xref: /dragonfly/contrib/xz/src/xz/util.c (revision cf89a63b)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       util.c
4 /// \brief      Miscellaneous utility functions
5 //
6 //  Author:     Lasse Collin
7 //
8 //  This file has been put into the public domain.
9 //  You can do whatever you want with this file.
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #include "private.h"
14 #include <stdarg.h>
15 
16 
17 /// Buffers for uint64_to_str() and uint64_to_nicestr()
18 static char bufs[4][128];
19 
20 /// Thousand separator support in uint64_to_str() and uint64_to_nicestr()
21 static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
22 
23 
24 extern void *
25 xrealloc(void *ptr, size_t size)
26 {
27 	assert(size > 0);
28 
29 	ptr = realloc(ptr, size);
30 	if (ptr == NULL)
31 		message_fatal("%s", strerror(errno));
32 
33 	return ptr;
34 }
35 
36 
37 extern char *
38 xstrdup(const char *src)
39 {
40 	assert(src != NULL);
41 	const size_t size = strlen(src) + 1;
42 	char *dest = xmalloc(size);
43 	return memcpy(dest, src, size);
44 }
45 
46 
47 extern uint64_t
48 str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
49 {
50 	uint64_t result = 0;
51 
52 	// Skip blanks.
53 	while (*value == ' ' || *value == '\t')
54 		++value;
55 
56 	// Accept special value "max". Supporting "min" doesn't seem useful.
57 	if (strcmp(value, "max") == 0)
58 		return max;
59 
60 	if (*value < '0' || *value > '9')
61 		message_fatal(_("%s: Value is not a non-negative "
62 				"decimal integer"), value);
63 
64 	do {
65 		// Don't overflow.
66 		if (result > UINT64_MAX / 10)
67 			goto error;
68 
69 		result *= 10;
70 
71 		// Another overflow check
72 		const uint32_t add = *value - '0';
73 		if (UINT64_MAX - add < result)
74 			goto error;
75 
76 		result += add;
77 		++value;
78 	} while (*value >= '0' && *value <= '9');
79 
80 	if (*value != '\0') {
81 		// Look for suffix. Originally this supported both base-2
82 		// and base-10, but since there seems to be little need
83 		// for base-10 in this program, treat everything as base-2
84 		// and also be more relaxed about the case of the first
85 		// letter of the suffix.
86 		uint64_t multiplier = 0;
87 		if (*value == 'k' || *value == 'K')
88 			multiplier = UINT64_C(1) << 10;
89 		else if (*value == 'm' || *value == 'M')
90 			multiplier = UINT64_C(1) << 20;
91 		else if (*value == 'g' || *value == 'G')
92 			multiplier = UINT64_C(1) << 30;
93 
94 		++value;
95 
96 		// Allow also e.g. Ki, KiB, and KB.
97 		if (*value != '\0' && strcmp(value, "i") != 0
98 				&& strcmp(value, "iB") != 0
99 				&& strcmp(value, "B") != 0)
100 			multiplier = 0;
101 
102 		if (multiplier == 0) {
103 			message(V_ERROR, _("%s: Invalid multiplier suffix"),
104 					value - 1);
105 			message_fatal(_("Valid suffixes are `KiB' (2^10), "
106 					"`MiB' (2^20), and `GiB' (2^30)."));
107 		}
108 
109 		// Don't overflow here either.
110 		if (result > UINT64_MAX / multiplier)
111 			goto error;
112 
113 		result *= multiplier;
114 	}
115 
116 	if (result < min || result > max)
117 		goto error;
118 
119 	return result;
120 
121 error:
122 	message_fatal(_("Value of the option `%s' must be in the range "
123 				"[%" PRIu64 ", %" PRIu64 "]"),
124 				name, min, max);
125 }
126 
127 
128 extern uint64_t
129 round_up_to_mib(uint64_t n)
130 {
131 	return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
132 }
133 
134 
135 /// Check if thousand separator is supported. Run-time checking is easiest,
136 /// because it seems to be sometimes lacking even on POSIXish system.
137 static void
138 check_thousand_sep(uint32_t slot)
139 {
140 	if (thousand == UNKNOWN) {
141 		bufs[slot][0] = '\0';
142 		snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
143 		thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
144 	}
145 
146 	return;
147 }
148 
149 
150 extern const char *
151 uint64_to_str(uint64_t value, uint32_t slot)
152 {
153 	assert(slot < ARRAY_SIZE(bufs));
154 
155 	check_thousand_sep(slot);
156 
157 	if (thousand == WORKS)
158 		snprintf(bufs[slot], sizeof(bufs[slot]), "%'" PRIu64, value);
159 	else
160 		snprintf(bufs[slot], sizeof(bufs[slot]), "%" PRIu64, value);
161 
162 	return bufs[slot];
163 }
164 
165 
166 extern const char *
167 uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
168 		enum nicestr_unit unit_max, bool always_also_bytes,
169 		uint32_t slot)
170 {
171 	assert(unit_min <= unit_max);
172 	assert(unit_max <= NICESTR_TIB);
173 	assert(slot < ARRAY_SIZE(bufs));
174 
175 	check_thousand_sep(slot);
176 
177 	enum nicestr_unit unit = NICESTR_B;
178 	char *pos = bufs[slot];
179 	size_t left = sizeof(bufs[slot]);
180 
181 	if ((unit_min == NICESTR_B && value < 10000)
182 			|| unit_max == NICESTR_B) {
183 		// The value is shown as bytes.
184 		if (thousand == WORKS)
185 			my_snprintf(&pos, &left, "%'u", (unsigned int)value);
186 		else
187 			my_snprintf(&pos, &left, "%u", (unsigned int)value);
188 	} else {
189 		// Scale the value to a nicer unit. Unless unit_min and
190 		// unit_max limit us, we will show at most five significant
191 		// digits with one decimal place.
192 		double d = (double)(value);
193 		do {
194 			d /= 1024.0;
195 			++unit;
196 		} while (unit < unit_min || (d > 9999.9 && unit < unit_max));
197 
198 		if (thousand == WORKS)
199 			my_snprintf(&pos, &left, "%'.1f", d);
200 		else
201 			my_snprintf(&pos, &left, "%.1f", d);
202 	}
203 
204 	static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
205 	my_snprintf(&pos, &left, " %s", suffix[unit]);
206 
207 	if (always_also_bytes && value >= 10000) {
208 		if (thousand == WORKS)
209 			snprintf(pos, left, " (%'" PRIu64 " B)", value);
210 		else
211 			snprintf(pos, left, " (%" PRIu64 " B)", value);
212 	}
213 
214 	return bufs[slot];
215 }
216 
217 
218 extern void
219 my_snprintf(char **pos, size_t *left, const char *fmt, ...)
220 {
221 	va_list ap;
222 	va_start(ap, fmt);
223 	const int len = vsnprintf(*pos, *left, fmt, ap);
224 	va_end(ap);
225 
226 	// If an error occurred, we want the caller to think that the whole
227 	// buffer was used. This way no more data will be written to the
228 	// buffer. We don't need better error handling here, although it
229 	// is possible that the result looks garbage on the terminal if
230 	// e.g. an UTF-8 character gets split. That shouldn't (easily)
231 	// happen though, because the buffers used have some extra room.
232 	if (len < 0 || (size_t)(len) >= *left) {
233 		*left = 0;
234 	} else {
235 		*pos += len;
236 		*left -= len;
237 	}
238 
239 	return;
240 }
241 
242 
243 extern bool
244 is_empty_filename(const char *filename)
245 {
246 	if (filename[0] == '\0') {
247 		message_error(_("Empty filename, skipping"));
248 		return true;
249 	}
250 
251 	return false;
252 }
253 
254 
255 extern bool
256 is_tty_stdin(void)
257 {
258 	const bool ret = isatty(STDIN_FILENO);
259 
260 	if (ret)
261 		message_error(_("Compressed data cannot be read from "
262 				"a terminal"));
263 
264 	return ret;
265 }
266 
267 
268 extern bool
269 is_tty_stdout(void)
270 {
271 	const bool ret = isatty(STDOUT_FILENO);
272 
273 	if (ret)
274 		message_error(_("Compressed data cannot be written to "
275 				"a terminal"));
276 
277 	return ret;
278 }
279