xref: /dragonfly/contrib/openbsd_libm/src/e_jnf.c (revision ec21d9fb)
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "math.h"
17 #include "math_private.h"
18 
19 static const float
20 two   =  2.0000000000e+00, /* 0x40000000 */
21 one   =  1.0000000000e+00; /* 0x3F800000 */
22 
23 static const float zero  =  0.0000000000e+00;
24 
25 float
26 jnf(int n, float x)
27 {
28 	int32_t i,hx,ix, sgn;
29 	float a, b, temp, di;
30 	float z, w;
31 
32     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
33      * Thus, J(-n,x) = J(n,-x)
34      */
35 	GET_FLOAT_WORD(hx,x);
36 	ix = 0x7fffffff&hx;
37     /* if J(n,NaN) is NaN */
38 	if(ix>0x7f800000) return x+x;
39 	if(n<0){
40 		n = -n;
41 		x = -x;
42 		hx ^= 0x80000000;
43 	}
44 	if(n==0) return(j0f(x));
45 	if(n==1) return(j1f(x));
46 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
47 	x = fabsf(x);
48 	if(ix==0||ix>=0x7f800000) 	/* if x is 0 or inf */
49 	    b = zero;
50 	else if((float)n<=x) {
51 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
52 	    a = j0f(x);
53 	    b = j1f(x);
54 	    for(i=1;i<n;i++){
55 		temp = b;
56 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
57 		a = temp;
58 	    }
59 	} else {
60 	    if(ix<0x30800000) {	/* x < 2**-29 */
61     /* x is tiny, return the first Taylor expansion of J(n,x)
62      * J(n,x) = 1/n!*(x/2)^n  - ...
63      */
64 		if(n>33)	/* underflow */
65 		    b = zero;
66 		else {
67 		    temp = x*(float)0.5; b = temp;
68 		    for (a=one,i=2;i<=n;i++) {
69 			a *= (float)i;		/* a = n! */
70 			b *= temp;		/* b = (x/2)^n */
71 		    }
72 		    b = b/a;
73 		}
74 	    } else {
75 		/* use backward recurrence */
76 		/* 			x      x^2      x^2
77 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
78 		 *			2n  - 2(n+1) - 2(n+2)
79 		 *
80 		 * 			1      1        1
81 		 *  (for large x)   =  ----  ------   ------   .....
82 		 *			2n   2(n+1)   2(n+2)
83 		 *			-- - ------ - ------ -
84 		 *			 x     x         x
85 		 *
86 		 * Let w = 2n/x and h=2/x, then the above quotient
87 		 * is equal to the continued fraction:
88 		 *		    1
89 		 *	= -----------------------
90 		 *		       1
91 		 *	   w - -----------------
92 		 *			  1
93 		 * 	        w+h - ---------
94 		 *		       w+2h - ...
95 		 *
96 		 * To determine how many terms needed, let
97 		 * Q(0) = w, Q(1) = w(w+h) - 1,
98 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
99 		 * When Q(k) > 1e4	good for single
100 		 * When Q(k) > 1e9	good for double
101 		 * When Q(k) > 1e17	good for quadruple
102 		 */
103 	    /* determine k */
104 		float t,v;
105 		float q0,q1,h,tmp; int32_t k,m;
106 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
107 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
108 		while(q1<(float)1.0e9) {
109 			k += 1; z += h;
110 			tmp = z*q1 - q0;
111 			q0 = q1;
112 			q1 = tmp;
113 		}
114 		m = n+n;
115 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
116 		a = t;
117 		b = one;
118 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
119 		 *  Hence, if n*(log(2n/x)) > ...
120 		 *  single 8.8722839355e+01
121 		 *  double 7.09782712893383973096e+02
122 		 *  long double 1.1356523406294143949491931077970765006170e+04
123 		 *  then recurrent value may overflow and the result is
124 		 *  likely underflow to zero
125 		 */
126 		tmp = n;
127 		v = two/x;
128 		tmp = tmp*logf(fabsf(v*tmp));
129 		if(tmp<(float)8.8721679688e+01) {
130 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
131 		        temp = b;
132 			b *= di;
133 			b  = b/x - a;
134 		        a = temp;
135 			di -= two;
136 	     	    }
137 		} else {
138 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
139 		        temp = b;
140 			b *= di;
141 			b  = b/x - a;
142 		        a = temp;
143 			di -= two;
144 		    /* scale b to avoid spurious overflow */
145 			if(b>(float)1e10) {
146 			    a /= b;
147 			    t /= b;
148 			    b  = one;
149 			}
150 	     	    }
151 		}
152 	    	b = (t*j0f(x)/b);
153 	    }
154 	}
155 	if(sgn==1) return -b; else return b;
156 }
157 
158 float
159 ynf(int n, float x)
160 {
161 	int32_t i,hx,ix,ib;
162 	int32_t sign;
163 	float a, b, temp;
164 
165 	GET_FLOAT_WORD(hx,x);
166 	ix = 0x7fffffff&hx;
167     /* if Y(n,NaN) is NaN */
168 	if(ix>0x7f800000) return x+x;
169 	if(ix==0) return -one/zero;
170 	if(hx<0) return zero/zero;
171 	sign = 1;
172 	if(n<0){
173 		n = -n;
174 		sign = 1 - ((n&1)<<1);
175 	}
176 	if(n==0) return(y0f(x));
177 	if(n==1) return(sign*y1f(x));
178 	if(ix==0x7f800000) return zero;
179 
180 	a = y0f(x);
181 	b = y1f(x);
182 	/* quit if b is -inf */
183 	GET_FLOAT_WORD(ib,b);
184 	for(i=1;i<n&&(u_int32_t)ib!=0xff800000;i++){
185 	    temp = b;
186 	    b = ((float)(i+i)/x)*b - a;
187 	    GET_FLOAT_WORD(ib,b);
188 	    a = temp;
189 	}
190 	if(sign>0) return b; else return -b;
191 }
192