xref: /dragonfly/contrib/zstd/lib/common/pool.c (revision 7d3e9a5b)
1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /* ======   Dependencies   ======= */
13 #include "zstd_deps.h" /* size_t */
14 #include "debug.h"     /* assert */
15 #include "zstd_internal.h"  /* ZSTD_customMalloc, ZSTD_customFree */
16 #include "pool.h"
17 
18 /* ======   Compiler specifics   ====== */
19 #if defined(_MSC_VER)
20 #  pragma warning(disable : 4204)        /* disable: C4204: non-constant aggregate initializer */
21 #endif
22 
23 
24 #ifdef ZSTD_MULTITHREAD
25 
26 #include "threading.h"   /* pthread adaptation */
27 
28 /* A job is a function and an opaque argument */
29 typedef struct POOL_job_s {
30     POOL_function function;
31     void *opaque;
32 } POOL_job;
33 
34 struct POOL_ctx_s {
35     ZSTD_customMem customMem;
36     /* Keep track of the threads */
37     ZSTD_pthread_t* threads;
38     size_t threadCapacity;
39     size_t threadLimit;
40 
41     /* The queue is a circular buffer */
42     POOL_job *queue;
43     size_t queueHead;
44     size_t queueTail;
45     size_t queueSize;
46 
47     /* The number of threads working on jobs */
48     size_t numThreadsBusy;
49     /* Indicates if the queue is empty */
50     int queueEmpty;
51 
52     /* The mutex protects the queue */
53     ZSTD_pthread_mutex_t queueMutex;
54     /* Condition variable for pushers to wait on when the queue is full */
55     ZSTD_pthread_cond_t queuePushCond;
56     /* Condition variables for poppers to wait on when the queue is empty */
57     ZSTD_pthread_cond_t queuePopCond;
58     /* Indicates if the queue is shutting down */
59     int shutdown;
60 };
61 
62 /* POOL_thread() :
63  * Work thread for the thread pool.
64  * Waits for jobs and executes them.
65  * @returns : NULL on failure else non-null.
66  */
67 static void* POOL_thread(void* opaque) {
68     POOL_ctx* const ctx = (POOL_ctx*)opaque;
69     if (!ctx) { return NULL; }
70     for (;;) {
71         /* Lock the mutex and wait for a non-empty queue or until shutdown */
72         ZSTD_pthread_mutex_lock(&ctx->queueMutex);
73 
74         while ( ctx->queueEmpty
75             || (ctx->numThreadsBusy >= ctx->threadLimit) ) {
76             if (ctx->shutdown) {
77                 /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
78                  * a few threads will be shutdown while !queueEmpty,
79                  * but enough threads will remain active to finish the queue */
80                 ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
81                 return opaque;
82             }
83             ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
84         }
85         /* Pop a job off the queue */
86         {   POOL_job const job = ctx->queue[ctx->queueHead];
87             ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
88             ctx->numThreadsBusy++;
89             ctx->queueEmpty = ctx->queueHead == ctx->queueTail;
90             /* Unlock the mutex, signal a pusher, and run the job */
91             ZSTD_pthread_cond_signal(&ctx->queuePushCond);
92             ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
93 
94             job.function(job.opaque);
95 
96             /* If the intended queue size was 0, signal after finishing job */
97             ZSTD_pthread_mutex_lock(&ctx->queueMutex);
98             ctx->numThreadsBusy--;
99             if (ctx->queueSize == 1) {
100                 ZSTD_pthread_cond_signal(&ctx->queuePushCond);
101             }
102             ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
103         }
104     }  /* for (;;) */
105     assert(0);  /* Unreachable */
106 }
107 
108 POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
109     return POOL_create (numThreads, 0);
110 }
111 
112 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
113     return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
114 }
115 
116 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
117                                ZSTD_customMem customMem) {
118     POOL_ctx* ctx;
119     /* Check parameters */
120     if (!numThreads) { return NULL; }
121     /* Allocate the context and zero initialize */
122     ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem);
123     if (!ctx) { return NULL; }
124     /* Initialize the job queue.
125      * It needs one extra space since one space is wasted to differentiate
126      * empty and full queues.
127      */
128     ctx->queueSize = queueSize + 1;
129     ctx->queue = (POOL_job*)ZSTD_customMalloc(ctx->queueSize * sizeof(POOL_job), customMem);
130     ctx->queueHead = 0;
131     ctx->queueTail = 0;
132     ctx->numThreadsBusy = 0;
133     ctx->queueEmpty = 1;
134     {
135         int error = 0;
136         error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
137         error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
138         error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
139         if (error) { POOL_free(ctx); return NULL; }
140     }
141     ctx->shutdown = 0;
142     /* Allocate space for the thread handles */
143     ctx->threads = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
144     ctx->threadCapacity = 0;
145     ctx->customMem = customMem;
146     /* Check for errors */
147     if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
148     /* Initialize the threads */
149     {   size_t i;
150         for (i = 0; i < numThreads; ++i) {
151             if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
152                 ctx->threadCapacity = i;
153                 POOL_free(ctx);
154                 return NULL;
155         }   }
156         ctx->threadCapacity = numThreads;
157         ctx->threadLimit = numThreads;
158     }
159     return ctx;
160 }
161 
162 /*! POOL_join() :
163     Shutdown the queue, wake any sleeping threads, and join all of the threads.
164 */
165 static void POOL_join(POOL_ctx* ctx) {
166     /* Shut down the queue */
167     ZSTD_pthread_mutex_lock(&ctx->queueMutex);
168     ctx->shutdown = 1;
169     ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
170     /* Wake up sleeping threads */
171     ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
172     ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
173     /* Join all of the threads */
174     {   size_t i;
175         for (i = 0; i < ctx->threadCapacity; ++i) {
176             ZSTD_pthread_join(ctx->threads[i], NULL);  /* note : could fail */
177     }   }
178 }
179 
180 void POOL_free(POOL_ctx *ctx) {
181     if (!ctx) { return; }
182     POOL_join(ctx);
183     ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
184     ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
185     ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
186     ZSTD_customFree(ctx->queue, ctx->customMem);
187     ZSTD_customFree(ctx->threads, ctx->customMem);
188     ZSTD_customFree(ctx, ctx->customMem);
189 }
190 
191 void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
192   POOL_free (pool);
193 }
194 
195 size_t POOL_sizeof(POOL_ctx *ctx) {
196     if (ctx==NULL) return 0;  /* supports sizeof NULL */
197     return sizeof(*ctx)
198         + ctx->queueSize * sizeof(POOL_job)
199         + ctx->threadCapacity * sizeof(ZSTD_pthread_t);
200 }
201 
202 
203 /* @return : 0 on success, 1 on error */
204 static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
205 {
206     if (numThreads <= ctx->threadCapacity) {
207         if (!numThreads) return 1;
208         ctx->threadLimit = numThreads;
209         return 0;
210     }
211     /* numThreads > threadCapacity */
212     {   ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
213         if (!threadPool) return 1;
214         /* replace existing thread pool */
215         ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
216         ZSTD_customFree(ctx->threads, ctx->customMem);
217         ctx->threads = threadPool;
218         /* Initialize additional threads */
219         {   size_t threadId;
220             for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
221                 if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
222                     ctx->threadCapacity = threadId;
223                     return 1;
224             }   }
225     }   }
226     /* successfully expanded */
227     ctx->threadCapacity = numThreads;
228     ctx->threadLimit = numThreads;
229     return 0;
230 }
231 
232 /* @return : 0 on success, 1 on error */
233 int POOL_resize(POOL_ctx* ctx, size_t numThreads)
234 {
235     int result;
236     if (ctx==NULL) return 1;
237     ZSTD_pthread_mutex_lock(&ctx->queueMutex);
238     result = POOL_resize_internal(ctx, numThreads);
239     ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
240     ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
241     return result;
242 }
243 
244 /**
245  * Returns 1 if the queue is full and 0 otherwise.
246  *
247  * When queueSize is 1 (pool was created with an intended queueSize of 0),
248  * then a queue is empty if there is a thread free _and_ no job is waiting.
249  */
250 static int isQueueFull(POOL_ctx const* ctx) {
251     if (ctx->queueSize > 1) {
252         return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
253     } else {
254         return (ctx->numThreadsBusy == ctx->threadLimit) ||
255                !ctx->queueEmpty;
256     }
257 }
258 
259 
260 static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
261 {
262     POOL_job const job = {function, opaque};
263     assert(ctx != NULL);
264     if (ctx->shutdown) return;
265 
266     ctx->queueEmpty = 0;
267     ctx->queue[ctx->queueTail] = job;
268     ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
269     ZSTD_pthread_cond_signal(&ctx->queuePopCond);
270 }
271 
272 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
273 {
274     assert(ctx != NULL);
275     ZSTD_pthread_mutex_lock(&ctx->queueMutex);
276     /* Wait until there is space in the queue for the new job */
277     while (isQueueFull(ctx) && (!ctx->shutdown)) {
278         ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
279     }
280     POOL_add_internal(ctx, function, opaque);
281     ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
282 }
283 
284 
285 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
286 {
287     assert(ctx != NULL);
288     ZSTD_pthread_mutex_lock(&ctx->queueMutex);
289     if (isQueueFull(ctx)) {
290         ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
291         return 0;
292     }
293     POOL_add_internal(ctx, function, opaque);
294     ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
295     return 1;
296 }
297 
298 
299 #else  /* ZSTD_MULTITHREAD  not defined */
300 
301 /* ========================== */
302 /* No multi-threading support */
303 /* ========================== */
304 
305 
306 /* We don't need any data, but if it is empty, malloc() might return NULL. */
307 struct POOL_ctx_s {
308     int dummy;
309 };
310 static POOL_ctx g_poolCtx;
311 
312 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
313     return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
314 }
315 
316 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) {
317     (void)numThreads;
318     (void)queueSize;
319     (void)customMem;
320     return &g_poolCtx;
321 }
322 
323 void POOL_free(POOL_ctx* ctx) {
324     assert(!ctx || ctx == &g_poolCtx);
325     (void)ctx;
326 }
327 
328 int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
329     (void)ctx; (void)numThreads;
330     return 0;
331 }
332 
333 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
334     (void)ctx;
335     function(opaque);
336 }
337 
338 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
339     (void)ctx;
340     function(opaque);
341     return 1;
342 }
343 
344 size_t POOL_sizeof(POOL_ctx* ctx) {
345     if (ctx==NULL) return 0;  /* supports sizeof NULL */
346     assert(ctx == &g_poolCtx);
347     return sizeof(*ctx);
348 }
349 
350 #endif  /* ZSTD_MULTITHREAD */
351