	return -1;
609 }
610 
611 /*
612  * Compute the sets of registers used, defined, and killed by 'b'.
613  *
614  * "Used" means that a statement in 'b' uses the register before any
615  * statement in 'b' defines it, i.e. it uses the value left in
616  * that register by a predecessor block of this block.
617  * "Defined" means that a statement in 'b' defines it.
618  * "Killed" means that a statement in 'b' defines it before any
619  * statement in 'b' uses it, i.e. it kills the value left in that
620  * register by a predecessor block of this block.
621  */
622 static void
623 compute_local_ud(struct block *b)
624 {
625 	struct slist *s;
626 	atomset def = 0, use = 0, killed = 0;
627 	int atom;
628 
629 	for (s = b->stmts; s; s = s->next) {
630 		if (s->s.code == NOP)
631 			continue;
632 		atom = atomuse(&s->s);
633 		if (atom >= 0) {
634 			if (atom == AX_ATOM) {
635 				if (!ATOMELEM(def, X_ATOM))
636 					use |= ATOMMASK(X_ATOM);
637 				if (!ATOMELEM(def, A_ATOM))
638 					use |= ATOMMASK(A_ATOM);
639 			}
640 			else if (atom < N_ATOMS) {
641 				if (!ATOMELEM(def, atom))
642 					use |= ATOMMASK(atom);
643 			}
644 			else
645 				abort();
646 		}
647 		atom = atomdef(&s->s);
648 		if (atom >= 0) {
649 			if (!ATOMELEM(use, atom))
650 				killed |= ATOMMASK(atom);
651 			def |= ATOMMASK(atom);
652 		}
653 	}
654 	if (BPF_CLASS(b->s.code) == BPF_JMP) {
655 		/*
656 		 * XXX - what about RET?
657 		 */
658 		atom = atomuse(&b->s);
659 		if (atom >= 0) {
660 			if (atom == AX_ATOM) {
661 				if (!ATOMELEM(def, X_ATOM))
662 					use |= ATOMMASK(X_ATOM);
663 				if (!ATOMELEM(def, A_ATOM))
664 					use |= ATOMMASK(A_ATOM);
665 			}
666 			else if (atom < N_ATOMS) {
667 				if (!ATOMELEM(def, atom))
668 					use |= ATOMMASK(atom);
669 			}
670 			else
671 				abort();
672 		}
673 	}
674 
675 	b->def = def;
676 	b->kill = killed;
677 	b->in_use = use;
678 }
679 
680 /*
681  * Assume graph is already leveled.
682  */
683 static void
684 find_ud(opt_state_t *opt_state, struct block *root)
685 {
686 	int i, maxlevel;
687 	struct block *p;
688 
689 	/*
690 	 * root->level is the highest level no found;
691 	 * count down from there.
692 	 */
693 	maxlevel = root->level;
694 	for (i = maxlevel; i >= 0; --i)
695 		for (p = opt_state->levels[i]; p; p = p->link) {
696 			compute_local_ud(p);
697 			p->out_use = 0;
698 		}
699 
700 	for (i = 1; i <= maxlevel; ++i) {
701 		for (p = opt_state->levels[i]; p; p = p->link) {
702 			p->out_use |= JT(p)->in_use | JF(p)->in_use;
703 			p->in_use |= p->out_use &~ p->kill;
704 		}
705 	}
706 }
707 static void
708 init_val(opt_state_t *opt_state)
709 {
710 	opt_state->curval = 0;
711 	opt_state->next_vnode = opt_state->vnode_base;
712 	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
713 	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
714 }
715 
716 /*
717  * Because we really don't have an IR, this stuff is a little messy.
718  *
719  * This routine looks in the table of existing value number for a value
720  * with generated from an operation with the specified opcode and
721  * the specified values.  If it finds it, it returns its value number,
722  * otherwise it makes a new entry in the table and returns the
723  * value number of that entry.
724  */
725 static bpf_u_int32
726 F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
727 {
728 	u_int hash;
729 	bpf_u_int32 val;
730 	struct valnode *p;
731 
732 	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
733 	hash %= MODULUS;
734 
735 	for (p = opt_state->hashtbl[hash]; p; p = p->next)
736 		if (p->code == code && p->v0 == v0 && p->v1 == v1)
737 			return p->val;
738 
739 	/*
740 	 * Not found.  Allocate a new value, and assign it a new
741 	 * value number.
742 	 *
743 	 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
744 	 * increment it before using it as the new value number, which
745 	 * means we never assign VAL_UNKNOWN.
746 	 *
747 	 * XXX - unless we overflow, but we probably won't have 2^32-1
748 	 * values; we treat 32 bits as effectively infinite.
749 	 */
750 	val = ++opt_state->curval;
751 	if (BPF_MODE(code) == BPF_IMM &&
752 	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
753 		opt_state->vmap[val].const_val = v0;
754 		opt_state->vmap[val].is_const = 1;
755 	}
756 	p = opt_state->next_vnode++;
757 	p->val = val;
758 	p->code = code;
759 	p->v0 = v0;
760 	p->v1 = v1;
761 	p->next = opt_state->hashtbl[hash];
762 	opt_state->hashtbl[hash] = p;
763 
764 	return val;
765 }
766 
767 static inline void
768 vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
769 {
770 	if (alter && newval != VAL_UNKNOWN && *valp == newval)
771 		s->code = NOP;
772 	else
773 		*valp = newval;
774 }
775 
776 /*
777  * Do constant-folding on binary operators.
778  * (Unary operators are handled elsewhere.)
779  */
780 static void
781 fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
782 {
783 	bpf_u_int32 a, b;
784 
785 	a = opt_state->vmap[v0].const_val;
786 	b = opt_state->vmap[v1].const_val;
787 
788 	switch (BPF_OP(s->code)) {
789 	case BPF_ADD:
790 		a += b;
791 		break;
792 
793 	case BPF_SUB:
794 		a -= b;
795 		break;
796 
797 	case BPF_MUL:
798 		a *= b;
799 		break;
800 
801 	case BPF_DIV:
802 		if (b == 0)
803 			opt_error(opt_state, "division by zero");
804 		a /= b;
805 		break;
806 
807 	case BPF_MOD:
808 		if (b == 0)
809 			opt_error(opt_state, "modulus by zero");
810 		a %= b;
811 		break;
812 
813 	case BPF_AND:
814 		a &= b;
815 		break;
816 
817 	case BPF_OR:
818 		a |= b;
819 		break;
820 
821 	case BPF_XOR:
822 		a ^= b;
823 		break;
824 
825 	case BPF_LSH:
826 		/*
827 		 * A left shift of more than the width of the type
828 		 * is undefined in C; we'll just treat it as shifting
829 		 * all the bits out.
830 		 *
831 		 * XXX - the BPF interpreter doesn't check for this,
832 		 * so its behavior is dependent on the behavior of
833 		 * the processor on which it's running.  There are
834 		 * processors on which it shifts all the bits out
835 		 * and processors on which it does no shift.
836 		 */
837 		if (b < 32)
838 			a <<= b;
839 		else
840 			a = 0;
841 		break;
842 
843 	case BPF_RSH:
844 		/*
845 		 * A right shift of more than the width of the type
846 		 * is undefined in C; we'll just treat it as shifting
847 		 * all the bits out.
848 		 *
849 		 * XXX - the BPF interpreter doesn't check for this,
850 		 * so its behavior is dependent on the behavior of
851 		 * the processor on which it's running.  There are
852 		 * processors on which it shifts all the bits out
853 		 * and processors on which it does no shift.
854 		 */
855 		if (b < 32)
856 			a >>= b;
857 		else
858 			a = 0;
859 		break;
860 
861 	default:
862 		abort();
863 	}
864 	s->k = a;
865 	s->code = BPF_LD|BPF_IMM;
866 	/*
867 	 * XXX - optimizer loop detection.
868 	 */
869 	opt_state->non_branch_movement_performed = 1;
870 	opt_state->done = 0;
871 }
872 
873 static inline struct slist *
874 this_op(struct slist *s)
875 {
876 	while (s != 0 && s->s.code == NOP)
877 		s = s->next;
878 	return s;
879 }
880 
881 static void
882 opt_not(struct block *b)
883 {
884 	struct block *tmp = JT(b);
885 
886 	JT(b) = JF(b);
887 	JF(b) = tmp;
888 }
889 
890 static void
891 opt_peep(opt_state_t *opt_state, struct block *b)
892 {
893 	struct slist *s;
894 	struct slist *next, *last;
895 	bpf_u_int32 val;
896 
897 	s = b->stmts;
898 	if (s == 0)
899 		return;
900 
901 	last = s;
902 	for (/*empty*/; /*empty*/; s = next) {
903 		/*
904 		 * Skip over nops.
905 		 */
906 		s = this_op(s);
907 		if (s == 0)
908 			break;	/* nothing left in the block */
909 
910 		/*
911 		 * Find the next real instruction after that one
912 		 * (skipping nops).
913 		 */
914 		next = this_op(s->next);
915 		if (next == 0)
916 			break;	/* no next instruction */
917 		last = next;
918 
919 		/*
920 		 * st  M[k]	-->	st  M[k]
921 		 * ldx M[k]		tax
922 		 */
923 		if (s->s.code == BPF_ST &&
924 		    next->s.code == (BPF_LDX|BPF_MEM) &&
925 		    s->s.k == next->s.k) {
926 			/*
927 			 * XXX - optimizer loop detection.
928 			 */
929 			opt_state->non_branch_movement_performed = 1;
930 			opt_state->done = 0;
931 			next->s.code = BPF_MISC|BPF_TAX;
932 		}
933 		/*
934 		 * ld  #k	-->	ldx  #k
935 		 * tax			txa
936 		 */
937 		if (s->s.code == (BPF_LD|BPF_IMM) &&
938 		    next->s.code == (BPF_MISC|BPF_TAX)) {
939 			s->s.code = BPF_LDX|BPF_IMM;
940 			next->s.code = BPF_MISC|BPF_TXA;
941 			/*
942 			 * XXX - optimizer loop detection.
943 			 */
944 			opt_state->non_branch_movement_performed = 1;
945 			opt_state->done = 0;
946 		}
947 		/*
948 		 * This is an ugly special case, but it happens
949 		 * when you say tcp[k] or udp[k] where k is a constant.
950 		 */
951 		if (s->s.code == (BPF_LD|BPF_IMM)) {
952 			struct slist *add, *tax, *ild;
953 
954 			/*
955 			 * Check that X isn't used on exit from this
956 			 * block (which the optimizer might cause).
957 			 * We know the code generator won't generate
958 			 * any local dependencies.
959 			 */
960 			if (ATOMELEM(b->out_use, X_ATOM))
961 				continue;
962 
963 			/*
964 			 * Check that the instruction following the ldi
965 			 * is an addx, or it's an ldxms with an addx
966 			 * following it (with 0 or more nops between the
967 			 * ldxms and addx).
968 			 */
969 			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
970 				add = next;
971 			else
972 				add = this_op(next->next);
973 			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
974 				continue;
975 
976 			/*
977 			 * Check that a tax follows that (with 0 or more
978 			 * nops between them).
979 			 */
980 			tax = this_op(add->next);
981 			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
982 				continue;
983 
984 			/*
985 			 * Check that an ild follows that (with 0 or more
986 			 * nops between them).
987 			 */
988 			ild = this_op(tax->next);
989 			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
990 			    BPF_MODE(ild->s.code) != BPF_IND)
991 				continue;
992 			/*
993 			 * We want to turn this sequence:
994 			 *
995 			 * (004) ldi     #0x2		{s}
996 			 * (005) ldxms   [14]		{next}  -- optional
997 			 * (006) addx			{add}
998 			 * (007) tax			{tax}
999 			 * (008) ild     [x+0]		{ild}
1000 			 *
1001 			 * into this sequence:
1002 			 *
1003 			 * (004) nop
1004 			 * (005) ldxms   [14]
1005 			 * (006) nop
1006 			 * (007) nop
1007 			 * (008) ild     [x+2]
1008 			 *
1009 			 * XXX We need to check that X is not
1010 			 * subsequently used, because we want to change
1011 			 * what'll be in it after this sequence.
1012 			 *
1013 			 * We know we can eliminate the accumulator
1014 			 * modifications earlier in the sequence since
1015 			 * it is defined by the last stmt of this sequence
1016 			 * (i.e., the last statement of the sequence loads
1017 			 * a value into the accumulator, so we can eliminate
1018 			 * earlier operations on the accumulator).
1019 			 */
1020 			ild->s.k += s->s.k;
1021 			s->s.code = NOP;
1022 			add->s.code = NOP;
1023 			tax->s.code = NOP;
1024 			/*
1025 			 * XXX - optimizer loop detection.
1026 			 */
1027 			opt_state->non_branch_movement_performed = 1;
1028 			opt_state->done = 0;
1029 		}
1030 	}
1031 	/*
1032 	 * If the comparison at the end of a block is an equality
1033 	 * comparison against a constant, and nobody uses the value
1034 	 * we leave in the A register at the end of a block, and
1035 	 * the operation preceding the comparison is an arithmetic
1036 	 * operation, we can sometime optimize it away.
1037 	 */
1038 	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1039 	    !ATOMELEM(b->out_use, A_ATOM)) {
1040 		/*
1041 		 * We can optimize away certain subtractions of the
1042 		 * X register.
1043 		 */
1044 		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1045 			val = b->val[X_ATOM];
1046 			if (opt_state->vmap[val].is_const) {
1047 				/*
1048 				 * If we have a subtract to do a comparison,
1049 				 * and the X register is a known constant,
1050 				 * we can merge this value into the
1051 				 * comparison:
1052 				 *
1053 				 * sub x  ->	nop
1054 				 * jeq #y	jeq #(x+y)
1055 				 */
1056 				b->s.k += opt_state->vmap[val].const_val;
1057 				last->s.code = NOP;
1058 				/*
1059 				 * XXX - optimizer loop detection.
1060 				 */
1061 				opt_state->non_branch_movement_performed = 1;
1062 				opt_state->done = 0;
1063 			} else if (b->s.k == 0) {
1064 				/*
1065 				 * If the X register isn't a constant,
1066 				 * and the comparison in the test is
1067 				 * against 0, we can compare with the
1068 				 * X register, instead:
1069 				 *
1070 				 * sub x  ->	nop
1071 				 * jeq #0	jeq x
1072 				 */
1073 				last->s.code = NOP;
1074 				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1075 				/*
1076 				 * XXX - optimizer loop detection.
1077 				 */
1078 				opt_state->non_branch_movement_performed = 1;
1079 				opt_state->done = 0;
1080 			}
1081 		}
1082 		/*
1083 		 * Likewise, a constant subtract can be simplified:
1084 		 *
1085 		 * sub #x ->	nop
1086 		 * jeq #y ->	jeq #(x+y)
1087 		 */
1088 		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1089 			last->s.code = NOP;
1090 			b->s.k += last->s.k;
1091 			/*
1092 			 * XXX - optimizer loop detection.
1093 			 */
1094 			opt_state->non_branch_movement_performed = 1;
1095 			opt_state->done = 0;
1096 		}
1097 		/*
1098 		 * And, similarly, a constant AND can be simplified
1099 		 * if we're testing against 0, i.e.:
1100 		 *
1101 		 * and #k	nop
1102 		 * jeq #0  ->	jset #k
1103 		 */
1104 		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1105 		    b->s.k == 0) {
1106 			b->s.k = last->s.k;
1107 			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1108 			last->s.code = NOP;
1109 			/*
1110 			 * XXX - optimizer loop detection.
1111 			 */
1112 			opt_state->non_branch_movement_performed = 1;
1113 			opt_state->done = 0;
1114 			opt_not(b);
1115 		}
1116 	}
1117 	/*
1118 	 * jset #0        ->   never
1119 	 * jset #ffffffff ->   always
1120 	 */
1121 	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1122 		if (b->s.k == 0)
1123 			JT(b) = JF(b);
1124 		if (b->s.k == 0xffffffffU)
1125 			JF(b) = JT(b);
1126 	}
1127 	/*
1128 	 * If we're comparing against the index register, and the index
1129 	 * register is a known constant, we can just compare against that
1130 	 * constant.
1131 	 */
1132 	val = b->val[X_ATOM];
1133 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1134 		bpf_u_int32 v = opt_state->vmap[val].const_val;
1135 		b->s.code &= ~BPF_X;
1136 		b->s.k = v;
1137 	}
1138 	/*
1139 	 * If the accumulator is a known constant, we can compute the
1140 	 * comparison result.
1141 	 */
1142 	val = b->val[A_ATOM];
1143 	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1144 		bpf_u_int32 v = opt_state->vmap[val].const_val;
1145 		switch (BPF_OP(b->s.code)) {
1146 
1147 		case BPF_JEQ:
1148 			v = v == b->s.k;
1149 			break;
1150 
1151 		case BPF_JGT:
1152 			v = v > b->s.k;
1153 			break;
1154 
1155 		case BPF_JGE:
1156 			v = v >= b->s.k;
1157 			break;
1158 
1159 		case BPF_JSET:
1160 			v &= b->s.k;
1161 			break;
1162 
1163 		default:
1164 			abort();
1165 		}
1166 		if (JF(b) != JT(b)) {
1167 			/*
1168 			 * XXX - optimizer loop detection.
1169 			 */
1170 			opt_state->non_branch_movement_performed = 1;
1171 			opt_state->done = 0;
1172 		}
1173 		if (v)
1174 			JF(b) = JT(b);
1175 		else
1176 			JT(b) = JF(b);
1177 	}
1178 }
1179 
1180 /*
1181  * Compute the symbolic value of expression of 's', and update
1182  * anything it defines in the value table 'val'.  If 'alter' is true,
1183  * do various optimizations.  This code would be cleaner if symbolic
1184  * evaluation and code transformations weren't folded together.
1185  */
1186 static void
1187 opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1188 {
1189 	int op;
1190 	bpf_u_int32 v;
1191 
1192 	switch (s->code) {
1193 
1194 	case BPF_LD|BPF_ABS|BPF_W:
1195 	case BPF_LD|BPF_ABS|BPF_H:
1196 	case BPF_LD|BPF_ABS|BPF_B:
1197 		v = F(opt_state, s->code, s->k, 0L);
1198 		vstore(s, &val[A_ATOM], v, alter);
1199 		break;
1200 
1201 	case BPF_LD|BPF_IND|BPF_W:
1202 	case BPF_LD|BPF_IND|BPF_H:
1203 	case BPF_LD|BPF_IND|BPF_B:
1204 		v = val[X_ATOM];
1205 		if (alter && opt_state->vmap[v].is_const) {
1206 			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1207 			s->k += opt_state->vmap[v].const_val;
1208 			v = F(opt_state, s->code, s->k, 0L);
1209 			/*
1210 			 * XXX - optimizer loop detection.
1211 			 */
1212 			opt_state->non_branch_movement_performed = 1;
1213 			opt_state->done = 0;
1214 		}
1215 		else
1216 			v = F(opt_state, s->code, s->k, v);
1217 		vstore(s, &val[A_ATOM], v, alter);
1218 		break;
1219 
1220 	case BPF_LD|BPF_LEN:
1221 		v = F(opt_state, s->code, 0L, 0L);
1222 		vstore(s, &val[A_ATOM], v, alter);
1223 		break;
1224 
1225 	case BPF_LD|BPF_IMM:
1226 		v = K(s->k);
1227 		vstore(s, &val[A_ATOM], v, alter);
1228 		break;
1229 
1230 	case BPF_LDX|BPF_IMM:
1231 		v = K(s->k);
1232 		vstore(s, &val[X_ATOM], v, alter);
1233 		break;
1234 
1235 	case BPF_LDX|BPF_MSH|BPF_B:
1236 		v = F(opt_state, s->code, s->k, 0L);
1237 		vstore(s, &val[X_ATOM], v, alter);
1238 		break;
1239 
1240 	case BPF_ALU|BPF_NEG:
1241 		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1242 			s->code = BPF_LD|BPF_IMM;
1243 			/*
1244 			 * Do this negation as unsigned arithmetic; that's
1245 			 * what modern BPF engines do, and it guarantees
1246 			 * that all possible values can be negated.  (Yeah,
1247 			 * negating 0x80000000, the minimum signed 32-bit
1248 			 * two's-complement value, results in 0x80000000,
1249 			 * so it's still negative, but we *should* be doing
1250 			 * all unsigned arithmetic here, to match what
1251 			 * modern BPF engines do.)
1252 			 *
1253 			 * Express it as 0U - (unsigned value) so that we
1254 			 * don't get compiler warnings about negating an
1255 			 * unsigned value and don't get UBSan warnings
1256 			 * about the result of negating 0x80000000 being
1257 			 * undefined.
1258 			 */
1259 			s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1260 			val[A_ATOM] = K(s->k);
1261 		}
1262 		else
1263 			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1264 		break;
1265 
1266 	case BPF_ALU|BPF_ADD|BPF_K:
1267 	case BPF_ALU|BPF_SUB|BPF_K:
1268 	case BPF_ALU|BPF_MUL|BPF_K:
1269 	case BPF_ALU|BPF_DIV|BPF_K:
1270 	case BPF_ALU|BPF_MOD|BPF_K:
1271 	case BPF_ALU|BPF_AND|BPF_K:
1272 	case BPF_ALU|BPF_OR|BPF_K:
1273 	case BPF_ALU|BPF_XOR|BPF_K:
1274 	case BPF_ALU|BPF_LSH|BPF_K:
1275 	case BPF_ALU|BPF_RSH|BPF_K:
1276 		op = BPF_OP(s->code);
1277 		if (alter) {
1278 			if (s->k == 0) {
1279 				/*
1280 				 * Optimize operations where the constant
1281 				 * is zero.
1282 				 *
1283 				 * Don't optimize away "sub #0"
1284 				 * as it may be needed later to
1285 				 * fixup the generated math code.
1286 				 *
1287 				 * Fail if we're dividing by zero or taking
1288 				 * a modulus by zero.
1289 				 */
1290 				if (op == BPF_ADD ||
1291 				    op == BPF_LSH || op == BPF_RSH ||
1292 				    op == BPF_OR || op == BPF_XOR) {
1293 					s->code = NOP;
1294 					break;
1295 				}
1296 				if (op == BPF_MUL || op == BPF_AND) {
1297 					s->code = BPF_LD|BPF_IMM;
1298 					val[A_ATOM] = K(s->k);
1299 					break;
1300 				}
1301 				if (op == BPF_DIV)
1302 					opt_error(opt_state,
1303 					    "division by zero");
1304 				if (op == BPF_MOD)
1305 					opt_error(opt_state,
1306 					    "modulus by zero");
1307 			}
1308 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1309 				fold_op(opt_state, s, val[A_ATOM], K(s->k));
1310 				val[A_ATOM] = K(s->k);
1311 				break;
1312 			}
1313 		}
1314 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1315 		break;
1316 
1317 	case BPF_ALU|BPF_ADD|BPF_X:
1318 	case BPF_ALU|BPF_SUB|BPF_X:
1319 	case BPF_ALU|BPF_MUL|BPF_X:
1320 	case BPF_ALU|BPF_DIV|BPF_X:
1321 	case BPF_ALU|BPF_MOD|BPF_X:
1322 	case BPF_ALU|BPF_AND|BPF_X:
1323 	case BPF_ALU|BPF_OR|BPF_X:
1324 	case BPF_ALU|BPF_XOR|BPF_X:
1325 	case BPF_ALU|BPF_LSH|BPF_X:
1326 	case BPF_ALU|BPF_RSH|BPF_X:
1327 		op = BPF_OP(s->code);
1328 		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1329 			if (opt_state->vmap[val[A_ATOM]].is_const) {
1330 				fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1331 				val[A_ATOM] = K(s->k);
1332 			}
1333 			else {
1334 				s->code = BPF_ALU|BPF_K|op;
1335 				s->k = opt_state->vmap[val[X_ATOM]].const_val;
1336 				if ((op == BPF_LSH || op == BPF_RSH) &&
1337 				    s->k > 31)
1338 					opt_error(opt_state,
1339 					    "shift by more than 31 bits");
1340 				/*
1341 				 * XXX - optimizer loop detection.
1342 				 */
1343 				opt_state->non_branch_movement_performed = 1;
1344 				opt_state->done = 0;
1345 				val[A_ATOM] =
1346 					F(opt_state, s->code, val[A_ATOM], K(s->k));
1347 			}
1348 			break;
1349 		}
1350 		/*
1351 		 * Check if we're doing something to an accumulator
1352 		 * that is 0, and simplify.  This may not seem like
1353 		 * much of a simplification but it could open up further
1354 		 * optimizations.
1355 		 * XXX We could also check for mul by 1, etc.
1356 		 */
1357 		if (alter && opt_state->vmap[val[A_ATOM]].is_const
1358 		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1359 			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1360 				s->code = BPF_MISC|BPF_TXA;
1361 				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1362 				break;
1363 			}
1364 			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1365 				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1366 				s->code = BPF_LD|BPF_IMM;
1367 				s->k = 0;
1368 				vstore(s, &val[A_ATOM], K(s->k), alter);
1369 				break;
1370 			}
1371 			else if (op == BPF_NEG) {
1372 				s->code = NOP;
1373 				break;
1374 			}
1375 		}
1376 		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1377 		break;
1378 
1379 	case BPF_MISC|BPF_TXA:
1380 		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1381 		break;
1382 
1383 	case BPF_LD|BPF_MEM:
1384 		v = val[s->k];
1385 		if (alter && opt_state->vmap[v].is_const) {
1386 			s->code = BPF_LD|BPF_IMM;
1387 			s->k = opt_state->vmap[v].const_val;
1388 			/*
1389 			 * XXX - optimizer loop detection.
1390 			 */
1391 			opt_state->non_branch_movement_performed = 1;
1392 			opt_state->done = 0;
1393 		}
1394 		vstore(s, &val[A_ATOM], v, alter);
1395 		break;
1396 
1397 	case BPF_MISC|BPF_TAX:
1398 		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1399 		break;
1400 
1401 	case BPF_LDX|BPF_MEM:
1402 		v = val[s->k];
1403 		if (alter && opt_state->vmap[v].is_const) {
1404 			s->code = BPF_LDX|BPF_IMM;
1405 			s->k = opt_state->vmap[v].const_val;
1406 			/*
1407 			 * XXX - optimizer loop detection.
1408 			 */
1409 			opt_state->non_branch_movement_performed = 1;
1410 			opt_state->done = 0;
1411 		}
1412 		vstore(s, &val[X_ATOM], v, alter);
1413 		break;
1414 
1415 	case BPF_ST:
1416 		vstore(s, &val[s->k], val[A_ATOM], alter);
1417 		break;
1418 
1419 	case BPF_STX:
1420 		vstore(s, &val[s->k], val[X_ATOM], alter);
1421 		break;
1422 	}
1423 }
1424 
1425 static void
1426 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1427 {
1428 	register int atom;
1429 
1430 	atom = atomuse(s);
1431 	if (atom >= 0) {
1432 		if (atom == AX_ATOM) {
1433 			last[X_ATOM] = 0;
1434 			last[A_ATOM] = 0;
1435 		}
1436 		else
1437 			last[atom] = 0;
1438 	}
1439 	atom = atomdef(s);
1440 	if (atom >= 0) {
1441 		if (last[atom]) {
1442 			/*
1443 			 * XXX - optimizer loop detection.
1444 			 */
1445 			opt_state->non_branch_movement_performed = 1;
1446 			opt_state->done = 0;
1447 			last[atom]->code = NOP;
1448 		}
1449 		last[atom] = s;
1450 	}
1451 }
1452 
1453 static void
1454 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1455 {
1456 	register struct slist *s;
1457 	register int atom;
1458 	struct stmt *last[N_ATOMS];
1459 
1460 	memset((char *)last, 0, sizeof last);
1461 
1462 	for (s = b->stmts; s != 0; s = s->next)
1463 		deadstmt(opt_state, &s->s, last);
1464 	deadstmt(opt_state, &b->s, last);
1465 
1466 	for (atom = 0; atom < N_ATOMS; ++atom)
1467 		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1468 			last[atom]->code = NOP;
1469 			/*
1470 			 * XXX - optimizer loop detection.
1471 			 */
1472 			opt_state->non_branch_movement_performed = 1;
1473 			opt_state->done = 0;
1474 		}
1475 }
1476 
1477 static void
1478 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1479 {
1480 	struct slist *s;
1481 	struct edge *p;
1482 	int i;
1483 	bpf_u_int32 aval, xval;
1484 
1485 #if 0
1486 	for (s = b->stmts; s && s->next; s = s->next)
1487 		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1488 			do_stmts = 0;
1489 			break;
1490 		}
1491 #endif
1492 
1493 	/*
1494 	 * Initialize the atom values.
1495 	 */
1496 	p = b->in_edges;
1497 	if (p == 0) {
1498 		/*
1499 		 * We have no predecessors, so everything is undefined
1500 		 * upon entry to this block.
1501 		 */
1502 		memset((char *)b->val, 0, sizeof(b->val));
1503 	} else {
1504 		/*
1505 		 * Inherit values from our predecessors.
1506 		 *
1507 		 * First, get the values from the predecessor along the
1508 		 * first edge leading to this node.
1509 		 */
1510 		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1511 		/*
1512 		 * Now look at all the other nodes leading to this node.
1513 		 * If, for the predecessor along that edge, a register
1514 		 * has a different value from the one we have (i.e.,
1515 		 * control paths are merging, and the merging paths
1516 		 * assign different values to that register), give the
1517 		 * register the undefined value of 0.
1518 		 */
1519 		while ((p = p->next) != NULL) {
1520 			for (i = 0; i < N_ATOMS; ++i)
1521 				if (b->val[i] != p->pred->val[i])
1522 					b->val[i] = 0;
1523 		}
1524 	}
1525 	aval = b->val[A_ATOM];
1526 	xval = b->val[X_ATOM];
1527 	for (s = b->stmts; s; s = s->next)
1528 		opt_stmt(opt_state, &s->s, b->val, do_stmts);
1529 
1530 	/*
1531 	 * This is a special case: if we don't use anything from this
1532 	 * block, and we load the accumulator or index register with a
1533 	 * value that is already there, or if this block is a return,
1534 	 * eliminate all the statements.
1535 	 *
1536 	 * XXX - what if it does a store?  Presumably that falls under
1537 	 * the heading of "if we don't use anything from this block",
1538 	 * i.e., if we use any memory location set to a different
1539 	 * value by this block, then we use something from this block.
1540 	 *
1541 	 * XXX - why does it matter whether we use anything from this
1542 	 * block?  If the accumulator or index register doesn't change
1543 	 * its value, isn't that OK even if we use that value?
1544 	 *
1545 	 * XXX - if we load the accumulator with a different value,
1546 	 * and the block ends with a conditional branch, we obviously
1547 	 * can't eliminate it, as the branch depends on that value.
1548 	 * For the index register, the conditional branch only depends
1549 	 * on the index register value if the test is against the index
1550 	 * register value rather than a constant; if nothing uses the
1551 	 * value we put into the index register, and we're not testing
1552 	 * against the index register's value, and there aren't any
1553 	 * other problems that would keep us from eliminating this
1554 	 * block, can we eliminate it?
1555 	 */
1556 	if (do_stmts &&
1557 	    ((b->out_use == 0 &&
1558 	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1559 	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1560 	     BPF_CLASS(b->s.code) == BPF_RET)) {
1561 		if (b->stmts != 0) {
1562 			b->stmts = 0;
1563 			/*
1564 			 * XXX - optimizer loop detection.
1565 			 */
1566 			opt_state->non_branch_movement_performed = 1;
1567 			opt_state->done = 0;
1568 		}
1569 	} else {
1570 		opt_peep(opt_state, b);
1571 		opt_deadstores(opt_state, b);
1572 	}
1573 	/*
1574 	 * Set up values for branch optimizer.
1575 	 */
1576 	if (BPF_SRC(b->s.code) == BPF_K)
1577 		b->oval = K(b->s.k);
1578 	else
1579 		b->oval = b->val[X_ATOM];
1580 	b->et.code = b->s.code;
1581 	b->ef.code = -b->s.code;
1582 }
1583 
1584 /*
1585  * Return true if any register that is used on exit from 'succ', has
1586  * an exit value that is different from the corresponding exit value
1587  * from 'b'.
1588  */
1589 static int
1590 use_conflict(struct block *b, struct block *succ)
1591 {
1592 	int atom;
1593 	atomset use = succ->out_use;
1594 
1595 	if (use == 0)
1596 		return 0;
1597 
1598 	for (atom = 0; atom < N_ATOMS; ++atom)
1599 		if (ATOMELEM(use, atom))
1600 			if (b->val[atom] != succ->val[atom])
1601 				return 1;
1602 	return 0;
1603 }
1604 
1605 /*
1606  * Given a block that is the successor of an edge, and an edge that
1607  * dominates that edge, return either a pointer to a child of that
1608  * block (a block to which that block jumps) if that block is a
1609  * candidate to replace the successor of the latter edge or NULL
1610  * if neither of the children of the first block are candidates.
1611  */
1612 static struct block *
1613 fold_edge(struct block *child, struct edge *ep)
1614 {
1615 	int sense;
1616 	bpf_u_int32 aval0, aval1, oval0, oval1;
1617 	int code = ep->code;
1618 
1619 	if (code < 0) {
1620 		/*
1621 		 * This edge is a "branch if false" edge.
1622 		 */
1623 		code = -code;
1624 		sense = 0;
1625 	} else {
1626 		/*
1627 		 * This edge is a "branch if true" edge.
1628 		 */
1629 		sense = 1;
1630 	}
1631 
1632 	/*
1633 	 * If the opcode for the branch at the end of the block we
1634 	 * were handed isn't the same as the opcode for the branch
1635 	 * to which the edge we were handed corresponds, the tests
1636 	 * for those branches aren't testing the same conditions,
1637 	 * so the blocks to which the first block branches aren't
1638 	 * candidates to replace the successor of the edge.
1639 	 */
1640 	if (child->s.code != code)
1641 		return 0;
1642 
1643 	aval0 = child->val[A_ATOM];
1644 	oval0 = child->oval;
1645 	aval1 = ep->pred->val[A_ATOM];
1646 	oval1 = ep->pred->oval;
1647 
1648 	/*
1649 	 * If the A register value on exit from the successor block
1650 	 * isn't the same as the A register value on exit from the
1651 	 * predecessor of the edge, the blocks to which the first
1652 	 * block branches aren't candidates to replace the successor
1653 	 * of the edge.
1654 	 */
1655 	if (aval0 != aval1)
1656 		return 0;
1657 
1658 	if (oval0 == oval1)
1659 		/*
1660 		 * The operands of the branch instructions are
1661 		 * identical, so the branches are testing the
1662 		 * same condition, and the result is true if a true
1663 		 * branch was taken to get here, otherwise false.
1664 		 */
1665 		return sense ? JT(child) : JF(child);
1666 
1667 	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1668 		/*
1669 		 * At this point, we only know the comparison if we
1670 		 * came down the true branch, and it was an equality
1671 		 * comparison with a constant.
1672 		 *
1673 		 * I.e., if we came down the true branch, and the branch
1674 		 * was an equality comparison with a constant, we know the
1675 		 * accumulator contains that constant.  If we came down
1676 		 * the false branch, or the comparison wasn't with a
1677 		 * constant, we don't know what was in the accumulator.
1678 		 *
1679 		 * We rely on the fact that distinct constants have distinct
1680 		 * value numbers.
1681 		 */
1682 		return JF(child);
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * If we can make this edge go directly to a child of the edge's current
1689  * successor, do so.
1690  */
1691 static void
1692 opt_j(opt_state_t *opt_state, struct edge *ep)
1693 {
1694 	register u_int i, k;
1695 	register struct block *target;
1696 
1697 	/*
1698 	 * Does this edge go to a block where, if the test
1699 	 * at the end of it succeeds, it goes to a block
1700 	 * that's a leaf node of the DAG, i.e. a return
1701 	 * statement?
1702 	 * If so, there's nothing to optimize.
1703 	 */
1704 	if (JT(ep->succ) == 0)
1705 		return;
1706 
1707 	/*
1708 	 * Does this edge go to a block that goes, in turn, to
1709 	 * the same block regardless of whether the test at the
1710 	 * end succeeds or fails?
1711 	 */
1712 	if (JT(ep->succ) == JF(ep->succ)) {
1713 		/*
1714 		 * Common branch targets can be eliminated, provided
1715 		 * there is no data dependency.
1716 		 *
1717 		 * Check whether any register used on exit from the
1718 		 * block to which the successor of this edge goes
1719 		 * has a value at that point that's different from
1720 		 * the value it has on exit from the predecessor of
1721 		 * this edge.  If not, the predecessor of this edge
1722 		 * can just go to the block to which the successor
1723 		 * of this edge goes, bypassing the successor of this
1724 		 * edge, as the successor of this edge isn't doing
1725 		 * any calculations whose results are different
1726 		 * from what the blocks before it did and isn't
1727 		 * doing any tests the results of which matter.
1728 		 */
1729 		if (!use_conflict(ep->pred, JT(ep->succ))) {
1730 			/*
1731 			 * No, there isn't.
1732 			 * Make this edge go to the block to
1733 			 * which the successor of that edge
1734 			 * goes.
1735 			 *
1736 			 * XXX - optimizer loop detection.
1737 			 */
1738 			opt_state->non_branch_movement_performed = 1;
1739 			opt_state->done = 0;
1740 			ep->succ = JT(ep->succ);
1741 		}
1742 	}
1743 	/*
1744 	 * For each edge dominator that matches the successor of this
1745 	 * edge, promote the edge successor to the its grandchild.
1746 	 *
1747 	 * XXX We violate the set abstraction here in favor a reasonably
1748 	 * efficient loop.
1749 	 */
1750  top:
1751 	for (i = 0; i < opt_state->edgewords; ++i) {
1752 		/* i'th word in the bitset of dominators */
1753 		register bpf_u_int32 x = ep->edom[i];
1754 
1755 		while (x != 0) {
1756 			/* Find the next dominator in that word and mark it as found */
1757 			k = lowest_set_bit(x);
1758 			x &=~ ((bpf_u_int32)1 << k);
1759 			k += i * BITS_PER_WORD;
1760 
1761 			target = fold_edge(ep->succ, opt_state->edges[k]);
1762 			/*
1763 			 * We have a candidate to replace the successor
1764 			 * of ep.
1765 			 *
1766 			 * Check that there is no data dependency between
1767 			 * nodes that will be violated if we move the edge;
1768 			 * i.e., if any register used on exit from the
1769 			 * candidate has a value at that point different
1770 			 * from the value it has when we exit the
1771 			 * predecessor of that edge, there's a data
1772 			 * dependency that will be violated.
1773 			 */
1774 			if (target != 0 && !use_conflict(ep->pred, target)) {
1775 				/*
1776 				 * It's safe to replace the successor of
1777 				 * ep; do so, and note that we've made
1778 				 * at least one change.
1779 				 *
1780 				 * XXX - this is one of the operations that
1781 				 * happens when the optimizer gets into
1782 				 * one of those infinite loops.
1783 				 */
1784 				opt_state->done = 0;
1785 				ep->succ = target;
1786 				if (JT(target) != 0)
1787 					/*
1788 					 * Start over unless we hit a leaf.
1789 					 */
1790 					goto top;
1791 				return;
1792 			}
1793 		}
1794 	}
1795 }
1796 
1797 /*
1798  * XXX - is this, and and_pullup(), what's described in section 6.1.2
1799  * "Predicate Assertion Propagation" in the BPF+ paper?
1800  *
1801  * Note that this looks at block dominators, not edge dominators.
1802  * Don't think so.
1803  *
1804  * "A or B" compiles into
1805  *
1806  *          A
1807  *       t / \ f
1808  *        /   B
1809  *       / t / \ f
1810  *      \   /
1811  *       \ /
1812  *        X
1813  *
1814  *
1815  */
1816 static void
1817 or_pullup(opt_state_t *opt_state, struct block *b)
1818 {
1819 	bpf_u_int32 val;
1820 	int at_top;
1821 	struct block *pull;
1822 	struct block **diffp, **samep;
1823 	struct edge *ep;
1824 
1825 	ep = b->in_edges;
1826 	if (ep == 0)
1827 		return;
1828 
1829 	/*
1830 	 * Make sure each predecessor loads the same value.
1831 	 * XXX why?
1832 	 */
1833 	val = ep->pred->val[A_ATOM];
1834 	for (ep = ep->next; ep != 0; ep = ep->next)
1835 		if (val != ep->pred->val[A_ATOM])
1836 			return;
1837 
1838 	/*
1839 	 * For the first edge in the list of edges coming into this block,
1840 	 * see whether the predecessor of that edge comes here via a true
1841 	 * branch or a false branch.
1842 	 */
1843 	if (JT(b->in_edges->pred) == b)
1844 		diffp = &JT(b->in_edges->pred);	/* jt */
1845 	else
1846 		diffp = &JF(b->in_edges->pred);	/* jf */
1847 
1848 	/*
1849 	 * diffp is a pointer to a pointer to the block.
1850 	 *
1851 	 * Go down the false chain looking as far as you can,
1852 	 * making sure that each jump-compare is doing the
1853 	 * same as the original block.
1854 	 *
1855 	 * If you reach the bottom before you reach a
1856 	 * different jump-compare, just exit.  There's nothing
1857 	 * to do here.  XXX - no, this version is checking for
1858 	 * the value leaving the block; that's from the BPF+
1859 	 * pullup routine.
1860 	 */
1861 	at_top = 1;
1862 	for (;;) {
1863 		/*
1864 		 * Done if that's not going anywhere XXX
1865 		 */
1866 		if (*diffp == 0)
1867 			return;
1868 
1869 		/*
1870 		 * Done if that predecessor blah blah blah isn't
1871 		 * going the same place we're going XXX
1872 		 *
1873 		 * Does the true edge of this block point to the same
1874 		 * location as the true edge of b?
1875 		 */
1876 		if (JT(*diffp) != JT(b))
1877 			return;
1878 
1879 		/*
1880 		 * Done if this node isn't a dominator of that
1881 		 * node blah blah blah XXX
1882 		 *
1883 		 * Does b dominate diffp?
1884 		 */
1885 		if (!SET_MEMBER((*diffp)->dom, b->id))
1886 			return;
1887 
1888 		/*
1889 		 * Break out of the loop if that node's value of A
1890 		 * isn't the value of A above XXX
1891 		 */
1892 		if ((*diffp)->val[A_ATOM] != val)
1893 			break;
1894 
1895 		/*
1896 		 * Get the JF for that node XXX
1897 		 * Go down the false path.
1898 		 */
1899 		diffp = &JF(*diffp);
1900 		at_top = 0;
1901 	}
1902 
1903 	/*
1904 	 * Now that we've found a different jump-compare in a chain
1905 	 * below b, search further down until we find another
1906 	 * jump-compare that looks at the original value.  This
1907 	 * jump-compare should get pulled up.  XXX again we're
1908 	 * comparing values not jump-compares.
1909 	 */
1910 	samep = &JF(*diffp);
1911 	for (;;) {
1912 		/*
1913 		 * Done if that's not going anywhere XXX
1914 		 */
1915 		if (*samep == 0)
1916 			return;
1917 
1918 		/*
1919 		 * Done if that predecessor blah blah blah isn't
1920 		 * going the same place we're going XXX
1921 		 */
1922 		if (JT(*samep) != JT(b))
1923 			return;
1924 
1925 		/*
1926 		 * Done if this node isn't a dominator of that
1927 		 * node blah blah blah XXX
1928 		 *
1929 		 * Does b dominate samep?
1930 		 */
1931 		if (!SET_MEMBER((*samep)->dom, b->id))
1932 			return;
1933 
1934 		/*
1935 		 * Break out of the loop if that node's value of A
1936 		 * is the value of A above XXX
1937 		 */
1938 		if ((*samep)->val[A_ATOM] == val)
1939 			break;
1940 
1941 		/* XXX Need to check that there are no data dependencies
1942 		   between dp0 and dp1.  Currently, the code generator
1943 		   will not produce such dependencies. */
1944 		samep = &JF(*samep);
1945 	}
1946 #ifdef notdef
1947 	/* XXX This doesn't cover everything. */
1948 	for (i = 0; i < N_ATOMS; ++i)
1949 		if ((*samep)->val[i] != pred->val[i])
1950 			return;
1951 #endif
1952 	/* Pull up the node. */
1953 	pull = *samep;
1954 	*samep = JF(pull);
1955 	JF(pull) = *diffp;
1956 
1957 	/*
1958 	 * At the top of the chain, each predecessor needs to point at the
1959 	 * pulled up node.  Inside the chain, there is only one predecessor
1960 	 * to worry about.
1961 	 */
1962 	if (at_top) {
1963 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1964 			if (JT(ep->pred) == b)
1965 				JT(ep->pred) = pull;
1966 			else
1967 				JF(ep->pred) = pull;
1968 		}
1969 	}
1970 	else
1971 		*diffp = pull;
1972 
1973 	/*
1974 	 * XXX - this is one of the operations that happens when the
1975 	 * optimizer gets into one of those infinite loops.
1976 	 */
1977 	opt_state->done = 0;
1978 }
1979 
1980 static void
1981 and_pullup(opt_state_t *opt_state, struct block *b)
1982 {
1983 	bpf_u_int32 val;
1984 	int at_top;
1985 	struct block *pull;
1986 	struct block **diffp, **samep;
1987 	struct edge *ep;
1988 
1989 	ep = b->in_edges;
1990 	if (ep == 0)
1991 		return;
1992 
1993 	/*
1994 	 * Make sure each predecessor loads the same value.
1995 	 */
1996 	val = ep->pred->val[A_ATOM];
1997 	for (ep = ep->next; ep != 0; ep = ep->next)
1998 		if (val != ep->pred->val[A_ATOM])
1999 			return;
2000 
2001 	if (JT(b->in_edges->pred) == b)
2002 		diffp = &JT(b->in_edges->pred);
2003 	else
2004 		diffp = &JF(b->in_edges->pred);
2005 
2006 	at_top = 1;
2007 	for (;;) {
2008 		if (*diffp == 0)
2009 			return;
2010 
2011 		if (JF(*diffp) != JF(b))
2012 			return;
2013 
2014 		if (!SET_MEMBER((*diffp)->dom, b->id))
2015 			return;
2016 
2017 		if ((*diffp)->val[A_ATOM] != val)
2018 			break;
2019 
2020 		diffp = &JT(*diffp);
2021 		at_top = 0;
2022 	}
2023 	samep = &JT(*diffp);
2024 	for (;;) {
2025 		if (*samep == 0)
2026 			return;
2027 
2028 		if (JF(*samep) != JF(b))
2029 			return;
2030 
2031 		if (!SET_MEMBER((*samep)->dom, b->id))
2032 			return;
2033 
2034 		if ((*samep)->val[A_ATOM] == val)
2035 			break;
2036 
2037 		/* XXX Need to check that there are no data dependencies
2038 		   between diffp and samep.  Currently, the code generator
2039 		   will not produce such dependencies. */
2040 		samep = &JT(*samep);
2041 	}
2042 #ifdef notdef
2043 	/* XXX This doesn't cover everything. */
2044 	for (i = 0; i < N_ATOMS; ++i)
2045 		if ((*samep)->val[i] != pred->val[i])
2046 			return;
2047 #endif
2048 	/* Pull up the node. */
2049 	pull = *samep;
2050 	*samep = JT(pull);
2051 	JT(pull) = *diffp;
2052 
2053 	/*
2054 	 * At the top of the chain, each predecessor needs to point at the
2055 	 * pulled up node.  Inside the chain, there is only one predecessor
2056 	 * to worry about.
2057 	 */
2058 	if (at_top) {
2059 		for (ep = b->in_edges; ep != 0; ep = ep->next) {
2060 			if (JT(ep->pred) == b)
2061 				JT(ep->pred) = pull;
2062 			else
2063 				JF(ep->pred) = pull;
2064 		}
2065 	}
2066 	else
2067 		*diffp = pull;
2068 
2069 	/*
2070 	 * XXX - this is one of the operations that happens when the
2071 	 * optimizer gets into one of those infinite loops.
2072 	 */
2073 	opt_state->done = 0;
2074 }
2075 
2076 static void
2077 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2078 {
2079 	int i, maxlevel;
2080 	struct block *p;
2081 
2082 	init_val(opt_state);
2083 	maxlevel = ic->root->level;
2084 
2085 	find_inedges(opt_state, ic->root);
2086 	for (i = maxlevel; i >= 0; --i)
2087 		for (p = opt_state->levels[i]; p; p = p->link)
2088 			opt_blk(opt_state, p, do_stmts);
2089 
2090 	if (do_stmts)
2091 		/*
2092 		 * No point trying to move branches; it can't possibly
2093 		 * make a difference at this point.
2094 		 *
2095 		 * XXX - this might be after we detect a loop where
2096 		 * we were just looping infinitely moving branches
2097 		 * in such a fashion that we went through two or more
2098 		 * versions of the machine code, eventually returning
2099 		 * to the first version.  (We're really not doing a
2100 		 * full loop detection, we're just testing for two
2101 		 * passes in a row where where we do nothing but
2102 		 * move branches.)
2103 		 */
2104 		return;
2105 
2106 	/*
2107 	 * Is this what the BPF+ paper describes in sections 6.1.1,
2108 	 * 6.1.2, and 6.1.3?
2109 	 */
2110 	for (i = 1; i <= maxlevel; ++i) {
2111 		for (p = opt_state->levels[i]; p; p = p->link) {
2112 			opt_j(opt_state, &p->et);
2113 			opt_j(opt_state, &p->ef);
2114 		}
2115 	}
2116 
2117 	find_inedges(opt_state, ic->root);
2118 	for (i = 1; i <= maxlevel; ++i) {
2119 		for (p = opt_state->levels[i]; p; p = p->link) {
2120 			or_pullup(opt_state, p);
2121 			and_pullup(opt_state, p);
2122 		}
2123 	}
2124 }
2125 
2126 static inline void
2127 link_inedge(struct edge *parent, struct block *child)
2128 {
2129 	parent->next = child->in_edges;
2130 	child->in_edges = parent;
2131 }
2132 
2133 static void
2134 find_inedges(opt_state_t *opt_state, struct block *root)
2135 {
2136 	u_int i;
2137 	int level;
2138 	struct block *b;
2139 
2140 	for (i = 0; i < opt_state->n_blocks; ++i)
2141 		opt_state->blocks[i]->in_edges = 0;
2142 
2143 	/*
2144 	 * Traverse the graph, adding each edge to the predecessor
2145 	 * list of its successors.  Skip the leaves (i.e. level 0).
2146 	 */
2147 	for (level = root->level; level > 0; --level) {
2148 		for (b = opt_state->levels[level]; b != 0; b = b->link) {
2149 			link_inedge(&b->et, JT(b));
2150 			link_inedge(&b->ef, JF(b));
2151 		}
2152 	}
2153 }
2154 
2155 static void
2156 opt_root(struct block **b)
2157 {
2158 	struct slist *tmp, *s;
2159 
2160 	s = (*b)->stmts;
2161 	(*b)->stmts = 0;
2162 	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2163 		*b = JT(*b);
2164 
2165 	tmp = (*b)->stmts;
2166 	if (tmp != 0)
2167 		sappend(s, tmp);
2168 	(*b)->stmts = s;
2169 
2170 	/*
2171 	 * If the root node is a return, then there is no
2172 	 * point executing any statements (since the bpf machine
2173 	 * has no side effects).
2174 	 */
2175 	if (BPF_CLASS((*b)->s.code) == BPF_RET)
2176 		(*b)->stmts = 0;
2177 }
2178 
2179 static void
2180 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2181 {
2182 
2183 #ifdef BDEBUG
2184 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2185 		printf("opt_loop(root, %d) begin\n", do_stmts);
2186 		opt_dump(opt_state, ic);
2187 	}
2188 #endif
2189 
2190 	/*
2191 	 * XXX - optimizer loop detection.
2192 	 */
2193 	int loop_count = 0;
2194 	for (;;) {
2195 		opt_state->done = 1;
2196 		/*
2197 		 * XXX - optimizer loop detection.
2198 		 */
2199 		opt_state->non_branch_movement_performed = 0;
2200 		find_levels(opt_state, ic);
2201 		find_dom(opt_state, ic->root);
2202 		find_closure(opt_state, ic->root);
2203 		find_ud(opt_state, ic->root);
2204 		find_edom(opt_state, ic->root);
2205 		opt_blks(opt_state, ic, do_stmts);
2206 #ifdef BDEBUG
2207 		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2208 			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2209 			opt_dump(opt_state, ic);
2210 		}
2211 #endif
2212 
2213 		/*
2214 		 * Was anything done in this optimizer pass?
2215 		 */
2216 		if (opt_state->done) {
2217 			/*
2218 			 * No, so we've reached a fixed point.
2219 			 * We're done.
2220 			 */
2221 			break;
2222 		}
2223 
2224 		/*
2225 		 * XXX - was anything done other than branch movement
2226 		 * in this pass?
2227 		 */
2228 		if (opt_state->non_branch_movement_performed) {
2229 			/*
2230 			 * Yes.  Clear any loop-detection counter;
2231 			 * we're making some form of progress (assuming
2232 			 * we can't get into a cycle doing *other*
2233 			 * optimizations...).
2234 			 */
2235 			loop_count = 0;
2236 		} else {
2237 			/*
2238 			 * No - increment the counter, and quit if
2239 			 * it's up to 100.
2240 			 */
2241 			loop_count++;
2242 			if (loop_count >= 100) {
2243 				/*
2244 				 * We've done nothing but branch movement
2245 				 * for 100 passes; we're probably
2246 				 * in a cycle and will never reach a
2247 				 * fixed point.
2248 				 *
2249 				 * XXX - yes, we really need a non-
2250 				 * heuristic way of detecting a cycle.
2251 				 */
2252 				opt_state->done = 1;
2253 				break;
2254 			}
2255 		}
2256 	}
2257 }
2258 
2259 /*
2260  * Optimize the filter code in its dag representation.
2261  * Return 0 on success, -1 on error.
2262  */
2263 int
2264 bpf_optimize(struct icode *ic, char *errbuf)
2265 {
2266 	opt_state_t opt_state;
2267 
2268 	memset(&opt_state, 0, sizeof(opt_state));
2269 	opt_state.errbuf = errbuf;
2270 	opt_state.non_branch_movement_performed = 0;
2271 	if (setjmp(opt_state.top_ctx)) {
2272 		opt_cleanup(&opt_state);
2273 		return -1;
2274 	}
2275 	opt_init(&opt_state, ic);
2276 	opt_loop(&opt_state, ic, 0);
2277 	opt_loop(&opt_state, ic, 1);
2278 	intern_blocks(&opt_state, ic);
2279 #ifdef BDEBUG
2280 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2281 		printf("after intern_blocks()\n");
2282 		opt_dump(&opt_state, ic);
2283 	}
2284 #endif
2285 	opt_root(&ic->root);
2286 #ifdef BDEBUG
2287 	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2288 		printf("after opt_root()\n");
2289 		opt_dump(&opt_state, ic);
2290 	}
2291 #endif
2292 	opt_cleanup(&opt_state);
2293 	return 0;
2294 }
2295 
2296 static void
2297 make_marks(struct icode *ic, struct block *p)
2298 {
2299 	if (!isMarked(ic, p)) {
2300 		Mark(ic, p);
2301 		if (BPF_CLASS(p->s.code) != BPF_RET) {
2302 			make_marks(ic, JT(p));
2303 			make_marks(ic, JF(p));
2304 		}
2305 	}
2306 }
2307 
2308 /*
2309  * Mark code array such that isMarked(ic->cur_mark, i) is true
2310  * only for nodes that are alive.
2311  */
2312 static void
2313 mark_code(struct icode *ic)
2314 {
2315 	ic->cur_mark += 1;
2316 	make_marks(ic, ic->root);
2317 }
2318 
2319 /*
2320  * True iff the two stmt lists load the same value from the packet into
2321  * the accumulator.
2322  */
2323 static int
2324 eq_slist(struct slist *x, struct slist *y)
2325 {
2326 	for (;;) {
2327 		while (x && x->s.code == NOP)
2328 			x = x->next;
2329 		while (y && y->s.code == NOP)
2330 			y = y->next;
2331 		if (x == 0)
2332 			return y == 0;
2333 		if (y == 0)
2334 			return x == 0;
2335 		if (x->s.code != y->s.code || x->s.k != y->s.k)
2336 			return 0;
2337 		x = x->next;
2338 		y = y->next;
2339 	}
2340 }
2341 
2342 static inline int
2343 eq_blk(struct block *b0, struct block *b1)
2344 {
2345 	if (b0->s.code == b1->s.code &&
2346 	    b0->s.k == b1->s.k &&
2347 	    b0->et.succ == b1->et.succ &&
2348 	    b0->ef.succ == b1->ef.succ)
2349 		return eq_slist(b0->stmts, b1->stmts);
2350 	return 0;
2351 }
2352 
2353 static void
2354 intern_blocks(opt_state_t *opt_state, struct icode *ic)
2355 {
2356 	struct block *p;
2357 	u_int i, j;
2358 	int done1; /* don't shadow global */
2359  top:
2360 	done1 = 1;
2361 	for (i = 0; i < opt_state->n_blocks; ++i)
2362 		opt_state->blocks[i]->link = 0;
2363 
2364 	mark_code(ic);
2365 
2366 	for (i = opt_state->n_blocks - 1; i != 0; ) {
2367 		--i;
2368 		if (!isMarked(ic, opt_state->blocks[i]))
2369 			continue;
2370 		for (j = i + 1; j < opt_state->n_blocks; ++j) {
2371 			if (!isMarked(ic, opt_state->blocks[j]))
2372 				continue;
2373 			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2374 				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2375 					opt_state->blocks[j]->link : opt_state->blocks[j];
2376 				break;
2377 			}
2378 		}
2379 	}
2380 	for (i = 0; i < opt_state->n_blocks; ++i) {
2381 		p = opt_state->blocks[i];
2382 		if (JT(p) == 0)
2383 			continue;
2384 		if (JT(p)->link) {
2385 			done1 = 0;
2386 			JT(p) = JT(p)->link;
2387 		}
2388 		if (JF(p)->link) {
2389 			done1 = 0;
2390 			JF(p) = JF(p)->link;
2391 		}
2392 	}
2393 	if (!done1)
2394 		goto top;
2395 }
2396 
2397 static void
2398 opt_cleanup(opt_state_t *opt_state)
2399 {
2400 	free((void *)opt_state->vnode_base);
2401 	free((void *)opt_state->vmap);
2402 	free((void *)opt_state->edges);
2403 	free((void *)opt_state->space);
2404 	free((void *)opt_state->levels);
2405 	free((void *)opt_state->blocks);
2406 }
2407 
2408 /*
2409  * For optimizer errors.
2410  */
2411 static void PCAP_NORETURN
2412 opt_error(opt_state_t *opt_state, const char *fmt, ...)
2413 {
2414 	va_list ap;
2415 
2416 	if (opt_state->errbuf != NULL) {
2417 		va_start(ap, fmt);
2418 		(void)vsnprintf(opt_state->errbuf,
2419 		    PCAP_ERRBUF_SIZE, fmt, ap);
2420 		va_end(ap);
2421 	}
2422 	longjmp(opt_state->top_ctx, 1);
2423 	/* NOTREACHED */
2424 }
2425 
2426 /*
2427  * Return the number of stmts in 's'.
2428  */
2429 static u_int
2430 slength(struct slist *s)
2431 {
2432 	u_int n = 0;
2433 
2434 	for (; s; s = s->next)
2435 		if (s->s.code != NOP)
2436 			++n;
2437 	return n;
2438 }
2439 
2440 /*
2441  * Return the number of nodes reachable by 'p'.
2442  * All nodes should be initially unmarked.
2443  */
2444 static int
2445 count_blocks(struct icode *ic, struct block *p)
2446 {
2447 	if (p == 0 || isMarked(ic, p))
2448 		return 0;
2449 	Mark(ic, p);
2450 	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2451 }
2452 
2453 /*
2454  * Do a depth first search on the flow graph, numbering the
2455  * the basic blocks, and entering them into the 'blocks' array.`
2456  */
2457 static void
2458 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2459 {
2460 	u_int n;
2461 
2462 	if (p == 0 || isMarked(ic, p))
2463 		return;
2464 
2465 	Mark(ic, p);
2466 	n = opt_state->n_blocks++;
2467 	if (opt_state->n_blocks == 0) {
2468 		/*
2469 		 * Overflow.
2470 		 */
2471 		opt_error(opt_state, "filter is too complex to optimize");
2472 	}
2473 	p->id = n;
2474 	opt_state->blocks[n] = p;
2475 
2476 	number_blks_r(opt_state, ic, JT(p));
2477 	number_blks_r(opt_state, ic, JF(p));
2478 }
2479 
2480 /*
2481  * Return the number of stmts in the flowgraph reachable by 'p'.
2482  * The nodes should be unmarked before calling.
2483  *
2484  * Note that "stmts" means "instructions", and that this includes
2485  *
2486  *	side-effect statements in 'p' (slength(p->stmts));
2487  *
2488  *	statements in the true branch from 'p' (count_stmts(JT(p)));
2489  *
2490  *	statements in the false branch from 'p' (count_stmts(JF(p)));
2491  *
2492  *	the conditional jump itself (1);
2493  *
2494  *	an extra long jump if the true branch requires it (p->longjt);
2495  *
2496  *	an extra long jump if the false branch requires it (p->longjf).
2497  */
2498 static u_int
2499 count_stmts(struct icode *ic, struct block *p)
2500 {
2501 	u_int n;
2502 
2503 	if (p == 0 || isMarked(ic, p))
2504 		return 0;
2505 	Mark(ic, p);
2506 	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2507 	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2508 }
2509 
2510 /*
2511  * Allocate memory.  All allocation is done before optimization
2512  * is begun.  A linear bound on the size of all data structures is computed
2513  * from the total number of blocks and/or statements.
2514  */
2515 static void
2516 opt_init(opt_state_t *opt_state, struct icode *ic)
2517 {
2518 	bpf_u_int32 *p;
2519 	int i, n, max_stmts;
2520 	u_int product;
2521 	size_t block_memsize, edge_memsize;
2522 
2523 	/*
2524 	 * First, count the blocks, so we can malloc an array to map
2525 	 * block number to block.  Then, put the blocks into the array.
2526 	 */
2527 	unMarkAll(ic);
2528 	n = count_blocks(ic, ic->root);
2529 	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2530 	if (opt_state->blocks == NULL)
2531 		opt_error(opt_state, "malloc");
2532 	unMarkAll(ic);
2533 	opt_state->n_blocks = 0;
2534 	number_blks_r(opt_state, ic, ic->root);
2535 
2536 	/*
2537 	 * This "should not happen".
2538 	 */
2539 	if (opt_state->n_blocks == 0)
2540 		opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2541 
2542 	opt_state->n_edges = 2 * opt_state->n_blocks;
2543 	if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2544 		/*
2545 		 * Overflow.
2546 		 */
2547 		opt_error(opt_state, "filter is too complex to optimize");
2548 	}
2549 	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2550 	if (opt_state->edges == NULL) {
2551 		opt_error(opt_state, "malloc");
2552 	}
2553 
2554 	/*
2555 	 * The number of levels is bounded by the number of nodes.
2556 	 */
2557 	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2558 	if (opt_state->levels == NULL) {
2559 		opt_error(opt_state, "malloc");
2560 	}
2561 
2562 	opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2563 	opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2564 
2565 	/*
2566 	 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2567 	 * in a u_int; we use it as a u_int number-of-iterations
2568 	 * value.
2569 	 */
2570 	product = opt_state->n_blocks * opt_state->nodewords;
2571 	if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2572 		/*
2573 		 * XXX - just punt and don't try to optimize?
2574 		 * In practice, this is unlikely to happen with
2575 		 * a normal filter.
2576 		 */
2577 		opt_error(opt_state, "filter is too complex to optimize");
2578 	}
2579 
2580 	/*
2581 	 * Make sure the total memory required for that doesn't
2582 	 * overflow.
2583 	 */
2584 	block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2585 	if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2586 		opt_error(opt_state, "filter is too complex to optimize");
2587 	}
2588 
2589 	/*
2590 	 * Make sure opt_state->n_edges * opt_state->edgewords fits
2591 	 * in a u_int; we use it as a u_int number-of-iterations
2592 	 * value.
2593 	 */
2594 	product = opt_state->n_edges * opt_state->edgewords;
2595 	if ((product / opt_state->n_edges) != opt_state->edgewords) {
2596 		opt_error(opt_state, "filter is too complex to optimize");
2597 	}
2598 
2599 	/*
2600 	 * Make sure the total memory required for that doesn't
2601 	 * overflow.
2602 	 */
2603 	edge_memsize = (size_t)product * sizeof(*opt_state->space);
2604 	if (edge_memsize / product != sizeof(*opt_state->space)) {
2605 		opt_error(opt_state, "filter is too complex to optimize");
2606 	}
2607 
2608 	/*
2609 	 * Make sure the total memory required for both of them dosn't
2610 	 * overflow.
2611 	 */
2612 	if (block_memsize > SIZE_MAX - edge_memsize) {
2613 		opt_error(opt_state, "filter is too complex to optimize");
2614 	}
2615 
2616 	/* XXX */
2617 	opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2618 	if (opt_state->space == NULL) {
2619 		opt_error(opt_state, "malloc");
2620 	}
2621 	p = opt_state->space;
2622 	opt_state->all_dom_sets = p;
2623 	for (i = 0; i < n; ++i) {
2624 		opt_state->blocks[i]->dom = p;
2625 		p += opt_state->nodewords;
2626 	}
2627 	opt_state->all_closure_sets = p;
2628 	for (i = 0; i < n; ++i) {
2629 		opt_state->blocks[i]->closure = p;
2630 		p += opt_state->nodewords;
2631 	}
2632 	opt_state->all_edge_sets = p;
2633 	for (i = 0; i < n; ++i) {
2634 		register struct block *b = opt_state->blocks[i];
2635 
2636 		b->et.edom = p;
2637 		p += opt_state->edgewords;
2638 		b->ef.edom = p;
2639 		p += opt_state->edgewords;
2640 		b->et.id = i;
2641 		opt_state->edges[i] = &b->et;
2642 		b->ef.id = opt_state->n_blocks + i;
2643 		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2644 		b->et.pred = b;
2645 		b->ef.pred = b;
2646 	}
2647 	max_stmts = 0;
2648 	for (i = 0; i < n; ++i)
2649 		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2650 	/*
2651 	 * We allocate at most 3 value numbers per statement,
2652 	 * so this is an upper bound on the number of valnodes
2653 	 * we'll need.
2654 	 */
2655 	opt_state->maxval = 3 * max_stmts;
2656 	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2657 	if (opt_state->vmap == NULL) {
2658 		opt_error(opt_state, "malloc");
2659 	}
2660 	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2661 	if (opt_state->vnode_base == NULL) {
2662 		opt_error(opt_state, "malloc");
2663 	}
2664 }
2665 
2666 /*
2667  * This is only used when supporting optimizer debugging.  It is
2668  * global state, so do *not* do more than one compile in parallel
2669  * and expect it to provide meaningful information.
2670  */
2671 #ifdef BDEBUG
2672 int bids[NBIDS];
2673 #endif
2674 
2675 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2676     PCAP_PRINTFLIKE(2, 3);
2677 
2678 /*
2679  * Returns true if successful.  Returns false if a branch has
2680  * an offset that is too large.  If so, we have marked that
2681  * branch so that on a subsequent iteration, it will be treated
2682  * properly.
2683  */
2684 static int
2685 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2686 {
2687 	struct bpf_insn *dst;
2688 	struct slist *src;
2689 	u_int slen;
2690 	u_int off;
2691 	struct slist **offset = NULL;
2692 
2693 	if (p == 0 || isMarked(ic, p))
2694 		return (1);
2695 	Mark(ic, p);
2696 
2697 	if (convert_code_r(conv_state, ic, JF(p)) == 0)
2698 		return (0);
2699 	if (convert_code_r(conv_state, ic, JT(p)) == 0)
2700 		return (0);
2701 
2702 	slen = slength(p->stmts);
2703 	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2704 		/* inflate length by any extra jumps */
2705 
2706 	p->offset = (int)(dst - conv_state->fstart);
2707 
2708 	/* generate offset[] for convenience  */
2709 	if (slen) {
2710 		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2711 		if (!offset) {
2712 			conv_error(conv_state, "not enough core");
2713 			/*NOTREACHED*/
2714 		}
2715 	}
2716 	src = p->stmts;
2717 	for (off = 0; off < slen && src; off++) {
2718 #if 0
2719 		printf("off=%d src=%x\n", off, src);
2720 #endif
2721 		offset[off] = src;
2722 		src = src->next;
2723 	}
2724 
2725 	off = 0;
2726 	for (src = p->stmts; src; src = src->next) {
2727 		if (src->s.code == NOP)
2728 			continue;
2729 		dst->code = (u_short)src->s.code;
2730 		dst->k = src->s.k;
2731 
2732 		/* fill block-local relative jump */
2733 		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2734 #if 0
2735 			if (src->s.jt || src->s.jf) {
2736 				free(offset);
2737 				conv_error(conv_state, "illegal jmp destination");
2738 				/*NOTREACHED*/
2739 			}
2740 #endif
2741 			goto filled;
2742 		}
2743 		if (off == slen - 2)	/*???*/
2744 			goto filled;
2745 
2746 	    {
2747 		u_int i;
2748 		int jt, jf;
2749 		const char ljerr[] = "%s for block-local relative jump: off=%d";
2750 
2751 #if 0
2752 		printf("code=%x off=%d %x %x\n", src->s.code,
2753 			off, src->s.jt, src->s.jf);
2754 #endif
2755 
2756 		if (!src->s.jt || !src->s.jf) {
2757 			free(offset);
2758 			conv_error(conv_state, ljerr, "no jmp destination", off);
2759 			/*NOTREACHED*/
2760 		}
2761 
2762 		jt = jf = 0;
2763 		for (i = 0; i < slen; i++) {
2764 			if (offset[i] == src->s.jt) {
2765 				if (jt) {
2766 					free(offset);
2767 					conv_error(conv_state, ljerr, "multiple matches", off);
2768 					/*NOTREACHED*/
2769 				}
2770 
2771 				if (i - off - 1 >= 256) {
2772 					free(offset);
2773 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2774 					/*NOTREACHED*/
2775 				}
2776 				dst->jt = (u_char)(i - off - 1);
2777 				jt++;
2778 			}
2779 			if (offset[i] == src->s.jf) {
2780 				if (jf) {
2781 					free(offset);
2782 					conv_error(conv_state, ljerr, "multiple matches", off);
2783 					/*NOTREACHED*/
2784 				}
2785 				if (i - off - 1 >= 256) {
2786 					free(offset);
2787 					conv_error(conv_state, ljerr, "out-of-range jump", off);
2788 					/*NOTREACHED*/
2789 				}
2790 				dst->jf = (u_char)(i - off - 1);
2791 				jf++;
2792 			}
2793 		}
2794 		if (!jt || !jf) {
2795 			free(offset);
2796 			conv_error(conv_state, ljerr, "no destination found", off);
2797 			/*NOTREACHED*/
2798 		}
2799 	    }
2800 filled:
2801 		++dst;
2802 		++off;
2803 	}
2804 	if (offset)
2805 		free(offset);
2806 
2807 #ifdef BDEBUG
2808 	if (dst - conv_state->fstart < NBIDS)
2809 		bids[dst - conv_state->fstart] = p->id + 1;
2810 #endif
2811 	dst->code = (u_short)p->s.code;
2812 	dst->k = p->s.k;
2813 	if (JT(p)) {
2814 		/* number of extra jumps inserted */
2815 		u_char extrajmps = 0;
2816 		off = JT(p)->offset - (p->offset + slen) - 1;
2817 		if (off >= 256) {
2818 		    /* offset too large for branch, must add a jump */
2819 		    if (p->longjt == 0) {
2820 			/* mark this instruction and retry */
2821 			p->longjt++;
2822 			return(0);
2823 		    }
2824 		    dst->jt = extrajmps;
2825 		    extrajmps++;
2826 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2827 		    dst[extrajmps].k = off - extrajmps;
2828 		}
2829 		else
2830 		    dst->jt = (u_char)off;
2831 		off = JF(p)->offset - (p->offset + slen) - 1;
2832 		if (off >= 256) {
2833 		    /* offset too large for branch, must add a jump */
2834 		    if (p->longjf == 0) {
2835 			/* mark this instruction and retry */
2836 			p->longjf++;
2837 			return(0);
2838 		    }
2839 		    /* branch if F to following jump */
2840 		    /* if two jumps are inserted, F goes to second one */
2841 		    dst->jf = extrajmps;
2842 		    extrajmps++;
2843 		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2844 		    dst[extrajmps].k = off - extrajmps;
2845 		}
2846 		else
2847 		    dst->jf = (u_char)off;
2848 	}
2849 	return (1);
2850 }
2851 
2852 
2853 /*
2854  * Convert flowgraph intermediate representation to the
2855  * BPF array representation.  Set *lenp to the number of instructions.
2856  *
2857  * This routine does *NOT* leak the memory pointed to by fp.  It *must
2858  * not* do free(fp) before returning fp; doing so would make no sense,
2859  * as the BPF array pointed to by the return value of icode_to_fcode()
2860  * must be valid - it's being returned for use in a bpf_program structure.
2861  *
2862  * If it appears that icode_to_fcode() is leaking, the problem is that
2863  * the program using pcap_compile() is failing to free the memory in
2864  * the BPF program when it's done - the leak is in the program, not in
2865  * the routine that happens to be allocating the memory.  (By analogy, if
2866  * a program calls fopen() without ever calling fclose() on the FILE *,
2867  * it will leak the FILE structure; the leak is not in fopen(), it's in
2868  * the program.)  Change the program to use pcap_freecode() when it's
2869  * done with the filter program.  See the pcap man page.
2870  */
2871 struct bpf_insn *
2872 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2873     char *errbuf)
2874 {
2875 	u_int n;
2876 	struct bpf_insn *fp;
2877 	conv_state_t conv_state;
2878 
2879 	conv_state.fstart = NULL;
2880 	conv_state.errbuf = errbuf;
2881 	if (setjmp(conv_state.top_ctx) != 0) {
2882 		free(conv_state.fstart);
2883 		return NULL;
2884 	}
2885 
2886 	/*
2887 	 * Loop doing convert_code_r() until no branches remain
2888 	 * with too-large offsets.
2889 	 */
2890 	for (;;) {
2891 	    unMarkAll(ic);
2892 	    n = *lenp = count_stmts(ic, root);
2893 
2894 	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2895 	    if (fp == NULL) {
2896 		(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2897 		    "malloc");
2898 		free(fp);
2899 		return NULL;
2900 	    }
2901 	    memset((char *)fp, 0, sizeof(*fp) * n);
2902 	    conv_state.fstart = fp;
2903 	    conv_state.ftail = fp + n;
2904 
2905 	    unMarkAll(ic);
2906 	    if (convert_code_r(&conv_state, ic, root))
2907 		break;
2908 	    free(fp);
2909 	}
2910 
2911 	return fp;
2912 }
2913 
2914 /*
2915  * For iconv_to_fconv() errors.
2916  */
2917 static void PCAP_NORETURN
2918 conv_error(conv_state_t *conv_state, const char *fmt, ...)
2919 {
2920 	va_list ap;
2921 
2922 	va_start(ap, fmt);
2923 	(void)vsnprintf(conv_state->errbuf,
2924 	    PCAP_ERRBUF_SIZE, fmt, ap);
2925 	va_end(ap);
2926 	longjmp(conv_state->top_ctx, 1);
2927 	/* NOTREACHED */
2928 }
2929 
2930 /*
2931  * Make a copy of a BPF program and put it in the "fcode" member of
2932  * a "pcap_t".
2933  *
2934  * If we fail to allocate memory for the copy, fill in the "errbuf"
2935  * member of the "pcap_t" with an error message, and return -1;
2936  * otherwise, return 0.
2937  */
2938 int
2939 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2940 {
2941 	size_t prog_size;
2942 
2943 	/*
2944 	 * Validate the program.
2945 	 */
2946 	if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2947 		snprintf(p->errbuf, sizeof(p->errbuf),
2948 			"BPF program is not valid");
2949 		return (-1);
2950 	}
2951 
2952 	/*
2953 	 * Free up any already installed program.
2954 	 */
2955 	pcap_freecode(&p->fcode);
2956 
2957 	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2958 	p->fcode.bf_len = fp->bf_len;
2959 	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2960 	if (p->fcode.bf_insns == NULL) {
2961 		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2962 		    errno, "malloc");
2963 		return (-1);
2964 	}
2965 	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2966 	return (0);
2967 }
2968 
2969 #ifdef BDEBUG
2970 static void
2971 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2972     FILE *out)
2973 {
2974 	int icount, noffset;
2975 	int i;
2976 
2977 	if (block == NULL || isMarked(ic, block))
2978 		return;
2979 	Mark(ic, block);
2980 
2981 	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2982 	noffset = min(block->offset + icount, (int)prog->bf_len);
2983 
2984 	fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2985 	for (i = block->offset; i < noffset; i++) {
2986 		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2987 	}
2988 	fprintf(out, "\" tooltip=\"");
2989 	for (i = 0; i < BPF_MEMWORDS; i++)
2990 		if (block->val[i] != VAL_UNKNOWN)
2991 			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2992 	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2993 	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2994 	fprintf(out, "\"");
2995 	if (JT(block) == NULL)
2996 		fprintf(out, ", peripheries=2");
2997 	fprintf(out, "];\n");
2998 
2999 	dot_dump_node(ic, JT(block), prog, out);
3000 	dot_dump_node(ic, JF(block), prog, out);
3001 }
3002 
3003 static void
3004 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3005 {
3006 	if (block == NULL || isMarked(ic, block))
3007 		return;
3008 	Mark(ic, block);
3009 
3010 	if (JT(block)) {
3011 		fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3012 				block->id, JT(block)->id);
3013 		fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3014 			   block->id, JF(block)->id);
3015 	}
3016 	dot_dump_edge(ic, JT(block), out);
3017 	dot_dump_edge(ic, JF(block), out);
3018 }
3019 
3020 /* Output the block CFG using graphviz/DOT language
3021  * In the CFG, block's code, value index for each registers at EXIT,
3022  * and the jump relationship is show.
3023  *
3024  * example DOT for BPF `ip src host 1.1.1.1' is:
3025     digraph BPF {
3026     	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
3027     	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
3028     	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3029     	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3030     	"block0":se -> "block1":n [label="T"];
3031     	"block0":sw -> "block3":n [label="F"];
3032     	"block1":se -> "block2":n [label="T"];
3033     	"block1":sw -> "block3":n [label="F"];
3034     }
3035  *
3036  *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3037  *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3038  */
3039 static int
3040 dot_dump(struct icode *ic, char *errbuf)
3041 {
3042 	struct bpf_program f;
3043 	FILE *out = stdout;
3044 
3045 	memset(bids, 0, sizeof bids);
3046 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3047 	if (f.bf_insns == NULL)
3048 		return -1;
3049 
3050 	fprintf(out, "digraph BPF {\n");
3051 	unMarkAll(ic);
3052 	dot_dump_node(ic, ic->root, &f, out);
3053 	unMarkAll(ic);
3054 	dot_dump_edge(ic, ic->root, out);
3055 	fprintf(out, "}\n");
3056 
3057 	free((char *)f.bf_insns);
3058 	return 0;
3059 }
3060 
3061 static int
3062 plain_dump(struct icode *ic, char *errbuf)
3063 {
3064 	struct bpf_program f;
3065 
3066 	memset(bids, 0, sizeof bids);
3067 	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3068 	if (f.bf_insns == NULL)
3069 		return -1;
3070 	bpf_dump(&f, 1);
3071 	putchar('\n');
3072 	free((char *)f.bf_insns);
3073 	return 0;
3074 }
3075 
3076 static void
3077 opt_dump(opt_state_t *opt_state, struct icode *ic)
3078 {
3079 	int status;
3080 	char errbuf[PCAP_ERRBUF_SIZE];
3081 
3082 	/*
3083 	 * If the CFG, in DOT format, is requested, output it rather than
3084 	 * the code that would be generated from that graph.
3085 	 */
3086 	if (pcap_print_dot_graph)
3087 		status = dot_dump(ic, errbuf);
3088 	else
3089 		status = plain_dump(ic, errbuf);
3090 	if (status == -1)
3091 		opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3092 }
3093 #endif
3094