1 /* ******************************************************************
2  * Huffman encoder, part of New Generation Entropy library
3  * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
4  *
5  *  You can contact the author at :
6  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7  *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
8  *
9  * This source code is licensed under both the BSD-style license (found in the
10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11  * in the COPYING file in the root directory of this source tree).
12  * You may select, at your option, one of the above-listed licenses.
13 ****************************************************************** */
14 
15 /* **************************************************************
16 *  Compiler specifics
17 ****************************************************************/
18 #ifdef _MSC_VER    /* Visual Studio */
19 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
20 #endif
21 
22 
23 /* **************************************************************
24 *  Includes
25 ****************************************************************/
26 #include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
27 #include "../common/compiler.h"
28 #include "../common/bitstream.h"
29 #include "hist.h"
30 #define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
31 #include "../common/fse.h"        /* header compression */
32 #define HUF_STATIC_LINKING_ONLY
33 #include "../common/huf.h"
34 #include "../common/error_private.h"
35 
36 
37 /* **************************************************************
38 *  Error Management
39 ****************************************************************/
40 #define HUF_isError ERR_isError
41 #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
42 
43 
44 /* **************************************************************
45 *  Utils
46 ****************************************************************/
47 unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
48 {
49     return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
50 }
51 
52 
53 /* *******************************************************
54 *  HUF : Huffman block compression
55 *********************************************************/
56 /* HUF_compressWeights() :
57  * Same as FSE_compress(), but dedicated to huff0's weights compression.
58  * The use case needs much less stack memory.
59  * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
60  */
61 #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
62 static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
63 {
64     BYTE* const ostart = (BYTE*) dst;
65     BYTE* op = ostart;
66     BYTE* const oend = ostart + dstSize;
67 
68     unsigned maxSymbolValue = HUF_TABLELOG_MAX;
69     U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
70 
71     FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
72     U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
73 
74     unsigned count[HUF_TABLELOG_MAX+1];
75     S16 norm[HUF_TABLELOG_MAX+1];
76 
77     /* init conditions */
78     if (wtSize <= 1) return 0;  /* Not compressible */
79 
80     /* Scan input and build symbol stats */
81     {   unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
82         if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
83         if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
84     }
85 
86     tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
87     CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
88 
89     /* Write table description header */
90     {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
91         op += hSize;
92     }
93 
94     /* Compress */
95     CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
96     {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
97         if (cSize == 0) return 0;   /* not enough space for compressed data */
98         op += cSize;
99     }
100 
101     return (size_t)(op-ostart);
102 }
103 
104 
105 /*! HUF_writeCTable() :
106     `CTable` : Huffman tree to save, using huf representation.
107     @return : size of saved CTable */
108 size_t HUF_writeCTable (void* dst, size_t maxDstSize,
109                         const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
110 {
111     BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
112     BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
113     BYTE* op = (BYTE*)dst;
114     U32 n;
115 
116      /* check conditions */
117     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
118 
119     /* convert to weight */
120     bitsToWeight[0] = 0;
121     for (n=1; n<huffLog+1; n++)
122         bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
123     for (n=0; n<maxSymbolValue; n++)
124         huffWeight[n] = bitsToWeight[CTable[n].nbBits];
125 
126     /* attempt weights compression by FSE */
127     {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
128         if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
129             op[0] = (BYTE)hSize;
130             return hSize+1;
131     }   }
132 
133     /* write raw values as 4-bits (max : 15) */
134     if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
135     if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
136     op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
137     huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
138     for (n=0; n<maxSymbolValue; n+=2)
139         op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
140     return ((maxSymbolValue+1)/2) + 1;
141 }
142 
143 
144 size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
145 {
146     BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
147     U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
148     U32 tableLog = 0;
149     U32 nbSymbols = 0;
150 
151     /* get symbol weights */
152     CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
153     *hasZeroWeights = (rankVal[0] > 0);
154 
155     /* check result */
156     if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
157     if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
158 
159     /* Prepare base value per rank */
160     {   U32 n, nextRankStart = 0;
161         for (n=1; n<=tableLog; n++) {
162             U32 curr = nextRankStart;
163             nextRankStart += (rankVal[n] << (n-1));
164             rankVal[n] = curr;
165     }   }
166 
167     /* fill nbBits */
168     {   U32 n; for (n=0; n<nbSymbols; n++) {
169             const U32 w = huffWeight[n];
170             CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
171     }   }
172 
173     /* fill val */
174     {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
175         U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
176         { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
177         /* determine stating value per rank */
178         valPerRank[tableLog+1] = 0;   /* for w==0 */
179         {   U16 min = 0;
180             U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
181                 valPerRank[n] = min;     /* get starting value within each rank */
182                 min += nbPerRank[n];
183                 min >>= 1;
184         }   }
185         /* assign value within rank, symbol order */
186         { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
187     }
188 
189     *maxSymbolValuePtr = nbSymbols - 1;
190     return readSize;
191 }
192 
193 U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
194 {
195     const HUF_CElt* table = (const HUF_CElt*)symbolTable;
196     assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
197     return table[symbolValue].nbBits;
198 }
199 
200 
201 typedef struct nodeElt_s {
202     U32 count;
203     U16 parent;
204     BYTE byte;
205     BYTE nbBits;
206 } nodeElt;
207 
208 /**
209  * HUF_setMaxHeight():
210  * Enforces maxNbBits on the Huffman tree described in huffNode.
211  *
212  * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
213  * the tree to so that it is a valid canonical Huffman tree.
214  *
215  * @pre               The sum of the ranks of each symbol == 2^largestBits,
216  *                    where largestBits == huffNode[lastNonNull].nbBits.
217  * @post              The sum of the ranks of each symbol == 2^largestBits,
218  *                    where largestBits is the return value <= maxNbBits.
219  *
220  * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
221  * @param lastNonNull The symbol with the lowest count in the Huffman tree.
222  * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
223  *                    may not respect. After this function the Huffman tree will
224  *                    respect maxNbBits.
225  * @return            The maximum number of bits of the Huffman tree after adjustment,
226  *                    necessarily no more than maxNbBits.
227  */
228 static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
229 {
230     const U32 largestBits = huffNode[lastNonNull].nbBits;
231     /* early exit : no elt > maxNbBits, so the tree is already valid. */
232     if (largestBits <= maxNbBits) return largestBits;
233 
234     /* there are several too large elements (at least >= 2) */
235     {   int totalCost = 0;
236         const U32 baseCost = 1 << (largestBits - maxNbBits);
237         int n = (int)lastNonNull;
238 
239         /* Adjust any ranks > maxNbBits to maxNbBits.
240          * Compute totalCost, which is how far the sum of the ranks is
241          * we are over 2^largestBits after adjust the offending ranks.
242          */
243         while (huffNode[n].nbBits > maxNbBits) {
244             totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
245             huffNode[n].nbBits = (BYTE)maxNbBits;
246             n--;
247         }
248         /* n stops at huffNode[n].nbBits <= maxNbBits */
249         assert(huffNode[n].nbBits <= maxNbBits);
250         /* n end at index of smallest symbol using < maxNbBits */
251         while (huffNode[n].nbBits == maxNbBits) --n;
252 
253         /* renorm totalCost from 2^largestBits to 2^maxNbBits
254          * note : totalCost is necessarily a multiple of baseCost */
255         assert((totalCost & (baseCost - 1)) == 0);
256         totalCost >>= (largestBits - maxNbBits);
257         assert(totalCost > 0);
258 
259         /* repay normalized cost */
260         {   U32 const noSymbol = 0xF0F0F0F0;
261             U32 rankLast[HUF_TABLELOG_MAX+2];
262 
263             /* Get pos of last (smallest = lowest cum. count) symbol per rank */
264             ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
265             {   U32 currentNbBits = maxNbBits;
266                 int pos;
267                 for (pos=n ; pos >= 0; pos--) {
268                     if (huffNode[pos].nbBits >= currentNbBits) continue;
269                     currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
270                     rankLast[maxNbBits-currentNbBits] = (U32)pos;
271             }   }
272 
273             while (totalCost > 0) {
274                 /* Try to reduce the next power of 2 above totalCost because we
275                  * gain back half the rank.
276                  */
277                 U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
278                 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
279                     U32 const highPos = rankLast[nBitsToDecrease];
280                     U32 const lowPos = rankLast[nBitsToDecrease-1];
281                     if (highPos == noSymbol) continue;
282                     /* Decrease highPos if no symbols of lowPos or if it is
283                      * not cheaper to remove 2 lowPos than highPos.
284                      */
285                     if (lowPos == noSymbol) break;
286                     {   U32 const highTotal = huffNode[highPos].count;
287                         U32 const lowTotal = 2 * huffNode[lowPos].count;
288                         if (highTotal <= lowTotal) break;
289                 }   }
290                 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
291                 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
292                 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
293                 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
294                     nBitsToDecrease++;
295                 assert(rankLast[nBitsToDecrease] != noSymbol);
296                 /* Increase the number of bits to gain back half the rank cost. */
297                 totalCost -= 1 << (nBitsToDecrease-1);
298                 huffNode[rankLast[nBitsToDecrease]].nbBits++;
299 
300                 /* Fix up the new rank.
301                  * If the new rank was empty, this symbol is now its smallest.
302                  * Otherwise, this symbol will be the largest in the new rank so no adjustment.
303                  */
304                 if (rankLast[nBitsToDecrease-1] == noSymbol)
305                     rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
306                 /* Fix up the old rank.
307                  * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
308                  * it must be the only symbol in its rank, so the old rank now has no symbols.
309                  * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
310                  * the smallest node in the rank. If the previous position belongs to a different rank,
311                  * then the rank is now empty.
312                  */
313                 if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
314                     rankLast[nBitsToDecrease] = noSymbol;
315                 else {
316                     rankLast[nBitsToDecrease]--;
317                     if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
318                         rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
319                 }
320             }   /* while (totalCost > 0) */
321 
322             /* If we've removed too much weight, then we have to add it back.
323              * To avoid overshooting again, we only adjust the smallest rank.
324              * We take the largest nodes from the lowest rank 0 and move them
325              * to rank 1. There's guaranteed to be enough rank 0 symbols because
326              * TODO.
327              */
328             while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
329                 /* special case : no rank 1 symbol (using maxNbBits-1);
330                  * let's create one from largest rank 0 (using maxNbBits).
331                  */
332                 if (rankLast[1] == noSymbol) {
333                     while (huffNode[n].nbBits == maxNbBits) n--;
334                     huffNode[n+1].nbBits--;
335                     assert(n >= 0);
336                     rankLast[1] = (U32)(n+1);
337                     totalCost++;
338                     continue;
339                 }
340                 huffNode[ rankLast[1] + 1 ].nbBits--;
341                 rankLast[1]++;
342                 totalCost ++;
343             }
344         }   /* repay normalized cost */
345     }   /* there are several too large elements (at least >= 2) */
346 
347     return maxNbBits;
348 }
349 
350 typedef struct {
351     U32 base;
352     U32 curr;
353 } rankPos;
354 
355 typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
356 
357 #define RANK_POSITION_TABLE_SIZE 32
358 
359 typedef struct {
360   huffNodeTable huffNodeTbl;
361   rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
362 } HUF_buildCTable_wksp_tables;
363 
364 /**
365  * HUF_sort():
366  * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
367  *
368  * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
369  *                            Must have (maxSymbolValue + 1) entries.
370  * @param[in]  count          Histogram of the symbols.
371  * @param[in]  maxSymbolValue Maximum symbol value.
372  * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
373  */
374 static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
375 {
376     int n;
377     int const maxSymbolValue1 = (int)maxSymbolValue + 1;
378 
379     /* Compute base and set curr to base.
380      * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
381      * Then 2^lowerRank <= count[n]+1 <= 2^rank.
382      * We attribute each symbol to lowerRank's base value, because we want to know where
383      * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
384      */
385     ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
386     for (n = 0; n < maxSymbolValue1; ++n) {
387         U32 lowerRank = BIT_highbit32(count[n] + 1);
388         rankPosition[lowerRank].base++;
389     }
390     assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
391     for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
392         rankPosition[n-1].base += rankPosition[n].base;
393         rankPosition[n-1].curr = rankPosition[n-1].base;
394     }
395     /* Sort */
396     for (n = 0; n < maxSymbolValue1; ++n) {
397         U32 const c = count[n];
398         U32 const r = BIT_highbit32(c+1) + 1;
399         U32 pos = rankPosition[r].curr++;
400         /* Insert into the correct position in the rank.
401          * We have at most 256 symbols, so this insertion should be fine.
402          */
403         while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
404             huffNode[pos] = huffNode[pos-1];
405             pos--;
406         }
407         huffNode[pos].count = c;
408         huffNode[pos].byte  = (BYTE)n;
409     }
410 }
411 
412 
413 /** HUF_buildCTable_wksp() :
414  *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
415  *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
416  */
417 #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
418 
419 /* HUF_buildTree():
420  * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
421  *
422  * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
423  * @param maxSymbolValue  The maximum symbol value.
424  * @return                The smallest node in the Huffman tree (by count).
425  */
426 static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
427 {
428     nodeElt* const huffNode0 = huffNode - 1;
429     int nonNullRank;
430     int lowS, lowN;
431     int nodeNb = STARTNODE;
432     int n, nodeRoot;
433     /* init for parents */
434     nonNullRank = (int)maxSymbolValue;
435     while(huffNode[nonNullRank].count == 0) nonNullRank--;
436     lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
437     huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
438     huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
439     nodeNb++; lowS-=2;
440     for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
441     huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
442 
443     /* create parents */
444     while (nodeNb <= nodeRoot) {
445         int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
446         int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
447         huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
448         huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
449         nodeNb++;
450     }
451 
452     /* distribute weights (unlimited tree height) */
453     huffNode[nodeRoot].nbBits = 0;
454     for (n=nodeRoot-1; n>=STARTNODE; n--)
455         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
456     for (n=0; n<=nonNullRank; n++)
457         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
458 
459     return nonNullRank;
460 }
461 
462 /**
463  * HUF_buildCTableFromTree():
464  * Build the CTable given the Huffman tree in huffNode.
465  *
466  * @param[out] CTable         The output Huffman CTable.
467  * @param      huffNode       The Huffman tree.
468  * @param      nonNullRank    The last and smallest node in the Huffman tree.
469  * @param      maxSymbolValue The maximum symbol value.
470  * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
471  */
472 static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
473 {
474     /* fill result into ctable (val, nbBits) */
475     int n;
476     U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
477     U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
478     int const alphabetSize = (int)(maxSymbolValue + 1);
479     for (n=0; n<=nonNullRank; n++)
480         nbPerRank[huffNode[n].nbBits]++;
481     /* determine starting value per rank */
482     {   U16 min = 0;
483         for (n=(int)maxNbBits; n>0; n--) {
484             valPerRank[n] = min;      /* get starting value within each rank */
485             min += nbPerRank[n];
486             min >>= 1;
487     }   }
488     for (n=0; n<alphabetSize; n++)
489         CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
490     for (n=0; n<alphabetSize; n++)
491         CTable[n].val = valPerRank[CTable[n].nbBits]++;   /* assign value within rank, symbol order */
492 }
493 
494 size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
495 {
496     HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
497     nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
498     nodeElt* const huffNode = huffNode0+1;
499     int nonNullRank;
500 
501     /* safety checks */
502     if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
503     if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
504       return ERROR(workSpace_tooSmall);
505     if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
506     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
507       return ERROR(maxSymbolValue_tooLarge);
508     ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
509 
510     /* sort, decreasing order */
511     HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
512 
513     /* build tree */
514     nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
515 
516     /* enforce maxTableLog */
517     maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
518     if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
519 
520     HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
521 
522     return maxNbBits;
523 }
524 
525 size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
526 {
527     size_t nbBits = 0;
528     int s;
529     for (s = 0; s <= (int)maxSymbolValue; ++s) {
530         nbBits += CTable[s].nbBits * count[s];
531     }
532     return nbBits >> 3;
533 }
534 
535 int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
536   int bad = 0;
537   int s;
538   for (s = 0; s <= (int)maxSymbolValue; ++s) {
539     bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
540   }
541   return !bad;
542 }
543 
544 size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
545 
546 FORCE_INLINE_TEMPLATE void
547 HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
548 {
549     BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
550 }
551 
552 #define HUF_FLUSHBITS(s)  BIT_flushBits(s)
553 
554 #define HUF_FLUSHBITS_1(stream) \
555     if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
556 
557 #define HUF_FLUSHBITS_2(stream) \
558     if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
559 
560 FORCE_INLINE_TEMPLATE size_t
561 HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
562                                    const void* src, size_t srcSize,
563                                    const HUF_CElt* CTable)
564 {
565     const BYTE* ip = (const BYTE*) src;
566     BYTE* const ostart = (BYTE*)dst;
567     BYTE* const oend = ostart + dstSize;
568     BYTE* op = ostart;
569     size_t n;
570     BIT_CStream_t bitC;
571 
572     /* init */
573     if (dstSize < 8) return 0;   /* not enough space to compress */
574     { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
575       if (HUF_isError(initErr)) return 0; }
576 
577     n = srcSize & ~3;  /* join to mod 4 */
578     switch (srcSize & 3)
579     {
580         case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
581                  HUF_FLUSHBITS_2(&bitC);
582 		 /* fall-through */
583         case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
584                  HUF_FLUSHBITS_1(&bitC);
585 		 /* fall-through */
586         case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
587                  HUF_FLUSHBITS(&bitC);
588 		 /* fall-through */
589         case 0 : /* fall-through */
590         default: break;
591     }
592 
593     for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
594         HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
595         HUF_FLUSHBITS_1(&bitC);
596         HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
597         HUF_FLUSHBITS_2(&bitC);
598         HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
599         HUF_FLUSHBITS_1(&bitC);
600         HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
601         HUF_FLUSHBITS(&bitC);
602     }
603 
604     return BIT_closeCStream(&bitC);
605 }
606 
607 #if DYNAMIC_BMI2
608 
609 static TARGET_ATTRIBUTE("bmi2") size_t
610 HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
611                                    const void* src, size_t srcSize,
612                                    const HUF_CElt* CTable)
613 {
614     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
615 }
616 
617 static size_t
618 HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
619                                       const void* src, size_t srcSize,
620                                       const HUF_CElt* CTable)
621 {
622     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
623 }
624 
625 static size_t
626 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
627                               const void* src, size_t srcSize,
628                               const HUF_CElt* CTable, const int bmi2)
629 {
630     if (bmi2) {
631         return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
632     }
633     return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
634 }
635 
636 #else
637 
638 static size_t
639 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
640                               const void* src, size_t srcSize,
641                               const HUF_CElt* CTable, const int bmi2)
642 {
643     (void)bmi2;
644     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
645 }
646 
647 #endif
648 
649 size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
650 {
651     return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
652 }
653 
654 
655 static size_t
656 HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
657                               const void* src, size_t srcSize,
658                               const HUF_CElt* CTable, int bmi2)
659 {
660     size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
661     const BYTE* ip = (const BYTE*) src;
662     const BYTE* const iend = ip + srcSize;
663     BYTE* const ostart = (BYTE*) dst;
664     BYTE* const oend = ostart + dstSize;
665     BYTE* op = ostart;
666 
667     if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
668     if (srcSize < 12) return 0;   /* no saving possible : too small input */
669     op += 6;   /* jumpTable */
670 
671     assert(op <= oend);
672     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
673         if (cSize==0) return 0;
674         assert(cSize <= 65535);
675         MEM_writeLE16(ostart, (U16)cSize);
676         op += cSize;
677     }
678 
679     ip += segmentSize;
680     assert(op <= oend);
681     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
682         if (cSize==0) return 0;
683         assert(cSize <= 65535);
684         MEM_writeLE16(ostart+2, (U16)cSize);
685         op += cSize;
686     }
687 
688     ip += segmentSize;
689     assert(op <= oend);
690     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
691         if (cSize==0) return 0;
692         assert(cSize <= 65535);
693         MEM_writeLE16(ostart+4, (U16)cSize);
694         op += cSize;
695     }
696 
697     ip += segmentSize;
698     assert(op <= oend);
699     assert(ip <= iend);
700     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
701         if (cSize==0) return 0;
702         op += cSize;
703     }
704 
705     return (size_t)(op-ostart);
706 }
707 
708 size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
709 {
710     return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
711 }
712 
713 typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
714 
715 static size_t HUF_compressCTable_internal(
716                 BYTE* const ostart, BYTE* op, BYTE* const oend,
717                 const void* src, size_t srcSize,
718                 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
719 {
720     size_t const cSize = (nbStreams==HUF_singleStream) ?
721                          HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
722                          HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
723     if (HUF_isError(cSize)) { return cSize; }
724     if (cSize==0) { return 0; }   /* uncompressible */
725     op += cSize;
726     /* check compressibility */
727     assert(op >= ostart);
728     if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
729     return (size_t)(op-ostart);
730 }
731 
732 typedef struct {
733     unsigned count[HUF_SYMBOLVALUE_MAX + 1];
734     HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
735     HUF_buildCTable_wksp_tables buildCTable_wksp;
736 } HUF_compress_tables_t;
737 
738 /* HUF_compress_internal() :
739  * `workSpace_align4` must be aligned on 4-bytes boundaries,
740  * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
741 static size_t
742 HUF_compress_internal (void* dst, size_t dstSize,
743                  const void* src, size_t srcSize,
744                        unsigned maxSymbolValue, unsigned huffLog,
745                        HUF_nbStreams_e nbStreams,
746                        void* workSpace_align4, size_t wkspSize,
747                        HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
748                  const int bmi2)
749 {
750     HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
751     BYTE* const ostart = (BYTE*)dst;
752     BYTE* const oend = ostart + dstSize;
753     BYTE* op = ostart;
754 
755     HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
756     assert(((size_t)workSpace_align4 & 3) == 0);   /* must be aligned on 4-bytes boundaries */
757 
758     /* checks & inits */
759     if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
760     if (!srcSize) return 0;  /* Uncompressed */
761     if (!dstSize) return 0;  /* cannot fit anything within dst budget */
762     if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
763     if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
764     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
765     if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
766     if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
767 
768     /* Heuristic : If old table is valid, use it for small inputs */
769     if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
770         return HUF_compressCTable_internal(ostart, op, oend,
771                                            src, srcSize,
772                                            nbStreams, oldHufTable, bmi2);
773     }
774 
775     /* Scan input and build symbol stats */
776     {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
777         if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
778         if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
779     }
780 
781     /* Check validity of previous table */
782     if ( repeat
783       && *repeat == HUF_repeat_check
784       && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
785         *repeat = HUF_repeat_none;
786     }
787     /* Heuristic : use existing table for small inputs */
788     if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
789         return HUF_compressCTable_internal(ostart, op, oend,
790                                            src, srcSize,
791                                            nbStreams, oldHufTable, bmi2);
792     }
793 
794     /* Build Huffman Tree */
795     huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
796     {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
797                                             maxSymbolValue, huffLog,
798                                             &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
799         CHECK_F(maxBits);
800         huffLog = (U32)maxBits;
801         /* Zero unused symbols in CTable, so we can check it for validity */
802         ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
803                sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
804     }
805 
806     /* Write table description header */
807     {   CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
808         /* Check if using previous huffman table is beneficial */
809         if (repeat && *repeat != HUF_repeat_none) {
810             size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
811             size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
812             if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
813                 return HUF_compressCTable_internal(ostart, op, oend,
814                                                    src, srcSize,
815                                                    nbStreams, oldHufTable, bmi2);
816         }   }
817 
818         /* Use the new huffman table */
819         if (hSize + 12ul >= srcSize) { return 0; }
820         op += hSize;
821         if (repeat) { *repeat = HUF_repeat_none; }
822         if (oldHufTable)
823             ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
824     }
825     return HUF_compressCTable_internal(ostart, op, oend,
826                                        src, srcSize,
827                                        nbStreams, table->CTable, bmi2);
828 }
829 
830 
831 size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
832                       const void* src, size_t srcSize,
833                       unsigned maxSymbolValue, unsigned huffLog,
834                       void* workSpace, size_t wkspSize)
835 {
836     return HUF_compress_internal(dst, dstSize, src, srcSize,
837                                  maxSymbolValue, huffLog, HUF_singleStream,
838                                  workSpace, wkspSize,
839                                  NULL, NULL, 0, 0 /*bmi2*/);
840 }
841 
842 size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
843                       const void* src, size_t srcSize,
844                       unsigned maxSymbolValue, unsigned huffLog,
845                       void* workSpace, size_t wkspSize,
846                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
847 {
848     return HUF_compress_internal(dst, dstSize, src, srcSize,
849                                  maxSymbolValue, huffLog, HUF_singleStream,
850                                  workSpace, wkspSize, hufTable,
851                                  repeat, preferRepeat, bmi2);
852 }
853 
854 /* HUF_compress4X_repeat():
855  * compress input using 4 streams.
856  * provide workspace to generate compression tables */
857 size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
858                       const void* src, size_t srcSize,
859                       unsigned maxSymbolValue, unsigned huffLog,
860                       void* workSpace, size_t wkspSize)
861 {
862     return HUF_compress_internal(dst, dstSize, src, srcSize,
863                                  maxSymbolValue, huffLog, HUF_fourStreams,
864                                  workSpace, wkspSize,
865                                  NULL, NULL, 0, 0 /*bmi2*/);
866 }
867 
868 /* HUF_compress4X_repeat():
869  * compress input using 4 streams.
870  * re-use an existing huffman compression table */
871 size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
872                       const void* src, size_t srcSize,
873                       unsigned maxSymbolValue, unsigned huffLog,
874                       void* workSpace, size_t wkspSize,
875                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
876 {
877     return HUF_compress_internal(dst, dstSize, src, srcSize,
878                                  maxSymbolValue, huffLog, HUF_fourStreams,
879                                  workSpace, wkspSize,
880                                  hufTable, repeat, preferRepeat, bmi2);
881 }
882 
883 #ifndef ZSTD_NO_UNUSED_FUNCTIONS
884 /** HUF_buildCTable() :
885  * @return : maxNbBits
886  *  Note : count is used before tree is written, so they can safely overlap
887  */
888 size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
889 {
890     HUF_buildCTable_wksp_tables workspace;
891     return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
892 }
893 
894 size_t HUF_compress1X (void* dst, size_t dstSize,
895                  const void* src, size_t srcSize,
896                  unsigned maxSymbolValue, unsigned huffLog)
897 {
898     unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
899     return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
900 }
901 
902 size_t HUF_compress2 (void* dst, size_t dstSize,
903                 const void* src, size_t srcSize,
904                 unsigned maxSymbolValue, unsigned huffLog)
905 {
906     unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
907     return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
908 }
909 
910 size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
911 {
912     return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
913 }
914 #endif
915