xref: /dragonfly/contrib/xz/src/liblzma/check/sha256.c (revision 279dd846)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       sha256.c
4 /// \brief      SHA-256
5 ///
6 /// \todo       Crypto++ has x86 ASM optimizations. They use SSE so if they
7 ///             are imported to liblzma, SSE instructions need to be used
8 ///             conditionally to keep the code working on older boxes.
9 //
10 //  This code is based on the code found from 7-Zip, which has a modified
11 //  version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
12 //  The code was modified a little to fit into liblzma.
13 //
14 //  Authors:    Kevin Springle
15 //              Wei Dai
16 //              Igor Pavlov
17 //              Lasse Collin
18 //
19 //  This file has been put into the public domain.
20 //  You can do whatever you want with this file.
21 //
22 ///////////////////////////////////////////////////////////////////////////////
23 
24 // Avoid bogus warnings in transform().
25 #if (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __GNUC__ > 4
26 #	pragma GCC diagnostic ignored "-Wuninitialized"
27 #endif
28 
29 #include "check.h"
30 
31 // At least on x86, GCC is able to optimize this to a rotate instruction.
32 #define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount)))
33 
34 #define blk0(i) (W[i] = data[i])
35 #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
36 		+ s0(W[(i - 15) & 15]))
37 
38 #define Ch(x, y, z) (z ^ (x & (y ^ z)))
39 #define Maj(x, y, z) ((x & y) | (z & (x | y)))
40 
41 #define a(i) T[(0 - i) & 7]
42 #define b(i) T[(1 - i) & 7]
43 #define c(i) T[(2 - i) & 7]
44 #define d(i) T[(3 - i) & 7]
45 #define e(i) T[(4 - i) & 7]
46 #define f(i) T[(5 - i) & 7]
47 #define g(i) T[(6 - i) & 7]
48 #define h(i) T[(7 - i) & 7]
49 
50 #define R(i) \
51 	h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] \
52 		+ (j ? blk2(i) : blk0(i)); \
53 	d(i) += h(i); \
54 	h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
55 
56 #define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22))
57 #define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25))
58 #define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3))
59 #define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10))
60 
61 
62 static const uint32_t SHA256_K[64] = {
63 	0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
64 	0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
65 	0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
66 	0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
67 	0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
68 	0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
69 	0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
70 	0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
71 	0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
72 	0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
73 	0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
74 	0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
75 	0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
76 	0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
77 	0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
78 	0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
79 };
80 
81 
82 static void
83 transform(uint32_t state[8], const uint32_t data[16])
84 {
85 	uint32_t W[16];
86 	uint32_t T[8];
87 
88 	// Copy state[] to working vars.
89 	memcpy(T, state, sizeof(T));
90 
91 	// 64 operations, partially loop unrolled
92 	for (unsigned int j = 0; j < 64; j += 16) {
93 		R( 0); R( 1); R( 2); R( 3);
94 		R( 4); R( 5); R( 6); R( 7);
95 		R( 8); R( 9); R(10); R(11);
96 		R(12); R(13); R(14); R(15);
97 	}
98 
99 	// Add the working vars back into state[].
100 	state[0] += a(0);
101 	state[1] += b(0);
102 	state[2] += c(0);
103 	state[3] += d(0);
104 	state[4] += e(0);
105 	state[5] += f(0);
106 	state[6] += g(0);
107 	state[7] += h(0);
108 }
109 
110 
111 static void
112 process(lzma_check_state *check)
113 {
114 #ifdef WORDS_BIGENDIAN
115 	transform(check->state.sha256.state, check->buffer.u32);
116 
117 #else
118 	uint32_t data[16];
119 
120 	for (size_t i = 0; i < 16; ++i)
121 		data[i] = bswap32(check->buffer.u32[i]);
122 
123 	transform(check->state.sha256.state, data);
124 #endif
125 
126 	return;
127 }
128 
129 
130 extern void
131 lzma_sha256_init(lzma_check_state *check)
132 {
133 	static const uint32_t s[8] = {
134 		0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
135 		0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
136 	};
137 
138 	memcpy(check->state.sha256.state, s, sizeof(s));
139 	check->state.sha256.size = 0;
140 
141 	return;
142 }
143 
144 
145 extern void
146 lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
147 {
148 	// Copy the input data into a properly aligned temporary buffer.
149 	// This way we can be called with arbitrarily sized buffers
150 	// (no need to be multiple of 64 bytes), and the code works also
151 	// on architectures that don't allow unaligned memory access.
152 	while (size > 0) {
153 		const size_t copy_start = check->state.sha256.size & 0x3F;
154 		size_t copy_size = 64 - copy_start;
155 		if (copy_size > size)
156 			copy_size = size;
157 
158 		memcpy(check->buffer.u8 + copy_start, buf, copy_size);
159 
160 		buf += copy_size;
161 		size -= copy_size;
162 		check->state.sha256.size += copy_size;
163 
164 		if ((check->state.sha256.size & 0x3F) == 0)
165 			process(check);
166 	}
167 
168 	return;
169 }
170 
171 
172 extern void
173 lzma_sha256_finish(lzma_check_state *check)
174 {
175 	// Add padding as described in RFC 3174 (it describes SHA-1 but
176 	// the same padding style is used for SHA-256 too).
177 	size_t pos = check->state.sha256.size & 0x3F;
178 	check->buffer.u8[pos++] = 0x80;
179 
180 	while (pos != 64 - 8) {
181 		if (pos == 64) {
182 			process(check);
183 			pos = 0;
184 		}
185 
186 		check->buffer.u8[pos++] = 0x00;
187 	}
188 
189 	// Convert the message size from bytes to bits.
190 	check->state.sha256.size *= 8;
191 
192 	check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
193 
194 	process(check);
195 
196 	for (size_t i = 0; i < 8; ++i)
197 		check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
198 
199 	return;
200 }
201