xref: /dragonfly/contrib/openbsd_libm/src/s_fma.c (revision 31524921)
1 /*	$OpenBSD: s_fma.c,v 1.6 2013/11/12 19:00:38 martynas Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <fenv.h>
30 #include <float.h>
31 #include <math.h>
32 
33 /*
34  * Fused multiply-add: Compute x * y + z with a single rounding error.
35  *
36  * We use scaling to avoid overflow/underflow, along with the
37  * canonical precision-doubling technique adapted from:
38  *
39  *	Dekker, T.  A Floating-Point Technique for Extending the
40  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
41  *
42  * This algorithm is sensitive to the rounding precision.  FPUs such
43  * as the i387 must be set in double-precision mode if variables are
44  * to be stored in FP registers in order to avoid incorrect results.
45  * This is the default on FreeBSD, but not on many other systems.
46  *
47  * Hardware instructions should be used on architectures that support it,
48  * since this implementation will likely be several times slower.
49  */
50 #if LDBL_MANT_DIG != 113
51 double
52 fma(double x, double y, double z)
53 {
54 	static const double split = 0x1p27 + 1.0;
55 	double xs, ys, zs;
56 	double c, cc, hx, hy, p, q, tx, ty;
57 	double r, rr, s;
58 	int oround;
59 	int ex, ey, ez;
60 	int spread;
61 
62 	/*
63 	 * Handle special cases. The order of operations and the particular
64 	 * return values here are crucial in handling special cases involving
65 	 * infinities, NaNs, overflows, and signed zeroes correctly.
66 	 */
67 	if (x == 0.0 || y == 0.0)
68 		return (x * y + z);
69 	if (z == 0.0)
70 		return (x * y);
71 	if (!isfinite(x) || !isfinite(y))
72 		return (x * y + z);
73 	if (!isfinite(z))
74 		return (z);
75 
76 	xs = frexp(x, &ex);
77 	ys = frexp(y, &ey);
78 	zs = frexp(z, &ez);
79 	oround = fegetround();
80 	spread = ex + ey - ez;
81 
82 	/*
83 	 * If x * y and z are many orders of magnitude apart, the scaling
84 	 * will overflow, so we handle these cases specially.  Rounding
85 	 * modes other than FE_TONEAREST are painful.
86 	 */
87 	if (spread > DBL_MANT_DIG * 2) {
88 		fenv_t env;
89 		feraiseexcept(FE_INEXACT);
90 		switch(oround) {
91 		case FE_TONEAREST:
92 			return (x * y);
93 		case FE_TOWARDZERO:
94 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
95 				return (x * y);
96 			feholdexcept(&env);
97 			r = x * y;
98 			if (!fetestexcept(FE_INEXACT))
99 				r = nextafter(r, 0);
100 			feupdateenv(&env);
101 			return (r);
102 		case FE_DOWNWARD:
103 			if (z > 0.0)
104 				return (x * y);
105 			feholdexcept(&env);
106 			r = x * y;
107 			if (!fetestexcept(FE_INEXACT))
108 				r = nextafter(r, -INFINITY);
109 			feupdateenv(&env);
110 			return (r);
111 		default:	/* FE_UPWARD */
112 			if (z < 0.0)
113 				return (x * y);
114 			feholdexcept(&env);
115 			r = x * y;
116 			if (!fetestexcept(FE_INEXACT))
117 				r = nextafter(r, INFINITY);
118 			feupdateenv(&env);
119 			return (r);
120 		}
121 	}
122 	if (spread < -DBL_MANT_DIG) {
123 		feraiseexcept(FE_INEXACT);
124 		if (!isnormal(z))
125 			feraiseexcept(FE_UNDERFLOW);
126 		switch (oround) {
127 		case FE_TONEAREST:
128 			return (z);
129 		case FE_TOWARDZERO:
130 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
131 				return (z);
132 			else
133 				return (nextafter(z, 0));
134 		case FE_DOWNWARD:
135 			if ((x > 0.0) ^ (y < 0.0))
136 				return (z);
137 			else
138 				return (nextafter(z, -INFINITY));
139 		default:	/* FE_UPWARD */
140 			if ((x > 0.0) ^ (y < 0.0))
141 				return (nextafter(z, INFINITY));
142 			else
143 				return (z);
144 		}
145 	}
146 
147 	/*
148 	 * Use Dekker's algorithm to perform the multiplication and
149 	 * subsequent addition in twice the machine precision.
150 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
151 	 */
152 	fesetround(FE_TONEAREST);
153 
154 	p = xs * split;
155 	hx = xs - p;
156 	hx += p;
157 	tx = xs - hx;
158 
159 	p = ys * split;
160 	hy = ys - p;
161 	hy += p;
162 	ty = ys - hy;
163 
164 	p = hx * hy;
165 	q = hx * ty + tx * hy;
166 	c = p + q;
167 	cc = p - c + q + tx * ty;
168 
169 	zs = ldexp(zs, -spread);
170 	r = c + zs;
171 	s = r - c;
172 	rr = (c - (r - s)) + (zs - s) + cc;
173 
174 	spread = ex + ey;
175 	if (spread + ilogb(r) > -1023) {
176 		fesetround(oround);
177 		r = r + rr;
178 	} else {
179 		/*
180 		 * The result is subnormal, so we round before scaling to
181 		 * avoid double rounding.
182 		 */
183 		p = ldexp(copysign(0x1p-1022, r), -spread);
184 		c = r + p;
185 		s = c - r;
186 		cc = (r - (c - s)) + (p - s) + rr;
187 		fesetround(oround);
188 		r = (c + cc) - p;
189 	}
190 	return (ldexp(r, spread));
191 }
192 #else	/* LDBL_MANT_DIG == 113 */
193 /*
194  * 113 bits of precision is more than twice the precision of a double,
195  * so it is enough to represent the intermediate product exactly.
196  */
197 double
198 fma(double x, double y, double z)
199 {
200 	return ((long double)x * y + z);
201 }
202 #endif	/* LDBL_MANT_DIG != 113 */
203 
204 #if	LDBL_MANT_DIG == DBL_MANT_DIG
205 __strong_alias(fmal, fma);
206 #endif	/* LDBL_MANT_DIG == DBL_MANT_DIG */
207