xref: /dragonfly/crypto/libressl/crypto/bn/bn_gf2m.c (revision f5b1c8a1)
1 /* $OpenBSD: bn_gf2m.c,v 1.20 2015/06/11 15:55:28 jsing Exp $ */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * In addition, Sun covenants to all licensees who provide a reciprocal
13  * covenant with respect to their own patents if any, not to sue under
14  * current and future patent claims necessarily infringed by the making,
15  * using, practicing, selling, offering for sale and/or otherwise
16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
17  * provided that such covenant shall not apply:
18  *  1) for code that a licensee deletes from the ECC Code;
19  *  2) separates from the ECC Code; or
20  *  3) for infringements caused by:
21  *       i) the modification of the ECC Code or
22  *      ii) the combination of the ECC Code with other software or
23  *          devices where such combination causes the infringement.
24  *
25  * The software is originally written by Sheueling Chang Shantz and
26  * Douglas Stebila of Sun Microsystems Laboratories.
27  *
28  */
29 
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31  * and may be modified; but after modifications, the above covenant
32  * may no longer apply!  In such cases, the corresponding paragraph
33  * ["In addition, Sun covenants ... causes the infringement."] and
34  * this note can be edited out; but please keep the Sun copyright
35  * notice and attribution. */
36 
37 /* ====================================================================
38  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in
49  *    the documentation and/or other materials provided with the
50  *    distribution.
51  *
52  * 3. All advertising materials mentioning features or use of this
53  *    software must display the following acknowledgment:
54  *    "This product includes software developed by the OpenSSL Project
55  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56  *
57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58  *    endorse or promote products derived from this software without
59  *    prior written permission. For written permission, please contact
60  *    openssl-core@openssl.org.
61  *
62  * 5. Products derived from this software may not be called "OpenSSL"
63  *    nor may "OpenSSL" appear in their names without prior written
64  *    permission of the OpenSSL Project.
65  *
66  * 6. Redistributions of any form whatsoever must retain the following
67  *    acknowledgment:
68  *    "This product includes software developed by the OpenSSL Project
69  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82  * OF THE POSSIBILITY OF SUCH DAMAGE.
83  * ====================================================================
84  *
85  * This product includes cryptographic software written by Eric Young
86  * (eay@cryptsoft.com).  This product includes software written by Tim
87  * Hudson (tjh@cryptsoft.com).
88  *
89  */
90 
91 #include <limits.h>
92 #include <stdio.h>
93 
94 #include <openssl/opensslconf.h>
95 
96 #include <openssl/err.h>
97 
98 #include "bn_lcl.h"
99 
100 #ifndef OPENSSL_NO_EC2M
101 
102 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
103 #define MAX_ITERATIONS 50
104 
105 static const BN_ULONG SQR_tb[16] =
106 	{     0,     1,     4,     5,    16,    17,    20,    21,
107 64,    65,    68,    69,    80,    81,    84,    85 };
108 /* Platform-specific macros to accelerate squaring. */
109 #ifdef _LP64
110 #define SQR1(w) \
111     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
112     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
113     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
114     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
115 #define SQR0(w) \
116     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
117     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
118     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
119     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
120 #else
121 #define SQR1(w) \
122     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
123     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
124 #define SQR0(w) \
125     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
126     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
127 #endif
128 
129 #if !defined(OPENSSL_BN_ASM_GF2m)
130 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
131  * result is a polynomial r with degree < 2 * BN_BITS - 1
132  * The caller MUST ensure that the variables have the right amount
133  * of space allocated.
134  */
135 static void
136 bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
137 {
138 #ifndef _LP64
139 	BN_ULONG h, l, s;
140 	BN_ULONG tab[8], top2b = a >> 30;
141 	BN_ULONG a1, a2, a4;
142 
143 	a1 = a & (0x3FFFFFFF);
144 	a2 = a1 << 1;
145 	a4 = a2 << 1;
146 
147 	tab[0] = 0;
148 	tab[1] = a1;
149 	tab[2] = a2;
150 	tab[3] = a1 ^ a2;
151 	tab[4] = a4;
152 	tab[5] = a1 ^ a4;
153 	tab[6] = a2 ^ a4;
154 	tab[7] = a1 ^ a2 ^ a4;
155 
156 	s = tab[b & 0x7];
157 	l = s;
158 	s = tab[b >> 3 & 0x7];
159 	l ^= s << 3;
160 	h = s >> 29;
161 	s = tab[b >> 6 & 0x7];
162 	l ^= s <<  6;
163 	h ^= s >> 26;
164 	s = tab[b >> 9 & 0x7];
165 	l ^= s <<  9;
166 	h ^= s >> 23;
167 	s = tab[b >> 12 & 0x7];
168 	l ^= s << 12;
169 	h ^= s >> 20;
170 	s = tab[b >> 15 & 0x7];
171 	l ^= s << 15;
172 	h ^= s >> 17;
173 	s = tab[b >> 18 & 0x7];
174 	l ^= s << 18;
175 	h ^= s >> 14;
176 	s = tab[b >> 21 & 0x7];
177 	l ^= s << 21;
178 	h ^= s >> 11;
179 	s = tab[b >> 24 & 0x7];
180 	l ^= s << 24;
181 	h ^= s >>  8;
182 	s = tab[b >> 27 & 0x7];
183 	l ^= s << 27;
184 	h ^= s >>  5;
185 	s = tab[b >> 30];
186 	l ^= s << 30;
187 	h ^= s >> 2;
188 
189 	/* compensate for the top two bits of a */
190 	if (top2b & 01) {
191 		l ^= b << 30;
192 		h ^= b >> 2;
193 	}
194 	if (top2b & 02) {
195 		l ^= b << 31;
196 		h ^= b >> 1;
197 	}
198 
199 	*r1 = h;
200 	*r0 = l;
201 #else
202 	BN_ULONG h, l, s;
203 	BN_ULONG tab[16], top3b = a >> 61;
204 	BN_ULONG a1, a2, a4, a8;
205 
206 	a1 = a & (0x1FFFFFFFFFFFFFFFULL);
207 	a2 = a1 << 1;
208 	a4 = a2 << 1;
209 	a8 = a4 << 1;
210 
211 	tab[0] = 0;
212 	tab[1] = a1;
213 	tab[2] = a2;
214 	tab[3] = a1 ^ a2;
215 	tab[4] = a4;
216 	tab[5] = a1 ^ a4;
217 	tab[6] = a2 ^ a4;
218 	tab[7] = a1 ^ a2 ^ a4;
219 	tab[8] = a8;
220 	tab[9] = a1 ^ a8;
221 	tab[10] = a2 ^ a8;
222 	tab[11] = a1 ^ a2 ^ a8;
223 	tab[12] = a4 ^ a8;
224 	tab[13] = a1 ^ a4 ^ a8;
225 	tab[14] = a2 ^ a4 ^ a8;
226 	tab[15] = a1 ^ a2 ^ a4 ^ a8;
227 
228 	s = tab[b & 0xF];
229 	l = s;
230 	s = tab[b >> 4 & 0xF];
231 	l ^= s << 4;
232 	h = s >> 60;
233 	s = tab[b >> 8 & 0xF];
234 	l ^= s << 8;
235 	h ^= s >> 56;
236 	s = tab[b >> 12 & 0xF];
237 	l ^= s << 12;
238 	h ^= s >> 52;
239 	s = tab[b >> 16 & 0xF];
240 	l ^= s << 16;
241 	h ^= s >> 48;
242 	s = tab[b >> 20 & 0xF];
243 	l ^= s << 20;
244 	h ^= s >> 44;
245 	s = tab[b >> 24 & 0xF];
246 	l ^= s << 24;
247 	h ^= s >> 40;
248 	s = tab[b >> 28 & 0xF];
249 	l ^= s << 28;
250 	h ^= s >> 36;
251 	s = tab[b >> 32 & 0xF];
252 	l ^= s << 32;
253 	h ^= s >> 32;
254 	s = tab[b >> 36 & 0xF];
255 	l ^= s << 36;
256 	h ^= s >> 28;
257 	s = tab[b >> 40 & 0xF];
258 	l ^= s << 40;
259 	h ^= s >> 24;
260 	s = tab[b >> 44 & 0xF];
261 	l ^= s << 44;
262 	h ^= s >> 20;
263 	s = tab[b >> 48 & 0xF];
264 	l ^= s << 48;
265 	h ^= s >> 16;
266 	s = tab[b >> 52 & 0xF];
267 	l ^= s << 52;
268 	h ^= s >> 12;
269 	s = tab[b >> 56 & 0xF];
270 	l ^= s << 56;
271 	h ^= s >>  8;
272 	s = tab[b >> 60];
273 	l ^= s << 60;
274 	h ^= s >>  4;
275 
276 	/* compensate for the top three bits of a */
277 	if (top3b & 01) {
278 		l ^= b << 61;
279 		h ^= b >> 3;
280 	}
281 	if (top3b & 02) {
282 		l ^= b << 62;
283 		h ^= b >> 2;
284 	}
285 	if (top3b & 04) {
286 		l ^= b << 63;
287 		h ^= b >> 1;
288 	}
289 
290 	*r1 = h;
291 	*r0 = l;
292 #endif
293 }
294 
295 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
296  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
297  * The caller MUST ensure that the variables have the right amount
298  * of space allocated.
299  */
300 static void
301 bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
302     const BN_ULONG b1, const BN_ULONG b0)
303 {
304 	BN_ULONG m1, m0;
305 
306 	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
307 	bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
308 	bn_GF2m_mul_1x1(r + 1, r, a0, b0);
309 	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
310 	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
311 	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
312 	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
313 }
314 #else
315 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
316     BN_ULONG b0);
317 #endif
318 
319 /* Add polynomials a and b and store result in r; r could be a or b, a and b
320  * could be equal; r is the bitwise XOR of a and b.
321  */
322 int
323 BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
324 {
325 	int i;
326 	const BIGNUM *at, *bt;
327 
328 	bn_check_top(a);
329 	bn_check_top(b);
330 
331 	if (a->top < b->top) {
332 		at = b;
333 		bt = a;
334 	} else {
335 		at = a;
336 		bt = b;
337 	}
338 
339 	if (bn_wexpand(r, at->top) == NULL)
340 		return 0;
341 
342 	for (i = 0; i < bt->top; i++) {
343 		r->d[i] = at->d[i] ^ bt->d[i];
344 	}
345 	for (; i < at->top; i++) {
346 		r->d[i] = at->d[i];
347 	}
348 
349 	r->top = at->top;
350 	bn_correct_top(r);
351 
352 	return 1;
353 }
354 
355 
356 /* Some functions allow for representation of the irreducible polynomials
357  * as an int[], say p.  The irreducible f(t) is then of the form:
358  *     t^p[0] + t^p[1] + ... + t^p[k]
359  * where m = p[0] > p[1] > ... > p[k] = 0.
360  */
361 
362 
363 /* Performs modular reduction of a and store result in r.  r could be a. */
364 int
365 BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
366 {
367 	int j, k;
368 	int n, dN, d0, d1;
369 	BN_ULONG zz, *z;
370 
371 	bn_check_top(a);
372 
373 	if (!p[0]) {
374 		/* reduction mod 1 => return 0 */
375 		BN_zero(r);
376 		return 1;
377 	}
378 
379 	/* Since the algorithm does reduction in the r value, if a != r, copy
380 	 * the contents of a into r so we can do reduction in r.
381 	 */
382 	if (a != r) {
383 		if (!bn_wexpand(r, a->top))
384 			return 0;
385 		for (j = 0; j < a->top; j++) {
386 			r->d[j] = a->d[j];
387 		}
388 		r->top = a->top;
389 	}
390 	z = r->d;
391 
392 	/* start reduction */
393 	dN = p[0] / BN_BITS2;
394 	for (j = r->top - 1; j > dN; ) {
395 		zz = z[j];
396 		if (z[j] == 0) {
397 			j--;
398 			continue;
399 		}
400 		z[j] = 0;
401 
402 		for (k = 1; p[k] != 0; k++) {
403 			/* reducing component t^p[k] */
404 			n = p[0] - p[k];
405 			d0 = n % BN_BITS2;
406 			d1 = BN_BITS2 - d0;
407 			n /= BN_BITS2;
408 			z[j - n] ^= (zz >> d0);
409 			if (d0)
410 				z[j - n - 1] ^= (zz << d1);
411 		}
412 
413 		/* reducing component t^0 */
414 		n = dN;
415 		d0 = p[0] % BN_BITS2;
416 		d1 = BN_BITS2 - d0;
417 		z[j - n] ^= (zz >> d0);
418 		if (d0)
419 			z[j - n - 1] ^= (zz << d1);
420 	}
421 
422 	/* final round of reduction */
423 	while (j == dN) {
424 
425 		d0 = p[0] % BN_BITS2;
426 		zz = z[dN] >> d0;
427 		if (zz == 0)
428 			break;
429 		d1 = BN_BITS2 - d0;
430 
431 		/* clear up the top d1 bits */
432 		if (d0)
433 			z[dN] = (z[dN] << d1) >> d1;
434 		else
435 			z[dN] = 0;
436 		z[0] ^= zz; /* reduction t^0 component */
437 
438 		for (k = 1; p[k] != 0; k++) {
439 			BN_ULONG tmp_ulong;
440 
441 			/* reducing component t^p[k]*/
442 			n = p[k] / BN_BITS2;
443 			d0 = p[k] % BN_BITS2;
444 			d1 = BN_BITS2 - d0;
445 			z[n] ^= (zz << d0);
446 			tmp_ulong = zz >> d1;
447 			if (d0 && tmp_ulong)
448 				z[n + 1] ^= tmp_ulong;
449 		}
450 
451 
452 	}
453 
454 	bn_correct_top(r);
455 	return 1;
456 }
457 
458 /* Performs modular reduction of a by p and store result in r.  r could be a.
459  *
460  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
461  * function is only provided for convenience; for best performance, use the
462  * BN_GF2m_mod_arr function.
463  */
464 int
465 BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
466 {
467 	int ret = 0;
468 	int arr[6];
469 
470 	bn_check_top(a);
471 	bn_check_top(p);
472 	ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
473 	if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
474 		BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
475 		return 0;
476 	}
477 	ret = BN_GF2m_mod_arr(r, a, arr);
478 	bn_check_top(r);
479 	return ret;
480 }
481 
482 
483 /* Compute the product of two polynomials a and b, reduce modulo p, and store
484  * the result in r.  r could be a or b; a could be b.
485  */
486 int
487 BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
488     BN_CTX *ctx)
489 {
490 	int zlen, i, j, k, ret = 0;
491 	BIGNUM *s;
492 	BN_ULONG x1, x0, y1, y0, zz[4];
493 
494 	bn_check_top(a);
495 	bn_check_top(b);
496 
497 	if (a == b) {
498 		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
499 	}
500 
501 	BN_CTX_start(ctx);
502 	if ((s = BN_CTX_get(ctx)) == NULL)
503 		goto err;
504 
505 	zlen = a->top + b->top + 4;
506 	if (!bn_wexpand(s, zlen))
507 		goto err;
508 	s->top = zlen;
509 
510 	for (i = 0; i < zlen; i++)
511 		s->d[i] = 0;
512 
513 	for (j = 0; j < b->top; j += 2) {
514 		y0 = b->d[j];
515 		y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
516 		for (i = 0; i < a->top; i += 2) {
517 			x0 = a->d[i];
518 			x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
519 			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
520 			for (k = 0; k < 4; k++)
521 				s->d[i + j + k] ^= zz[k];
522 		}
523 	}
524 
525 	bn_correct_top(s);
526 	if (BN_GF2m_mod_arr(r, s, p))
527 		ret = 1;
528 	bn_check_top(r);
529 
530 err:
531 	BN_CTX_end(ctx);
532 	return ret;
533 }
534 
535 /* Compute the product of two polynomials a and b, reduce modulo p, and store
536  * the result in r.  r could be a or b; a could equal b.
537  *
538  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
539  * function is only provided for convenience; for best performance, use the
540  * BN_GF2m_mod_mul_arr function.
541  */
542 int
543 BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
544     BN_CTX *ctx)
545 {
546 	int ret = 0;
547 	const int max = BN_num_bits(p) + 1;
548 	int *arr = NULL;
549 
550 	bn_check_top(a);
551 	bn_check_top(b);
552 	bn_check_top(p);
553 	if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
554 		goto err;
555 	ret = BN_GF2m_poly2arr(p, arr, max);
556 	if (!ret || ret > max) {
557 		BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
558 		goto err;
559 	}
560 	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
561 	bn_check_top(r);
562 
563 err:
564 	free(arr);
565 	return ret;
566 }
567 
568 
569 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
570 int
571 BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
572 {
573 	int i, ret = 0;
574 	BIGNUM *s;
575 
576 	bn_check_top(a);
577 	BN_CTX_start(ctx);
578 	if ((s = BN_CTX_get(ctx)) == NULL)
579 		goto err;
580 	if (!bn_wexpand(s, 2 * a->top))
581 		goto err;
582 
583 	for (i = a->top - 1; i >= 0; i--) {
584 		s->d[2 * i + 1] = SQR1(a->d[i]);
585 		s->d[2 * i] = SQR0(a->d[i]);
586 	}
587 
588 	s->top = 2 * a->top;
589 	bn_correct_top(s);
590 	if (!BN_GF2m_mod_arr(r, s, p))
591 		goto err;
592 	bn_check_top(r);
593 	ret = 1;
594 
595 err:
596 	BN_CTX_end(ctx);
597 	return ret;
598 }
599 
600 /* Square a, reduce the result mod p, and store it in a.  r could be a.
601  *
602  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
603  * function is only provided for convenience; for best performance, use the
604  * BN_GF2m_mod_sqr_arr function.
605  */
606 int
607 BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
608 {
609 	int ret = 0;
610 	const int max = BN_num_bits(p) + 1;
611 	int *arr = NULL;
612 
613 	bn_check_top(a);
614 	bn_check_top(p);
615 	if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
616 		goto err;
617 	ret = BN_GF2m_poly2arr(p, arr, max);
618 	if (!ret || ret > max) {
619 		BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
620 		goto err;
621 	}
622 	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
623 	bn_check_top(r);
624 
625 err:
626 	free(arr);
627 	return ret;
628 }
629 
630 
631 /* Invert a, reduce modulo p, and store the result in r. r could be a.
632  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
633  *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
634  *     of Elliptic Curve Cryptography Over Binary Fields".
635  */
636 int
637 BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
638 {
639 	BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
640 	int ret = 0;
641 
642 	bn_check_top(a);
643 	bn_check_top(p);
644 
645 	BN_CTX_start(ctx);
646 
647 	if ((b = BN_CTX_get(ctx)) == NULL)
648 		goto err;
649 	if ((c = BN_CTX_get(ctx)) == NULL)
650 		goto err;
651 	if ((u = BN_CTX_get(ctx)) == NULL)
652 		goto err;
653 	if ((v = BN_CTX_get(ctx)) == NULL)
654 		goto err;
655 
656 	if (!BN_GF2m_mod(u, a, p))
657 		goto err;
658 	if (BN_is_zero(u))
659 		goto err;
660 
661 	if (!BN_copy(v, p))
662 		goto err;
663 #if 0
664 	if (!BN_one(b))
665 		goto err;
666 
667 	while (1) {
668 		while (!BN_is_odd(u)) {
669 			if (BN_is_zero(u))
670 				goto err;
671 			if (!BN_rshift1(u, u))
672 				goto err;
673 			if (BN_is_odd(b)) {
674 				if (!BN_GF2m_add(b, b, p))
675 					goto err;
676 			}
677 			if (!BN_rshift1(b, b))
678 				goto err;
679 		}
680 
681 		if (BN_abs_is_word(u, 1))
682 			break;
683 
684 		if (BN_num_bits(u) < BN_num_bits(v)) {
685 			tmp = u;
686 			u = v;
687 			v = tmp;
688 			tmp = b;
689 			b = c;
690 			c = tmp;
691 		}
692 
693 		if (!BN_GF2m_add(u, u, v))
694 			goto err;
695 		if (!BN_GF2m_add(b, b, c))
696 			goto err;
697 	}
698 #else
699 	{
700 		int i,	ubits = BN_num_bits(u),
701 		vbits = BN_num_bits(v),	/* v is copy of p */
702 		top = p->top;
703 		BN_ULONG *udp, *bdp, *vdp, *cdp;
704 
705 		if (!bn_wexpand(u, top))
706                         goto err;
707 		udp = u->d;
708 		for (i = u->top; i < top; i++)
709 			udp[i] = 0;
710 		u->top = top;
711 		if (!bn_wexpand(b, top))
712                         goto err;
713 		bdp = b->d;
714 		bdp[0] = 1;
715 		for (i = 1; i < top; i++)
716 			bdp[i] = 0;
717 		b->top = top;
718 		if (!bn_wexpand(c, top))
719                         goto err;
720 		cdp = c->d;
721 		for (i = 0; i < top; i++)
722 			cdp[i] = 0;
723 		c->top = top;
724 		vdp = v->d;	/* It pays off to "cache" *->d pointers, because
725 				 * it allows optimizer to be more aggressive.
726 				 * But we don't have to "cache" p->d, because *p
727 				 * is declared 'const'... */
728 		while (1) {
729 			while (ubits && !(udp[0]&1)) {
730 				BN_ULONG u0, u1, b0, b1, mask;
731 
732 				u0 = udp[0];
733 				b0 = bdp[0];
734 				mask = (BN_ULONG)0 - (b0 & 1);
735 				b0  ^= p->d[0] & mask;
736 				for (i = 0; i < top - 1; i++) {
737 					u1 = udp[i + 1];
738 					udp[i] = ((u0 >> 1) |
739 					    (u1 << (BN_BITS2 - 1))) & BN_MASK2;
740 					u0 = u1;
741 					b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
742 					bdp[i] = ((b0 >> 1) |
743 					    (b1 << (BN_BITS2 - 1))) & BN_MASK2;
744 					b0 = b1;
745 				}
746 				udp[i] = u0 >> 1;
747 				bdp[i] = b0 >> 1;
748 				ubits--;
749 			}
750 
751 			if (ubits <= BN_BITS2) {
752 				/* See if poly was reducible. */
753 				if (udp[0] == 0)
754 					goto err;
755 				if (udp[0] == 1)
756 					break;
757 			}
758 
759 			if (ubits < vbits) {
760 				i = ubits;
761 				ubits = vbits;
762 				vbits = i;
763 				tmp = u;
764 				u = v;
765 				v = tmp;
766 				tmp = b;
767 				b = c;
768 				c = tmp;
769 				udp = vdp;
770 				vdp = v->d;
771 				bdp = cdp;
772 				cdp = c->d;
773 			}
774 			for (i = 0; i < top; i++) {
775 				udp[i] ^= vdp[i];
776 				bdp[i] ^= cdp[i];
777 			}
778 			if (ubits == vbits) {
779 				BN_ULONG ul;
780 				int utop = (ubits - 1) / BN_BITS2;
781 
782 				while ((ul = udp[utop]) == 0 && utop)
783 					utop--;
784 				ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
785 			}
786 		}
787 		bn_correct_top(b);
788 	}
789 #endif
790 
791 	if (!BN_copy(r, b))
792 		goto err;
793 	bn_check_top(r);
794 	ret = 1;
795 
796 err:
797 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
798 	bn_correct_top(c);
799 	bn_correct_top(u);
800 	bn_correct_top(v);
801 #endif
802 	BN_CTX_end(ctx);
803 	return ret;
804 }
805 
806 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
807  *
808  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
809  * function is only provided for convenience; for best performance, use the
810  * BN_GF2m_mod_inv function.
811  */
812 int
813 BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
814 {
815 	BIGNUM *field;
816 	int ret = 0;
817 
818 	bn_check_top(xx);
819 	BN_CTX_start(ctx);
820 	if ((field = BN_CTX_get(ctx)) == NULL)
821 		goto err;
822 	if (!BN_GF2m_arr2poly(p, field))
823 		goto err;
824 
825 	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
826 	bn_check_top(r);
827 
828 err:
829 	BN_CTX_end(ctx);
830 	return ret;
831 }
832 
833 
834 #ifndef OPENSSL_SUN_GF2M_DIV
835 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
836  * or y, x could equal y.
837  */
838 int
839 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
840     BN_CTX *ctx)
841 {
842 	BIGNUM *xinv = NULL;
843 	int ret = 0;
844 
845 	bn_check_top(y);
846 	bn_check_top(x);
847 	bn_check_top(p);
848 
849 	BN_CTX_start(ctx);
850 	if ((xinv = BN_CTX_get(ctx)) == NULL)
851 		goto err;
852 
853 	if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
854 		goto err;
855 	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
856 		goto err;
857 	bn_check_top(r);
858 	ret = 1;
859 
860 err:
861 	BN_CTX_end(ctx);
862 	return ret;
863 }
864 #else
865 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
866  * or y, x could equal y.
867  * Uses algorithm Modular_Division_GF(2^m) from
868  *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
869  *     the Great Divide".
870  */
871 int
872 BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p,
873     BN_CTX *ctx)
874 {
875 	BIGNUM *a, *b, *u, *v;
876 	int ret = 0;
877 
878 	bn_check_top(y);
879 	bn_check_top(x);
880 	bn_check_top(p);
881 
882 	BN_CTX_start(ctx);
883 
884 	if ((a = BN_CTX_get(ctx)) == NULL)
885 		goto err;
886 	if ((b = BN_CTX_get(ctx)) == NULL)
887 		goto err;
888 	if ((u = BN_CTX_get(ctx)) == NULL)
889 		goto err;
890 	if ((v = BN_CTX_get(ctx)) == NULL)
891 		goto err;
892 
893 	/* reduce x and y mod p */
894 	if (!BN_GF2m_mod(u, y, p))
895 		goto err;
896 	if (!BN_GF2m_mod(a, x, p))
897 		goto err;
898 	if (!BN_copy(b, p))
899 		goto err;
900 
901 	while (!BN_is_odd(a)) {
902 		if (!BN_rshift1(a, a))
903 			goto err;
904 		if (BN_is_odd(u))
905 			if (!BN_GF2m_add(u, u, p))
906 				goto err;
907 		if (!BN_rshift1(u, u))
908 			goto err;
909 	}
910 
911 	do {
912 		if (BN_GF2m_cmp(b, a) > 0) {
913 			if (!BN_GF2m_add(b, b, a))
914 				goto err;
915 			if (!BN_GF2m_add(v, v, u))
916 				goto err;
917 			do {
918 				if (!BN_rshift1(b, b))
919 					goto err;
920 				if (BN_is_odd(v))
921 					if (!BN_GF2m_add(v, v, p))
922 						goto err;
923 				if (!BN_rshift1(v, v))
924 					goto err;
925 			} while (!BN_is_odd(b));
926 		} else if (BN_abs_is_word(a, 1))
927 			break;
928 		else {
929 			if (!BN_GF2m_add(a, a, b))
930 				goto err;
931 			if (!BN_GF2m_add(u, u, v))
932 				goto err;
933 			do {
934 				if (!BN_rshift1(a, a))
935 					goto err;
936 				if (BN_is_odd(u))
937 					if (!BN_GF2m_add(u, u, p))
938 						goto err;
939 				if (!BN_rshift1(u, u))
940 					goto err;
941 			} while (!BN_is_odd(a));
942 		}
943 	} while (1);
944 
945 	if (!BN_copy(r, u))
946 		goto err;
947 	bn_check_top(r);
948 	ret = 1;
949 
950 err:
951 	BN_CTX_end(ctx);
952 	return ret;
953 }
954 #endif
955 
956 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
957  * or yy, xx could equal yy.
958  *
959  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
960  * function is only provided for convenience; for best performance, use the
961  * BN_GF2m_mod_div function.
962  */
963 int
964 BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
965     const int p[], BN_CTX *ctx)
966 {
967 	BIGNUM *field;
968 	int ret = 0;
969 
970 	bn_check_top(yy);
971 	bn_check_top(xx);
972 
973 	BN_CTX_start(ctx);
974 	if ((field = BN_CTX_get(ctx)) == NULL)
975 		goto err;
976 	if (!BN_GF2m_arr2poly(p, field))
977 		goto err;
978 
979 	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
980 	bn_check_top(r);
981 
982 err:
983 	BN_CTX_end(ctx);
984 	return ret;
985 }
986 
987 
988 /* Compute the bth power of a, reduce modulo p, and store
989  * the result in r.  r could be a.
990  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
991  */
992 int
993 BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[],
994     BN_CTX *ctx)
995 {
996 	int ret = 0, i, n;
997 	BIGNUM *u;
998 
999 	bn_check_top(a);
1000 	bn_check_top(b);
1001 
1002 	if (BN_is_zero(b))
1003 		return (BN_one(r));
1004 
1005 	if (BN_abs_is_word(b, 1))
1006 		return (BN_copy(r, a) != NULL);
1007 
1008 	BN_CTX_start(ctx);
1009 	if ((u = BN_CTX_get(ctx)) == NULL)
1010 		goto err;
1011 
1012 	if (!BN_GF2m_mod_arr(u, a, p))
1013 		goto err;
1014 
1015 	n = BN_num_bits(b) - 1;
1016 	for (i = n - 1; i >= 0; i--) {
1017 		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1018 			goto err;
1019 		if (BN_is_bit_set(b, i)) {
1020 			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1021 				goto err;
1022 		}
1023 	}
1024 	if (!BN_copy(r, u))
1025 		goto err;
1026 	bn_check_top(r);
1027 	ret = 1;
1028 
1029 err:
1030 	BN_CTX_end(ctx);
1031 	return ret;
1032 }
1033 
1034 /* Compute the bth power of a, reduce modulo p, and store
1035  * the result in r.  r could be a.
1036  *
1037  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
1038  * function is only provided for convenience; for best performance, use the
1039  * BN_GF2m_mod_exp_arr function.
1040  */
1041 int
1042 BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p,
1043     BN_CTX *ctx)
1044 {
1045 	int ret = 0;
1046 	const int max = BN_num_bits(p) + 1;
1047 	int *arr = NULL;
1048 
1049 	bn_check_top(a);
1050 	bn_check_top(b);
1051 	bn_check_top(p);
1052 	if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1053 		goto err;
1054 	ret = BN_GF2m_poly2arr(p, arr, max);
1055 	if (!ret || ret > max) {
1056 		BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1057 		goto err;
1058 	}
1059 	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1060 	bn_check_top(r);
1061 
1062 err:
1063 	free(arr);
1064 	return ret;
1065 }
1066 
1067 /* Compute the square root of a, reduce modulo p, and store
1068  * the result in r.  r could be a.
1069  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1070  */
1071 int
1072 BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
1073 {
1074 	int ret = 0;
1075 	BIGNUM *u;
1076 
1077 	bn_check_top(a);
1078 
1079 	if (!p[0]) {
1080 		/* reduction mod 1 => return 0 */
1081 		BN_zero(r);
1082 		return 1;
1083 	}
1084 
1085 	BN_CTX_start(ctx);
1086 	if ((u = BN_CTX_get(ctx)) == NULL)
1087 		goto err;
1088 
1089 	if (!BN_set_bit(u, p[0] - 1))
1090 		goto err;
1091 	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1092 	bn_check_top(r);
1093 
1094 err:
1095 	BN_CTX_end(ctx);
1096 	return ret;
1097 }
1098 
1099 /* Compute the square root of a, reduce modulo p, and store
1100  * the result in r.  r could be a.
1101  *
1102  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
1103  * function is only provided for convenience; for best performance, use the
1104  * BN_GF2m_mod_sqrt_arr function.
1105  */
1106 int
1107 BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1108 {
1109 	int ret = 0;
1110 	const int max = BN_num_bits(p) + 1;
1111 	int *arr = NULL;
1112 	bn_check_top(a);
1113 	bn_check_top(p);
1114 	if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1115 		goto err;
1116 	ret = BN_GF2m_poly2arr(p, arr, max);
1117 	if (!ret || ret > max) {
1118 		BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1119 		goto err;
1120 	}
1121 	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1122 	bn_check_top(r);
1123 
1124 err:
1125 	free(arr);
1126 	return ret;
1127 }
1128 
1129 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1130  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1131  */
1132 int
1133 BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1134     BN_CTX *ctx)
1135 {
1136 	int ret = 0, count = 0, j;
1137 	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1138 
1139 	bn_check_top(a_);
1140 
1141 	if (!p[0]) {
1142 		/* reduction mod 1 => return 0 */
1143 		BN_zero(r);
1144 		return 1;
1145 	}
1146 
1147 	BN_CTX_start(ctx);
1148 	if ((a = BN_CTX_get(ctx)) == NULL)
1149 		goto err;
1150 	if ((z = BN_CTX_get(ctx)) == NULL)
1151 		goto err;
1152 	if ((w = BN_CTX_get(ctx)) == NULL)
1153 		goto err;
1154 
1155 	if (!BN_GF2m_mod_arr(a, a_, p))
1156 		goto err;
1157 
1158 	if (BN_is_zero(a)) {
1159 		BN_zero(r);
1160 		ret = 1;
1161 		goto err;
1162 	}
1163 
1164 	if (p[0] & 0x1) /* m is odd */
1165 	{
1166 		/* compute half-trace of a */
1167 		if (!BN_copy(z, a))
1168 			goto err;
1169 		for (j = 1; j <= (p[0] - 1) / 2; j++) {
1170 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1171 				goto err;
1172 			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1173 				goto err;
1174 			if (!BN_GF2m_add(z, z, a))
1175 				goto err;
1176 		}
1177 
1178 	}
1179 	else /* m is even */
1180 	{
1181 		if ((rho = BN_CTX_get(ctx)) == NULL)
1182 			goto err;
1183 		if ((w2 = BN_CTX_get(ctx)) == NULL)
1184 			goto err;
1185 		if ((tmp = BN_CTX_get(ctx)) == NULL)
1186 			goto err;
1187 		do {
1188 			if (!BN_rand(rho, p[0], 0, 0))
1189 				goto err;
1190 			if (!BN_GF2m_mod_arr(rho, rho, p))
1191 				goto err;
1192 			BN_zero(z);
1193 			if (!BN_copy(w, rho))
1194 				goto err;
1195 			for (j = 1; j <= p[0] - 1; j++) {
1196 				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1197 					goto err;
1198 				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1199 					goto err;
1200 				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1201 					goto err;
1202 				if (!BN_GF2m_add(z, z, tmp))
1203 					goto err;
1204 				if (!BN_GF2m_add(w, w2, rho))
1205 					goto err;
1206 			}
1207 			count++;
1208 		} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1209 		if (BN_is_zero(w)) {
1210 			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,
1211 			    BN_R_TOO_MANY_ITERATIONS);
1212 			goto err;
1213 		}
1214 	}
1215 
1216 	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1217 		goto err;
1218 	if (!BN_GF2m_add(w, z, w))
1219 		goto err;
1220 	if (BN_GF2m_cmp(w, a)) {
1221 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1222 		goto err;
1223 	}
1224 
1225 	if (!BN_copy(r, z))
1226 		goto err;
1227 	bn_check_top(r);
1228 
1229 	ret = 1;
1230 
1231 err:
1232 	BN_CTX_end(ctx);
1233 	return ret;
1234 }
1235 
1236 /* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1237  *
1238  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1239  * function is only provided for convenience; for best performance, use the
1240  * BN_GF2m_mod_solve_quad_arr function.
1241  */
1242 int
1243 BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1244 {
1245 	int ret = 0;
1246 	const int max = BN_num_bits(p) + 1;
1247 	int *arr = NULL;
1248 
1249 	bn_check_top(a);
1250 	bn_check_top(p);
1251 	if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL)
1252 		goto err;
1253 	ret = BN_GF2m_poly2arr(p, arr, max);
1254 	if (!ret || ret > max) {
1255 		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1256 		goto err;
1257 	}
1258 	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1259 	bn_check_top(r);
1260 
1261 err:
1262 	free(arr);
1263 	return ret;
1264 }
1265 
1266 /* Convert the bit-string representation of a polynomial
1267  * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1268  * to the bits with non-zero coefficient.  Array is terminated with -1.
1269  * Up to max elements of the array will be filled.  Return value is total
1270  * number of array elements that would be filled if array was large enough.
1271  */
1272 int
1273 BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1274 {
1275 	int i, j, k = 0;
1276 	BN_ULONG mask;
1277 
1278 	if (BN_is_zero(a))
1279 		return 0;
1280 
1281 	for (i = a->top - 1; i >= 0; i--) {
1282 		if (!a->d[i])
1283 			/* skip word if a->d[i] == 0 */
1284 			continue;
1285 		mask = BN_TBIT;
1286 		for (j = BN_BITS2 - 1; j >= 0; j--) {
1287 			if (a->d[i] & mask) {
1288 				if (k < max)
1289 					p[k] = BN_BITS2 * i + j;
1290 				k++;
1291 			}
1292 			mask >>= 1;
1293 		}
1294 	}
1295 
1296 	if (k < max) {
1297 		p[k] = -1;
1298 		k++;
1299 	}
1300 
1301 	return k;
1302 }
1303 
1304 /* Convert the coefficient array representation of a polynomial to a
1305  * bit-string.  The array must be terminated by -1.
1306  */
1307 int
1308 BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1309 {
1310 	int i;
1311 
1312 	bn_check_top(a);
1313 	BN_zero(a);
1314 	for (i = 0; p[i] != -1; i++) {
1315 		if (BN_set_bit(a, p[i]) == 0)
1316 			return 0;
1317 	}
1318 	bn_check_top(a);
1319 
1320 	return 1;
1321 }
1322 
1323 #endif
1324