1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       range_decoder.h
4 /// \brief      Range Decoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #ifndef LZMA_RANGE_DECODER_H
15 #define LZMA_RANGE_DECODER_H
16 
17 #include "range_common.h"
18 
19 
20 typedef struct {
21 	uint32_t range;
22 	uint32_t code;
23 	uint32_t init_bytes_left;
24 } lzma_range_decoder;
25 
26 
27 /// Reads the first five bytes to initialize the range decoder.
28 static inline bool
29 rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
30 		size_t *restrict in_pos, size_t in_size)
31 {
32 	while (rc->init_bytes_left > 0) {
33 		if (*in_pos == in_size)
34 			return false;
35 
36 		rc->code = (rc->code << 8) | in[*in_pos];
37 		++*in_pos;
38 		--rc->init_bytes_left;
39 	}
40 
41 	return true;
42 }
43 
44 
45 /// Makes local copies of range decoder and *in_pos variables. Doing this
46 /// improves speed significantly. The range decoder macros expect also
47 /// variables `in' and `in_size' to be defined.
48 #define rc_to_local(range_decoder, in_pos) \
49 	lzma_range_decoder rc = range_decoder; \
50 	size_t rc_in_pos = (in_pos); \
51 	uint32_t rc_bound
52 
53 
54 /// Stores the local copes back to the range decoder structure.
55 #define rc_from_local(range_decoder, in_pos) \
56 do { \
57 	range_decoder = rc; \
58 	in_pos = rc_in_pos; \
59 } while (0)
60 
61 
62 /// Resets the range decoder structure.
63 #define rc_reset(range_decoder) \
64 do { \
65 	(range_decoder).range = UINT32_MAX; \
66 	(range_decoder).code = 0; \
67 	(range_decoder).init_bytes_left = 5; \
68 } while (0)
69 
70 
71 /// When decoding has been properly finished, rc.code is always zero unless
72 /// the input stream is corrupt. So checking this can catch some corrupt
73 /// files especially if they don't have any other integrity check.
74 #define rc_is_finished(range_decoder) \
75 	((range_decoder).code == 0)
76 
77 
78 /// Read the next input byte if needed. If more input is needed but there is
79 /// no more input available, "goto out" is used to jump out of the main
80 /// decoder loop.
81 #define rc_normalize(seq) \
82 do { \
83 	if (rc.range < RC_TOP_VALUE) { \
84 		if (unlikely(rc_in_pos == in_size)) { \
85 			coder->sequence = seq; \
86 			goto out; \
87 		} \
88 		rc.range <<= RC_SHIFT_BITS; \
89 		rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \
90 	} \
91 } while (0)
92 
93 
94 /// Start decoding a bit. This must be used together with rc_update_0()
95 /// and rc_update_1():
96 ///
97 ///     rc_if_0(prob, seq) {
98 ///         rc_update_0(prob);
99 ///         // Do something
100 ///     } else {
101 ///         rc_update_1(prob);
102 ///         // Do something else
103 ///     }
104 ///
105 #define rc_if_0(prob, seq) \
106 	rc_normalize(seq); \
107 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
108 	if (rc.code < rc_bound)
109 
110 
111 /// Update the range decoder state and the used probability variable to
112 /// match a decoded bit of 0.
113 #define rc_update_0(prob) \
114 do { \
115 	rc.range = rc_bound; \
116 	prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
117 } while (0)
118 
119 
120 /// Update the range decoder state and the used probability variable to
121 /// match a decoded bit of 1.
122 #define rc_update_1(prob) \
123 do { \
124 	rc.range -= rc_bound; \
125 	rc.code -= rc_bound; \
126 	prob -= (prob) >> RC_MOVE_BITS; \
127 } while (0)
128 
129 
130 /// Decodes one bit and runs action0 or action1 depending on the decoded bit.
131 /// This macro is used as the last step in bittree reverse decoders since
132 /// those don't use "symbol" for anything else than indexing the probability
133 /// arrays.
134 #define rc_bit_last(prob, action0, action1, seq) \
135 do { \
136 	rc_if_0(prob, seq) { \
137 		rc_update_0(prob); \
138 		action0; \
139 	} else { \
140 		rc_update_1(prob); \
141 		action1; \
142 	} \
143 } while (0)
144 
145 
146 /// Decodes one bit, updates "symbol", and runs action0 or action1 depending
147 /// on the decoded bit.
148 #define rc_bit(prob, action0, action1, seq) \
149 	rc_bit_last(prob, \
150 		symbol <<= 1; action0, \
151 		symbol = (symbol << 1) + 1; action1, \
152 		seq);
153 
154 
155 /// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled
156 /// loops more readable because the code isn't littered with "case"
157 /// statements. On the other hand this also makes it less readable, since
158 /// spotting the places where the decoder loop may be restarted is less
159 /// obvious.
160 #define rc_bit_case(prob, action0, action1, seq) \
161 	case seq: rc_bit(prob, action0, action1, seq)
162 
163 
164 /// Decode a bit without using a probability.
165 #define rc_direct(dest, seq) \
166 do { \
167 	rc_normalize(seq); \
168 	rc.range >>= 1; \
169 	rc.code -= rc.range; \
170 	rc_bound = UINT32_C(0) - (rc.code >> 31); \
171 	rc.code += rc.range & rc_bound; \
172 	dest = (dest << 1) + (rc_bound + 1); \
173 } while (0)
174 
175 
176 // NOTE: No macros are provided for bittree decoding. It seems to be simpler
177 // to just write them open in the code.
178 
179 #endif
180