xref: /dragonfly/crypto/libressl/crypto/ec/ec2_mult.c (revision ffe53622)
1 /* $OpenBSD: ec2_mult.c,v 1.7 2015/02/09 15:49:22 jsing Exp $ */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  *    software must display the following acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  *    endorse or promote products derived from this software without
38  *    prior written permission. For written permission, please contact
39  *    openssl-core@openssl.org.
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  *    nor may "OpenSSL" appear in their names without prior written
43  *    permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  *    acknowledgment:
47  *    "This product includes software developed by the OpenSSL Project
48  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * (eay@cryptsoft.com).  This product includes software written by Tim
66  * Hudson (tjh@cryptsoft.com).
67  *
68  */
69 
70 #include <openssl/opensslconf.h>
71 
72 #include <openssl/err.h>
73 
74 #include "ec_lcl.h"
75 
76 #ifndef OPENSSL_NO_EC2M
77 
78 
79 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
80  * coordinates.
81  * Uses algorithm Mdouble in appendix of
82  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
83  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
84  * modified to not require precomputation of c=b^{2^{m-1}}.
85  */
86 static int
87 gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
88 {
89 	BIGNUM *t1;
90 	int ret = 0;
91 
92 	/* Since Mdouble is static we can guarantee that ctx != NULL. */
93 	BN_CTX_start(ctx);
94 	if ((t1 = BN_CTX_get(ctx)) == NULL)
95 		goto err;
96 
97 	if (!group->meth->field_sqr(group, x, x, ctx))
98 		goto err;
99 	if (!group->meth->field_sqr(group, t1, z, ctx))
100 		goto err;
101 	if (!group->meth->field_mul(group, z, x, t1, ctx))
102 		goto err;
103 	if (!group->meth->field_sqr(group, x, x, ctx))
104 		goto err;
105 	if (!group->meth->field_sqr(group, t1, t1, ctx))
106 		goto err;
107 	if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
108 		goto err;
109 	if (!BN_GF2m_add(x, x, t1))
110 		goto err;
111 
112 	ret = 1;
113 
114 err:
115 	BN_CTX_end(ctx);
116 	return ret;
117 }
118 
119 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
120  * projective coordinates.
121  * Uses algorithm Madd in appendix of
122  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
123  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
124  */
125 static int
126 gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
127     const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
128 {
129 	BIGNUM *t1, *t2;
130 	int ret = 0;
131 
132 	/* Since Madd is static we can guarantee that ctx != NULL. */
133 	BN_CTX_start(ctx);
134 	if ((t1 = BN_CTX_get(ctx)) == NULL)
135 		goto err;
136 	if ((t2 = BN_CTX_get(ctx)) == NULL)
137 		goto err;
138 
139 	if (!BN_copy(t1, x))
140 		goto err;
141 	if (!group->meth->field_mul(group, x1, x1, z2, ctx))
142 		goto err;
143 	if (!group->meth->field_mul(group, z1, z1, x2, ctx))
144 		goto err;
145 	if (!group->meth->field_mul(group, t2, x1, z1, ctx))
146 		goto err;
147 	if (!BN_GF2m_add(z1, z1, x1))
148 		goto err;
149 	if (!group->meth->field_sqr(group, z1, z1, ctx))
150 		goto err;
151 	if (!group->meth->field_mul(group, x1, z1, t1, ctx))
152 		goto err;
153 	if (!BN_GF2m_add(x1, x1, t2))
154 		goto err;
155 
156 	ret = 1;
157 
158 err:
159 	BN_CTX_end(ctx);
160 	return ret;
161 }
162 
163 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
164  * using Montgomery point multiplication algorithm Mxy() in appendix of
165  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
166  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
167  * Returns:
168  *     0 on error
169  *     1 if return value should be the point at infinity
170  *     2 otherwise
171  */
172 static int
173 gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
174     BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
175 {
176 	BIGNUM *t3, *t4, *t5;
177 	int ret = 0;
178 
179 	if (BN_is_zero(z1)) {
180 		BN_zero(x2);
181 		BN_zero(z2);
182 		return 1;
183 	}
184 	if (BN_is_zero(z2)) {
185 		if (!BN_copy(x2, x))
186 			return 0;
187 		if (!BN_GF2m_add(z2, x, y))
188 			return 0;
189 		return 2;
190 	}
191 	/* Since Mxy is static we can guarantee that ctx != NULL. */
192 	BN_CTX_start(ctx);
193 	if ((t3 = BN_CTX_get(ctx)) == NULL)
194 		goto err;
195 	if ((t4 = BN_CTX_get(ctx)) == NULL)
196 		goto err;
197 	if ((t5 = BN_CTX_get(ctx)) == NULL)
198 		goto err;
199 
200 	if (!BN_one(t5))
201 		goto err;
202 
203 	if (!group->meth->field_mul(group, t3, z1, z2, ctx))
204 		goto err;
205 
206 	if (!group->meth->field_mul(group, z1, z1, x, ctx))
207 		goto err;
208 	if (!BN_GF2m_add(z1, z1, x1))
209 		goto err;
210 	if (!group->meth->field_mul(group, z2, z2, x, ctx))
211 		goto err;
212 	if (!group->meth->field_mul(group, x1, z2, x1, ctx))
213 		goto err;
214 	if (!BN_GF2m_add(z2, z2, x2))
215 		goto err;
216 
217 	if (!group->meth->field_mul(group, z2, z2, z1, ctx))
218 		goto err;
219 	if (!group->meth->field_sqr(group, t4, x, ctx))
220 		goto err;
221 	if (!BN_GF2m_add(t4, t4, y))
222 		goto err;
223 	if (!group->meth->field_mul(group, t4, t4, t3, ctx))
224 		goto err;
225 	if (!BN_GF2m_add(t4, t4, z2))
226 		goto err;
227 
228 	if (!group->meth->field_mul(group, t3, t3, x, ctx))
229 		goto err;
230 	if (!group->meth->field_div(group, t3, t5, t3, ctx))
231 		goto err;
232 	if (!group->meth->field_mul(group, t4, t3, t4, ctx))
233 		goto err;
234 	if (!group->meth->field_mul(group, x2, x1, t3, ctx))
235 		goto err;
236 	if (!BN_GF2m_add(z2, x2, x))
237 		goto err;
238 
239 	if (!group->meth->field_mul(group, z2, z2, t4, ctx))
240 		goto err;
241 	if (!BN_GF2m_add(z2, z2, y))
242 		goto err;
243 
244 	ret = 2;
245 
246 err:
247 	BN_CTX_end(ctx);
248 	return ret;
249 }
250 
251 
252 /* Computes scalar*point and stores the result in r.
253  * point can not equal r.
254  * Uses a modified algorithm 2P of
255  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
256  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
257  *
258  * To protect against side-channel attack the function uses constant time swap,
259  * avoiding conditional branches.
260  */
261 static int
262 ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r,
263     const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)
264 {
265 	BIGNUM *x1, *x2, *z1, *z2;
266 	int ret = 0, i;
267 	BN_ULONG mask, word;
268 
269 	if (r == point) {
270 		ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
271 		return 0;
272 	}
273 	/* if result should be point at infinity */
274 	if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
275 	    EC_POINT_is_at_infinity(group, point) > 0) {
276 		return EC_POINT_set_to_infinity(group, r);
277 	}
278 	/* only support affine coordinates */
279 	if (!point->Z_is_one)
280 		return 0;
281 
282 	/* Since point_multiply is static we can guarantee that ctx != NULL. */
283 	BN_CTX_start(ctx);
284 	if ((x1 = BN_CTX_get(ctx)) == NULL)
285 		goto err;
286 	if ((z1 = BN_CTX_get(ctx)) == NULL)
287 		goto err;
288 
289 	x2 = &r->X;
290 	z2 = &r->Y;
291 
292 	if (!bn_wexpand(x1, group->field.top))
293                 goto err;
294 	if (!bn_wexpand(z1, group->field.top))
295                 goto err;
296 	if (!bn_wexpand(x2, group->field.top))
297                 goto err;
298 	if (!bn_wexpand(z2, group->field.top))
299                 goto err;
300 
301 	if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
302 		goto err;	/* x1 = x */
303 	if (!BN_one(z1))
304 		goto err;	/* z1 = 1 */
305 	if (!group->meth->field_sqr(group, z2, x1, ctx))
306 		goto err;	/* z2 = x1^2 = x^2 */
307 	if (!group->meth->field_sqr(group, x2, z2, ctx))
308 		goto err;
309 	if (!BN_GF2m_add(x2, x2, &group->b))
310 		goto err;	/* x2 = x^4 + b */
311 
312 	/* find top most bit and go one past it */
313 	i = scalar->top - 1;
314 	mask = BN_TBIT;
315 	word = scalar->d[i];
316 	while (!(word & mask))
317 		mask >>= 1;
318 	mask >>= 1;
319 	/* if top most bit was at word break, go to next word */
320 	if (!mask) {
321 		i--;
322 		mask = BN_TBIT;
323 	}
324 	for (; i >= 0; i--) {
325 		word = scalar->d[i];
326 		while (mask) {
327 			BN_consttime_swap(word & mask, x1, x2, group->field.top);
328 			BN_consttime_swap(word & mask, z1, z2, group->field.top);
329 			if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
330 				goto err;
331 			if (!gf2m_Mdouble(group, x1, z1, ctx))
332 				goto err;
333 			BN_consttime_swap(word & mask, x1, x2, group->field.top);
334 			BN_consttime_swap(word & mask, z1, z2, group->field.top);
335 			mask >>= 1;
336 		}
337 		mask = BN_TBIT;
338 	}
339 
340 	/* convert out of "projective" coordinates */
341 	i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
342 	if (i == 0)
343 		goto err;
344 	else if (i == 1) {
345 		if (!EC_POINT_set_to_infinity(group, r))
346 			goto err;
347 	} else {
348 		if (!BN_one(&r->Z))
349 			goto err;
350 		r->Z_is_one = 1;
351 	}
352 
353 	/* GF(2^m) field elements should always have BIGNUM::neg = 0 */
354 	BN_set_negative(&r->X, 0);
355 	BN_set_negative(&r->Y, 0);
356 
357 	ret = 1;
358 
359 err:
360 	BN_CTX_end(ctx);
361 	return ret;
362 }
363 
364 
365 /* Computes the sum
366  *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
367  * gracefully ignoring NULL scalar values.
368  */
369 int
370 ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
371     size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
372 {
373 	BN_CTX *new_ctx = NULL;
374 	int ret = 0;
375 	size_t i;
376 	EC_POINT *p = NULL;
377 	EC_POINT *acc = NULL;
378 
379 	if (ctx == NULL) {
380 		ctx = new_ctx = BN_CTX_new();
381 		if (ctx == NULL)
382 			return 0;
383 	}
384 	/*
385 	 * This implementation is more efficient than the wNAF implementation
386 	 * for 2 or fewer points.  Use the ec_wNAF_mul implementation for 3
387 	 * or more points, or if we can perform a fast multiplication based
388 	 * on precomputation.
389 	 */
390 	if ((scalar && (num > 1)) || (num > 2) ||
391 	    (num == 0 && EC_GROUP_have_precompute_mult(group))) {
392 		ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
393 		goto err;
394 	}
395 	if ((p = EC_POINT_new(group)) == NULL)
396 		goto err;
397 	if ((acc = EC_POINT_new(group)) == NULL)
398 		goto err;
399 
400 	if (!EC_POINT_set_to_infinity(group, acc))
401 		goto err;
402 
403 	if (scalar) {
404 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx))
405 			goto err;
406 		if (BN_is_negative(scalar))
407 			if (!group->meth->invert(group, p, ctx))
408 				goto err;
409 		if (!group->meth->add(group, acc, acc, p, ctx))
410 			goto err;
411 	}
412 	for (i = 0; i < num; i++) {
413 		if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx))
414 			goto err;
415 		if (BN_is_negative(scalars[i]))
416 			if (!group->meth->invert(group, p, ctx))
417 				goto err;
418 		if (!group->meth->add(group, acc, acc, p, ctx))
419 			goto err;
420 	}
421 
422 	if (!EC_POINT_copy(r, acc))
423 		goto err;
424 
425 	ret = 1;
426 
427 err:
428 	EC_POINT_free(p);
429 	EC_POINT_free(acc);
430 	BN_CTX_free(new_ctx);
431 	return ret;
432 }
433 
434 
435 /* Precomputation for point multiplication: fall back to wNAF methods
436  * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
437 
438 int
439 ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
440 {
441 	return ec_wNAF_precompute_mult(group, ctx);
442 }
443 
444 int
445 ec_GF2m_have_precompute_mult(const EC_GROUP * group)
446 {
447 	return ec_wNAF_have_precompute_mult(group);
448 }
449 
450 #endif
451