xref: /dragonfly/crypto/libressl/crypto/ec/ec2_smpl.c (revision f5b1c8a1)
1 /* $OpenBSD: ec2_smpl.c,v 1.13 2015/02/08 22:25:03 miod Exp $ */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  *    software must display the following acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  *    endorse or promote products derived from this software without
38  *    prior written permission. For written permission, please contact
39  *    openssl-core@openssl.org.
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  *    nor may "OpenSSL" appear in their names without prior written
43  *    permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  *    acknowledgment:
47  *    "This product includes software developed by the OpenSSL Project
48  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * (eay@cryptsoft.com).  This product includes software written by Tim
66  * Hudson (tjh@cryptsoft.com).
67  *
68  */
69 
70 #include <openssl/opensslconf.h>
71 
72 #include <openssl/err.h>
73 
74 #include "ec_lcl.h"
75 
76 #ifndef OPENSSL_NO_EC2M
77 
78 const EC_METHOD *
79 EC_GF2m_simple_method(void)
80 {
81 	static const EC_METHOD ret = {
82 		.flags = EC_FLAGS_DEFAULT_OCT,
83 		.field_type = NID_X9_62_characteristic_two_field,
84 		.group_init = ec_GF2m_simple_group_init,
85 		.group_finish = ec_GF2m_simple_group_finish,
86 		.group_clear_finish = ec_GF2m_simple_group_clear_finish,
87 		.group_copy = ec_GF2m_simple_group_copy,
88 		.group_set_curve = ec_GF2m_simple_group_set_curve,
89 		.group_get_curve = ec_GF2m_simple_group_get_curve,
90 		.group_get_degree = ec_GF2m_simple_group_get_degree,
91 		.group_check_discriminant =
92 		ec_GF2m_simple_group_check_discriminant,
93 		.point_init = ec_GF2m_simple_point_init,
94 		.point_finish = ec_GF2m_simple_point_finish,
95 		.point_clear_finish = ec_GF2m_simple_point_clear_finish,
96 		.point_copy = ec_GF2m_simple_point_copy,
97 		.point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity,
98 		.point_set_affine_coordinates =
99 		ec_GF2m_simple_point_set_affine_coordinates,
100 		.point_get_affine_coordinates =
101 		ec_GF2m_simple_point_get_affine_coordinates,
102 		.add = ec_GF2m_simple_add,
103 		.dbl = ec_GF2m_simple_dbl,
104 		.invert = ec_GF2m_simple_invert,
105 		.is_at_infinity = ec_GF2m_simple_is_at_infinity,
106 		.is_on_curve = ec_GF2m_simple_is_on_curve,
107 		.point_cmp = ec_GF2m_simple_cmp,
108 		.make_affine = ec_GF2m_simple_make_affine,
109 		.points_make_affine = ec_GF2m_simple_points_make_affine,
110 
111 		/*
112 		 * the following three method functions are defined in
113 		 * ec2_mult.c
114 		 */
115 		.mul = ec_GF2m_simple_mul,
116 		.precompute_mult = ec_GF2m_precompute_mult,
117 		.have_precompute_mult = ec_GF2m_have_precompute_mult,
118 
119 		.field_mul = ec_GF2m_simple_field_mul,
120 		.field_sqr = ec_GF2m_simple_field_sqr,
121 		.field_div = ec_GF2m_simple_field_div,
122 	};
123 
124 	return &ret;
125 }
126 
127 
128 /* Initialize a GF(2^m)-based EC_GROUP structure.
129  * Note that all other members are handled by EC_GROUP_new.
130  */
131 int
132 ec_GF2m_simple_group_init(EC_GROUP * group)
133 {
134 	BN_init(&group->field);
135 	BN_init(&group->a);
136 	BN_init(&group->b);
137 	return 1;
138 }
139 
140 
141 /* Free a GF(2^m)-based EC_GROUP structure.
142  * Note that all other members are handled by EC_GROUP_free.
143  */
144 void
145 ec_GF2m_simple_group_finish(EC_GROUP * group)
146 {
147 	BN_free(&group->field);
148 	BN_free(&group->a);
149 	BN_free(&group->b);
150 }
151 
152 
153 /* Clear and free a GF(2^m)-based EC_GROUP structure.
154  * Note that all other members are handled by EC_GROUP_clear_free.
155  */
156 void
157 ec_GF2m_simple_group_clear_finish(EC_GROUP * group)
158 {
159 	BN_clear_free(&group->field);
160 	BN_clear_free(&group->a);
161 	BN_clear_free(&group->b);
162 	group->poly[0] = 0;
163 	group->poly[1] = 0;
164 	group->poly[2] = 0;
165 	group->poly[3] = 0;
166 	group->poly[4] = 0;
167 	group->poly[5] = -1;
168 }
169 
170 
171 /* Copy a GF(2^m)-based EC_GROUP structure.
172  * Note that all other members are handled by EC_GROUP_copy.
173  */
174 int
175 ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src)
176 {
177 	int i;
178 
179 	if (!BN_copy(&dest->field, &src->field))
180 		return 0;
181 	if (!BN_copy(&dest->a, &src->a))
182 		return 0;
183 	if (!BN_copy(&dest->b, &src->b))
184 		return 0;
185 	dest->poly[0] = src->poly[0];
186 	dest->poly[1] = src->poly[1];
187 	dest->poly[2] = src->poly[2];
188 	dest->poly[3] = src->poly[3];
189 	dest->poly[4] = src->poly[4];
190 	dest->poly[5] = src->poly[5];
191 	if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
192 		return 0;
193 	if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
194 		return 0;
195 	for (i = dest->a.top; i < dest->a.dmax; i++)
196 		dest->a.d[i] = 0;
197 	for (i = dest->b.top; i < dest->b.dmax; i++)
198 		dest->b.d[i] = 0;
199 	return 1;
200 }
201 
202 
203 /* Set the curve parameters of an EC_GROUP structure. */
204 int
205 ec_GF2m_simple_group_set_curve(EC_GROUP * group,
206     const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
207 {
208 	int ret = 0, i;
209 
210 	/* group->field */
211 	if (!BN_copy(&group->field, p))
212 		goto err;
213 	i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
214 	if ((i != 5) && (i != 3)) {
215 		ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
216 		goto err;
217 	}
218 	/* group->a */
219 	if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
220 		goto err;
221 	if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
222 		goto err;
223 	for (i = group->a.top; i < group->a.dmax; i++)
224 		group->a.d[i] = 0;
225 
226 	/* group->b */
227 	if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
228 		goto err;
229 	if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL)
230 		goto err;
231 	for (i = group->b.top; i < group->b.dmax; i++)
232 		group->b.d[i] = 0;
233 
234 	ret = 1;
235 err:
236 	return ret;
237 }
238 
239 
240 /* Get the curve parameters of an EC_GROUP structure.
241  * If p, a, or b are NULL then there values will not be set but the method will return with success.
242  */
243 int
244 ec_GF2m_simple_group_get_curve(const EC_GROUP *group,
245     BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
246 {
247 	int ret = 0;
248 
249 	if (p != NULL) {
250 		if (!BN_copy(p, &group->field))
251 			return 0;
252 	}
253 	if (a != NULL) {
254 		if (!BN_copy(a, &group->a))
255 			goto err;
256 	}
257 	if (b != NULL) {
258 		if (!BN_copy(b, &group->b))
259 			goto err;
260 	}
261 	ret = 1;
262 
263 err:
264 	return ret;
265 }
266 
267 
268 /* Gets the degree of the field.  For a curve over GF(2^m) this is the value m. */
269 int
270 ec_GF2m_simple_group_get_degree(const EC_GROUP * group)
271 {
272 	return BN_num_bits(&group->field) - 1;
273 }
274 
275 
276 /* Checks the discriminant of the curve.
277  * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
278  */
279 int
280 ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx)
281 {
282 	int ret = 0;
283 	BIGNUM *b;
284 	BN_CTX *new_ctx = NULL;
285 
286 	if (ctx == NULL) {
287 		ctx = new_ctx = BN_CTX_new();
288 		if (ctx == NULL) {
289 			ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE);
290 			goto err;
291 		}
292 	}
293 	BN_CTX_start(ctx);
294 	if ((b = BN_CTX_get(ctx)) == NULL)
295 		goto err;
296 
297 	if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
298 		goto err;
299 
300 	/*
301 	 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
302 	 * curve <=> b != 0 (mod p)
303 	 */
304 	if (BN_is_zero(b))
305 		goto err;
306 
307 	ret = 1;
308 
309 err:
310 	if (ctx != NULL)
311 		BN_CTX_end(ctx);
312 	BN_CTX_free(new_ctx);
313 	return ret;
314 }
315 
316 
317 /* Initializes an EC_POINT. */
318 int
319 ec_GF2m_simple_point_init(EC_POINT * point)
320 {
321 	BN_init(&point->X);
322 	BN_init(&point->Y);
323 	BN_init(&point->Z);
324 	return 1;
325 }
326 
327 
328 /* Frees an EC_POINT. */
329 void
330 ec_GF2m_simple_point_finish(EC_POINT * point)
331 {
332 	BN_free(&point->X);
333 	BN_free(&point->Y);
334 	BN_free(&point->Z);
335 }
336 
337 
338 /* Clears and frees an EC_POINT. */
339 void
340 ec_GF2m_simple_point_clear_finish(EC_POINT * point)
341 {
342 	BN_clear_free(&point->X);
343 	BN_clear_free(&point->Y);
344 	BN_clear_free(&point->Z);
345 	point->Z_is_one = 0;
346 }
347 
348 
349 /* Copy the contents of one EC_POINT into another.  Assumes dest is initialized. */
350 int
351 ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src)
352 {
353 	if (!BN_copy(&dest->X, &src->X))
354 		return 0;
355 	if (!BN_copy(&dest->Y, &src->Y))
356 		return 0;
357 	if (!BN_copy(&dest->Z, &src->Z))
358 		return 0;
359 	dest->Z_is_one = src->Z_is_one;
360 
361 	return 1;
362 }
363 
364 
365 /* Set an EC_POINT to the point at infinity.
366  * A point at infinity is represented by having Z=0.
367  */
368 int
369 ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point)
370 {
371 	point->Z_is_one = 0;
372 	BN_zero(&point->Z);
373 	return 1;
374 }
375 
376 
377 /* Set the coordinates of an EC_POINT using affine coordinates.
378  * Note that the simple implementation only uses affine coordinates.
379  */
380 int
381 ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point,
382     const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx)
383 {
384 	int ret = 0;
385 	if (x == NULL || y == NULL) {
386 		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER);
387 		return 0;
388 	}
389 	if (!BN_copy(&point->X, x))
390 		goto err;
391 	BN_set_negative(&point->X, 0);
392 	if (!BN_copy(&point->Y, y))
393 		goto err;
394 	BN_set_negative(&point->Y, 0);
395 	if (!BN_copy(&point->Z, BN_value_one()))
396 		goto err;
397 	BN_set_negative(&point->Z, 0);
398 	point->Z_is_one = 1;
399 	ret = 1;
400 
401 err:
402 	return ret;
403 }
404 
405 
406 /* Gets the affine coordinates of an EC_POINT.
407  * Note that the simple implementation only uses affine coordinates.
408  */
409 int
410 ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
411     const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
412 {
413 	int ret = 0;
414 
415 	if (EC_POINT_is_at_infinity(group, point) > 0) {
416 		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY);
417 		return 0;
418 	}
419 	if (BN_cmp(&point->Z, BN_value_one())) {
420 		ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
421 		return 0;
422 	}
423 	if (x != NULL) {
424 		if (!BN_copy(x, &point->X))
425 			goto err;
426 		BN_set_negative(x, 0);
427 	}
428 	if (y != NULL) {
429 		if (!BN_copy(y, &point->Y))
430 			goto err;
431 		BN_set_negative(y, 0);
432 	}
433 	ret = 1;
434 
435 err:
436 	return ret;
437 }
438 
439 /* Computes a + b and stores the result in r.  r could be a or b, a could be b.
440  * Uses algorithm A.10.2 of IEEE P1363.
441  */
442 int
443 ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
444     const EC_POINT *b, BN_CTX *ctx)
445 {
446 	BN_CTX *new_ctx = NULL;
447 	BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
448 	int ret = 0;
449 
450 	if (EC_POINT_is_at_infinity(group, a) > 0) {
451 		if (!EC_POINT_copy(r, b))
452 			return 0;
453 		return 1;
454 	}
455 	if (EC_POINT_is_at_infinity(group, b) > 0) {
456 		if (!EC_POINT_copy(r, a))
457 			return 0;
458 		return 1;
459 	}
460 	if (ctx == NULL) {
461 		ctx = new_ctx = BN_CTX_new();
462 		if (ctx == NULL)
463 			return 0;
464 	}
465 	BN_CTX_start(ctx);
466 	if ((x0 = BN_CTX_get(ctx)) == NULL)
467 		goto err;
468 	if ((y0 = BN_CTX_get(ctx)) == NULL)
469 		goto err;
470 	if ((x1 = BN_CTX_get(ctx)) == NULL)
471 		goto err;
472 	if ((y1 = BN_CTX_get(ctx)) == NULL)
473 		goto err;
474 	if ((x2 = BN_CTX_get(ctx)) == NULL)
475 		goto err;
476 	if ((y2 = BN_CTX_get(ctx)) == NULL)
477 		goto err;
478 	if ((s = BN_CTX_get(ctx)) == NULL)
479 		goto err;
480 	if ((t = BN_CTX_get(ctx)) == NULL)
481 		goto err;
482 
483 	if (a->Z_is_one) {
484 		if (!BN_copy(x0, &a->X))
485 			goto err;
486 		if (!BN_copy(y0, &a->Y))
487 			goto err;
488 	} else {
489 		if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
490 			goto err;
491 	}
492 	if (b->Z_is_one) {
493 		if (!BN_copy(x1, &b->X))
494 			goto err;
495 		if (!BN_copy(y1, &b->Y))
496 			goto err;
497 	} else {
498 		if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
499 			goto err;
500 	}
501 
502 
503 	if (BN_GF2m_cmp(x0, x1)) {
504 		if (!BN_GF2m_add(t, x0, x1))
505 			goto err;
506 		if (!BN_GF2m_add(s, y0, y1))
507 			goto err;
508 		if (!group->meth->field_div(group, s, s, t, ctx))
509 			goto err;
510 		if (!group->meth->field_sqr(group, x2, s, ctx))
511 			goto err;
512 		if (!BN_GF2m_add(x2, x2, &group->a))
513 			goto err;
514 		if (!BN_GF2m_add(x2, x2, s))
515 			goto err;
516 		if (!BN_GF2m_add(x2, x2, t))
517 			goto err;
518 	} else {
519 		if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
520 			if (!EC_POINT_set_to_infinity(group, r))
521 				goto err;
522 			ret = 1;
523 			goto err;
524 		}
525 		if (!group->meth->field_div(group, s, y1, x1, ctx))
526 			goto err;
527 		if (!BN_GF2m_add(s, s, x1))
528 			goto err;
529 
530 		if (!group->meth->field_sqr(group, x2, s, ctx))
531 			goto err;
532 		if (!BN_GF2m_add(x2, x2, s))
533 			goto err;
534 		if (!BN_GF2m_add(x2, x2, &group->a))
535 			goto err;
536 	}
537 
538 	if (!BN_GF2m_add(y2, x1, x2))
539 		goto err;
540 	if (!group->meth->field_mul(group, y2, y2, s, ctx))
541 		goto err;
542 	if (!BN_GF2m_add(y2, y2, x2))
543 		goto err;
544 	if (!BN_GF2m_add(y2, y2, y1))
545 		goto err;
546 
547 	if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx))
548 		goto err;
549 
550 	ret = 1;
551 
552 err:
553 	BN_CTX_end(ctx);
554 	BN_CTX_free(new_ctx);
555 	return ret;
556 }
557 
558 
559 /* Computes 2 * a and stores the result in r.  r could be a.
560  * Uses algorithm A.10.2 of IEEE P1363.
561  */
562 int
563 ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
564     BN_CTX *ctx)
565 {
566 	return ec_GF2m_simple_add(group, r, a, a, ctx);
567 }
568 
569 int
570 ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
571 {
572 	if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y))
573 		/* point is its own inverse */
574 		return 1;
575 
576 	if (!EC_POINT_make_affine(group, point, ctx))
577 		return 0;
578 	return BN_GF2m_add(&point->Y, &point->X, &point->Y);
579 }
580 
581 
582 /* Indicates whether the given point is the point at infinity. */
583 int
584 ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
585 {
586 	return BN_is_zero(&point->Z);
587 }
588 
589 
590 /* Determines whether the given EC_POINT is an actual point on the curve defined
591  * in the EC_GROUP.  A point is valid if it satisfies the Weierstrass equation:
592  *      y^2 + x*y = x^3 + a*x^2 + b.
593  */
594 int
595 ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
596 {
597 	int ret = -1;
598 	BN_CTX *new_ctx = NULL;
599 	BIGNUM *lh, *y2;
600 	int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
601 	int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
602 
603 	if (EC_POINT_is_at_infinity(group, point) > 0)
604 		return 1;
605 
606 	field_mul = group->meth->field_mul;
607 	field_sqr = group->meth->field_sqr;
608 
609 	/* only support affine coordinates */
610 	if (!point->Z_is_one)
611 		return -1;
612 
613 	if (ctx == NULL) {
614 		ctx = new_ctx = BN_CTX_new();
615 		if (ctx == NULL)
616 			return -1;
617 	}
618 	BN_CTX_start(ctx);
619 	if ((y2 = BN_CTX_get(ctx)) == NULL)
620 		goto err;
621 	if ((lh = BN_CTX_get(ctx)) == NULL)
622 		goto err;
623 
624 	/*
625 	 * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3
626 	 * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x
627 	 * + y ) * x + b + y^2 = 0
628 	 */
629 	if (!BN_GF2m_add(lh, &point->X, &group->a))
630 		goto err;
631 	if (!field_mul(group, lh, lh, &point->X, ctx))
632 		goto err;
633 	if (!BN_GF2m_add(lh, lh, &point->Y))
634 		goto err;
635 	if (!field_mul(group, lh, lh, &point->X, ctx))
636 		goto err;
637 	if (!BN_GF2m_add(lh, lh, &group->b))
638 		goto err;
639 	if (!field_sqr(group, y2, &point->Y, ctx))
640 		goto err;
641 	if (!BN_GF2m_add(lh, lh, y2))
642 		goto err;
643 	ret = BN_is_zero(lh);
644 err:
645 	if (ctx)
646 		BN_CTX_end(ctx);
647 	BN_CTX_free(new_ctx);
648 	return ret;
649 }
650 
651 
652 /* Indicates whether two points are equal.
653  * Return values:
654  *  -1   error
655  *   0   equal (in affine coordinates)
656  *   1   not equal
657  */
658 int
659 ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
660     const EC_POINT *b, BN_CTX *ctx)
661 {
662 	BIGNUM *aX, *aY, *bX, *bY;
663 	BN_CTX *new_ctx = NULL;
664 	int ret = -1;
665 
666 	if (EC_POINT_is_at_infinity(group, a) > 0) {
667 		return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1;
668 	}
669 	if (EC_POINT_is_at_infinity(group, b) > 0)
670 		return 1;
671 
672 	if (a->Z_is_one && b->Z_is_one) {
673 		return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
674 	}
675 	if (ctx == NULL) {
676 		ctx = new_ctx = BN_CTX_new();
677 		if (ctx == NULL)
678 			return -1;
679 	}
680 	BN_CTX_start(ctx);
681 	if ((aX = BN_CTX_get(ctx)) == NULL)
682 		goto err;
683 	if ((aY = BN_CTX_get(ctx)) == NULL)
684 		goto err;
685 	if ((bX = BN_CTX_get(ctx)) == NULL)
686 		goto err;
687 	if ((bY = BN_CTX_get(ctx)) == NULL)
688 		goto err;
689 
690 	if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx))
691 		goto err;
692 	if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx))
693 		goto err;
694 	ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
695 
696 err:
697 	if (ctx)
698 		BN_CTX_end(ctx);
699 	BN_CTX_free(new_ctx);
700 	return ret;
701 }
702 
703 
704 /* Forces the given EC_POINT to internally use affine coordinates. */
705 int
706 ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx)
707 {
708 	BN_CTX *new_ctx = NULL;
709 	BIGNUM *x, *y;
710 	int ret = 0;
711 
712 	if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0)
713 		return 1;
714 
715 	if (ctx == NULL) {
716 		ctx = new_ctx = BN_CTX_new();
717 		if (ctx == NULL)
718 			return 0;
719 	}
720 	BN_CTX_start(ctx);
721 	if ((x = BN_CTX_get(ctx)) == NULL)
722 		goto err;
723 	if ((y = BN_CTX_get(ctx)) == NULL)
724 		goto err;
725 
726 	if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
727 		goto err;
728 	if (!BN_copy(&point->X, x))
729 		goto err;
730 	if (!BN_copy(&point->Y, y))
731 		goto err;
732 	if (!BN_one(&point->Z))
733 		goto err;
734 
735 	ret = 1;
736 
737 err:
738 	if (ctx)
739 		BN_CTX_end(ctx);
740 	BN_CTX_free(new_ctx);
741 	return ret;
742 }
743 
744 
745 /* Forces each of the EC_POINTs in the given array to use affine coordinates. */
746 int
747 ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
748     EC_POINT *points[], BN_CTX *ctx)
749 {
750 	size_t i;
751 
752 	for (i = 0; i < num; i++) {
753 		if (!group->meth->make_affine(group, points[i], ctx))
754 			return 0;
755 	}
756 
757 	return 1;
758 }
759 
760 
761 /* Wrapper to simple binary polynomial field multiplication implementation. */
762 int
763 ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
764     const BIGNUM *b, BN_CTX *ctx)
765 {
766 	return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
767 }
768 
769 
770 /* Wrapper to simple binary polynomial field squaring implementation. */
771 int
772 ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
773     BN_CTX *ctx)
774 {
775 	return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
776 }
777 
778 
779 /* Wrapper to simple binary polynomial field division implementation. */
780 int
781 ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
782     const BIGNUM *b, BN_CTX *ctx)
783 {
784 	return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
785 }
786 
787 #endif
788