xref: /dragonfly/crypto/libressl/crypto/bn/bn_sqrt.c (revision de0e0e4d)
1 /* $OpenBSD: bn_sqrt.c,v 1.11 2022/06/20 15:02:21 tb Exp $ */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3  * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    openssl-core@openssl.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com).
55  *
56  */
57 
58 #include <openssl/err.h>
59 
60 #include "bn_lcl.h"
61 
62 BIGNUM *
BN_mod_sqrt(BIGNUM * in,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)63 BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
64 /* Returns 'ret' such that
65  *      ret^2 == a (mod p),
66  * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
67  * in Algebraic Computational Number Theory", algorithm 1.5.1).
68  * 'p' must be prime!
69  */
70 {
71 	BIGNUM *ret = in;
72 	int err = 1;
73 	int r;
74 	BIGNUM *A, *b, *q, *t, *x, *y;
75 	int e, i, j;
76 
77 	if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
78 		if (BN_abs_is_word(p, 2)) {
79 			if (ret == NULL)
80 				ret = BN_new();
81 			if (ret == NULL)
82 				goto end;
83 			if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
84 				if (ret != in)
85 					BN_free(ret);
86 				return NULL;
87 			}
88 			bn_check_top(ret);
89 			return ret;
90 		}
91 
92 		BNerror(BN_R_P_IS_NOT_PRIME);
93 		return (NULL);
94 	}
95 
96 	if (BN_is_zero(a) || BN_is_one(a)) {
97 		if (ret == NULL)
98 			ret = BN_new();
99 		if (ret == NULL)
100 			goto end;
101 		if (!BN_set_word(ret, BN_is_one(a))) {
102 			if (ret != in)
103 				BN_free(ret);
104 			return NULL;
105 		}
106 		bn_check_top(ret);
107 		return ret;
108 	}
109 
110 	BN_CTX_start(ctx);
111 	if ((A = BN_CTX_get(ctx)) == NULL)
112 		goto end;
113 	if ((b = BN_CTX_get(ctx)) == NULL)
114 		goto end;
115 	if ((q = BN_CTX_get(ctx)) == NULL)
116 		goto end;
117 	if ((t = BN_CTX_get(ctx)) == NULL)
118 		goto end;
119 	if ((x = BN_CTX_get(ctx)) == NULL)
120 		goto end;
121 	if ((y = BN_CTX_get(ctx)) == NULL)
122 		goto end;
123 
124 	if (ret == NULL)
125 		ret = BN_new();
126 	if (ret == NULL)
127 		goto end;
128 
129 	/* A = a mod p */
130 	if (!BN_nnmod(A, a, p, ctx))
131 		goto end;
132 
133 	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
134 	e = 1;
135 	while (!BN_is_bit_set(p, e))
136 		e++;
137 	/* we'll set  q  later (if needed) */
138 
139 	if (e == 1) {
140 		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
141 		 * modulo  (|p|-1)/2,  and square roots can be computed
142 		 * directly by modular exponentiation.
143 		 * We have
144 		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
145 		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
146 		 */
147 		if (!BN_rshift(q, p, 2))
148 			goto end;
149 		q->neg = 0;
150 		if (!BN_add_word(q, 1))
151 			goto end;
152 		if (!BN_mod_exp_ct(ret, A, q, p, ctx))
153 			goto end;
154 		err = 0;
155 		goto vrfy;
156 	}
157 
158 	if (e == 2) {
159 		/* |p| == 5  (mod 8)
160 		 *
161 		 * In this case  2  is always a non-square since
162 		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
163 		 * So if  a  really is a square, then  2*a  is a non-square.
164 		 * Thus for
165 		 *      b := (2*a)^((|p|-5)/8),
166 		 *      i := (2*a)*b^2
167 		 * we have
168 		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
169 		 *         = (2*a)^((p-1)/2)
170 		 *         = -1;
171 		 * so if we set
172 		 *      x := a*b*(i-1),
173 		 * then
174 		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
175 		 *         = a^2 * b^2 * (-2*i)
176 		 *         = a*(-i)*(2*a*b^2)
177 		 *         = a*(-i)*i
178 		 *         = a.
179 		 *
180 		 * (This is due to A.O.L. Atkin,
181 		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
182 		 * November 1992.)
183 		 */
184 
185 		/* t := 2*a */
186 		if (!BN_mod_lshift1_quick(t, A, p))
187 			goto end;
188 
189 		/* b := (2*a)^((|p|-5)/8) */
190 		if (!BN_rshift(q, p, 3))
191 			goto end;
192 		q->neg = 0;
193 		if (!BN_mod_exp_ct(b, t, q, p, ctx))
194 			goto end;
195 
196 		/* y := b^2 */
197 		if (!BN_mod_sqr(y, b, p, ctx))
198 			goto end;
199 
200 		/* t := (2*a)*b^2 - 1*/
201 		if (!BN_mod_mul(t, t, y, p, ctx))
202 			goto end;
203 		if (!BN_sub_word(t, 1))
204 			goto end;
205 
206 		/* x = a*b*t */
207 		if (!BN_mod_mul(x, A, b, p, ctx))
208 			goto end;
209 		if (!BN_mod_mul(x, x, t, p, ctx))
210 			goto end;
211 
212 		if (!BN_copy(ret, x))
213 			goto end;
214 		err = 0;
215 		goto vrfy;
216 	}
217 
218 	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
219 	 * First, find some  y  that is not a square. */
220 	if (!BN_copy(q, p)) /* use 'q' as temp */
221 		goto end;
222 	q->neg = 0;
223 	i = 2;
224 	do {
225 		/* For efficiency, try small numbers first;
226 		 * if this fails, try random numbers.
227 		 */
228 		if (i < 22) {
229 			if (!BN_set_word(y, i))
230 				goto end;
231 		} else {
232 			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
233 				goto end;
234 			if (BN_ucmp(y, p) >= 0) {
235 				if (p->neg) {
236 					if (!BN_add(y, y, p))
237 						goto end;
238 				} else {
239 					if (!BN_sub(y, y, p))
240 						goto end;
241 				}
242 			}
243 			/* now 0 <= y < |p| */
244 			if (BN_is_zero(y))
245 				if (!BN_set_word(y, i))
246 					goto end;
247 		}
248 
249 		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
250 		if (r < -1)
251 			goto end;
252 		if (r == 0) {
253 			/* m divides p */
254 			BNerror(BN_R_P_IS_NOT_PRIME);
255 			goto end;
256 		}
257 	} while (r == 1 && ++i < 82);
258 
259 	if (r != -1) {
260 		/* Many rounds and still no non-square -- this is more likely
261 		 * a bug than just bad luck.
262 		 * Even if  p  is not prime, we should have found some  y
263 		 * such that r == -1.
264 		 */
265 		BNerror(BN_R_TOO_MANY_ITERATIONS);
266 		goto end;
267 	}
268 
269 	/* Here's our actual 'q': */
270 	if (!BN_rshift(q, q, e))
271 		goto end;
272 
273 	/* Now that we have some non-square, we can find an element
274 	 * of order  2^e  by computing its q'th power. */
275 	if (!BN_mod_exp_ct(y, y, q, p, ctx))
276 		goto end;
277 	if (BN_is_one(y)) {
278 		BNerror(BN_R_P_IS_NOT_PRIME);
279 		goto end;
280 	}
281 
282 	/* Now we know that (if  p  is indeed prime) there is an integer
283 	 * k,  0 <= k < 2^e,  such that
284 	 *
285 	 *      a^q * y^k == 1   (mod p).
286 	 *
287 	 * As  a^q  is a square and  y  is not,  k  must be even.
288 	 * q+1  is even, too, so there is an element
289 	 *
290 	 *     X := a^((q+1)/2) * y^(k/2),
291 	 *
292 	 * and it satisfies
293 	 *
294 	 *     X^2 = a^q * a     * y^k
295 	 *         = a,
296 	 *
297 	 * so it is the square root that we are looking for.
298 	 */
299 
300 	/* t := (q-1)/2  (note that  q  is odd) */
301 	if (!BN_rshift1(t, q))
302 		goto end;
303 
304 	/* x := a^((q-1)/2) */
305 	if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
306 		if (!BN_nnmod(t, A, p, ctx))
307 			goto end;
308 		if (BN_is_zero(t)) {
309 			/* special case: a == 0  (mod p) */
310 			BN_zero(ret);
311 			err = 0;
312 			goto end;
313 		} else if (!BN_one(x))
314 			goto end;
315 	} else {
316 		if (!BN_mod_exp_ct(x, A, t, p, ctx))
317 			goto end;
318 		if (BN_is_zero(x)) {
319 			/* special case: a == 0  (mod p) */
320 			BN_zero(ret);
321 			err = 0;
322 			goto end;
323 		}
324 	}
325 
326 	/* b := a*x^2  (= a^q) */
327 	if (!BN_mod_sqr(b, x, p, ctx))
328 		goto end;
329 	if (!BN_mod_mul(b, b, A, p, ctx))
330 		goto end;
331 
332 	/* x := a*x    (= a^((q+1)/2)) */
333 	if (!BN_mod_mul(x, x, A, p, ctx))
334 		goto end;
335 
336 	while (1) {
337 		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
338 		 * where  E  refers to the original value of  e,  which we
339 		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
340 		 *
341 		 * We have  a*b = x^2,
342 		 *    y^2^(e-1) = -1,
343 		 *    b^2^(e-1) = 1.
344 		 */
345 
346 		if (BN_is_one(b)) {
347 			if (!BN_copy(ret, x))
348 				goto end;
349 			err = 0;
350 			goto vrfy;
351 		}
352 
353 		/* Find the smallest i with 0 < i < e such that b^(2^i) = 1. */
354 		for (i = 1; i < e; i++) {
355 			if (i == 1) {
356 				if (!BN_mod_sqr(t, b, p, ctx))
357 					goto end;
358 			} else {
359 				if (!BN_mod_sqr(t, t, p, ctx))
360 					goto end;
361 			}
362 			if (BN_is_one(t))
363 				break;
364 		}
365 		if (i >= e) {
366 			BNerror(BN_R_NOT_A_SQUARE);
367 			goto end;
368 		}
369 
370 		/* t := y^2^(e - i - 1) */
371 		if (!BN_copy(t, y))
372 			goto end;
373 		for (j = e - i - 1; j > 0; j--) {
374 			if (!BN_mod_sqr(t, t, p, ctx))
375 				goto end;
376 		}
377 		if (!BN_mod_mul(y, t, t, p, ctx))
378 			goto end;
379 		if (!BN_mod_mul(x, x, t, p, ctx))
380 			goto end;
381 		if (!BN_mod_mul(b, b, y, p, ctx))
382 			goto end;
383 		e = i;
384 	}
385 
386 vrfy:
387 	if (!err) {
388 		/* verify the result -- the input might have been not a square
389 		 * (test added in 0.9.8) */
390 
391 		if (!BN_mod_sqr(x, ret, p, ctx))
392 			err = 1;
393 
394 		if (!err && 0 != BN_cmp(x, A)) {
395 			BNerror(BN_R_NOT_A_SQUARE);
396 			err = 1;
397 		}
398 	}
399 
400 end:
401 	if (err) {
402 		if (ret != NULL && ret != in) {
403 			BN_clear_free(ret);
404 		}
405 		ret = NULL;
406 	}
407 	BN_CTX_end(ctx);
408 	bn_check_top(ret);
409 	return ret;
410 }
411