xref: /dragonfly/crypto/libressl/crypto/ec/ec2_smpl.c (revision 6f5ec8b5)
1 /* $OpenBSD: ec2_smpl.c,v 1.23 2021/09/08 17:29:21 tb Exp $ */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  *    software must display the following acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  *    endorse or promote products derived from this software without
38  *    prior written permission. For written permission, please contact
39  *    openssl-core@openssl.org.
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  *    nor may "OpenSSL" appear in their names without prior written
43  *    permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  *    acknowledgment:
47  *    "This product includes software developed by the OpenSSL Project
48  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * (eay@cryptsoft.com).  This product includes software written by Tim
66  * Hudson (tjh@cryptsoft.com).
67  *
68  */
69 
70 #include <openssl/opensslconf.h>
71 
72 #include <openssl/err.h>
73 
74 #include "ec_lcl.h"
75 
76 #ifndef OPENSSL_NO_EC2M
77 
78 const EC_METHOD *
79 EC_GF2m_simple_method(void)
80 {
81 	static const EC_METHOD ret = {
82 		.flags = EC_FLAGS_DEFAULT_OCT,
83 		.field_type = NID_X9_62_characteristic_two_field,
84 		.group_init = ec_GF2m_simple_group_init,
85 		.group_finish = ec_GF2m_simple_group_finish,
86 		.group_clear_finish = ec_GF2m_simple_group_clear_finish,
87 		.group_copy = ec_GF2m_simple_group_copy,
88 		.group_set_curve = ec_GF2m_simple_group_set_curve,
89 		.group_get_curve = ec_GF2m_simple_group_get_curve,
90 		.group_get_degree = ec_GF2m_simple_group_get_degree,
91 		.group_order_bits = ec_group_simple_order_bits,
92 		.group_check_discriminant =
93 		    ec_GF2m_simple_group_check_discriminant,
94 		.point_init = ec_GF2m_simple_point_init,
95 		.point_finish = ec_GF2m_simple_point_finish,
96 		.point_clear_finish = ec_GF2m_simple_point_clear_finish,
97 		.point_copy = ec_GF2m_simple_point_copy,
98 		.point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity,
99 		.point_set_affine_coordinates =
100 		    ec_GF2m_simple_point_set_affine_coordinates,
101 		.point_get_affine_coordinates =
102 		    ec_GF2m_simple_point_get_affine_coordinates,
103 		.add = ec_GF2m_simple_add,
104 		.dbl = ec_GF2m_simple_dbl,
105 		.invert = ec_GF2m_simple_invert,
106 		.is_at_infinity = ec_GF2m_simple_is_at_infinity,
107 		.is_on_curve = ec_GF2m_simple_is_on_curve,
108 		.point_cmp = ec_GF2m_simple_cmp,
109 		.make_affine = ec_GF2m_simple_make_affine,
110 		.points_make_affine = ec_GF2m_simple_points_make_affine,
111 		.mul_generator_ct = ec_GFp_simple_mul_generator_ct,
112 		.mul_single_ct = ec_GFp_simple_mul_single_ct,
113 		.mul_double_nonct = ec_GFp_simple_mul_double_nonct,
114 		.precompute_mult = ec_GF2m_precompute_mult,
115 		.have_precompute_mult = ec_GF2m_have_precompute_mult,
116 		.field_mul = ec_GF2m_simple_field_mul,
117 		.field_sqr = ec_GF2m_simple_field_sqr,
118 		.field_div = ec_GF2m_simple_field_div,
119 		.blind_coordinates = NULL,
120 	};
121 
122 	return &ret;
123 }
124 
125 
126 /* Initialize a GF(2^m)-based EC_GROUP structure.
127  * Note that all other members are handled by EC_GROUP_new.
128  */
129 int
130 ec_GF2m_simple_group_init(EC_GROUP * group)
131 {
132 	BN_init(&group->field);
133 	BN_init(&group->a);
134 	BN_init(&group->b);
135 	return 1;
136 }
137 
138 
139 /* Free a GF(2^m)-based EC_GROUP structure.
140  * Note that all other members are handled by EC_GROUP_free.
141  */
142 void
143 ec_GF2m_simple_group_finish(EC_GROUP * group)
144 {
145 	BN_free(&group->field);
146 	BN_free(&group->a);
147 	BN_free(&group->b);
148 }
149 
150 
151 /* Clear and free a GF(2^m)-based EC_GROUP structure.
152  * Note that all other members are handled by EC_GROUP_clear_free.
153  */
154 void
155 ec_GF2m_simple_group_clear_finish(EC_GROUP * group)
156 {
157 	BN_clear_free(&group->field);
158 	BN_clear_free(&group->a);
159 	BN_clear_free(&group->b);
160 	group->poly[0] = 0;
161 	group->poly[1] = 0;
162 	group->poly[2] = 0;
163 	group->poly[3] = 0;
164 	group->poly[4] = 0;
165 	group->poly[5] = -1;
166 }
167 
168 
169 /* Copy a GF(2^m)-based EC_GROUP structure.
170  * Note that all other members are handled by EC_GROUP_copy.
171  */
172 int
173 ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src)
174 {
175 	int i;
176 
177 	if (!BN_copy(&dest->field, &src->field))
178 		return 0;
179 	if (!BN_copy(&dest->a, &src->a))
180 		return 0;
181 	if (!BN_copy(&dest->b, &src->b))
182 		return 0;
183 	dest->poly[0] = src->poly[0];
184 	dest->poly[1] = src->poly[1];
185 	dest->poly[2] = src->poly[2];
186 	dest->poly[3] = src->poly[3];
187 	dest->poly[4] = src->poly[4];
188 	dest->poly[5] = src->poly[5];
189 	if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
190 		return 0;
191 	if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
192 		return 0;
193 	for (i = dest->a.top; i < dest->a.dmax; i++)
194 		dest->a.d[i] = 0;
195 	for (i = dest->b.top; i < dest->b.dmax; i++)
196 		dest->b.d[i] = 0;
197 	return 1;
198 }
199 
200 
201 /* Set the curve parameters of an EC_GROUP structure. */
202 int
203 ec_GF2m_simple_group_set_curve(EC_GROUP * group,
204     const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
205 {
206 	int ret = 0, i;
207 
208 	/* group->field */
209 	if (!BN_copy(&group->field, p))
210 		goto err;
211 	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
212 	if ((i != 5) && (i != 3)) {
213 		ECerror(EC_R_UNSUPPORTED_FIELD);
214 		goto err;
215 	}
216 	/* group->a */
217 	if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
218 		goto err;
219 	if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
220 		goto err;
221 	for (i = group->a.top; i < group->a.dmax; i++)
222 		group->a.d[i] = 0;
223 
224 	/* group->b */
225 	if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
226 		goto err;
227 	if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
228 		goto err;
229 	for (i = group->b.top; i < group->b.dmax; i++)
230 		group->b.d[i] = 0;
231 
232 	ret = 1;
233  err:
234 	return ret;
235 }
236 
237 
238 /* Get the curve parameters of an EC_GROUP structure.
239  * If p, a, or b are NULL then there values will not be set but the method will return with success.
240  */
241 int
242 ec_GF2m_simple_group_get_curve(const EC_GROUP *group,
243     BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
244 {
245 	int ret = 0;
246 
247 	if (p != NULL) {
248 		if (!BN_copy(p, &group->field))
249 			return 0;
250 	}
251 	if (a != NULL) {
252 		if (!BN_copy(a, &group->a))
253 			goto err;
254 	}
255 	if (b != NULL) {
256 		if (!BN_copy(b, &group->b))
257 			goto err;
258 	}
259 	ret = 1;
260 
261  err:
262 	return ret;
263 }
264 
265 
266 /* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
267 int
268 ec_GF2m_simple_group_get_degree(const EC_GROUP * group)
269 {
270 	return BN_num_bits(&group->field) - 1;
271 }
272 
273 
274 /* Checks the discriminant of the curve.
275  * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
276  */
277 int
278 ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
279 {
280 	int ret = 0;
281 	BIGNUM *b;
282 	BN_CTX *new_ctx = NULL;
283 
284 	if (ctx == NULL) {
285 		ctx = new_ctx = BN_CTX_new();
286 		if (ctx == NULL) {
287 			ECerror(ERR_R_MALLOC_FAILURE);
288 			goto err;
289 		}
290 	}
291 	BN_CTX_start(ctx);
292 	if ((b = BN_CTX_get(ctx)) == NULL)
293 		goto err;
294 
295 	if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
296 		goto err;
297 
298 	/*
299 	 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
300 	 * curve <=> b != 0 (mod p)
301 	 */
302 	if (BN_is_zero(b))
303 		goto err;
304 
305 	ret = 1;
306 
307  err:
308 	if (ctx != NULL)
309 		BN_CTX_end(ctx);
310 	BN_CTX_free(new_ctx);
311 	return ret;
312 }
313 
314 
315 /* Initializes an EC_POINT. */
316 int
317 ec_GF2m_simple_point_init(EC_POINT * point)
318 {
319 	BN_init(&point->X);
320 	BN_init(&point->Y);
321 	BN_init(&point->Z);
322 	return 1;
323 }
324 
325 
326 /* Frees an EC_POINT. */
327 void
328 ec_GF2m_simple_point_finish(EC_POINT * point)
329 {
330 	BN_free(&point->X);
331 	BN_free(&point->Y);
332 	BN_free(&point->Z);
333 }
334 
335 
336 /* Clears and frees an EC_POINT. */
337 void
338 ec_GF2m_simple_point_clear_finish(EC_POINT * point)
339 {
340 	BN_clear_free(&point->X);
341 	BN_clear_free(&point->Y);
342 	BN_clear_free(&point->Z);
343 	point->Z_is_one = 0;
344 }
345 
346 
347 /* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
348 int
349 ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src)
350 {
351 	if (!BN_copy(&dest->X, &src->X))
352 		return 0;
353 	if (!BN_copy(&dest->Y, &src->Y))
354 		return 0;
355 	if (!BN_copy(&dest->Z, &src->Z))
356 		return 0;
357 	dest->Z_is_one = src->Z_is_one;
358 
359 	return 1;
360 }
361 
362 
363 /* Set an EC_POINT to the point at infinity.
364  * A point at infinity is represented by having Z=0.
365  */
366 int
367 ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
368 {
369 	point->Z_is_one = 0;
370 	BN_zero(&point->Z);
371 	return 1;
372 }
373 
374 
375 /* Set the coordinates of an EC_POINT using affine coordinates.
376  * Note that the simple implementation only uses affine coordinates.
377  */
378 int
379 ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
380     const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
381 {
382 	int ret = 0;
383 	if (x == NULL || y == NULL) {
384 		ECerror(ERR_R_PASSED_NULL_PARAMETER);
385 		return 0;
386 	}
387 	if (!BN_copy(&point->X, x))
388 		goto err;
389 	BN_set_negative(&point->X, 0);
390 	if (!BN_copy(&point->Y, y))
391 		goto err;
392 	BN_set_negative(&point->Y, 0);
393 	if (!BN_copy(&point->Z, BN_value_one()))
394 		goto err;
395 	BN_set_negative(&point->Z, 0);
396 	point->Z_is_one = 1;
397 	ret = 1;
398 
399  err:
400 	return ret;
401 }
402 
403 
404 /* Gets the affine coordinates of an EC_POINT.
405  * Note that the simple implementation only uses affine coordinates.
406  */
407 int
408 ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
409     const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
410 {
411 	int ret = 0;
412 
413 	if (EC_POINT_is_at_infinity(group, point) > 0) {
414 		ECerror(EC_R_POINT_AT_INFINITY);
415 		return 0;
416 	}
417 	if (BN_cmp(&point->Z, BN_value_one())) {
418 		ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
419 		return 0;
420 	}
421 	if (x != NULL) {
422 		if (!BN_copy(x, &point->X))
423 			goto err;
424 		BN_set_negative(x, 0);
425 	}
426 	if (y != NULL) {
427 		if (!BN_copy(y, &point->Y))
428 			goto err;
429 		BN_set_negative(y, 0);
430 	}
431 	ret = 1;
432 
433  err:
434 	return ret;
435 }
436 
437 /* Computes a + b and stores the result in r.  r could be a or b, a could be b.
438  * Uses algorithm A.10.2 of IEEE P1363.
439  */
440 int
441 ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
442     const EC_POINT *b, BN_CTX *ctx)
443 {
444 	BN_CTX *new_ctx = NULL;
445 	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
446 	int ret = 0;
447 
448 	if (EC_POINT_is_at_infinity(group, a) > 0) {
449 		if (!EC_POINT_copy(r, b))
450 			return 0;
451 		return 1;
452 	}
453 	if (EC_POINT_is_at_infinity(group, b) > 0) {
454 		if (!EC_POINT_copy(r, a))
455 			return 0;
456 		return 1;
457 	}
458 	if (ctx == NULL) {
459 		ctx = new_ctx = BN_CTX_new();
460 		if (ctx == NULL)
461 			return 0;
462 	}
463 	BN_CTX_start(ctx);
464 	if ((x0 = BN_CTX_get(ctx)) == NULL)
465 		goto err;
466 	if ((y0 = BN_CTX_get(ctx)) == NULL)
467 		goto err;
468 	if ((x1 = BN_CTX_get(ctx)) == NULL)
469 		goto err;
470 	if ((y1 = BN_CTX_get(ctx)) == NULL)
471 		goto err;
472 	if ((x2 = BN_CTX_get(ctx)) == NULL)
473 		goto err;
474 	if ((y2 = BN_CTX_get(ctx)) == NULL)
475 		goto err;
476 	if ((s = BN_CTX_get(ctx)) == NULL)
477 		goto err;
478 	if ((t = BN_CTX_get(ctx)) == NULL)
479 		goto err;
480 
481 	if (a->Z_is_one) {
482 		if (!BN_copy(x0, &a->X))
483 			goto err;
484 		if (!BN_copy(y0, &a->Y))
485 			goto err;
486 	} else {
487 		if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
488 			goto err;
489 	}
490 	if (b->Z_is_one) {
491 		if (!BN_copy(x1, &b->X))
492 			goto err;
493 		if (!BN_copy(y1, &b->Y))
494 			goto err;
495 	} else {
496 		if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
497 			goto err;
498 	}
499 
500 
501 	if (BN_GF2m_cmp(x0, x1)) {
502 		if (!BN_GF2m_add(t, x0, x1))
503 			goto err;
504 		if (!BN_GF2m_add(s, y0, y1))
505 			goto err;
506 		if (!group->meth->field_div(group, s, s, t, ctx))
507 			goto err;
508 		if (!group->meth->field_sqr(group, x2, s, ctx))
509 			goto err;
510 		if (!BN_GF2m_add(x2, x2, &group->a))
511 			goto err;
512 		if (!BN_GF2m_add(x2, x2, s))
513 			goto err;
514 		if (!BN_GF2m_add(x2, x2, t))
515 			goto err;
516 	} else {
517 		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
518 			if (!EC_POINT_set_to_infinity(group, r))
519 				goto err;
520 			ret = 1;
521 			goto err;
522 		}
523 		if (!group->meth->field_div(group, s, y1, x1, ctx))
524 			goto err;
525 		if (!BN_GF2m_add(s, s, x1))
526 			goto err;
527 
528 		if (!group->meth->field_sqr(group, x2, s, ctx))
529 			goto err;
530 		if (!BN_GF2m_add(x2, x2, s))
531 			goto err;
532 		if (!BN_GF2m_add(x2, x2, &group->a))
533 			goto err;
534 	}
535 
536 	if (!BN_GF2m_add(y2, x1, x2))
537 		goto err;
538 	if (!group->meth->field_mul(group, y2, y2, s, ctx))
539 		goto err;
540 	if (!BN_GF2m_add(y2, y2, x2))
541 		goto err;
542 	if (!BN_GF2m_add(y2, y2, y1))
543 		goto err;
544 
545 	if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
546 		goto err;
547 
548 	ret = 1;
549 
550  err:
551 	BN_CTX_end(ctx);
552 	BN_CTX_free(new_ctx);
553 	return ret;
554 }
555 
556 
557 /* Computes 2 * a and stores the result in r.  r could be a.
558  * Uses algorithm A.10.2 of IEEE P1363.
559  */
560 int
561 ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
562     BN_CTX *ctx)
563 {
564 	return ec_GF2m_simple_add(group, r, a, a, ctx);
565 }
566 
567 int
568 ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
569 {
570 	if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y))
571 		/* point is its own inverse */
572 		return 1;
573 
574 	if (!EC_POINT_make_affine(group, point, ctx))
575 		return 0;
576 	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
577 }
578 
579 
580 /* Indicates whether the given point is the point at infinity. */
581 int
582 ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
583 {
584 	return BN_is_zero(&point->Z);
585 }
586 
587 
588 /* Determines whether the given EC_POINT is an actual point on the curve defined
589  * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
590  *      y^2 + x*y = x^3 + a*x^2 + b.
591  */
592 int
593 ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
594 {
595 	int ret = -1;
596 	BN_CTX *new_ctx = NULL;
597 	BIGNUM *lh, *y2;
598 	int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
599 	int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
600 
601 	if (EC_POINT_is_at_infinity(group, point) > 0)
602 		return 1;
603 
604 	field_mul = group->meth->field_mul;
605 	field_sqr = group->meth->field_sqr;
606 
607 	/* only support affine coordinates */
608 	if (!point->Z_is_one)
609 		return -1;
610 
611 	if (ctx == NULL) {
612 		ctx = new_ctx = BN_CTX_new();
613 		if (ctx == NULL)
614 			return -1;
615 	}
616 	BN_CTX_start(ctx);
617 	if ((y2 = BN_CTX_get(ctx)) == NULL)
618 		goto err;
619 	if ((lh = BN_CTX_get(ctx)) == NULL)
620 		goto err;
621 
622 	/*
623 	 * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3
624 	 * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x
625 	 * + y ) * x + b + y^2 = 0
626 	 */
627 	if (!BN_GF2m_add(lh, &point->X, &group->a))
628 		goto err;
629 	if (!field_mul(group, lh, lh, &point->X, ctx))
630 		goto err;
631 	if (!BN_GF2m_add(lh, lh, &point->Y))
632 		goto err;
633 	if (!field_mul(group, lh, lh, &point->X, ctx))
634 		goto err;
635 	if (!BN_GF2m_add(lh, lh, &group->b))
636 		goto err;
637 	if (!field_sqr(group, y2, &point->Y, ctx))
638 		goto err;
639 	if (!BN_GF2m_add(lh, lh, y2))
640 		goto err;
641 	ret = BN_is_zero(lh);
642  err:
643 	if (ctx)
644 		BN_CTX_end(ctx);
645 	BN_CTX_free(new_ctx);
646 	return ret;
647 }
648 
649 
650 /* Indicates whether two points are equal.
651  * Return values:
652  *  -1   error
653  *   0   equal (in affine coordinates)
654  *   1   not equal
655  */
656 int
657 ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
658     const EC_POINT *b, BN_CTX *ctx)
659 {
660 	BIGNUM *aX, *aY, *bX, *bY;
661 	BN_CTX *new_ctx = NULL;
662 	int ret = -1;
663 
664 	if (EC_POINT_is_at_infinity(group, a) > 0) {
665 		return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1;
666 	}
667 	if (EC_POINT_is_at_infinity(group, b) > 0)
668 		return 1;
669 
670 	if (a->Z_is_one && b->Z_is_one) {
671 		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
672 	}
673 	if (ctx == NULL) {
674 		ctx = new_ctx = BN_CTX_new();
675 		if (ctx == NULL)
676 			return -1;
677 	}
678 	BN_CTX_start(ctx);
679 	if ((aX = BN_CTX_get(ctx)) == NULL)
680 		goto err;
681 	if ((aY = BN_CTX_get(ctx)) == NULL)
682 		goto err;
683 	if ((bX = BN_CTX_get(ctx)) == NULL)
684 		goto err;
685 	if ((bY = BN_CTX_get(ctx)) == NULL)
686 		goto err;
687 
688 	if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
689 		goto err;
690 	if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
691 		goto err;
692 	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
693 
694  err:
695 	if (ctx)
696 		BN_CTX_end(ctx);
697 	BN_CTX_free(new_ctx);
698 	return ret;
699 }
700 
701 
702 /* Forces the given EC_POINT to internally use affine coordinates. */
703 int
704 ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
705 {
706 	BN_CTX *new_ctx = NULL;
707 	BIGNUM *x, *y;
708 	int ret = 0;
709 
710 	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0)
711 		return 1;
712 
713 	if (ctx == NULL) {
714 		ctx = new_ctx = BN_CTX_new();
715 		if (ctx == NULL)
716 			return 0;
717 	}
718 	BN_CTX_start(ctx);
719 	if ((x = BN_CTX_get(ctx)) == NULL)
720 		goto err;
721 	if ((y = BN_CTX_get(ctx)) == NULL)
722 		goto err;
723 
724 	if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
725 		goto err;
726 	if (!BN_copy(&point->X, x))
727 		goto err;
728 	if (!BN_copy(&point->Y, y))
729 		goto err;
730 	if (!BN_one(&point->Z))
731 		goto err;
732 
733 	ret = 1;
734 
735  err:
736 	if (ctx)
737 		BN_CTX_end(ctx);
738 	BN_CTX_free(new_ctx);
739 	return ret;
740 }
741 
742 
743 /* Forces each of the EC_POINTs in the given array to use affine coordinates. */
744 int
745 ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
746     EC_POINT *points[], BN_CTX *ctx)
747 {
748 	size_t i;
749 
750 	for (i = 0; i < num; i++) {
751 		if (!group->meth->make_affine(group, points[i], ctx))
752 			return 0;
753 	}
754 
755 	return 1;
756 }
757 
758 
759 /* Wrapper to simple binary polynomial field multiplication implementation. */
760 int
761 ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
762     const BIGNUM *b, BN_CTX *ctx)
763 {
764 	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
765 }
766 
767 
768 /* Wrapper to simple binary polynomial field squaring implementation. */
769 int
770 ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
771     BN_CTX *ctx)
772 {
773 	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
774 }
775 
776 
777 /* Wrapper to simple binary polynomial field division implementation. */
778 int
779 ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
780     const BIGNUM *b, BN_CTX *ctx)
781 {
782 	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
783 }
784 
785 #endif
786