xref: /dragonfly/crypto/libressl/crypto/ec/ec2_mult.c (revision ec21d9fb)
1 /* $OpenBSD: ec2_mult.c,v 1.13 2018/07/23 18:24:22 tb Exp $ */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  *    software must display the following acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  *    endorse or promote products derived from this software without
38  *    prior written permission. For written permission, please contact
39  *    openssl-core@openssl.org.
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  *    nor may "OpenSSL" appear in their names without prior written
43  *    permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  *    acknowledgment:
47  *    "This product includes software developed by the OpenSSL Project
48  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * (eay@cryptsoft.com).  This product includes software written by Tim
66  * Hudson (tjh@cryptsoft.com).
67  *
68  */
69 
70 #include <openssl/opensslconf.h>
71 
72 #include <openssl/err.h>
73 
74 #include "bn_lcl.h"
75 #include "ec_lcl.h"
76 
77 #ifndef OPENSSL_NO_EC2M
78 
79 
80 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
81  * coordinates.
82  * Uses algorithm Mdouble in appendix of
83  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
84  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
85  * modified to not require precomputation of c=b^{2^{m-1}}.
86  */
87 static int
88 gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
89 {
90 	BIGNUM *t1;
91 	int ret = 0;
92 
93 	/* Since Mdouble is static we can guarantee that ctx != NULL. */
94 	BN_CTX_start(ctx);
95 	if ((t1 = BN_CTX_get(ctx)) == NULL)
96 		goto err;
97 
98 	if (!group->meth->field_sqr(group, x, x, ctx))
99 		goto err;
100 	if (!group->meth->field_sqr(group, t1, z, ctx))
101 		goto err;
102 	if (!group->meth->field_mul(group, z, x, t1, ctx))
103 		goto err;
104 	if (!group->meth->field_sqr(group, x, x, ctx))
105 		goto err;
106 	if (!group->meth->field_sqr(group, t1, t1, ctx))
107 		goto err;
108 	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
109 		goto err;
110 	if (!BN_GF2m_add(x, x, t1))
111 		goto err;
112 
113 	ret = 1;
114 
115  err:
116 	BN_CTX_end(ctx);
117 	return ret;
118 }
119 
120 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
121  * projective coordinates.
122  * Uses algorithm Madd in appendix of
123  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
124  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
125  */
126 static int
127 gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
128     const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
129 {
130 	BIGNUM *t1, *t2;
131 	int ret = 0;
132 
133 	/* Since Madd is static we can guarantee that ctx != NULL. */
134 	BN_CTX_start(ctx);
135 	if ((t1 = BN_CTX_get(ctx)) == NULL)
136 		goto err;
137 	if ((t2 = BN_CTX_get(ctx)) == NULL)
138 		goto err;
139 
140 	if (!BN_copy(t1, x))
141 		goto err;
142 	if (!group->meth->field_mul(group, x1, x1, z2, ctx))
143 		goto err;
144 	if (!group->meth->field_mul(group, z1, z1, x2, ctx))
145 		goto err;
146 	if (!group->meth->field_mul(group, t2, x1, z1, ctx))
147 		goto err;
148 	if (!BN_GF2m_add(z1, z1, x1))
149 		goto err;
150 	if (!group->meth->field_sqr(group, z1, z1, ctx))
151 		goto err;
152 	if (!group->meth->field_mul(group, x1, z1, t1, ctx))
153 		goto err;
154 	if (!BN_GF2m_add(x1, x1, t2))
155 		goto err;
156 
157 	ret = 1;
158 
159  err:
160 	BN_CTX_end(ctx);
161 	return ret;
162 }
163 
164 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
165  * using Montgomery point multiplication algorithm Mxy() in appendix of
166  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
167  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
168  * Returns:
169  *     0 on error
170  *     1 if return value should be the point at infinity
171  *     2 otherwise
172  */
173 static int
174 gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
175     BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
176 {
177 	BIGNUM *t3, *t4, *t5;
178 	int ret = 0;
179 
180 	if (BN_is_zero(z1)) {
181 		BN_zero(x2);
182 		BN_zero(z2);
183 		return 1;
184 	}
185 	if (BN_is_zero(z2)) {
186 		if (!BN_copy(x2, x))
187 			return 0;
188 		if (!BN_GF2m_add(z2, x, y))
189 			return 0;
190 		return 2;
191 	}
192 	/* Since Mxy is static we can guarantee that ctx != NULL. */
193 	BN_CTX_start(ctx);
194 	if ((t3 = BN_CTX_get(ctx)) == NULL)
195 		goto err;
196 	if ((t4 = BN_CTX_get(ctx)) == NULL)
197 		goto err;
198 	if ((t5 = BN_CTX_get(ctx)) == NULL)
199 		goto err;
200 
201 	if (!BN_one(t5))
202 		goto err;
203 
204 	if (!group->meth->field_mul(group, t3, z1, z2, ctx))
205 		goto err;
206 
207 	if (!group->meth->field_mul(group, z1, z1, x, ctx))
208 		goto err;
209 	if (!BN_GF2m_add(z1, z1, x1))
210 		goto err;
211 	if (!group->meth->field_mul(group, z2, z2, x, ctx))
212 		goto err;
213 	if (!group->meth->field_mul(group, x1, z2, x1, ctx))
214 		goto err;
215 	if (!BN_GF2m_add(z2, z2, x2))
216 		goto err;
217 
218 	if (!group->meth->field_mul(group, z2, z2, z1, ctx))
219 		goto err;
220 	if (!group->meth->field_sqr(group, t4, x, ctx))
221 		goto err;
222 	if (!BN_GF2m_add(t4, t4, y))
223 		goto err;
224 	if (!group->meth->field_mul(group, t4, t4, t3, ctx))
225 		goto err;
226 	if (!BN_GF2m_add(t4, t4, z2))
227 		goto err;
228 
229 	if (!group->meth->field_mul(group, t3, t3, x, ctx))
230 		goto err;
231 	if (!group->meth->field_div(group, t3, t5, t3, ctx))
232 		goto err;
233 	if (!group->meth->field_mul(group, t4, t3, t4, ctx))
234 		goto err;
235 	if (!group->meth->field_mul(group, x2, x1, t3, ctx))
236 		goto err;
237 	if (!BN_GF2m_add(z2, x2, x))
238 		goto err;
239 
240 	if (!group->meth->field_mul(group, z2, z2, t4, ctx))
241 		goto err;
242 	if (!BN_GF2m_add(z2, z2, y))
243 		goto err;
244 
245 	ret = 2;
246 
247  err:
248 	BN_CTX_end(ctx);
249 	return ret;
250 }
251 
252 
253 /* Computes scalar*point and stores the result in r.
254  * point can not equal r.
255  * Uses a modified algorithm 2P of
256  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
257  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
258  *
259  * To protect against side-channel attack the function uses constant time swap,
260  * avoiding conditional branches.
261  */
262 static int
263 ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r,
264     const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)
265 {
266 	BIGNUM *x1, *x2, *z1, *z2;
267 	int ret = 0, i;
268 	BN_ULONG mask, word;
269 
270 	if (r == point) {
271 		ECerror(EC_R_INVALID_ARGUMENT);
272 		return 0;
273 	}
274 	/* if result should be point at infinity */
275 	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
276 	    EC_POINT_is_at_infinity(group, point) > 0) {
277 		return EC_POINT_set_to_infinity(group, r);
278 	}
279 	/* only support affine coordinates */
280 	if (!point->Z_is_one)
281 		return 0;
282 
283 	/* Since point_multiply is static we can guarantee that ctx != NULL. */
284 	BN_CTX_start(ctx);
285 	if ((x1 = BN_CTX_get(ctx)) == NULL)
286 		goto err;
287 	if ((z1 = BN_CTX_get(ctx)) == NULL)
288 		goto err;
289 
290 	x2 = &r->X;
291 	z2 = &r->Y;
292 
293 	if (!bn_wexpand(x1, group->field.top))
294                 goto err;
295 	if (!bn_wexpand(z1, group->field.top))
296                 goto err;
297 	if (!bn_wexpand(x2, group->field.top))
298                 goto err;
299 	if (!bn_wexpand(z2, group->field.top))
300                 goto err;
301 
302 	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
303 		goto err;	/* x1 = x */
304 	if (!BN_one(z1))
305 		goto err;	/* z1 = 1 */
306 	if (!group->meth->field_sqr(group, z2, x1, ctx))
307 		goto err;	/* z2 = x1^2 = x^2 */
308 	if (!group->meth->field_sqr(group, x2, z2, ctx))
309 		goto err;
310 	if (!BN_GF2m_add(x2, x2, &group->b))
311 		goto err;	/* x2 = x^4 + b */
312 
313 	/* find top most bit and go one past it */
314 	i = scalar->top - 1;
315 	mask = BN_TBIT;
316 	word = scalar->d[i];
317 	while (!(word & mask))
318 		mask >>= 1;
319 	mask >>= 1;
320 	/* if top most bit was at word break, go to next word */
321 	if (!mask) {
322 		i--;
323 		mask = BN_TBIT;
324 	}
325 	for (; i >= 0; i--) {
326 		word = scalar->d[i];
327 		while (mask) {
328 			if (!BN_swap_ct(word & mask, x1, x2, group->field.top))
329 				goto err;
330 			if (!BN_swap_ct(word & mask, z1, z2, group->field.top))
331 				goto err;
332 			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
333 				goto err;
334 			if (!gf2m_Mdouble(group, x1, z1, ctx))
335 				goto err;
336 			if (!BN_swap_ct(word & mask, x1, x2, group->field.top))
337 				goto err;
338 			if (!BN_swap_ct(word & mask, z1, z2, group->field.top))
339 				goto err;
340 			mask >>= 1;
341 		}
342 		mask = BN_TBIT;
343 	}
344 
345 	/* convert out of "projective" coordinates */
346 	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
347 	if (i == 0)
348 		goto err;
349 	else if (i == 1) {
350 		if (!EC_POINT_set_to_infinity(group, r))
351 			goto err;
352 	} else {
353 		if (!BN_one(&r->Z))
354 			goto err;
355 		r->Z_is_one = 1;
356 	}
357 
358 	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
359 	BN_set_negative(&r->X, 0);
360 	BN_set_negative(&r->Y, 0);
361 
362 	ret = 1;
363 
364  err:
365 	BN_CTX_end(ctx);
366 	return ret;
367 }
368 
369 
370 /* Computes the sum
371  *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
372  * gracefully ignoring NULL scalar values.
373  */
374 int
375 ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
376     size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
377 {
378 	BN_CTX *new_ctx = NULL;
379 	int ret = 0;
380 	size_t i;
381 	EC_POINT *p = NULL;
382 	EC_POINT *acc = NULL;
383 
384 	if (ctx == NULL) {
385 		ctx = new_ctx = BN_CTX_new();
386 		if (ctx == NULL)
387 			return 0;
388 	}
389 	/*
390 	 * This implementation is more efficient than the wNAF implementation
391 	 * for 2 or fewer points.  Use the ec_wNAF_mul implementation for 3
392 	 * or more points, or if we can perform a fast multiplication based
393 	 * on precomputation.
394 	 */
395 	if ((scalar && (num > 1)) || (num > 2) ||
396 	    (num == 0 && EC_GROUP_have_precompute_mult(group))) {
397 		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
398 		goto err;
399 	}
400 	if ((p = EC_POINT_new(group)) == NULL)
401 		goto err;
402 	if ((acc = EC_POINT_new(group)) == NULL)
403 		goto err;
404 
405 	if (!EC_POINT_set_to_infinity(group, acc))
406 		goto err;
407 
408 	if (scalar) {
409 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx))
410 			goto err;
411 		if (BN_is_negative(scalar))
412 			if (!group->meth->invert(group, p, ctx))
413 				goto err;
414 		if (!group->meth->add(group, acc, acc, p, ctx))
415 			goto err;
416 	}
417 	for (i = 0; i < num; i++) {
418 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx))
419 			goto err;
420 		if (BN_is_negative(scalars[i]))
421 			if (!group->meth->invert(group, p, ctx))
422 				goto err;
423 		if (!group->meth->add(group, acc, acc, p, ctx))
424 			goto err;
425 	}
426 
427 	if (!EC_POINT_copy(r, acc))
428 		goto err;
429 
430 	ret = 1;
431 
432  err:
433 	EC_POINT_free(p);
434 	EC_POINT_free(acc);
435 	BN_CTX_free(new_ctx);
436 	return ret;
437 }
438 
439 
440 /* Precomputation for point multiplication: fall back to wNAF methods
441  * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
442 
443 int
444 ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
445 {
446 	return ec_wNAF_precompute_mult(group, ctx);
447 }
448 
449 int
450 ec_GF2m_have_precompute_mult(const EC_GROUP * group)
451 {
452 	return ec_wNAF_have_precompute_mult(group);
453 }
454 
455 #endif
456