xref: /dragonfly/contrib/openbsd_libm/src/s_fmal.c (revision 0720b42f)
1 /*	$OpenBSD: s_fmal.c,v 1.3 2013/11/12 19:00:38 martynas Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <fenv.h>
30 #include <float.h>
31 #include <math.h>
32 
33 /*
34  * Fused multiply-add: Compute x * y + z with a single rounding error.
35  *
36  * We use scaling to avoid overflow/underflow, along with the
37  * canonical precision-doubling technique adapted from:
38  *
39  *	Dekker, T.  A Floating-Point Technique for Extending the
40  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
41  */
42 long double
43 fmal(long double x, long double y, long double z)
44 {
45 #if LDBL_MANT_DIG == 64
46 	static const long double split = 0x1p32L + 1.0;
47 #elif LDBL_MANT_DIG == 113
48 	static const long double split = 0x1p57L + 1.0;
49 #endif
50 	long double xs, ys, zs;
51 	long double c, cc, hx, hy, p, q, tx, ty;
52 	long double r, rr, s;
53 	int oround;
54 	int ex, ey, ez;
55 	int spread;
56 
57 	/*
58 	 * Handle special cases. The order of operations and the particular
59 	 * return values here are crucial in handling special cases involving
60 	 * infinities, NaNs, overflows, and signed zeroes correctly.
61 	 */
62 	if (x == 0.0 || y == 0.0)
63 		return (x * y + z);
64 	if (z == 0.0)
65 		return (x * y);
66 	if (!isfinite(x) || !isfinite(y))
67 		return (x * y + z);
68 	if (!isfinite(z))
69 		return (z);
70 
71 	xs = frexpl(x, &ex);
72 	ys = frexpl(y, &ey);
73 	zs = frexpl(z, &ez);
74 	oround = fegetround();
75 	spread = ex + ey - ez;
76 
77 	/*
78 	 * If x * y and z are many orders of magnitude apart, the scaling
79 	 * will overflow, so we handle these cases specially.  Rounding
80 	 * modes other than FE_TONEAREST are painful.
81 	 */
82 	if (spread > LDBL_MANT_DIG * 2) {
83 		fenv_t env;
84 		feraiseexcept(FE_INEXACT);
85 		switch(oround) {
86 		case FE_TONEAREST:
87 			return (x * y);
88 		case FE_TOWARDZERO:
89 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
90 				return (x * y);
91 			feholdexcept(&env);
92 			r = x * y;
93 			if (!fetestexcept(FE_INEXACT))
94 				r = nextafterl(r, 0);
95 			feupdateenv(&env);
96 			return (r);
97 		case FE_DOWNWARD:
98 			if (z > 0.0)
99 				return (x * y);
100 			feholdexcept(&env);
101 			r = x * y;
102 			if (!fetestexcept(FE_INEXACT))
103 				r = nextafterl(r, -INFINITY);
104 			feupdateenv(&env);
105 			return (r);
106 		default:	/* FE_UPWARD */
107 			if (z < 0.0)
108 				return (x * y);
109 			feholdexcept(&env);
110 			r = x * y;
111 			if (!fetestexcept(FE_INEXACT))
112 				r = nextafterl(r, INFINITY);
113 			feupdateenv(&env);
114 			return (r);
115 		}
116 	}
117 	if (spread < -LDBL_MANT_DIG) {
118 		feraiseexcept(FE_INEXACT);
119 		if (!isnormal(z))
120 			feraiseexcept(FE_UNDERFLOW);
121 		switch (oround) {
122 		case FE_TONEAREST:
123 			return (z);
124 		case FE_TOWARDZERO:
125 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
126 				return (z);
127 			else
128 				return (nextafterl(z, 0));
129 		case FE_DOWNWARD:
130 			if ((x > 0.0) ^ (y < 0.0))
131 				return (z);
132 			else
133 				return (nextafterl(z, -INFINITY));
134 		default:	/* FE_UPWARD */
135 			if ((x > 0.0) ^ (y < 0.0))
136 				return (nextafterl(z, INFINITY));
137 			else
138 				return (z);
139 		}
140 	}
141 
142 	/*
143 	 * Use Dekker's algorithm to perform the multiplication and
144 	 * subsequent addition in twice the machine precision.
145 	 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
146 	 */
147 	fesetround(FE_TONEAREST);
148 
149 	p = xs * split;
150 	hx = xs - p;
151 	hx += p;
152 	tx = xs - hx;
153 
154 	p = ys * split;
155 	hy = ys - p;
156 	hy += p;
157 	ty = ys - hy;
158 
159 	p = hx * hy;
160 	q = hx * ty + tx * hy;
161 	c = p + q;
162 	cc = p - c + q + tx * ty;
163 
164 	zs = ldexpl(zs, -spread);
165 	r = c + zs;
166 	s = r - c;
167 	rr = (c - (r - s)) + (zs - s) + cc;
168 
169 	spread = ex + ey;
170 	if (spread + ilogbl(r) > -16383) {
171 		fesetround(oround);
172 		r = r + rr;
173 	} else {
174 		/*
175 		 * The result is subnormal, so we round before scaling to
176 		 * avoid double rounding.
177 		 */
178 		p = ldexpl(copysignl(0x1p-16382L, r), -spread);
179 		c = r + p;
180 		s = c - r;
181 		cc = (r - (c - s)) + (p - s) + rr;
182 		fesetround(oround);
183 		r = (c + cc) - p;
184 	}
185 	return (ldexpl(r, spread));
186 }
187