1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2008, Jouni Malinen <j@w1.fi>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Alternatively, this software may be distributed under the terms of BSD
10  * license.
11  *
12  * See README and COPYING for more details.
13  *
14  * This file implements the Peer State Machine as defined in RFC 4137. The used
15  * states and state transitions match mostly with the RFC. However, there are
16  * couple of additional transitions for working around small issues noticed
17  * during testing. These exceptions are explained in comments within the
18  * functions in this file. The method functions, m.func(), are similar to the
19  * ones used in RFC 4137, but some small changes have used here to optimize
20  * operations and to add functionality needed for fast re-authentication
21  * (session resumption).
22  */
23 
24 #include "includes.h"
25 
26 #include "common.h"
27 #include "eap_i.h"
28 #include "eap_config.h"
29 #include "tls.h"
30 #include "crypto.h"
31 #include "pcsc_funcs.h"
32 #include "wpa_ctrl.h"
33 #include "state_machine.h"
34 #include "eap_common/eap_wsc_common.h"
35 
36 #define STATE_MACHINE_DATA struct eap_sm
37 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
38 
39 #define EAP_MAX_AUTH_ROUNDS 50
40 
41 
42 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
43 				  EapType method);
44 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
45 static void eap_sm_processIdentity(struct eap_sm *sm,
46 				   const struct wpabuf *req);
47 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
48 static struct wpabuf * eap_sm_buildNotify(int id);
49 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
50 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
51 static const char * eap_sm_method_state_txt(EapMethodState state);
52 static const char * eap_sm_decision_txt(EapDecision decision);
53 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
54 
55 
56 
57 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
58 {
59 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
60 }
61 
62 
63 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
64 			   Boolean value)
65 {
66 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
67 }
68 
69 
70 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
71 {
72 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
73 }
74 
75 
76 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
77 			  unsigned int value)
78 {
79 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
80 }
81 
82 
83 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
84 {
85 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
86 }
87 
88 
89 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
90 {
91 	if (sm->m == NULL || sm->eap_method_priv == NULL)
92 		return;
93 
94 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
95 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
96 	sm->m->deinit(sm, sm->eap_method_priv);
97 	sm->eap_method_priv = NULL;
98 	sm->m = NULL;
99 }
100 
101 
102 /**
103  * eap_allowed_method - Check whether EAP method is allowed
104  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
105  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
106  * @method: EAP type
107  * Returns: 1 = allowed EAP method, 0 = not allowed
108  */
109 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
110 {
111 	struct eap_peer_config *config = eap_get_config(sm);
112 	int i;
113 	struct eap_method_type *m;
114 
115 	if (config == NULL || config->eap_methods == NULL)
116 		return 1;
117 
118 	m = config->eap_methods;
119 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
120 		     m[i].method != EAP_TYPE_NONE; i++) {
121 		if (m[i].vendor == vendor && m[i].method == method)
122 			return 1;
123 	}
124 	return 0;
125 }
126 
127 
128 /*
129  * This state initializes state machine variables when the machine is
130  * activated (portEnabled = TRUE). This is also used when re-starting
131  * authentication (eapRestart == TRUE).
132  */
133 SM_STATE(EAP, INITIALIZE)
134 {
135 	SM_ENTRY(EAP, INITIALIZE);
136 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
137 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
138 	    !sm->prev_failure) {
139 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
140 			   "fast reauthentication");
141 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
142 	} else {
143 		eap_deinit_prev_method(sm, "INITIALIZE");
144 	}
145 	sm->selectedMethod = EAP_TYPE_NONE;
146 	sm->methodState = METHOD_NONE;
147 	sm->allowNotifications = TRUE;
148 	sm->decision = DECISION_FAIL;
149 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
150 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
151 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
152 	os_free(sm->eapKeyData);
153 	sm->eapKeyData = NULL;
154 	sm->eapKeyAvailable = FALSE;
155 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
156 	sm->lastId = -1; /* new session - make sure this does not match with
157 			  * the first EAP-Packet */
158 	/*
159 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
160 	 * seemed to be able to trigger cases where both were set and if EAPOL
161 	 * state machine uses eapNoResp first, it may end up not sending a real
162 	 * reply correctly. This occurred when the workaround in FAIL state set
163 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
164 	 * something else(?)
165 	 */
166 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
167 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
168 	sm->num_rounds = 0;
169 	sm->prev_failure = 0;
170 }
171 
172 
173 /*
174  * This state is reached whenever service from the lower layer is interrupted
175  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
176  * occurs when the port becomes enabled.
177  */
178 SM_STATE(EAP, DISABLED)
179 {
180 	SM_ENTRY(EAP, DISABLED);
181 	sm->num_rounds = 0;
182 }
183 
184 
185 /*
186  * The state machine spends most of its time here, waiting for something to
187  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
188  * SEND_RESPONSE states.
189  */
190 SM_STATE(EAP, IDLE)
191 {
192 	SM_ENTRY(EAP, IDLE);
193 }
194 
195 
196 /*
197  * This state is entered when an EAP packet is received (eapReq == TRUE) to
198  * parse the packet header.
199  */
200 SM_STATE(EAP, RECEIVED)
201 {
202 	const struct wpabuf *eapReqData;
203 
204 	SM_ENTRY(EAP, RECEIVED);
205 	eapReqData = eapol_get_eapReqData(sm);
206 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
207 	eap_sm_parseEapReq(sm, eapReqData);
208 	sm->num_rounds++;
209 }
210 
211 
212 /*
213  * This state is entered when a request for a new type comes in. Either the
214  * correct method is started, or a Nak response is built.
215  */
216 SM_STATE(EAP, GET_METHOD)
217 {
218 	int reinit;
219 	EapType method;
220 
221 	SM_ENTRY(EAP, GET_METHOD);
222 
223 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
224 		method = sm->reqVendorMethod;
225 	else
226 		method = sm->reqMethod;
227 
228 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
229 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
230 			   sm->reqVendor, method);
231 		goto nak;
232 	}
233 
234 	/*
235 	 * RFC 4137 does not define specific operation for fast
236 	 * re-authentication (session resumption). The design here is to allow
237 	 * the previously used method data to be maintained for
238 	 * re-authentication if the method support session resumption.
239 	 * Otherwise, the previously used method data is freed and a new method
240 	 * is allocated here.
241 	 */
242 	if (sm->fast_reauth &&
243 	    sm->m && sm->m->vendor == sm->reqVendor &&
244 	    sm->m->method == method &&
245 	    sm->m->has_reauth_data &&
246 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
247 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
248 			   " for fast re-authentication");
249 		reinit = 1;
250 	} else {
251 		eap_deinit_prev_method(sm, "GET_METHOD");
252 		reinit = 0;
253 	}
254 
255 	sm->selectedMethod = sm->reqMethod;
256 	if (sm->m == NULL)
257 		sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
258 	if (!sm->m) {
259 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
260 			   "vendor %d method %d",
261 			   sm->reqVendor, method);
262 		goto nak;
263 	}
264 
265 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
266 		   "vendor %u method %u (%s)",
267 		   sm->reqVendor, method, sm->m->name);
268 	if (reinit)
269 		sm->eap_method_priv = sm->m->init_for_reauth(
270 			sm, sm->eap_method_priv);
271 	else
272 		sm->eap_method_priv = sm->m->init(sm);
273 
274 	if (sm->eap_method_priv == NULL) {
275 		struct eap_peer_config *config = eap_get_config(sm);
276 		wpa_msg(sm->msg_ctx, MSG_INFO,
277 			"EAP: Failed to initialize EAP method: vendor %u "
278 			"method %u (%s)",
279 			sm->reqVendor, method, sm->m->name);
280 		sm->m = NULL;
281 		sm->methodState = METHOD_NONE;
282 		sm->selectedMethod = EAP_TYPE_NONE;
283 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
284 		    (config->pending_req_pin ||
285 		     config->pending_req_passphrase)) {
286 			/*
287 			 * Return without generating Nak in order to allow
288 			 * entering of PIN code or passphrase to retry the
289 			 * current EAP packet.
290 			 */
291 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
292 				   "request - skip Nak");
293 			return;
294 		}
295 
296 		goto nak;
297 	}
298 
299 	sm->methodState = METHOD_INIT;
300 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
301 		"EAP vendor %u method %u (%s) selected",
302 		sm->reqVendor, method, sm->m->name);
303 	return;
304 
305 nak:
306 	wpabuf_free(sm->eapRespData);
307 	sm->eapRespData = NULL;
308 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
309 }
310 
311 
312 /*
313  * The method processing happens here. The request from the authenticator is
314  * processed, and an appropriate response packet is built.
315  */
316 SM_STATE(EAP, METHOD)
317 {
318 	struct wpabuf *eapReqData;
319 	struct eap_method_ret ret;
320 
321 	SM_ENTRY(EAP, METHOD);
322 	if (sm->m == NULL) {
323 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
324 		return;
325 	}
326 
327 	eapReqData = eapol_get_eapReqData(sm);
328 
329 	/*
330 	 * Get ignore, methodState, decision, allowNotifications, and
331 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
332 	 * process, and buildResp) in this state. These have been combined into
333 	 * a single function call to m->process() in order to optimize EAP
334 	 * method implementation interface a bit. These procedures are only
335 	 * used from within this METHOD state, so there is no need to keep
336 	 * these as separate C functions.
337 	 *
338 	 * The RFC 4137 procedures return values as follows:
339 	 * ignore = m.check(eapReqData)
340 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
341 	 * eapRespData = m.buildResp(reqId)
342 	 */
343 	os_memset(&ret, 0, sizeof(ret));
344 	ret.ignore = sm->ignore;
345 	ret.methodState = sm->methodState;
346 	ret.decision = sm->decision;
347 	ret.allowNotifications = sm->allowNotifications;
348 	wpabuf_free(sm->eapRespData);
349 	sm->eapRespData = NULL;
350 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
351 					 eapReqData);
352 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
353 		   "methodState=%s decision=%s",
354 		   ret.ignore ? "TRUE" : "FALSE",
355 		   eap_sm_method_state_txt(ret.methodState),
356 		   eap_sm_decision_txt(ret.decision));
357 
358 	sm->ignore = ret.ignore;
359 	if (sm->ignore)
360 		return;
361 	sm->methodState = ret.methodState;
362 	sm->decision = ret.decision;
363 	sm->allowNotifications = ret.allowNotifications;
364 
365 	if (sm->m->isKeyAvailable && sm->m->getKey &&
366 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
367 		os_free(sm->eapKeyData);
368 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
369 					       &sm->eapKeyDataLen);
370 	}
371 }
372 
373 
374 /*
375  * This state signals the lower layer that a response packet is ready to be
376  * sent.
377  */
378 SM_STATE(EAP, SEND_RESPONSE)
379 {
380 	SM_ENTRY(EAP, SEND_RESPONSE);
381 	wpabuf_free(sm->lastRespData);
382 	if (sm->eapRespData) {
383 		if (sm->workaround)
384 			os_memcpy(sm->last_md5, sm->req_md5, 16);
385 		sm->lastId = sm->reqId;
386 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
387 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
388 	} else
389 		sm->lastRespData = NULL;
390 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
391 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
392 }
393 
394 
395 /*
396  * This state signals the lower layer that the request was discarded, and no
397  * response packet will be sent at this time.
398  */
399 SM_STATE(EAP, DISCARD)
400 {
401 	SM_ENTRY(EAP, DISCARD);
402 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
403 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
404 }
405 
406 
407 /*
408  * Handles requests for Identity method and builds a response.
409  */
410 SM_STATE(EAP, IDENTITY)
411 {
412 	const struct wpabuf *eapReqData;
413 
414 	SM_ENTRY(EAP, IDENTITY);
415 	eapReqData = eapol_get_eapReqData(sm);
416 	eap_sm_processIdentity(sm, eapReqData);
417 	wpabuf_free(sm->eapRespData);
418 	sm->eapRespData = NULL;
419 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
420 }
421 
422 
423 /*
424  * Handles requests for Notification method and builds a response.
425  */
426 SM_STATE(EAP, NOTIFICATION)
427 {
428 	const struct wpabuf *eapReqData;
429 
430 	SM_ENTRY(EAP, NOTIFICATION);
431 	eapReqData = eapol_get_eapReqData(sm);
432 	eap_sm_processNotify(sm, eapReqData);
433 	wpabuf_free(sm->eapRespData);
434 	sm->eapRespData = NULL;
435 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
436 }
437 
438 
439 /*
440  * This state retransmits the previous response packet.
441  */
442 SM_STATE(EAP, RETRANSMIT)
443 {
444 	SM_ENTRY(EAP, RETRANSMIT);
445 	wpabuf_free(sm->eapRespData);
446 	if (sm->lastRespData)
447 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
448 	else
449 		sm->eapRespData = NULL;
450 }
451 
452 
453 /*
454  * This state is entered in case of a successful completion of authentication
455  * and state machine waits here until port is disabled or EAP authentication is
456  * restarted.
457  */
458 SM_STATE(EAP, SUCCESS)
459 {
460 	SM_ENTRY(EAP, SUCCESS);
461 	if (sm->eapKeyData != NULL)
462 		sm->eapKeyAvailable = TRUE;
463 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
464 
465 	/*
466 	 * RFC 4137 does not clear eapReq here, but this seems to be required
467 	 * to avoid processing the same request twice when state machine is
468 	 * initialized.
469 	 */
470 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
471 
472 	/*
473 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
474 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
475 	 * addition, either eapResp or eapNoResp is required to be set after
476 	 * processing the received EAP frame.
477 	 */
478 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
479 
480 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
481 		"EAP authentication completed successfully");
482 }
483 
484 
485 /*
486  * This state is entered in case of a failure and state machine waits here
487  * until port is disabled or EAP authentication is restarted.
488  */
489 SM_STATE(EAP, FAILURE)
490 {
491 	SM_ENTRY(EAP, FAILURE);
492 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
493 
494 	/*
495 	 * RFC 4137 does not clear eapReq here, but this seems to be required
496 	 * to avoid processing the same request twice when state machine is
497 	 * initialized.
498 	 */
499 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
500 
501 	/*
502 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
503 	 * eapNoResp is required to be set after processing the received EAP
504 	 * frame.
505 	 */
506 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
507 
508 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
509 		"EAP authentication failed");
510 
511 	sm->prev_failure = 1;
512 }
513 
514 
515 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
516 {
517 	/*
518 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
519 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
520 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
521 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
522 	 *
523 	 * Accept this kind of Id if EAP workarounds are enabled. These are
524 	 * unauthenticated plaintext messages, so this should have minimal
525 	 * security implications (bit easier to fake EAP-Success/Failure).
526 	 */
527 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
528 			       reqId == ((lastId + 2) & 0xff))) {
529 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
530 			   "identifier field in EAP Success: "
531 			   "reqId=%d lastId=%d (these are supposed to be "
532 			   "same)", reqId, lastId);
533 		return 1;
534 	}
535 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
536 		   "lastId=%d", reqId, lastId);
537 	return 0;
538 }
539 
540 
541 /*
542  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
543  */
544 
545 static void eap_peer_sm_step_idle(struct eap_sm *sm)
546 {
547 	/*
548 	 * The first three transitions are from RFC 4137. The last two are
549 	 * local additions to handle special cases with LEAP and PEAP server
550 	 * not sending EAP-Success in some cases.
551 	 */
552 	if (eapol_get_bool(sm, EAPOL_eapReq))
553 		SM_ENTER(EAP, RECEIVED);
554 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
555 		  sm->decision != DECISION_FAIL) ||
556 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
557 		  sm->decision == DECISION_UNCOND_SUCC))
558 		SM_ENTER(EAP, SUCCESS);
559 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
560 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
561 		  sm->decision != DECISION_UNCOND_SUCC) ||
562 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
563 		  sm->methodState != METHOD_CONT &&
564 		  sm->decision == DECISION_FAIL))
565 		SM_ENTER(EAP, FAILURE);
566 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
567 		 sm->leap_done && sm->decision != DECISION_FAIL &&
568 		 sm->methodState == METHOD_DONE)
569 		SM_ENTER(EAP, SUCCESS);
570 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
571 		 sm->peap_done && sm->decision != DECISION_FAIL &&
572 		 sm->methodState == METHOD_DONE)
573 		SM_ENTER(EAP, SUCCESS);
574 }
575 
576 
577 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
578 {
579 	int duplicate;
580 
581 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
582 	if (sm->workaround && duplicate &&
583 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
584 		/*
585 		 * RFC 4137 uses (reqId == lastId) as the only verification for
586 		 * duplicate EAP requests. However, this misses cases where the
587 		 * AS is incorrectly using the same id again; and
588 		 * unfortunately, such implementations exist. Use MD5 hash as
589 		 * an extra verification for the packets being duplicate to
590 		 * workaround these issues.
591 		 */
592 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
593 			   "EAP packets were not identical");
594 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
595 			   "duplicate packet");
596 		duplicate = 0;
597 	}
598 
599 	return duplicate;
600 }
601 
602 
603 static void eap_peer_sm_step_received(struct eap_sm *sm)
604 {
605 	int duplicate = eap_peer_req_is_duplicate(sm);
606 
607 	/*
608 	 * Two special cases below for LEAP are local additions to work around
609 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
610 	 * then swapped roles). Other transitions are based on RFC 4137.
611 	 */
612 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
613 	    (sm->reqId == sm->lastId ||
614 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
615 		SM_ENTER(EAP, SUCCESS);
616 	else if (sm->methodState != METHOD_CONT &&
617 		 ((sm->rxFailure &&
618 		   sm->decision != DECISION_UNCOND_SUCC) ||
619 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
620 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
621 		    sm->methodState != METHOD_MAY_CONT))) &&
622 		 (sm->reqId == sm->lastId ||
623 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
624 		SM_ENTER(EAP, FAILURE);
625 	else if (sm->rxReq && duplicate)
626 		SM_ENTER(EAP, RETRANSMIT);
627 	else if (sm->rxReq && !duplicate &&
628 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
629 		 sm->allowNotifications)
630 		SM_ENTER(EAP, NOTIFICATION);
631 	else if (sm->rxReq && !duplicate &&
632 		 sm->selectedMethod == EAP_TYPE_NONE &&
633 		 sm->reqMethod == EAP_TYPE_IDENTITY)
634 		SM_ENTER(EAP, IDENTITY);
635 	else if (sm->rxReq && !duplicate &&
636 		 sm->selectedMethod == EAP_TYPE_NONE &&
637 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
638 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
639 		SM_ENTER(EAP, GET_METHOD);
640 	else if (sm->rxReq && !duplicate &&
641 		 sm->reqMethod == sm->selectedMethod &&
642 		 sm->methodState != METHOD_DONE)
643 		SM_ENTER(EAP, METHOD);
644 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
645 		 (sm->rxSuccess || sm->rxResp))
646 		SM_ENTER(EAP, METHOD);
647 	else
648 		SM_ENTER(EAP, DISCARD);
649 }
650 
651 
652 static void eap_peer_sm_step_local(struct eap_sm *sm)
653 {
654 	switch (sm->EAP_state) {
655 	case EAP_INITIALIZE:
656 		SM_ENTER(EAP, IDLE);
657 		break;
658 	case EAP_DISABLED:
659 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
660 		    !sm->force_disabled)
661 			SM_ENTER(EAP, INITIALIZE);
662 		break;
663 	case EAP_IDLE:
664 		eap_peer_sm_step_idle(sm);
665 		break;
666 	case EAP_RECEIVED:
667 		eap_peer_sm_step_received(sm);
668 		break;
669 	case EAP_GET_METHOD:
670 		if (sm->selectedMethod == sm->reqMethod)
671 			SM_ENTER(EAP, METHOD);
672 		else
673 			SM_ENTER(EAP, SEND_RESPONSE);
674 		break;
675 	case EAP_METHOD:
676 		if (sm->ignore)
677 			SM_ENTER(EAP, DISCARD);
678 		else
679 			SM_ENTER(EAP, SEND_RESPONSE);
680 		break;
681 	case EAP_SEND_RESPONSE:
682 		SM_ENTER(EAP, IDLE);
683 		break;
684 	case EAP_DISCARD:
685 		SM_ENTER(EAP, IDLE);
686 		break;
687 	case EAP_IDENTITY:
688 		SM_ENTER(EAP, SEND_RESPONSE);
689 		break;
690 	case EAP_NOTIFICATION:
691 		SM_ENTER(EAP, SEND_RESPONSE);
692 		break;
693 	case EAP_RETRANSMIT:
694 		SM_ENTER(EAP, SEND_RESPONSE);
695 		break;
696 	case EAP_SUCCESS:
697 		break;
698 	case EAP_FAILURE:
699 		break;
700 	}
701 }
702 
703 
704 SM_STEP(EAP)
705 {
706 	/* Global transitions */
707 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
708 	    eapol_get_bool(sm, EAPOL_portEnabled))
709 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
710 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
711 		SM_ENTER_GLOBAL(EAP, DISABLED);
712 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
713 		/* RFC 4137 does not place any limit on number of EAP messages
714 		 * in an authentication session. However, some error cases have
715 		 * ended up in a state were EAP messages were sent between the
716 		 * peer and server in a loop (e.g., TLS ACK frame in both
717 		 * direction). Since this is quite undesired outcome, limit the
718 		 * total number of EAP round-trips and abort authentication if
719 		 * this limit is exceeded.
720 		 */
721 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
722 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
723 				"authentication rounds - abort",
724 				EAP_MAX_AUTH_ROUNDS);
725 			sm->num_rounds++;
726 			SM_ENTER_GLOBAL(EAP, FAILURE);
727 		}
728 	} else {
729 		/* Local transitions */
730 		eap_peer_sm_step_local(sm);
731 	}
732 }
733 
734 
735 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
736 				  EapType method)
737 {
738 	if (!eap_allowed_method(sm, vendor, method)) {
739 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
740 			   "vendor %u method %u", vendor, method);
741 		return FALSE;
742 	}
743 	if (eap_peer_get_eap_method(vendor, method))
744 		return TRUE;
745 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
746 		   "vendor %u method %u", vendor, method);
747 	return FALSE;
748 }
749 
750 
751 static struct wpabuf * eap_sm_build_expanded_nak(
752 	struct eap_sm *sm, int id, const struct eap_method *methods,
753 	size_t count)
754 {
755 	struct wpabuf *resp;
756 	int found = 0;
757 	const struct eap_method *m;
758 
759 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
760 
761 	/* RFC 3748 - 5.3.2: Expanded Nak */
762 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
763 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
764 	if (resp == NULL)
765 		return NULL;
766 
767 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
768 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
769 
770 	for (m = methods; m; m = m->next) {
771 		if (sm->reqVendor == m->vendor &&
772 		    sm->reqVendorMethod == m->method)
773 			continue; /* do not allow the current method again */
774 		if (eap_allowed_method(sm, m->vendor, m->method)) {
775 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
776 				   "vendor=%u method=%u",
777 				   m->vendor, m->method);
778 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
779 			wpabuf_put_be24(resp, m->vendor);
780 			wpabuf_put_be32(resp, m->method);
781 
782 			found++;
783 		}
784 	}
785 	if (!found) {
786 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
787 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
788 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
789 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
790 	}
791 
792 	eap_update_len(resp);
793 
794 	return resp;
795 }
796 
797 
798 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
799 {
800 	struct wpabuf *resp;
801 	u8 *start;
802 	int found = 0, expanded_found = 0;
803 	size_t count;
804 	const struct eap_method *methods, *m;
805 
806 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
807 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
808 		   sm->reqVendor, sm->reqVendorMethod);
809 	methods = eap_peer_get_methods(&count);
810 	if (methods == NULL)
811 		return NULL;
812 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
813 		return eap_sm_build_expanded_nak(sm, id, methods, count);
814 
815 	/* RFC 3748 - 5.3.1: Legacy Nak */
816 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
817 			     sizeof(struct eap_hdr) + 1 + count + 1,
818 			     EAP_CODE_RESPONSE, id);
819 	if (resp == NULL)
820 		return NULL;
821 
822 	start = wpabuf_put(resp, 0);
823 	for (m = methods; m; m = m->next) {
824 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
825 			continue; /* do not allow the current method again */
826 		if (eap_allowed_method(sm, m->vendor, m->method)) {
827 			if (m->vendor != EAP_VENDOR_IETF) {
828 				if (expanded_found)
829 					continue;
830 				expanded_found = 1;
831 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
832 			} else
833 				wpabuf_put_u8(resp, m->method);
834 			found++;
835 		}
836 	}
837 	if (!found)
838 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
839 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
840 
841 	eap_update_len(resp);
842 
843 	return resp;
844 }
845 
846 
847 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
848 {
849 	const struct eap_hdr *hdr = wpabuf_head(req);
850 	const u8 *pos = (const u8 *) (hdr + 1);
851 	pos++;
852 
853 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
854 		"EAP authentication started");
855 
856 	/*
857 	 * RFC 3748 - 5.1: Identity
858 	 * Data field may contain a displayable message in UTF-8. If this
859 	 * includes NUL-character, only the data before that should be
860 	 * displayed. Some EAP implementasitons may piggy-back additional
861 	 * options after the NUL.
862 	 */
863 	/* TODO: could save displayable message so that it can be shown to the
864 	 * user in case of interaction is required */
865 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
866 			  pos, be_to_host16(hdr->length) - 5);
867 }
868 
869 
870 #ifdef PCSC_FUNCS
871 static int eap_sm_imsi_identity(struct eap_sm *sm,
872 				struct eap_peer_config *conf)
873 {
874 	int aka = 0;
875 	char imsi[100];
876 	size_t imsi_len;
877 	struct eap_method_type *m = conf->eap_methods;
878 	int i;
879 
880 	imsi_len = sizeof(imsi);
881 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
882 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
883 		return -1;
884 	}
885 
886 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
887 
888 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
889 			  m[i].method != EAP_TYPE_NONE); i++) {
890 		if (m[i].vendor == EAP_VENDOR_IETF &&
891 		    m[i].method == EAP_TYPE_AKA) {
892 			aka = 1;
893 			break;
894 		}
895 	}
896 
897 	os_free(conf->identity);
898 	conf->identity = os_malloc(1 + imsi_len);
899 	if (conf->identity == NULL) {
900 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
901 			   "IMSI-based identity");
902 		return -1;
903 	}
904 
905 	conf->identity[0] = aka ? '0' : '1';
906 	os_memcpy(conf->identity + 1, imsi, imsi_len);
907 	conf->identity_len = 1 + imsi_len;
908 
909 	return 0;
910 }
911 #endif /* PCSC_FUNCS */
912 
913 
914 static int eap_sm_set_scard_pin(struct eap_sm *sm,
915 				struct eap_peer_config *conf)
916 {
917 #ifdef PCSC_FUNCS
918 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
919 		/*
920 		 * Make sure the same PIN is not tried again in order to avoid
921 		 * blocking SIM.
922 		 */
923 		os_free(conf->pin);
924 		conf->pin = NULL;
925 
926 		wpa_printf(MSG_WARNING, "PIN validation failed");
927 		eap_sm_request_pin(sm);
928 		return -1;
929 	}
930 	return 0;
931 #else /* PCSC_FUNCS */
932 	return -1;
933 #endif /* PCSC_FUNCS */
934 }
935 
936 static int eap_sm_get_scard_identity(struct eap_sm *sm,
937 				     struct eap_peer_config *conf)
938 {
939 #ifdef PCSC_FUNCS
940 	if (eap_sm_set_scard_pin(sm, conf))
941 		return -1;
942 
943 	return eap_sm_imsi_identity(sm, conf);
944 #else /* PCSC_FUNCS */
945 	return -1;
946 #endif /* PCSC_FUNCS */
947 }
948 
949 
950 /**
951  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
952  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
953  * @id: EAP identifier for the packet
954  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
955  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
956  * failure
957  *
958  * This function allocates and builds an EAP-Identity/Response packet for the
959  * current network. The caller is responsible for freeing the returned data.
960  */
961 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
962 {
963 	struct eap_peer_config *config = eap_get_config(sm);
964 	struct wpabuf *resp;
965 	const u8 *identity;
966 	size_t identity_len;
967 
968 	if (config == NULL) {
969 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
970 			   "was not available");
971 		return NULL;
972 	}
973 
974 	if (sm->m && sm->m->get_identity &&
975 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
976 					    &identity_len)) != NULL) {
977 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
978 				  "identity", identity, identity_len);
979 	} else if (!encrypted && config->anonymous_identity) {
980 		identity = config->anonymous_identity;
981 		identity_len = config->anonymous_identity_len;
982 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
983 				  identity, identity_len);
984 	} else {
985 		identity = config->identity;
986 		identity_len = config->identity_len;
987 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
988 				  identity, identity_len);
989 	}
990 
991 	if (identity == NULL) {
992 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
993 			   "configuration was not available");
994 		if (config->pcsc) {
995 			if (eap_sm_get_scard_identity(sm, config) < 0)
996 				return NULL;
997 			identity = config->identity;
998 			identity_len = config->identity_len;
999 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1000 					  "IMSI", identity, identity_len);
1001 		} else {
1002 			eap_sm_request_identity(sm);
1003 			return NULL;
1004 		}
1005 	} else if (config->pcsc) {
1006 		if (eap_sm_set_scard_pin(sm, config) < 0)
1007 			return NULL;
1008 	}
1009 
1010 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1011 			     EAP_CODE_RESPONSE, id);
1012 	if (resp == NULL)
1013 		return NULL;
1014 
1015 	wpabuf_put_data(resp, identity, identity_len);
1016 
1017 	return resp;
1018 }
1019 
1020 
1021 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1022 {
1023 	const u8 *pos;
1024 	char *msg;
1025 	size_t i, msg_len;
1026 
1027 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1028 			       &msg_len);
1029 	if (pos == NULL)
1030 		return;
1031 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1032 			  pos, msg_len);
1033 
1034 	msg = os_malloc(msg_len + 1);
1035 	if (msg == NULL)
1036 		return;
1037 	for (i = 0; i < msg_len; i++)
1038 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1039 	msg[msg_len] = '\0';
1040 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1041 		WPA_EVENT_EAP_NOTIFICATION, msg);
1042 	os_free(msg);
1043 }
1044 
1045 
1046 static struct wpabuf * eap_sm_buildNotify(int id)
1047 {
1048 	struct wpabuf *resp;
1049 
1050 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1051 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1052 			     EAP_CODE_RESPONSE, id);
1053 	if (resp == NULL)
1054 		return NULL;
1055 
1056 	return resp;
1057 }
1058 
1059 
1060 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1061 {
1062 	const struct eap_hdr *hdr;
1063 	size_t plen;
1064 	const u8 *pos;
1065 
1066 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1067 	sm->reqId = 0;
1068 	sm->reqMethod = EAP_TYPE_NONE;
1069 	sm->reqVendor = EAP_VENDOR_IETF;
1070 	sm->reqVendorMethod = EAP_TYPE_NONE;
1071 
1072 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1073 		return;
1074 
1075 	hdr = wpabuf_head(req);
1076 	plen = be_to_host16(hdr->length);
1077 	if (plen > wpabuf_len(req)) {
1078 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1079 			   "(len=%lu plen=%lu)",
1080 			   (unsigned long) wpabuf_len(req),
1081 			   (unsigned long) plen);
1082 		return;
1083 	}
1084 
1085 	sm->reqId = hdr->identifier;
1086 
1087 	if (sm->workaround) {
1088 		const u8 *addr[1];
1089 		addr[0] = wpabuf_head(req);
1090 		md5_vector(1, addr, &plen, sm->req_md5);
1091 	}
1092 
1093 	switch (hdr->code) {
1094 	case EAP_CODE_REQUEST:
1095 		if (plen < sizeof(*hdr) + 1) {
1096 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1097 				   "no Type field");
1098 			return;
1099 		}
1100 		sm->rxReq = TRUE;
1101 		pos = (const u8 *) (hdr + 1);
1102 		sm->reqMethod = *pos++;
1103 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1104 			if (plen < sizeof(*hdr) + 8) {
1105 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1106 					   "expanded EAP-Packet (plen=%lu)",
1107 					   (unsigned long) plen);
1108 				return;
1109 			}
1110 			sm->reqVendor = WPA_GET_BE24(pos);
1111 			pos += 3;
1112 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1113 		}
1114 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1115 			   "method=%u vendor=%u vendorMethod=%u",
1116 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1117 			   sm->reqVendorMethod);
1118 		break;
1119 	case EAP_CODE_RESPONSE:
1120 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1121 			/*
1122 			 * LEAP differs from RFC 4137 by using reversed roles
1123 			 * for mutual authentication and because of this, we
1124 			 * need to accept EAP-Response frames if LEAP is used.
1125 			 */
1126 			if (plen < sizeof(*hdr) + 1) {
1127 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1128 					   "EAP-Response - no Type field");
1129 				return;
1130 			}
1131 			sm->rxResp = TRUE;
1132 			pos = (const u8 *) (hdr + 1);
1133 			sm->reqMethod = *pos;
1134 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1135 				   "LEAP method=%d id=%d",
1136 				   sm->reqMethod, sm->reqId);
1137 			break;
1138 		}
1139 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1140 		break;
1141 	case EAP_CODE_SUCCESS:
1142 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1143 		sm->rxSuccess = TRUE;
1144 		break;
1145 	case EAP_CODE_FAILURE:
1146 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1147 		sm->rxFailure = TRUE;
1148 		break;
1149 	default:
1150 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1151 			   "code %d", hdr->code);
1152 		break;
1153 	}
1154 }
1155 
1156 
1157 /**
1158  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1159  * @eapol_ctx: Context data to be used with eapol_cb calls
1160  * @eapol_cb: Pointer to EAPOL callback functions
1161  * @msg_ctx: Context data for wpa_msg() calls
1162  * @conf: EAP configuration
1163  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1164  *
1165  * This function allocates and initializes an EAP state machine. In addition,
1166  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1167  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1168  * state machine. Consequently, the caller must make sure that this data
1169  * structure remains alive while the EAP state machine is active.
1170  */
1171 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1172 				 struct eapol_callbacks *eapol_cb,
1173 				 void *msg_ctx, struct eap_config *conf)
1174 {
1175 	struct eap_sm *sm;
1176 	struct tls_config tlsconf;
1177 
1178 	sm = os_zalloc(sizeof(*sm));
1179 	if (sm == NULL)
1180 		return NULL;
1181 	sm->eapol_ctx = eapol_ctx;
1182 	sm->eapol_cb = eapol_cb;
1183 	sm->msg_ctx = msg_ctx;
1184 	sm->ClientTimeout = 60;
1185 	sm->wps = conf->wps;
1186 
1187 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1188 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1189 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1190 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1191 	sm->ssl_ctx = tls_init(&tlsconf);
1192 	if (sm->ssl_ctx == NULL) {
1193 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1194 			   "context.");
1195 		os_free(sm);
1196 		return NULL;
1197 	}
1198 
1199 	return sm;
1200 }
1201 
1202 
1203 /**
1204  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1205  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1206  *
1207  * This function deinitializes EAP state machine and frees all allocated
1208  * resources.
1209  */
1210 void eap_peer_sm_deinit(struct eap_sm *sm)
1211 {
1212 	if (sm == NULL)
1213 		return;
1214 	eap_deinit_prev_method(sm, "EAP deinit");
1215 	eap_sm_abort(sm);
1216 	tls_deinit(sm->ssl_ctx);
1217 	os_free(sm);
1218 }
1219 
1220 
1221 /**
1222  * eap_peer_sm_step - Step EAP peer state machine
1223  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1224  * Returns: 1 if EAP state was changed or 0 if not
1225  *
1226  * This function advances EAP state machine to a new state to match with the
1227  * current variables. This should be called whenever variables used by the EAP
1228  * state machine have changed.
1229  */
1230 int eap_peer_sm_step(struct eap_sm *sm)
1231 {
1232 	int res = 0;
1233 	do {
1234 		sm->changed = FALSE;
1235 		SM_STEP_RUN(EAP);
1236 		if (sm->changed)
1237 			res = 1;
1238 	} while (sm->changed);
1239 	return res;
1240 }
1241 
1242 
1243 /**
1244  * eap_sm_abort - Abort EAP authentication
1245  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1246  *
1247  * Release system resources that have been allocated for the authentication
1248  * session without fully deinitializing the EAP state machine.
1249  */
1250 void eap_sm_abort(struct eap_sm *sm)
1251 {
1252 	wpabuf_free(sm->lastRespData);
1253 	sm->lastRespData = NULL;
1254 	wpabuf_free(sm->eapRespData);
1255 	sm->eapRespData = NULL;
1256 	os_free(sm->eapKeyData);
1257 	sm->eapKeyData = NULL;
1258 
1259 	/* This is not clearly specified in the EAP statemachines draft, but
1260 	 * it seems necessary to make sure that some of the EAPOL variables get
1261 	 * cleared for the next authentication. */
1262 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1263 }
1264 
1265 
1266 #ifdef CONFIG_CTRL_IFACE
1267 static const char * eap_sm_state_txt(int state)
1268 {
1269 	switch (state) {
1270 	case EAP_INITIALIZE:
1271 		return "INITIALIZE";
1272 	case EAP_DISABLED:
1273 		return "DISABLED";
1274 	case EAP_IDLE:
1275 		return "IDLE";
1276 	case EAP_RECEIVED:
1277 		return "RECEIVED";
1278 	case EAP_GET_METHOD:
1279 		return "GET_METHOD";
1280 	case EAP_METHOD:
1281 		return "METHOD";
1282 	case EAP_SEND_RESPONSE:
1283 		return "SEND_RESPONSE";
1284 	case EAP_DISCARD:
1285 		return "DISCARD";
1286 	case EAP_IDENTITY:
1287 		return "IDENTITY";
1288 	case EAP_NOTIFICATION:
1289 		return "NOTIFICATION";
1290 	case EAP_RETRANSMIT:
1291 		return "RETRANSMIT";
1292 	case EAP_SUCCESS:
1293 		return "SUCCESS";
1294 	case EAP_FAILURE:
1295 		return "FAILURE";
1296 	default:
1297 		return "UNKNOWN";
1298 	}
1299 }
1300 #endif /* CONFIG_CTRL_IFACE */
1301 
1302 
1303 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1304 static const char * eap_sm_method_state_txt(EapMethodState state)
1305 {
1306 	switch (state) {
1307 	case METHOD_NONE:
1308 		return "NONE";
1309 	case METHOD_INIT:
1310 		return "INIT";
1311 	case METHOD_CONT:
1312 		return "CONT";
1313 	case METHOD_MAY_CONT:
1314 		return "MAY_CONT";
1315 	case METHOD_DONE:
1316 		return "DONE";
1317 	default:
1318 		return "UNKNOWN";
1319 	}
1320 }
1321 
1322 
1323 static const char * eap_sm_decision_txt(EapDecision decision)
1324 {
1325 	switch (decision) {
1326 	case DECISION_FAIL:
1327 		return "FAIL";
1328 	case DECISION_COND_SUCC:
1329 		return "COND_SUCC";
1330 	case DECISION_UNCOND_SUCC:
1331 		return "UNCOND_SUCC";
1332 	default:
1333 		return "UNKNOWN";
1334 	}
1335 }
1336 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1337 
1338 
1339 #ifdef CONFIG_CTRL_IFACE
1340 
1341 /**
1342  * eap_sm_get_status - Get EAP state machine status
1343  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1344  * @buf: Buffer for status information
1345  * @buflen: Maximum buffer length
1346  * @verbose: Whether to include verbose status information
1347  * Returns: Number of bytes written to buf.
1348  *
1349  * Query EAP state machine for status information. This function fills in a
1350  * text area with current status information from the EAPOL state machine. If
1351  * the buffer (buf) is not large enough, status information will be truncated
1352  * to fit the buffer.
1353  */
1354 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1355 {
1356 	int len, ret;
1357 
1358 	if (sm == NULL)
1359 		return 0;
1360 
1361 	len = os_snprintf(buf, buflen,
1362 			  "EAP state=%s\n",
1363 			  eap_sm_state_txt(sm->EAP_state));
1364 	if (len < 0 || (size_t) len >= buflen)
1365 		return 0;
1366 
1367 	if (sm->selectedMethod != EAP_TYPE_NONE) {
1368 		const char *name;
1369 		if (sm->m) {
1370 			name = sm->m->name;
1371 		} else {
1372 			const struct eap_method *m =
1373 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1374 							sm->selectedMethod);
1375 			if (m)
1376 				name = m->name;
1377 			else
1378 				name = "?";
1379 		}
1380 		ret = os_snprintf(buf + len, buflen - len,
1381 				  "selectedMethod=%d (EAP-%s)\n",
1382 				  sm->selectedMethod, name);
1383 		if (ret < 0 || (size_t) ret >= buflen - len)
1384 			return len;
1385 		len += ret;
1386 
1387 		if (sm->m && sm->m->get_status) {
1388 			len += sm->m->get_status(sm, sm->eap_method_priv,
1389 						 buf + len, buflen - len,
1390 						 verbose);
1391 		}
1392 	}
1393 
1394 	if (verbose) {
1395 		ret = os_snprintf(buf + len, buflen - len,
1396 				  "reqMethod=%d\n"
1397 				  "methodState=%s\n"
1398 				  "decision=%s\n"
1399 				  "ClientTimeout=%d\n",
1400 				  sm->reqMethod,
1401 				  eap_sm_method_state_txt(sm->methodState),
1402 				  eap_sm_decision_txt(sm->decision),
1403 				  sm->ClientTimeout);
1404 		if (ret < 0 || (size_t) ret >= buflen - len)
1405 			return len;
1406 		len += ret;
1407 	}
1408 
1409 	return len;
1410 }
1411 #endif /* CONFIG_CTRL_IFACE */
1412 
1413 
1414 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1415 typedef enum {
1416 	TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD,
1417 	TYPE_PASSPHRASE
1418 } eap_ctrl_req_type;
1419 
1420 static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type,
1421 			   const char *msg, size_t msglen)
1422 {
1423 	struct eap_peer_config *config;
1424 	char *field, *txt, *tmp;
1425 
1426 	if (sm == NULL)
1427 		return;
1428 	config = eap_get_config(sm);
1429 	if (config == NULL)
1430 		return;
1431 
1432 	switch (type) {
1433 	case TYPE_IDENTITY:
1434 		field = "IDENTITY";
1435 		txt = "Identity";
1436 		config->pending_req_identity++;
1437 		break;
1438 	case TYPE_PASSWORD:
1439 		field = "PASSWORD";
1440 		txt = "Password";
1441 		config->pending_req_password++;
1442 		break;
1443 	case TYPE_NEW_PASSWORD:
1444 		field = "NEW_PASSWORD";
1445 		txt = "New Password";
1446 		config->pending_req_new_password++;
1447 		break;
1448 	case TYPE_PIN:
1449 		field = "PIN";
1450 		txt = "PIN";
1451 		config->pending_req_pin++;
1452 		break;
1453 	case TYPE_OTP:
1454 		field = "OTP";
1455 		if (msg) {
1456 			tmp = os_malloc(msglen + 3);
1457 			if (tmp == NULL)
1458 				return;
1459 			tmp[0] = '[';
1460 			os_memcpy(tmp + 1, msg, msglen);
1461 			tmp[msglen + 1] = ']';
1462 			tmp[msglen + 2] = '\0';
1463 			txt = tmp;
1464 			os_free(config->pending_req_otp);
1465 			config->pending_req_otp = tmp;
1466 			config->pending_req_otp_len = msglen + 3;
1467 		} else {
1468 			if (config->pending_req_otp == NULL)
1469 				return;
1470 			txt = config->pending_req_otp;
1471 		}
1472 		break;
1473 	case TYPE_PASSPHRASE:
1474 		field = "PASSPHRASE";
1475 		txt = "Private key passphrase";
1476 		config->pending_req_passphrase++;
1477 		break;
1478 	default:
1479 		return;
1480 	}
1481 
1482 	if (sm->eapol_cb->eap_param_needed)
1483 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1484 }
1485 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1486 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1487 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1488 
1489 
1490 /**
1491  * eap_sm_request_identity - Request identity from user (ctrl_iface)
1492  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1493  *
1494  * EAP methods can call this function to request identity information for the
1495  * current network. This is normally called when the identity is not included
1496  * in the network configuration. The request will be sent to monitor programs
1497  * through the control interface.
1498  */
1499 void eap_sm_request_identity(struct eap_sm *sm)
1500 {
1501 	eap_sm_request(sm, TYPE_IDENTITY, NULL, 0);
1502 }
1503 
1504 
1505 /**
1506  * eap_sm_request_password - Request password from user (ctrl_iface)
1507  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1508  *
1509  * EAP methods can call this function to request password information for the
1510  * current network. This is normally called when the password is not included
1511  * in the network configuration. The request will be sent to monitor programs
1512  * through the control interface.
1513  */
1514 void eap_sm_request_password(struct eap_sm *sm)
1515 {
1516 	eap_sm_request(sm, TYPE_PASSWORD, NULL, 0);
1517 }
1518 
1519 
1520 /**
1521  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1522  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1523  *
1524  * EAP methods can call this function to request new password information for
1525  * the current network. This is normally called when the EAP method indicates
1526  * that the current password has expired and password change is required. The
1527  * request will be sent to monitor programs through the control interface.
1528  */
1529 void eap_sm_request_new_password(struct eap_sm *sm)
1530 {
1531 	eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0);
1532 }
1533 
1534 
1535 /**
1536  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1537  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1538  *
1539  * EAP methods can call this function to request SIM or smart card PIN
1540  * information for the current network. This is normally called when the PIN is
1541  * not included in the network configuration. The request will be sent to
1542  * monitor programs through the control interface.
1543  */
1544 void eap_sm_request_pin(struct eap_sm *sm)
1545 {
1546 	eap_sm_request(sm, TYPE_PIN, NULL, 0);
1547 }
1548 
1549 
1550 /**
1551  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1552  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1553  * @msg: Message to be displayed to the user when asking for OTP
1554  * @msg_len: Length of the user displayable message
1555  *
1556  * EAP methods can call this function to request open time password (OTP) for
1557  * the current network. The request will be sent to monitor programs through
1558  * the control interface.
1559  */
1560 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1561 {
1562 	eap_sm_request(sm, TYPE_OTP, msg, msg_len);
1563 }
1564 
1565 
1566 /**
1567  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1568  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1569  *
1570  * EAP methods can call this function to request passphrase for a private key
1571  * for the current network. This is normally called when the passphrase is not
1572  * included in the network configuration. The request will be sent to monitor
1573  * programs through the control interface.
1574  */
1575 void eap_sm_request_passphrase(struct eap_sm *sm)
1576 {
1577 	eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0);
1578 }
1579 
1580 
1581 /**
1582  * eap_sm_notify_ctrl_attached - Notification of attached monitor
1583  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1584  *
1585  * Notify EAP state machines that a monitor was attached to the control
1586  * interface to trigger re-sending of pending requests for user input.
1587  */
1588 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1589 {
1590 	struct eap_peer_config *config = eap_get_config(sm);
1591 
1592 	if (config == NULL)
1593 		return;
1594 
1595 	/* Re-send any pending requests for user data since a new control
1596 	 * interface was added. This handles cases where the EAP authentication
1597 	 * starts immediately after system startup when the user interface is
1598 	 * not yet running. */
1599 	if (config->pending_req_identity)
1600 		eap_sm_request_identity(sm);
1601 	if (config->pending_req_password)
1602 		eap_sm_request_password(sm);
1603 	if (config->pending_req_new_password)
1604 		eap_sm_request_new_password(sm);
1605 	if (config->pending_req_otp)
1606 		eap_sm_request_otp(sm, NULL, 0);
1607 	if (config->pending_req_pin)
1608 		eap_sm_request_pin(sm);
1609 	if (config->pending_req_passphrase)
1610 		eap_sm_request_passphrase(sm);
1611 }
1612 
1613 
1614 static int eap_allowed_phase2_type(int vendor, int type)
1615 {
1616 	if (vendor != EAP_VENDOR_IETF)
1617 		return 0;
1618 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1619 		type != EAP_TYPE_FAST;
1620 }
1621 
1622 
1623 /**
1624  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1625  * @name: EAP method name, e.g., MD5
1626  * @vendor: Buffer for returning EAP Vendor-Id
1627  * Returns: EAP method type or %EAP_TYPE_NONE if not found
1628  *
1629  * This function maps EAP type names into EAP type numbers that are allowed for
1630  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1631  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1632  */
1633 u32 eap_get_phase2_type(const char *name, int *vendor)
1634 {
1635 	int v;
1636 	u8 type = eap_peer_get_type(name, &v);
1637 	if (eap_allowed_phase2_type(v, type)) {
1638 		*vendor = v;
1639 		return type;
1640 	}
1641 	*vendor = EAP_VENDOR_IETF;
1642 	return EAP_TYPE_NONE;
1643 }
1644 
1645 
1646 /**
1647  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1648  * @config: Pointer to a network configuration
1649  * @count: Pointer to a variable to be filled with number of returned EAP types
1650  * Returns: Pointer to allocated type list or %NULL on failure
1651  *
1652  * This function generates an array of allowed EAP phase 2 (tunneled) types for
1653  * the given network configuration.
1654  */
1655 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1656 					      size_t *count)
1657 {
1658 	struct eap_method_type *buf;
1659 	u32 method;
1660 	int vendor;
1661 	size_t mcount;
1662 	const struct eap_method *methods, *m;
1663 
1664 	methods = eap_peer_get_methods(&mcount);
1665 	if (methods == NULL)
1666 		return NULL;
1667 	*count = 0;
1668 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1669 	if (buf == NULL)
1670 		return NULL;
1671 
1672 	for (m = methods; m; m = m->next) {
1673 		vendor = m->vendor;
1674 		method = m->method;
1675 		if (eap_allowed_phase2_type(vendor, method)) {
1676 			if (vendor == EAP_VENDOR_IETF &&
1677 			    method == EAP_TYPE_TLS && config &&
1678 			    config->private_key2 == NULL)
1679 				continue;
1680 			buf[*count].vendor = vendor;
1681 			buf[*count].method = method;
1682 			(*count)++;
1683 		}
1684 	}
1685 
1686 	return buf;
1687 }
1688 
1689 
1690 /**
1691  * eap_set_fast_reauth - Update fast_reauth setting
1692  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1693  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1694  */
1695 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1696 {
1697 	sm->fast_reauth = enabled;
1698 }
1699 
1700 
1701 /**
1702  * eap_set_workaround - Update EAP workarounds setting
1703  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1704  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1705  */
1706 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1707 {
1708 	sm->workaround = workaround;
1709 }
1710 
1711 
1712 /**
1713  * eap_get_config - Get current network configuration
1714  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1715  * Returns: Pointer to the current network configuration or %NULL if not found
1716  *
1717  * EAP peer methods should avoid using this function if they can use other
1718  * access functions, like eap_get_config_identity() and
1719  * eap_get_config_password(), that do not require direct access to
1720  * struct eap_peer_config.
1721  */
1722 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1723 {
1724 	return sm->eapol_cb->get_config(sm->eapol_ctx);
1725 }
1726 
1727 
1728 /**
1729  * eap_get_config_identity - Get identity from the network configuration
1730  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1731  * @len: Buffer for the length of the identity
1732  * Returns: Pointer to the identity or %NULL if not found
1733  */
1734 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1735 {
1736 	struct eap_peer_config *config = eap_get_config(sm);
1737 	if (config == NULL)
1738 		return NULL;
1739 	*len = config->identity_len;
1740 	return config->identity;
1741 }
1742 
1743 
1744 /**
1745  * eap_get_config_password - Get password from the network configuration
1746  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1747  * @len: Buffer for the length of the password
1748  * Returns: Pointer to the password or %NULL if not found
1749  */
1750 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1751 {
1752 	struct eap_peer_config *config = eap_get_config(sm);
1753 	if (config == NULL)
1754 		return NULL;
1755 	*len = config->password_len;
1756 	return config->password;
1757 }
1758 
1759 
1760 /**
1761  * eap_get_config_password2 - Get password from the network configuration
1762  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1763  * @len: Buffer for the length of the password
1764  * @hash: Buffer for returning whether the password is stored as a
1765  * NtPasswordHash instead of plaintext password; can be %NULL if this
1766  * information is not needed
1767  * Returns: Pointer to the password or %NULL if not found
1768  */
1769 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1770 {
1771 	struct eap_peer_config *config = eap_get_config(sm);
1772 	if (config == NULL)
1773 		return NULL;
1774 	*len = config->password_len;
1775 	if (hash)
1776 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
1777 	return config->password;
1778 }
1779 
1780 
1781 /**
1782  * eap_get_config_new_password - Get new password from network configuration
1783  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1784  * @len: Buffer for the length of the new password
1785  * Returns: Pointer to the new password or %NULL if not found
1786  */
1787 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
1788 {
1789 	struct eap_peer_config *config = eap_get_config(sm);
1790 	if (config == NULL)
1791 		return NULL;
1792 	*len = config->new_password_len;
1793 	return config->new_password;
1794 }
1795 
1796 
1797 /**
1798  * eap_get_config_otp - Get one-time password from the network configuration
1799  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1800  * @len: Buffer for the length of the one-time password
1801  * Returns: Pointer to the one-time password or %NULL if not found
1802  */
1803 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
1804 {
1805 	struct eap_peer_config *config = eap_get_config(sm);
1806 	if (config == NULL)
1807 		return NULL;
1808 	*len = config->otp_len;
1809 	return config->otp;
1810 }
1811 
1812 
1813 /**
1814  * eap_clear_config_otp - Clear used one-time password
1815  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1816  *
1817  * This function clears a used one-time password (OTP) from the current network
1818  * configuration. This should be called when the OTP has been used and is not
1819  * needed anymore.
1820  */
1821 void eap_clear_config_otp(struct eap_sm *sm)
1822 {
1823 	struct eap_peer_config *config = eap_get_config(sm);
1824 	if (config == NULL)
1825 		return;
1826 	os_memset(config->otp, 0, config->otp_len);
1827 	os_free(config->otp);
1828 	config->otp = NULL;
1829 	config->otp_len = 0;
1830 }
1831 
1832 
1833 /**
1834  * eap_get_config_phase1 - Get phase1 data from the network configuration
1835  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1836  * Returns: Pointer to the phase1 data or %NULL if not found
1837  */
1838 const char * eap_get_config_phase1(struct eap_sm *sm)
1839 {
1840 	struct eap_peer_config *config = eap_get_config(sm);
1841 	if (config == NULL)
1842 		return NULL;
1843 	return config->phase1;
1844 }
1845 
1846 
1847 /**
1848  * eap_get_config_phase2 - Get phase2 data from the network configuration
1849  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1850  * Returns: Pointer to the phase1 data or %NULL if not found
1851  */
1852 const char * eap_get_config_phase2(struct eap_sm *sm)
1853 {
1854 	struct eap_peer_config *config = eap_get_config(sm);
1855 	if (config == NULL)
1856 		return NULL;
1857 	return config->phase2;
1858 }
1859 
1860 
1861 /**
1862  * eap_key_available - Get key availability (eapKeyAvailable variable)
1863  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1864  * Returns: 1 if EAP keying material is available, 0 if not
1865  */
1866 int eap_key_available(struct eap_sm *sm)
1867 {
1868 	return sm ? sm->eapKeyAvailable : 0;
1869 }
1870 
1871 
1872 /**
1873  * eap_notify_success - Notify EAP state machine about external success trigger
1874  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1875  *
1876  * This function is called when external event, e.g., successful completion of
1877  * WPA-PSK key handshake, is indicating that EAP state machine should move to
1878  * success state. This is mainly used with security modes that do not use EAP
1879  * state machine (e.g., WPA-PSK).
1880  */
1881 void eap_notify_success(struct eap_sm *sm)
1882 {
1883 	if (sm) {
1884 		sm->decision = DECISION_COND_SUCC;
1885 		sm->EAP_state = EAP_SUCCESS;
1886 	}
1887 }
1888 
1889 
1890 /**
1891  * eap_notify_lower_layer_success - Notification of lower layer success
1892  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1893  *
1894  * Notify EAP state machines that a lower layer has detected a successful
1895  * authentication. This is used to recover from dropped EAP-Success messages.
1896  */
1897 void eap_notify_lower_layer_success(struct eap_sm *sm)
1898 {
1899 	if (sm == NULL)
1900 		return;
1901 
1902 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
1903 	    sm->decision == DECISION_FAIL ||
1904 	    (sm->methodState != METHOD_MAY_CONT &&
1905 	     sm->methodState != METHOD_DONE))
1906 		return;
1907 
1908 	if (sm->eapKeyData != NULL)
1909 		sm->eapKeyAvailable = TRUE;
1910 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1911 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1912 		"EAP authentication completed successfully (based on lower "
1913 		"layer success)");
1914 }
1915 
1916 
1917 /**
1918  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
1919  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1920  * @len: Pointer to variable that will be set to number of bytes in the key
1921  * Returns: Pointer to the EAP keying data or %NULL on failure
1922  *
1923  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
1924  * key is available only after a successful authentication. EAP state machine
1925  * continues to manage the key data and the caller must not change or free the
1926  * returned data.
1927  */
1928 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
1929 {
1930 	if (sm == NULL || sm->eapKeyData == NULL) {
1931 		*len = 0;
1932 		return NULL;
1933 	}
1934 
1935 	*len = sm->eapKeyDataLen;
1936 	return sm->eapKeyData;
1937 }
1938 
1939 
1940 /**
1941  * eap_get_eapKeyData - Get EAP response data
1942  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1943  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
1944  *
1945  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
1946  * available when EAP state machine has processed an incoming EAP request. The
1947  * EAP state machine does not maintain a reference to the response after this
1948  * function is called and the caller is responsible for freeing the data.
1949  */
1950 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
1951 {
1952 	struct wpabuf *resp;
1953 
1954 	if (sm == NULL || sm->eapRespData == NULL)
1955 		return NULL;
1956 
1957 	resp = sm->eapRespData;
1958 	sm->eapRespData = NULL;
1959 
1960 	return resp;
1961 }
1962 
1963 
1964 /**
1965  * eap_sm_register_scard_ctx - Notification of smart card context
1966  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1967  * @ctx: Context data for smart card operations
1968  *
1969  * Notify EAP state machines of context data for smart card operations. This
1970  * context data will be used as a parameter for scard_*() functions.
1971  */
1972 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
1973 {
1974 	if (sm)
1975 		sm->scard_ctx = ctx;
1976 }
1977 
1978 
1979 /**
1980  * eap_set_config_blob - Set or add a named configuration blob
1981  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1982  * @blob: New value for the blob
1983  *
1984  * Adds a new configuration blob or replaces the current value of an existing
1985  * blob.
1986  */
1987 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
1988 {
1989 #ifndef CONFIG_NO_CONFIG_BLOBS
1990 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
1991 #endif /* CONFIG_NO_CONFIG_BLOBS */
1992 }
1993 
1994 
1995 /**
1996  * eap_get_config_blob - Get a named configuration blob
1997  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1998  * @name: Name of the blob
1999  * Returns: Pointer to blob data or %NULL if not found
2000  */
2001 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2002 						   const char *name)
2003 {
2004 #ifndef CONFIG_NO_CONFIG_BLOBS
2005 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2006 #else /* CONFIG_NO_CONFIG_BLOBS */
2007 	return NULL;
2008 #endif /* CONFIG_NO_CONFIG_BLOBS */
2009 }
2010 
2011 
2012 /**
2013  * eap_set_force_disabled - Set force_disabled flag
2014  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2015  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2016  *
2017  * This function is used to force EAP state machine to be disabled when it is
2018  * not in use (e.g., with WPA-PSK or plaintext connections).
2019  */
2020 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2021 {
2022 	sm->force_disabled = disabled;
2023 }
2024 
2025 
2026  /**
2027  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2028  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2029  *
2030  * An EAP method can perform a pending operation (e.g., to get a response from
2031  * an external process). Once the response is available, this function can be
2032  * used to request EAPOL state machine to retry delivering the previously
2033  * received (and still unanswered) EAP request to EAP state machine.
2034  */
2035 void eap_notify_pending(struct eap_sm *sm)
2036 {
2037 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2038 }
2039 
2040 
2041 /**
2042  * eap_invalidate_cached_session - Mark cached session data invalid
2043  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2044  */
2045 void eap_invalidate_cached_session(struct eap_sm *sm)
2046 {
2047 	if (sm)
2048 		eap_deinit_prev_method(sm, "invalidate");
2049 }
2050 
2051 
2052 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2053 {
2054 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2055 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2056 		return 0; /* Not a WPS Enrollee */
2057 
2058 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2059 		return 0; /* Not using PBC */
2060 
2061 	return 1;
2062 }
2063 
2064 
2065 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2066 {
2067 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2068 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2069 		return 0; /* Not a WPS Enrollee */
2070 
2071 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2072 		return 0; /* Not using PIN */
2073 
2074 	return 1;
2075 }
2076